1
|
Nathanailidou P, Dhakshnamoorthy J, Xiao H, Zofall M, Holla S, O’Neill M, Andresson T, Wheeler D, Grewal SIS. Specialized replication of heterochromatin domains ensures self-templated chromatin assembly and epigenetic inheritance. Proc Natl Acad Sci U S A 2024; 121:e2315596121. [PMID: 38285941 PMCID: PMC10861883 DOI: 10.1073/pnas.2315596121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
Heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), spreads across large domains and can be epigenetically inherited in a self-propagating manner. Heterochromatin propagation depends upon a read-write mechanism, where the Clr4/Suv39h methyltransferase binds to preexisting trimethylated H3K9 (H3K9me3) and further deposits H3K9me. How the parental methylated histone template is preserved during DNA replication is not well understood. Here, we demonstrate using Schizosaccharomyces pombe that heterochromatic regions are specialized replication domains demarcated by their surrounding boundary elements. DNA replication throughout these domains is distinguished by an abundance of replisome components and is coordinated by Swi6/HP1. Although mutations in the replicative helicase subunit Mcm2 that affect histone binding impede the maintenance of a heterochromatin domain at an artificially targeted ectopic site, they have only a modest impact on heterochromatin propagation via the read-write mechanism at an endogenous site. Instead, our findings suggest a crucial role for the replication factor Mcl1 in retaining parental histones and promoting heterochromatin propagation via a mechanism involving the histone chaperone FACT. Engagement of FACT with heterochromatin requires boundary elements, which position the heterochromatic domain at the nuclear peripheral subdomain enriched for heterochromatin factors. Our findings highlight the importance of replisome components and boundary elements in creating a specialized environment for the retention of parental methylated histones, which facilitates epigenetic inheritance of heterochromatin.
Collapse
Affiliation(s)
- Patroula Nathanailidou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Maura O’Neill
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Shiv I. S. Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
2
|
Zhang W, Wang Y, Liu Y, Liu C, Wang Y, He L, Cheng X, Peng Y, Xia L, Wu X, Wu J, Zhang Y, Sun L, Chen P, Li G, Tu Q, Liang J, Shang Y. NFIB facilitates replication licensing by acting as a genome organizer. Nat Commun 2023; 14:5076. [PMID: 37604829 PMCID: PMC10442334 DOI: 10.1038/s41467-023-40846-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
The chromatin-based rule governing the selection and activation of replication origins in metazoans remains to be investigated. Here we report that NFIB, a member of Nuclear Factor I (NFI) family that was initially purified in host cells to promote adenoviral DNA replication but has since mainly been investigated in transcription regulation, is physically associated with the pre-replication complex (pre-RC) in mammalian cells. Genomic analyses reveal that NFIB facilitates the assembly of the pre-RC by increasing chromatin accessibility. Nucleosome binding and single-molecule magnetic tweezers shows that NFIB binds to and opens up nucleosomes. Transmission electron microscopy indicates that NFIB promotes nucleosome eviction on parental chromatin. NFIB deficiency leads to alterations of chromosome contacts/compartments in both G1 and S phase and affects the firing of a subset of origins at early-replication domains. Significantly, cancer-associated NFIB overexpression provokes gene duplication and genomic alterations recapitulating the genetic aberrance in clinical breast cancer and empowering cancer cells to dynamically evolve growth advantage and drug resistance. Together, these results point a role for NFIB in facilitating replication licensing by acting as a genome organizer, shedding new lights on the biological function of NFIB and on the replication origin selection in eukaryotes.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
4
|
LSD1 is required for euchromatic origin firing and replication timing. Signal Transduct Target Ther 2022; 7:102. [PMID: 35414135 PMCID: PMC9005705 DOI: 10.1038/s41392-022-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 11/08/2022] Open
Abstract
The chromatin-based rule governing the selection and activation of replication origins remains to be elucidated. It is believed that DNA replication initiates from open chromatin domains; thus, replication origins reside in open and active chromatin. However, we report here that lysine-specific demethylase 1 (LSD1), which biochemically catalyzes H3K4me1/2 demethylation favoring chromatin condensation, interacts with the DNA replication machinery in human cells. We find that LSD1 level peaks in early S phase, when it is required for DNA replication by facilitating origin firing in euchromatic regions. Indeed, euchromatic zones enriched in H3K4me2 are the preferred sites for the pre-replicative complex (pre-RC) binding. Remarkably, LSD1 deficiency leads to a genome-wide switch of replication from early to late. We show that LSD1-engaged DNA replication is mechanistically linked to the loading of TopBP1-Interacting Checkpoint and Replication Regulator (TICRR) onto the pre-RC and subsequent recruitment of CDC45 during origin firing. Together, these results reveal an unexpected role for LSD1 in euchromatic origin firing and replication timing, highlighting the importance of epigenetic regulation in the activation of replication origins. As selective inhibitors of LSD1 are being exploited as potential cancer therapeutics, our study supports the importance of leveraging an appropriate level of LSD1 to curb the side effects of anti-LSD1 therapy.
Collapse
|
5
|
Hydroxyurea-The Good, the Bad and the Ugly. Genes (Basel) 2021; 12:genes12071096. [PMID: 34356112 PMCID: PMC8304116 DOI: 10.3390/genes12071096] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Hydroxyurea (HU) is mostly referred to as an inhibitor of ribonucleotide reductase (RNR) and as the agent that is commonly used to arrest cells in the S-phase of the cycle by inducing replication stress. It is a well-known and widely used drug, one which has proved to be effective in treating chronic myeloproliferative disorders and which is considered a staple agent in sickle anemia therapy and—recently—a promising factor in preventing cognitive decline in Alzheimer’s disease. The reversibility of HU-induced replication inhibition also makes it a common laboratory ingredient used to synchronize cell cycles. On the other hand, prolonged treatment or higher dosage of hydroxyurea causes cell death due to accumulation of DNA damage and oxidative stress. Hydroxyurea treatments are also still far from perfect and it has been suggested that it facilitates skin cancer progression. Also, recent studies have shown that hydroxyurea may affect a larger number of enzymes due to its less specific interaction mechanism, which may contribute to further as-yet unspecified factors affecting cell response. In this review, we examine the actual state of knowledge about hydroxyurea and the mechanisms behind its cytotoxic effects. The practical applications of the recent findings may prove to enhance the already existing use of the drug in new and promising ways.
Collapse
|
6
|
Wang W, Klein KN, Proesmans K, Yang H, Marchal C, Zhu X, Borrman T, Hastie A, Weng Z, Bechhoefer J, Chen CL, Gilbert DM, Rhind N. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Mol Cell 2021; 81:2975-2988.e6. [PMID: 34157308 PMCID: PMC8286344 DOI: 10.1016/j.molcel.2021.05.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/08/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.
