1
|
Ismagilova OR, Adyan TA, Beskorovainaya TS, Polyakov AV. Molecular genetic analysis of Rubinstein-Taybi syndrome in Russian patients. Front Genet 2025; 16:1516565. [PMID: 39958159 PMCID: PMC11825781 DOI: 10.3389/fgene.2025.1516565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/03/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Rubinstein-Taybi syndrome (RSTS) is one of the many forms of syndromic intellectual disability, occurring in the population with a frequency of 1: 100-125 thousand newborns. The specific phenotype of patients enables the so-called "portrait" diagnosis of classical cases of RSTS, followed by the analysis of the CREBBP and EP300 genes, whose association with RSTS has been confirmed. Nevertheless, for approximately half of the patients in various cohorts, the diagnosis cannot be confirmed. Methods In this paper we present the results of a study of 158 Russian patients referred for molecular diagnosis of RSTS using multiplex ligation-dependent probe amplification (MLPA) and next-generation sequencing (NGS). Results Pathogenic and likely pathogenic variants were identified in 67 patients (42.4%), of which 62 (39%) were in CREBBP and 4 cases (2%)-in EP300. In one case, a known pathogenic variant in SRCAP, associated with Floating-Harbor syndrome (FHS), which is phenotypically similar to RSTS, was also identified; therefore, the possibilities and prospects for differential diagnosis were considered.
Collapse
Affiliation(s)
- Olga R. Ismagilova
- DNA-Diagnostics Laboratory, Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Tagui A. Adyan
- DNA-Diagnostics Laboratory, Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics (RCMG), Moscow, Russia
- Department of General and Medical Genetics, Faculty of Biomedical Sciences, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Tatiana S. Beskorovainaya
- DNA-Diagnostics Laboratory, Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Alexander V. Polyakov
- DNA-Diagnostics Laboratory, Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics (RCMG), Moscow, Russia
| |
Collapse
|
2
|
Smail A, Al-Jawahiri R, Baker K. Polycomb-associated and Trithorax-associated developmental conditions-phenotypic convergence and heterogeneity. Eur J Hum Genet 2025:10.1038/s41431-025-01784-2. [PMID: 39843918 DOI: 10.1038/s41431-025-01784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/12/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) complexes represent two major components of the epigenetic machinery. This study aimed to delineate phenotypic similarities and differences across developmental conditions arising from rare variants in PcG and TrxG genes, using data-driven approaches. 462 patients with a PcG or TrxG-associated condition were identified in the DECIPHER dataset. We analysed Human Phenotype Ontology (HPO) data to identify phenotypes enriched in this group, in comparison to other monogenic conditions within DECIPHER. We then assessed phenotypic relationships between single gene diagnoses within the PcG and TrxG group, by applying semantic similarity analysis and hierarchical clustering. Finally, we analysed patient-level phenotypic heterogeneity in this group, irrespective of specific genetic diagnosis, by applying the same clustering approach. Collectively, PcG/TrxG diagnoses were associated with increased reporting of HPO terms relating to integument, growth, head and neck, limb and digestive abnormalities. Gene group analysis identified three multi-gene clusters differentiated by microcephaly, limb/digit dysmorphologies, growth abnormalities and atypical behavioural phenotypes. Patient-level analysis identified two large clusters differentiated by neurodevelopmental abnormalities and facial dysmorphologies respectively, as well as smaller clusters associated with more specific phenotypes including behavioural characteristics, eye abnormalities, growth abnormalities and skull dysmorphologies. Importantly, patient-level phenotypic clusters did not align with genetic diagnoses. Data-driven approaches can highlight pathway-level and gene-level phenotypic convergences, and individual-level phenotypic heterogeneities. Future studies are needed to understand the multi-level mechanisms contributing to both convergence and variability within this population, and to extend data collection and analyses to later-emerging health characteristics.