Collapse
Affiliation(s)
- Weitao Wang
- Institut Curie, PSL Research University, CNRS UMR 3244, Paris 75005, France
| | - Kyle N Klein
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA
| | - Karel Proesmans
- Simon Fraser University, Department of Physics, Burnaby, BC V5A 1S6, Canada
| | - Hongbo Yang
- Northwestern University, Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, IL 60208, USA
| | - Claire Marchal
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA
| | - Xiaopeng Zhu
- Carnegie Mellon University, Computational Biology Department, Pittsburgh, PA 15213, USA
| | - Tyler Borrman
- University of Massachusetts Medical School, Program in Bioinformatics and Integrated Biology, Worcester, MA 01605, USA
| | | | - Zhiping Weng
- University of Massachusetts Medical School, Program in Bioinformatics and Integrated Biology, Worcester, MA 01605, USA
| | - John Bechhoefer
- Simon Fraser University, Department of Physics, Burnaby, BC V5A 1S6, Canada.
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR 3244, Paris 75005, France; Sorbonne University, Paris 75005, France.
| | - David M Gilbert
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA.
| | - Nicholas Rhind
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Rapsomaniki MA, Maxouri S, Nathanailidou P, Garrastacho MR, Giakoumakis NN, Taraviras S, Lygeros J, Lygerou Z. In silico analysis of DNA re-replication across a complete genome reveals cell-to-cell heterogeneity and genome plasticity. NAR Genom Bioinform 2021; 3:lqaa112. [PMID: 33554116 PMCID: PMC7846089 DOI: 10.1093/nargab/lqaa112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023] Open
Abstract
DNA replication is a complex and remarkably robust process: despite its inherent uncertainty, manifested through stochastic replication timing at a single-cell level, multiple control mechanisms ensure its accurate and timely completion across a population. Disruptions in these mechanisms lead to DNA re-replication, closely connected to genomic instability and oncogenesis. Here, we present a stochastic hybrid model of DNA re-replication that accurately portrays the interplay between discrete dynamics, continuous dynamics and uncertainty. Using experimental data on the fission yeast genome, model simulations show how different regions respond to re-replication and permit insight into the key mechanisms affecting re-replication dynamics. Simulated and experimental population-level profiles exhibit a good correlation along the genome, robust to model parameters, validating our approach. At a single-cell level, copy numbers of individual loci are affected by intrinsic properties of each locus, in cis effects from adjoining loci and in trans effects from distant loci. In silico analysis and single-cell imaging reveal that cell-to-cell heterogeneity is inherent in re-replication and can lead to genome plasticity and a plethora of genotypic variations.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Stella Maxouri
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Patroula Nathanailidou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | | | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| |
Collapse
|
8
|
Chromatin and Nuclear Architecture: Shaping DNA Replication in 3D. Trends Genet 2020; 36:967-980. [PMID: 32713597 DOI: 10.1016/j.tig.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In eukaryotes, DNA replication progresses through a finely orchestrated temporal and spatial program. The 3D genome structure and nuclear architecture have recently emerged as fundamental determinants of the replication program. Factors with established roles in replication have been recognized as genome organization regulators. Exploiting paradigms from yeasts and mammals, we discuss how DNA replication is regulated in time and space through DNA-associated trans-acting factors, diffusible limiting replication initiation factors, higher-order chromatin folding, dynamic origin localization, and specific nuclear microenvironments. We present an integrated model for the regulation of DNA replication in 3D and highlight the importance of accurate spatio-temporal regulation of DNA replication in physiology and disease.
Collapse
|
9
|
Superresolution imaging reveals spatiotemporal propagation of human replication foci mediated by CTCF-organized chromatin structures. Proc Natl Acad Sci U S A 2020; 117:15036-15046. [PMID: 32541019 DOI: 10.1073/pnas.2001521117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian DNA replication is initiated at numerous replication origins, which are clustered into thousands of replication domains (RDs) across the genome. However, it remains unclear whether the replication origins within each RD are activated stochastically or preferentially near certain chromatin features. To understand how DNA replication in single human cells is regulated at the sub-RD level, we directly visualized and quantitatively characterized the spatiotemporal organization, morphology, and in situ epigenetic signatures of individual replication foci (RFi) across S-phase at superresolution using stochastic optical reconstruction microscopy. Importantly, we revealed a hierarchical radial pattern of RFi propagation dynamics that reverses directionality from early to late S-phase and is diminished upon caffeine treatment or CTCF knockdown. Together with simulation and bioinformatic analyses, our findings point to a "CTCF-organized REplication Propagation" (CoREP) model, which suggests a nonrandom selection mechanism for replication activation at the sub-RD level during early S-phase, mediated by CTCF-organized chromatin structures. Collectively, these findings offer critical insights into the key involvement of local epigenetic environment in coordinating DNA replication across the genome and have broad implications for our conceptualization of the role of multiscale chromatin architecture in regulating diverse cell nuclear dynamics in space and time.
Collapse
|
10
|
Le TT, Gao X, Park SH, Lee J, Inman JT, Lee JH, Killian JL, Badman RP, Berger JM, Wang MD. Synergistic Coordination of Chromatin Torsional Mechanics and Topoisomerase Activity. Cell 2020; 179:619-631.e15. [PMID: 31626768 PMCID: PMC6899335 DOI: 10.1016/j.cell.2019.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/16/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
Abstract
DNA replication in eukaryotes generates DNA supercoiling, which may intertwine (braid) daughter chromatin fibers to form precatenanes, posing topological challenges during chromosome segregation. The mechanisms that limit precatenane formation remain unclear. By making direct torque measurements, we demonstrate that the intrinsic mechanical properties of chromatin play a fundamental role in dictating precatenane formation and regulating chromatin topology. Whereas a single chromatin fiber is torsionally soft, a braided fiber is torsionally stiff, indicating that supercoiling on chromatin substrates is preferentially directed in front of the fork during replication. We further show that topoisomerase II relaxation displays a strong preference for a single chromatin fiber over a braided fiber. These results suggest a synergistic coordination-the mechanical properties of chromatin inherently suppress precatenane formation during replication elongation by driving DNA supercoiling ahead of the fork, where supercoiling is more efficiently removed by topoisomerase II. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Seong Ha Park
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica L Killian
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Ryan P Badman
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Zhou ZX, Lujan SA, Burkholder AB, Garbacz MA, Kunkel TA. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication. Nat Commun 2019; 10:3992. [PMID: 31488849 PMCID: PMC6728351 DOI: 10.1038/s41467-019-11995-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/09/2019] [Indexed: 01/29/2023] Open
Abstract
Most current evidence indicates that DNA polymerases ε and δ, respectively, perform the bulk of leading and lagging strand replication of the eukaryotic nuclear genome. Given that ribonucleotide and mismatch incorporation rates by these replicases influence somatic and germline patterns of variation, it is important to understand the details and exceptions to this overall division of labor. Using an improved method to map where these replicases incorporate ribonucleotides during replication, here we present evidence that DNA polymerase δ universally participates in initiating leading strand synthesis and that nascent leading strand synthesis switches from Pol ε to Pol δ during replication termination. Ribonucleotide maps from both the budding and fission yeast reveal conservation of these processes. These observations of replisome dynamics provide important insight into the mechanisms of eukaryotic replication and genome maintenance.
Collapse
Affiliation(s)
- Zhi-Xiong Zhou
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Scott A Lujan
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Marta A Garbacz
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
12
|
Mathematical description of eukaryotic chromosome replication. Proc Natl Acad Sci U S A 2019; 116:4776-4778. [PMID: 30782813 DOI: 10.1073/pnas.1900968116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Abstract
Each genomic locus in a eukaryotic cell has a distinct average time of replication during S phase that depends on the spatial and temporal pattern of replication initiation events. Replication timing can affect genomic integrity because late replication is associated with an increased mutation rate. For most eukaryotes, the features of the genome that specify the location and timing of initiation events are unknown. To investigate these features for the fission yeast, Schizosaccharomyces pombe, we developed an integrative model to analyze large single-molecule and global genomic datasets. The model provides an accurate description of the complex dynamics of S. pombe DNA replication at high resolution. We present evidence that there are many more potential initiation sites in the S. pombe genome than previously identified and that the distribution of these sites is primarily determined by two factors: the sequence preferences of the origin recognition complex (ORC), and the interference of transcription with the assembly or stability of prereplication complexes (pre-RCs). We suggest that in addition to directly interfering with initiation, transcription has driven the evolution of the binding properties of ORC in S. pombe and other eukaryotic species to target pre-RC assembly to regions of the genome that are less likely to be transcribed.
Collapse
|
14
|
Abstract
The discovery of a biomolecular condensate involved in DNA replication has wide-ranging implications.
Collapse
Affiliation(s)
- Nina Y Yao
- Laboratory of DNA ReplicationThe Rockefeller UniversityNew YorkUnited States
| | - Michael E O'Donnell
- The Howard Hughes Medical Institute and the Laboratory of DNA ReplicationThe Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
15
|
Gómez-Escoda B, Wu PYJ. The organization of genome duplication is a critical determinant of the landscape of genome maintenance. Genome Res 2018; 28:1179-1192. [PMID: 29934426 PMCID: PMC6071636 DOI: 10.1101/gr.224527.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
Genome duplication is essential for cell proliferation, and the mechanisms regulating its execution are highly conserved. These processes give rise to a spatiotemporal organization of replication initiation across the genome, referred to as the replication program. Despite the identification of such programs in diverse eukaryotic organisms, their biological importance for cellular physiology remains largely unexplored. We address this fundamental question in the context of genome maintenance, taking advantage of the inappropriate origin firing that occurs when fission yeast cells lacking the Rad3/ATR checkpoint kinase are subjected to replication stress. Using this model, we demonstrate that the replication program quantitatively dictates the extent of origin de-regulation and the clustered localization of these events. Furthermore, our results uncover an accumulation of abnormal levels of single-stranded DNA (ssDNA) and the Rad52 repair protein at de-regulated origins. We show that these loci constitute a defining source of the overall ssDNA and Rad52 hotspots in the genome, generating a signature pattern of instability along the chromosomes. We then induce a genome-wide reprogramming of origin usage and evaluate its consequences in our experimental system. This leads to a complete redistribution of the sites of both inappropriate initiation and associated Rad52 recruitment. We therefore conclude that the organization of genome duplication governs the checkpoint control of origin-associated hotspots of instability and plays an integral role in shaping the landscape of genome maintenance.
Collapse
Affiliation(s)
- Blanca Gómez-Escoda
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France
| | - Pei-Yun Jenny Wu
- CNRS, University of Rennes, Institute of Genetics and Development of Rennes, 35043 Rennes, France
| |
Collapse
|
16
|
Arbona JM, Goldar A, Hyrien O, Arneodo A, Audit B. The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation. eLife 2018; 7:35192. [PMID: 29856315 PMCID: PMC6033540 DOI: 10.7554/elife.35192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/31/2018] [Indexed: 01/22/2023] Open
Abstract
The time-dependent rate I(t) of origin firing per length of unreplicated DNA presents a universal bell shape in eukaryotes that has been interpreted as the result of a complex time-evolving interaction between origins and limiting firing factors. Here, we show that a normal diffusion of replication fork components towards localized potential replication origins (p-oris) can more simply account for the I(t) universal bell shape, as a consequence of a competition between the origin firing time and the time needed to replicate DNA separating two neighboring p-oris. We predict the I(t) maximal value to be the product of the replication fork speed with the squared p-ori density. We show that this relation is robustly observed in simulations and in experimental data for several eukaryotes. Our work underlines that fork-component recycling and potential origins localization are sufficient spatial ingredients to explain the universality of DNA replication kinetics. Before a cell can divide, it must duplicate its DNA. In eukaryotes – organisms such as animals and fungi, which store their DNA in the cell’s nucleus – DNA replication starts at specific sites in the genome called replication origins. At each origin sits a protein complex that will activate when it randomly captures an activating protein that diffuses within the nucleus. Once a replication origin activates or “fires”, the complex then splits into two new complexes that move away from each other as they duplicate the DNA. If an active complex collides with an inactive one at another origin, the latter is inactivated – a phenomenon known as origin passivation. When two active complexes meet, they release the activating proteins, which diffuse away and eventually activate other origins in unreplicated DNA. The number of origins that activate each minute divided by the length of unreplicated DNA is referred to as the “rate of origin firing”. In all eukaryotes, this rate – also known as I(t) – follows the same pattern. First, it increases until more than half of the DNA is duplicated. Then it decreases until everything is duplicated. This means that, if plotted out, the graph of origin firing rate would always be a bell-shaped curve, even for organisms with genomes of different sizes that have different numbers of origins. The reason for this universal shape remained unclear. Scientists had tried to create numerical simulations that model the rate of origin firing. However, for these simulations to reproduce the bell-shape curve, a number of untested assumptions had to be made about how DNA replication takes place. In addition, these models ignored the fact that it takes time to replicate the DNA between origins. To take this time into account, Arbona et al. instead decided to model the replication origins as discrete and distinct entities. This way of building the mathematical model succeeded in reproducing the universal bell curve shape without additional assumptions. With this simulation, the balance between origin activation and passivation is enough to achieve the observed pattern. The new model also predicts that the maximum rate of origin firing is determined by the speed of DNA replication and the density of origins in the genome. Arbona et al. verified this prediction in yeast, fly, frog and human cells – organisms with different sized genomes that take between 20 minutes and 8 hours to replicate their DNA. Lastly, the prediction also held true in yeast treated with hydroxyurea, an anticancer drug that slows DNA replication. A better understanding of DNA replication can help scientists to understand how this process is perturbed in cancers and how drugs that target DNA replication can treat these diseases. Future work will explore how the 3D organization of the genome affects the diffusion of activating proteins within the cell nucleus.