Collapse
Affiliation(s)
- Alice Smail
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Medical & Molecular Genetics, King's College London, London, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Reem Al-Jawahiri
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Department of Medical Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Prada E, Marchetti GB, Pires Marafon D, Mazzocchi A, Scuvera G, Pezzani L, Agostoni C, Milani D. The Epigenetic Machinery and Energy Expenditure: A Network to Be Revealed. Genes (Basel) 2025; 16:104. [PMID: 39858651 PMCID: PMC11764581 DOI: 10.3390/genes16010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Mendelian disorders of the epigenetic machinery (MDEMs) include a large number of conditions caused by defective activity of a member of the epigenetic machinery. MDEMs are characterized by multiple congenital abnormalities, intellectual disability and abnormal growth. that can be variably up- or down-regulated. Background/Objectives: In several MDEMs, a predisposition to metabolic syndrome and obesity since childhood has been reported. Methods: To investigate the metabolic bases of this abnormal growth, we collected physical data from a heterogeneous pool of 38 patients affected by MDEMs. Thirty-five patients performed indirect calorimetry (as a measure of resting energy expenditure, REE) and blood tests to monitor plasmatic nutritional parameters. Conclusions: Although limited by a small-sized and heterogeneous sample, our study demonstrates a linear correlation between REE and physical parameters, OFC, height and weight, and observed a slight imbalance on several plasmatic spies of metabolic syndrome predisposition. Furthermore, we demonstrated a significantly higher REE in Sotos Syndrome type 1 patients compared to the controls, which resulted independent from height, suggesting that impaired metabolism in these patients may go beyond overgrowth.
Collapse
Affiliation(s)
- Elisabetta Prada
- Azienda Socio Sanitaria Territoriale Lariana, 22100 Como, Italy;
| | - Giulia Bruna Marchetti
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
| | - Denise Pires Marafon
- Department of Public Health and Infectious Diseases, Specialization School in Medical Statistics and Biometry, Università Sapienza di Roma, 00185 Roma, Italy
| | - Alessandra Mazzocchi
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
| | - Giulietta Scuvera
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
| | - Lidia Pezzani
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Carlo Agostoni
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
- Department of Clinical and Community Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Donatella Milani
- Fondazione IRCSS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (A.M.); (G.S.); (L.P.); (C.A.); (D.M.)
| |
Collapse
|
4
|
Salomoni P, Flanagan AM, Cottone L. (B)On(e)-cohistones and the epigenetic alterations at the root of bone cancer. Cell Death Differ 2025; 32:66-77. [PMID: 37828086 PMCID: PMC11748643 DOI: 10.1038/s41418-023-01227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of mutations in histones in a number of human neoplasms and developmental syndromes represents the most compelling evidence to date for a causal role of epigenetic perturbations in human disease. In most cases, these mutations have gain of function properties that cause deviation from normal developmental processes leading to embryo defects and/or neoplastic transformation. These exciting discoveries represent a step-change in our understanding of the role of chromatin (dys)regulation in development and disease. However, the mechanisms of action of oncogenic histone mutations (oncohistones) remain only partially understood. Here, we critically assess existing literature on oncohistones focussing mainly on bone neoplasms. We show how it is possible to draw parallels with some of the cell-autonomous mechanisms of action described in paediatric brain cancer, although the functions of oncohistones in bone tumours remain under-investigated. In this respect, it is becoming clear that histone mutations targeting the same residues display, at least in part, tissue-specific oncogenic mechanisms. Furthermore, it is emerging that cancer cells carrying oncohistones can modify the surrounding microenvironment to support growth and/or alter differentiation trajectories. A better understanding of oncohistone function in different neoplasms provide potential for identification of signalling that could be targeted therapeutically. Finally, we discuss some of the main concepts and future directions in this research area, while also drawing possible connections and parallels with other cancer epigenetic mechanisms.