Collapse
Affiliation(s)
- Jean-Michel Arbona
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | | | - Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Arneodo
- LOMA, Univ de Bordeaux, CNRS, UMR 5798, Talence, France
| | - Benjamin Audit
- Laboratoire de Physique, Université de Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
17
|
Hayles J, Nurse P. Introduction to Fission Yeast as a Model System. Cold Spring Harb Protoc 2018; 2018:pdb.top079749. [PMID: 28733415 DOI: 10.1101/pdb.top079749] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here, we briefly outline the history of fission yeast, its life cycle, and aspects of its biology that make it a useful model organism for studying problems of eukaryotic molecular and cell biology.
Collapse
Affiliation(s)
- Jacqueline Hayles
- Cell Cycle Laboratory, The Francis Crick Research Institute, London WC2A 3LY, United Kingdom
| | - Paul Nurse
- Cell Cycle Laboratory, The Francis Crick Research Institute, London WC2A 3LY, United Kingdom
| |
Collapse
|
18
|
Bellush JM, Whitehouse I. DNA replication through a chromatin environment. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0287. [PMID: 28847824 DOI: 10.1098/rstb.2016.0287] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
Compaction of the genome into the nuclear space is achieved by wrapping DNA around octameric assemblies of histone proteins to form nucleosomes, the fundamental repeating unit of chromatin. Aside from providing a means by which to fit larger genomes into the cell, chromatinization of DNA is a crucial means by which the cell regulates access to the genome. While the complex role that chromatin plays in gene transcription has been appreciated for a long time, it is now also apparent that crucial aspects of DNA replication are linked to the biology of chromatin. This review will focus on recent advances in our understanding of how the chromatin environment influences key aspects of DNA replication.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- James M Bellush
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.,BCMB Graduate Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
19
|
Perrot A, Millington CL, Gómez-Escoda B, Schausi-Tiffoche D, Wu PYJ. CDK activity provides temporal and quantitative cues for organizing genome duplication. PLoS Genet 2018; 14:e1007214. [PMID: 29466359 PMCID: PMC5821308 DOI: 10.1371/journal.pgen.1007214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
In eukaryotes, the spatial and temporal organization of genome duplication gives rise to distinctive profiles of replication origin usage along the chromosomes. While it has become increasingly clear that these programs are important for cellular physiology, the mechanisms by which they are determined and modulated remain elusive. Replication initiation requires the function of cyclin-dependent kinases (CDKs), which associate with various cyclin partners to drive cell proliferation. Surprisingly, although we possess detailed knowledge of the CDK regulators and targets that are crucial for origin activation, little is known about whether CDKs play a critical role in establishing the genome-wide pattern of origin selection. We have addressed this question in the fission yeast, taking advantage of a simplified cell cycle network in which cell proliferation is driven by a single cyclin-CDK module. This system allows us to precisely control CDK activity in vivo using chemical genetics. First, in contrast to previous reports, our results clearly show that distinct cyclin-CDK pairs are not essential for regulating specific subsets of origins and for establishing a normal replication program. Importantly, we then demonstrate that the timing at which CDK activity reaches the S phase threshold is critical for the organization of replication in distinct efficiency domains, while the level of CDK activity at the onset of S phase is a dose-dependent modulator of overall origin efficiencies. Our study therefore implicates these different aspects of CDK regulation as versatile mechanisms for shaping the architecture of DNA replication across the genome. The duplication of the genetic material is a highly conserved and tightly regulated process that is essential for cell proliferation. DNA synthesis initiates at sites called origins that are distributed throughout the genome. Replication origins are not all used equivalently, and their patterns of activation along the chromosomes give rise to specific profiles, or programs, of DNA replication. These programs change during development and in response to external stimuli, and we have previously shown that they have important consequences for cellular function. However, we still do not understand the mechanisms by which cells establish different replication patterns. Here we investigate the role of the cyclin-dependent kinase (CDK) family of proteins, whose activities are critical for cell cycle progression, in regulating the organization of genome duplication. Taking advantage of a system that allows us to precisely modulate CDK activity levels in living cells, we demonstrate that both the temporal and quantitative controls of CDK function are crucial for determining distinct programs of DNA replication. Our work therefore uncovers a fundamental link between CDK activity, a central input in a variety of cellular and developmental processes, and the architecture of genome duplication.
Collapse
Affiliation(s)
- Anthony Perrot
- Genome Duplication and Maintenance Team, Institute of Genetics and Development, CNRS UMR, Rennes, France
| | - Christopher Lee Millington
- Genome Duplication and Maintenance Team, Institute of Genetics and Development, CNRS UMR, Rennes, France
| | - Blanca Gómez-Escoda
- Genome Duplication and Maintenance Team, Institute of Genetics and Development, CNRS UMR, Rennes, France
| | - Diane Schausi-Tiffoche
- Genome Duplication and Maintenance Team, Institute of Genetics and Development, CNRS UMR, Rennes, France
| | - Pei-Yun Jenny Wu
- Genome Duplication and Maintenance Team, Institute of Genetics and Development, CNRS UMR, Rennes, France
- * E-mail:
| |
Collapse
|
20
|
Analysis of Fission Yeast Single DNA Molecules on the Megabase Scale Using DNA Combing. Methods Mol Biol 2018; 1721:9-24. [PMID: 29423843 DOI: 10.1007/978-1-4939-7546-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
DNA combing enables the quantitative analysis of DNA replication, DNA recombination, DNA-protein interaction, and DNA methylation along genomic single DNA molecules at 1 kb resolution. However, DNA combing has been restricted to short 200-500 kb long DNA fragments, which introduces significant bias in data analysis. An improved DNA combing methodology that allows to routinely image Mb-scale single DNA molecules and occasionally up to full-length fission yeast chromosomes is presented in this chapter. DNA combing of Mb-scale single DNA molecules can be applied to accurately measure the dynamic properties of DNA replication such as the rate of origin firing, replication fork velocity, fork directionality and the frequency of fork blockage. In addition, Mb-scale single DNA molecules enable the quantitative analysis of complex genomic rearrangements including gross chromosomal translocations, repetitive DNA sequences, large deletions, and duplications, which are difficult to investigate with deep sequencing strategies.
Collapse
|
21
|
Dileep V, Gilbert DM. Single-cell replication profiling to measure stochastic variation in mammalian replication timing. Nat Commun 2018; 9:427. [PMID: 29382831 PMCID: PMC5789892 DOI: 10.1038/s41467-017-02800-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
Mammalian DNA replication is regulated via multi-replicon segments that replicate in a defined temporal order during S-phase. Further, early/late replication of RDs corresponds to active/inactive chromatin interaction compartments. Although replication origins are selected stochastically, variation in replication timing is poorly understood. Here we devise a strategy to measure variation in replication timing using DNA copy number in single mouse embryonic stem cells. We find that borders between replicated and unreplicated DNA are highly conserved between cells, demarcating active and inactive compartments of the nucleus. Fifty percent of replication events deviated from their average replication time by ± 15% of S phase. This degree of variation is similar between cells, between homologs within cells and between all domains genomewide, regardless of their replication timing. These results demonstrate that stochastic variation in replication timing is independent of elements that dictate timing or extrinsic environmental variation.
Collapse
Affiliation(s)
- Vishnu Dileep
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA.
| |
Collapse
|
22
|
Zhao PA, Rivera-Mulia JC, Gilbert DM. Replication Domains: Genome Compartmentalization into Functional Replication Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:229-257. [DOI: 10.1007/978-981-10-6955-0_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Abstract
Complete duplication of large metazoan chromosomes requires thousands of potential initiation sites, only a small fraction of which are selected in each cell cycle. Assembly of the replication machinery is highly conserved and tightly regulated during the cell cycle, but the sites of initiation are highly flexible, and their temporal order of firing is regulated at the level of large-scale multi-replicon domains. Importantly, the number of replication forks must be quickly adjusted in response to replication stress to prevent genome instability. Here we argue that large genomes are divided into domains for exactly this reason. Once established, domain structure abrogates the need for precise initiation sites and creates a scaffold for the evolution of other chromosome functions.
Collapse
Affiliation(s)
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
24
|
Iyer DR, Rhind N. Replication fork slowing and stalling are distinct, checkpoint-independent consequences of replicating damaged DNA. PLoS Genet 2017; 13:e1006958. [PMID: 28806726 PMCID: PMC5570505 DOI: 10.1371/journal.pgen.1006958] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/24/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
In response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions, we have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe using a single-molecule DNA combing assay, which allows us to unambiguously separate the contribution of origin and fork regulation towards replication slowing, and allows us to investigate the behavior of individual forks. Moreover, we have interrogated the role of forks interacting with individual sites of damage by using three damaging agents-MMS, 4NQO and bleomycin-that cause similar levels of replication slowing with very different frequency of DNA lesions. We find that the checkpoint slows replication by inhibiting origin firing, but not by decreasing fork rates. However, the checkpoint appears to facilitate replication of damaged templates, allowing forks to more quickly pass lesions. Finally, using a novel analytic approach, we rigorously identify fork stalling events in our combing data and show that they play a previously unappreciated role in shaping replication kinetics in response to DNA damage.
Collapse
Affiliation(s)
- Divya Ramalingam Iyer
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nicholas Rhind
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
25
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
26
|
Checkpoint-Independent Regulation of Origin Firing by Mrc1 through Interaction with Hsk1 Kinase. Mol Cell Biol 2017; 37:MCB.00355-16. [PMID: 28069740 DOI: 10.1128/mcb.00355-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022] Open
Abstract
Mrc1 is a conserved checkpoint mediator protein that transduces the replication stress signal to the downstream effector kinase. The loss of mrc1 checkpoint activity results in the aberrant activation of late/dormant origins in the presence of hydroxyurea. Mrc1 was also suggested to regulate orders of early origin firing in a checkpoint-independent manner, but its mechanism was unknown. Here we identify HBS (Hsk1 bypass segment) on Mrc1. An ΔHBS mutant does not activate late/dormant origin firing in the presence of hydroxyurea but causes the precocious and enhanced activation of weak early-firing origins during normal S-phase progression and bypasses the requirement for Hsk1 for growth. This may be caused by the disruption of intramolecular binding between HBS and NTHBS (N-terminal target of HBS). Hsk1 binds to Mrc1 through HBS and phosphorylates a segment adjacent to NTHBS, disrupting the intramolecular interaction. We propose that Mrc1 exerts a "brake" on initiation (through intramolecular interactions) and that this brake can be released (upon the loss of intramolecular interactions) by either the Hsk1-mediated phosphorylation of Mrc1 or the deletion of HBS (or a phosphomimic mutation of putative Hsk1 target serine/threonine), which can bypass the function of Hsk1 for growth. The brake mechanism may explain the checkpoint-independent regulation of early origin firing in fission yeast.
Collapse
|
27
|
Rodríguez-Martínez M, Pinzón N, Ghommidh C, Beyne E, Seitz H, Cayrou C, Méchali M. The gastrula transition reorganizes replication-origin selection in Caenorhabditis elegans. Nat Struct Mol Biol 2017; 24:290-299. [PMID: 28112731 DOI: 10.1038/nsmb.3363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/13/2016] [Indexed: 01/09/2023]
Abstract
Although some features underlying replication-origin activation in metazoan cells have been determined, little is known about their regulation during metazoan development. Using the nascent-strand purification method, here we identified replication origins throughout Caenorhabditis elegans embryonic development and found that the origin repertoire is thoroughly reorganized after gastrulation onset. During the pluripotent embryonic stages (pregastrula), potential cruciform structures and open chromatin are determining factors that establish replication origins. The observed enrichment of replication origins in transcription factor-binding sites and their presence in promoters of highly transcribed genes, particularly operons, suggest that transcriptional activity contributes to replication initiation before gastrulation. After the gastrula transition, when embryonic differentiation programs are set, new origins are selected at enhancers, close to CpG-island-like sequences, and at noncoding genes. Our findings suggest that origin selection coordinates replication initiation with transcriptional programs during metazoan development.
Collapse
Affiliation(s)
| | | | - Charles Ghommidh
- Agropolymer Engineering and Emerging Technologies, University of Montpellier, Montpellier, France
| | | | - Hervé Seitz
- Institute of Human Genetics, CNRS, Montpellier, France
| | | | | |
Collapse
|
28
|
Kelly T. Historical Perspective of Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:1-41. [PMID: 29357051 DOI: 10.1007/978-981-10-6955-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.
Collapse
Affiliation(s)
- Thomas Kelly
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
29
|
Zofall M, Smith DR, Mizuguchi T, Dhakshnamoorthy J, Grewal SIS. Taz1-Shelterin Promotes Facultative Heterochromatin Assembly at Chromosome-Internal Sites Containing Late Replication Origins. Mol Cell 2016; 62:862-874. [PMID: 27264871 DOI: 10.1016/j.molcel.2016.04.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 03/07/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Facultative heterochromatin regulates gene expression, but its assembly is poorly understood. Previously, we identified facultative heterochromatin islands in the fission yeast genome and found that RNA elimination machinery promotes island assembly at meiotic genes. Here, we report that Taz1, a component of the telomere protection complex Shelterin, is required to assemble heterochromatin islands at regions corresponding to late replication origins that are sites of double-strand break formation during meiosis. The loss of Taz1 or other Shelterin subunits, including Ccq1 that interacts with Clr4/Suv39h, abolishes heterochromatin at late origins and causes derepression of associated genes. Moreover, the late-origin regulator Rif1 affects heterochromatin at Taz1-dependent islands and subtelomeric regions. We explore the connection between facultative heterochromatin and replication control and show that heterochromatin machinery affects replication timing. These analyses reveal the role of Shelterin in facultative heterochromatin assembly at late origins, which has important implications for genome stability and gene regulation.
Collapse
Affiliation(s)
- Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah R Smith
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takeshi Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
30
|
Morganella S, Alexandrov LB, Glodzik D, Zou X, Davies H, Staaf J, Sieuwerts AM, Brinkman AB, Martin S, Ramakrishna M, Butler A, Kim HY, Borg Å, Sotiriou C, Futreal PA, Campbell PJ, Span PN, Van Laere S, Lakhani SR, Eyfjord JE, Thompson AM, Stunnenberg HG, van de Vijver MJ, Martens JWM, Børresen-Dale AL, Richardson AL, Kong G, Thomas G, Sale J, Rada C, Stratton MR, Birney E, Nik-Zainal S. The topography of mutational processes in breast cancer genomes. Nat Commun 2016; 7:11383. [PMID: 27136393 PMCID: PMC5001788 DOI: 10.1038/ncomms11383] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/18/2016] [Indexed: 12/28/2022] Open
Abstract
Somatic mutations in human cancers show unevenness in genomic distribution that correlate with aspects of genome structure and function. These mutations are, however, generated by multiple mutational processes operating through the cellular lineage between the fertilized egg and the cancer cell, each composed of specific DNA damage and repair components and leaving its own characteristic mutational signature on the genome. Using somatic mutation catalogues from 560 breast cancer whole-genome sequences, here we show that each of 12 base substitution, 2 insertion/deletion (indel) and 6 rearrangement mutational signatures present in breast tissue, exhibit distinct relationships with genomic features relating to transcription, DNA replication and chromatin organization. This signature-based approach permits visualization of the genomic distribution of mutational processes associated with APOBEC enzymes, mismatch repair deficiency and homologous recombinational repair deficiency, as well as mutational processes of unknown aetiology. Furthermore, it highlights mechanistic insights including a putative replication-dependent mechanism of APOBEC-related mutagenesis.
Collapse
Affiliation(s)
- Sandro Morganella
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Cambridgeshire
CB10 1SD, UK
| | - Ludmil B. Alexandrov
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
- Theoretical Biology and Biophysics (T-6), Los Alamos National
Laboratory, Los Alamos
NM 87545, New Mexico, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory,
Los Alamos
NM 87545, New Mexico, USA
| | | | - Xueqing Zou
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
| | - Helen Davies
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences
Lund, Lund University, Lund
SE-223 81, Sweden
| | - Anieta M. Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute and
Cancer Genomics Netherlands, Erasmus University Medical Center,
Rotterdam
3015CN, The Netherlands
| | - Arie B. Brinkman
- Radboud University, Faculty of Science, Department of Molecular
Biology, 6525GA
Nijmegen, The Netherlands
| | - Sancha Martin
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
| | | | - Adam Butler
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
| | - Hyung-Yong Kim
- Department of Pathology, College of Medicine, Hanyang
University, Seoul
133-791, South Korea
| | - Åke Borg
- Division of Oncology and Pathology, Department of Clinical Sciences
Lund, Lund University, Lund
SE-223 81, Sweden
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Université
Libre de Bruxelles, Institut Jules Bordet, Bd de Waterloo 121,
B-1000
Brussels, Belgium
| | - P. Andrew Futreal
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Cambridgeshire
CB10 1SD, UK
- Department of Genomic Medicine, UT MD Anderson Cancer
Center, Houston, Texas
77230, USA
| | | | - Paul N. Span
- Department of Radiation Oncology, and department of Laboratory
Medicine, Radboud university medical center, Nijmegen
6525GA, The Netherlands
| | - Steven Van Laere
- Translational Cancer Research Unit, GZA Hospitals Sint-Augustinus,
Wilrijk, Belgium and Center for Oncological Research, University of Antwerp,
Antwerp
B-2610, Belgium
| | - Sunil R. Lakhani
- Centre for Clinical Research and School of Medicine, University of
Queensland, Brisbane, Queensland
4059, Australia
- Pathology Queensland, The Royal Brisbane and Women's
Hospital, Brisbane, Queensland
4029, Australia
| | - Jorunn E. Eyfjord
- Cancer Research Laboratory, Faculty of Medicine, University of
Iceland, 101
Reykjavik, Iceland
| | - Alastair M. Thompson
- Department of Breast Surgical Oncology, University of Texas MD
Anderson Cancer Center, 1400 Pressler
Street,Houston, Texas
77030, USA
- Department of Surgical Oncology, University of Dundee,
Dundee
DD1 9SY, UK
| | - Hendrik G. Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular
Biology, 6525GA
Nijmegen, The Netherlands
| | - Marc J. van de Vijver
- Department of Pathology, Academic Medical Center,
Meibergdreef 9, 1105 AZ
Amsterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute and
Cancer Genomics Netherlands, Erasmus University Medical Center,
Rotterdam
3015CN, The Netherlands
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo
University Hospital, The Norwegian Radium Hospital, Oslo
0310, Norway
- K.G. Jebsen Centre for Breast Cancer Research, Institute for
Clinical Medicine, University of Oslo, Oslo
0310, Norway
| | - Andrea L. Richardson
- Department of Pathology, Brigham and Women's Hospital,
Boston, Massachusetts
02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, Massachusetts
02215, USA
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang
University, Seoul
133-791, South Korea
| | - Gilles Thomas
- Synergie Lyon Cancer, Centre Léon Bérard,
28 rue Laënnec, Lyon
Cedex 08, France
| | - Julian Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge
CB2 0QH, UK
| | - Cristina Rada
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge
CB2 0QH, UK
| | | | - Ewan Birney
- European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Trust Genome Campus, Cambridgeshire
CB10 1SD, UK
| | - Serena Nik-Zainal
- Wellcome Trust Sanger Institute, Cambridge
CB10 1SA, UK
- East Anglian Medical Genetics Service, Cambridge University
Hospitals NHS Foundation Trust, Cambridge
CB2 9NB, UK
| |
Collapse
|
31
|
Rivera-Mulia JC, Gilbert DM. Replication timing and transcriptional control: beyond cause and effect-part III. Curr Opin Cell Biol 2016; 40:168-178. [PMID: 27115331 DOI: 10.1016/j.ceb.2016.03.022] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
DNA replication is essential for faithful transmission of genetic information and is intimately tied to chromosome structure and function. Genome duplication occurs in a defined temporal order known as the replication-timing (RT) program, which is regulated during the cell cycle and development in discrete units referred to as replication domains (RDs). RDs correspond to topologically-associating domains (TADs) and are spatio-temporally compartmentalized in the nucleus. While improvements in experimental tools have begun to reveal glimpses of causality, they have also unveiled complex context-dependent relationships that challenge long recognized correlations of RT to chromatin organization and gene regulation. In particular, RDs/TADs that switch RT during development march to the beat of a different drummer.
Collapse
Affiliation(s)
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
32
|
Ramachandran S, Henikoff S. Transcriptional Regulators Compete with Nucleosomes Post-replication. Cell 2016; 165:580-92. [PMID: 27062929 PMCID: PMC4855302 DOI: 10.1016/j.cell.2016.02.062] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/08/2015] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Every nucleosome across the genome must be disrupted and reformed when the replication fork passes, but how chromatin organization is re-established following replication is unknown. To address this problem, we have developed Mapping In vivo Nascent Chromatin with EdU and sequencing (MINCE-seq) to characterize the genome-wide location of nucleosomes and other chromatin proteins behind replication forks at high temporal and spatial resolution. We find that the characteristic chromatin landscape at Drosophila promoters and enhancers is lost upon replication. The most conspicuous changes are at promoters that have high levels of RNA polymerase II (RNAPII) stalling and DNA accessibility and show specific enrichment for the BRM remodeler. Enhancer chromatin is also disrupted during replication, suggesting a role for transcription factor (TF) competition in nucleosome re-establishment. Thus, the characteristic nucleosome landscape emerges from a uniformly packaged genome by the action of TFs, RNAPII, and remodelers minutes after replication fork passage.
Collapse
Affiliation(s)
- Srinivas Ramachandran
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
33
|
Molecular Combing of Single DNA Molecules on the 10 Megabase Scale. Sci Rep 2016; 6:19636. [PMID: 26781994 PMCID: PMC4726065 DOI: 10.1038/srep19636] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
DNA combing allows the investigation of DNA replication on genomic single DNA molecules, but the lengths that can be analysed have been restricted to molecules of 200-500 kb. We have improved the DNA combing procedure so that DNA molecules can be analysed up to the length of entire chromosomes in fission yeast and up to 12 Mb fragments in human cells. Combing multi-Mb-scale DNA molecules revealed previously undetected origin clusters in fission yeast and shows that in human cells replication origins fire stochastically forming clusters of fired origins with an average size of 370 kb. We estimate that a single human cell forms around 3200 clusters at mid S-phase and fires approximately 100,000 origins to complete genome duplication. The procedure presented here will be adaptable to other organisms and experimental conditions.
Collapse
|
34
|
Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O. Replication landscape of the human genome. Nat Commun 2016; 7:10208. [PMID: 26751768 PMCID: PMC4729899 DOI: 10.1038/ncomms10208] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. The physical origin and termination sites of DNA replication in human cells have remained elusive. Here the authors use Okazaki fragment sequencing to reveal global replication patterns and show how chromatin and transcription modulate the process.
Collapse
Affiliation(s)
- Nataliya Petryk
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Malik Kahli
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| | - Yves d'Aubenton-Carafa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yimin Shen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Maud Silvain
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Chun-Long Chen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Olivier Hyrien
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| |
Collapse
|
35
|
A diffusion model for the coordination of DNA replication in Schizosaccharomyces pombe. Sci Rep 2016; 6:18757. [PMID: 26729303 PMCID: PMC4700429 DOI: 10.1038/srep18757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/25/2015] [Indexed: 01/28/2023] Open
Abstract
The locations of proteins and epigenetic marks on the chromosomal DNA sequence are believed to demarcate the eukaryotic genome into distinct structural and functional domains that contribute to gene regulation and genome organization. However, how these proteins and epigenetic marks are organized in three dimensions remains unknown. Recent advances in proximity-ligation methodologies and high resolution microscopy have begun to expand our understanding of these spatial relationships. Here we use polymer models to examine the spatial organization of epigenetic marks, euchromatin and heterochromatin, and origins of replication within the Schizosaccharomyces pombe genome. These models incorporate data from microscopy and proximity-ligation experiments that inform on the positions of certain elements and contacts within and between chromosomes. Our results show a striking degree of compartmentalization of epigenetic and genomic features and lead to the proposal of a diffusion based mechanism, centred on the spindle pole body, for the coordination of DNA replication in S. pombe.
Collapse
|
36
|
Nik-Zainal S, Kucab JE, Morganella S, Glodzik D, Alexandrov LB, Arlt VM, Weninger A, Hollstein M, Stratton MR, Phillips DH. The genome as a record of environmental exposure. Mutagenesis 2015; 30:763-70. [PMID: 26443852 PMCID: PMC4637815 DOI: 10.1093/mutage/gev073] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Whole genome sequencing of human tumours has revealed distinct patterns of mutation that hint at the causative origins of cancer. Experimental investigations of the mutations and mutation spectra induced by environmental mutagens have traditionally focused on single genes. With the advent of faster cheaper sequencing platforms, it is now possible to assess mutation spectra in experimental models across the whole genome. As a proof of principle, we have examined the whole genome mutation profiles of mouse embryo fibroblasts immortalised following exposure to benzo[a]pyrene (BaP), ultraviolet light (UV) and aristolochic acid (AA). The results reveal that each mutagen induces a characteristic mutation signature: predominantly G→T mutations for BaP, C→T and CC→TT for UV and A→T for AA. The data are not only consistent with existing knowledge but also provide additional information at higher levels of genomic organisation. The approach holds promise for identifying agents responsible for mutations in human tumours and for shedding light on the aetiology of human cancer.
Collapse
Affiliation(s)
| | - Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Sandro Morganella
- European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | | | | | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK
| | - Annette Weninger
- German Cancer Research Center (Deutsches Krebsforschungszentrum), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and
| | - Monica Hollstein
- German Cancer Research Center (Deutsches Krebsforschungszentrum), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and University of Leeds, Faculty of Medicine and Health, Leeds LS2 9JT, UK
| | | | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, London SE1 9NH, UK,
| |
Collapse
|
37
|
Descorps-Declère S, Saguez C, Cournac A, Marbouty M, Rolland T, Ma L, Bouchier C, Moszer I, Dujon B, Koszul R, Richard GF. Genome-wide replication landscape of Candida glabrata. BMC Biol 2015; 13:69. [PMID: 26329162 PMCID: PMC4556013 DOI: 10.1186/s12915-015-0177-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022] Open
Abstract
Background The opportunistic pathogen Candida glabrata is a member of the Saccharomycetaceae yeasts. Like its close relative Saccharomyces cerevisiae, it underwent a whole-genome duplication followed by an extensive loss of genes. Its genome contains a large number of very long tandem repeats, called megasatellites. In order to determine the whole replication program of the C. glabrata genome and its general chromosomal organization, we used deep-sequencing and chromosome conformation capture experiments. Results We identified 253 replication fork origins, genome wide. Centromeres, HML and HMR loci, and most histone genes are replicated early, whereas natural chromosomal breakpoints are located in late-replicating regions. In addition, 275 autonomously replicating sequences (ARS) were identified during ARS-capture experiments, and their relative fitness was determined during growth competition. Analysis of ARSs allowed us to identify a 17-bp consensus, similar to the S. cerevisiae ARS consensus sequence but slightly more constrained. Megasatellites are not in close proximity to replication origins or termini. Using chromosome conformation capture, we also show that early origins tend to cluster whereas non-subtelomeric megasatellites do not cluster in the yeast nucleus. Conclusions Despite a shorter cell cycle, the C. glabrata replication program shares unexpected striking similarities to S. cerevisiae, in spite of their large evolutionary distance and the presence of highly repetitive large tandem repeats in C. glabrata. No correlation could be found between the replication program and megasatellites, suggesting that their formation and propagation might not be directly caused by replication fork initiation or termination. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0177-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stéphane Descorps-Declère
- Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), F-75015, Paris, France.
| | - Cyril Saguez
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| | - Axel Cournac
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Martial Marbouty
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Thomas Rolland
- Present address: Institut Pasteur, Unité de Génétique Humaine et Fonctions Cognitives, Département des Neurosciences, F-75015, Paris, France.
| | - Laurence Ma
- Institut Pasteur, Plate-forme Génomique, Département Génomes & Génétique, F-75015, Paris, France.
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme Génomique, Département Génomes & Génétique, F-75015, Paris, France.
| | - Ivan Moszer
- Present address: Plate-forme Bio-informatique/Biostatistique, Institut de Neurosciences Translationnelles IHU-A-ICM, Hôpital Pitié-Salpêtrière, 47-83 bd de l'Hôpital, 75561, Paris, Cedex 13, France.
| | - Bernard Dujon
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| | - Romain Koszul
- CNRS, UMR3525, F-75015, Paris, France. .,Institut Pasteur, Groupe Régulation Spatiale des Génomes, Département Génomes & Génétique, F-75015, Paris, France.
| | - Guy-Franck Richard
- Institut Pasteur, Unité de Génétique Moléculaire des Levures, Département Génomes & Génétique, F-75015, Paris, France. .,CNRS, UMR3525, F-75015, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, 4 Place Jussieu, 75252, Paris, Cedex 05, France.
| |
Collapse
|
38
|
Vázquez E, Antequera F. Replication dynamics in fission and budding yeasts through DNA polymerase tracking. Bioessays 2015; 37:1067-73. [PMID: 26293347 PMCID: PMC5054902 DOI: 10.1002/bies.201500072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them. Additional studies have found an overlapping distribution of DNA polymorphisms and the junctions of Okazaki fragments along mononucleosomal DNA. This sequence instability is caused by the premature release of polymerase δ and the retention of non proof‐read DNA tracts replicated by polymerase α. The possible implementation of these new experimental approaches in multicellular organisms opens the door to the analysis of replication dynamics under a broad range of genetic backgrounds and physiological or pathological conditions.
Collapse
Affiliation(s)
- Enrique Vázquez
- Instituto de Biología, Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología, Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
39
|
Abstract
Faithful DNA replication is a prerequisite for cell proliferation. Several cytological studies have shown that chromosome structures alter in the S-phase of the cell cycle. However, the molecular mechanisms behind the alteration of chromosome structures associated with DNA replication have not been elucidated. Here, we investigated chromatin structures and acetylation of specific histone residues during DNA replication using the meiotic nucleus of the fission yeast Schizosaccharomyces pombe. The S. pombe meiotic nucleus provides a unique opportunity for measuring the levels of compaction of chromatin along the chromosome in a defined orientation. By direct measurement of chromatin compaction in living cells, we demonstrated that decompaction of chromatin occurs during meiotic DNA replication. This chromatin decompaction was suppressed by depletion of histone acetyltransferase Mst1 or by arginine substitution of specific lysine residues (K8 and K12) of histone H4. These results suggest that acetylation of histone H4 residues K8 and K12 plays a critical role in loosening chromatin structures during DNA replication.
Collapse
|
40
|
Kara N, Hossain M, Prasanth SG, Stillman B. Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells. J Biol Chem 2015; 290:12355-69. [PMID: 25784553 DOI: 10.1074/jbc.m114.625012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Indexed: 12/21/2022] Open
Abstract
Replication of eukaryotic chromosomes occurs once every cell division cycle in normal cells and is a tightly controlled process that ensures complete genome duplication. The origin recognition complex (ORC) plays a key role during the initiation of DNA replication. In human cells, the level of Orc1, the largest subunit of ORC, is regulated during the cell division cycle, and thus ORC is a dynamic complex. Upon S phase entry, Orc1 is ubiquitinated and targeted for destruction, with subsequent dissociation of ORC from chromosomes. Time lapse and live cell images of human cells expressing fluorescently tagged Orc1 show that Orc1 re-localizes to condensing chromatin during early mitosis and then displays different nuclear localization patterns at different times during G1 phase, remaining associated with late replicating regions of the genome in late G1 phase. The initial binding of Orc1 to mitotic chromosomes requires C-terminal amino acid sequences that are similar to mitotic chromosome-binding sequences in the transcriptional pioneer protein FOXA1. Depletion of Orc1 causes concomitant loss of the mini-chromosome maintenance (Mcm2-7) helicase proteins on chromatin. The data suggest that Orc1 acts as a nucleating center for ORC assembly and then pre-replication complex assembly by binding to mitotic chromosomes, followed by gradual removal from chromatin during the G1 phase.
Collapse
Affiliation(s)
- Nihan Kara
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11779, and
| | - Manzar Hossain
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Supriya G Prasanth
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, the Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois 61801
| | - Bruce Stillman
- From the Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724,
| |
Collapse
|