Collapse
Affiliation(s)
- Paolo Salomoni
- Nuclear Function Group, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| | - Adrienne M Flanagan
- Department of Histopathology, Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, UK
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Lucia Cottone
- Department of Pathology, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
5
|
German RJ, Vuocolo B, Vossaert L, Saba L, Fletcher R, Tedder ML, Sadikovic B, Kerkhof J, Wangler M, Bacino CA. Recurrent carotid paragangliomas in a syndromic patient with a heterozygous missense variant in DNA Methyltransferase 3 Alpha. Am J Med Genet A 2025; 197:e63849. [PMID: 39166703 PMCID: PMC11637962 DOI: 10.1002/ajmg.a.63849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
We report a 40-year-old African American female with a novel variant in exon 8 of DNA methyltransferase 3 alpha (DNMT3A), (NM_022552.4: c.905G>C, p.G302A) who presented with a history of recurrent carotid paragangliomas, mediastinal mass, intellectual disability, dysarthria, cholelithiasis, diabetes mellitus, hypertension, and dysmorphic features. We interpret this novel variant as likely pathogenic and causative for the patient's syndromic features of Heyn-Sproul-Jackson syndrome. Heyn-Sproul-Jackson syndrome is a condition caused by gain-of-function genetic changes in DNMT3A. Paragangliomas have also been observed in non-syndromic patients with genetic alterations in DNMT3A. We describe a patient with clinical features of Heyn-Sproul-Jackson syndrome such as intellectual disability, dysarthria, brachydactyly, and lack of brain MRI findings to add evidence to associate paragangliomas with DNMT3A and draw particular attention to the potential involvement of the proline-tryptophan-tryptophan-proline domain of DNMT3A.
Collapse
Affiliation(s)
- Ryan J. German
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Blake Vuocolo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Lisa Saba
- Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | | | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London ON, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London ON, Canada
| | | | - Michael Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
6
|
de Dieuleveult M, Velasco G. [Genetic diseases of epigenetic machinery]. Med Sci (Paris) 2024; 40:914-924. [PMID: 39705562 DOI: 10.1051/medsci/2024181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
The development of sequencing technologies and their increased accessibility in clinical services and genetic laboratories have considerably accelerated the identification of genetic variants associated with rare diseases (RDs). Among these, Mendelian disorders of the epigenetic machinery (MDEM) are rare monogenic diseases characterized by the presence of mutations in genes encoding epigenetic regulators that play a key role in organismal development and cellular functions. Loss of function of these regulators is expected to lead to epigenetic modifications that profoundly affect genome expression and cellular identity. Disruptions in DNA methylation profiles have been documented in MDEMs, emerging as a useful diagnostic tool. The current challenge is to determine whether and how these epigenomic alterations drive the mechanisms underlying the clinical manifestations in patients suffering from this class of diseases. Studying MDEMs may therefore shed light on the important role of epigenetic information in health and disease, particularly the mechanisms involved in the development and understanding of complex pathologies, such as neurodevelopmental disorders and cancer.
Collapse
Affiliation(s)
- Maud de Dieuleveult
- Université Paris Cité, Inserm UMR1163, Institut Imagine, Paris, France - Banque nationale de données maladies rares, DSI-I&D, APHP, Paris, France
| | - Guillaume Velasco
- Université Paris Cité, CNRS UMR7216, Épigénétique et destin cellulaire, Paris, France
| |
Collapse
|
7
|
Xiao Z, He R, Zhao Z, Chen T, Ying Z. Dysregulation of epigenetic modifications in inborn errors of immunity. Epigenomics 2024; 16:1301-1313. [PMID: 39404224 PMCID: PMC11534118 DOI: 10.1080/17501911.2024.2410695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Inborn errors of immunity (IEIs) are a group of typically monogenic disorders characterized by dysfunction in the immune system. Individuals with these disorders experience increased susceptibility to infections, autoimmunity and malignancies due to abnormal immune responses. Epigenetic modifications, including DNA methylation, histone modifications and chromatin remodeling, have been well explored in the regulation of immune cell development and effector function. Aberrant epigenetic modifications can disrupt gene expression profiles crucial for immune responses, resulting in impaired immune cell differentiation and function. Dysregulation of these processes caused by mutations in genes involving in epigenetic modifications has been associated with various IEIs. In this review article, we focus on IEIs that are caused by mutations in 13 genes involved in the regulation of DNA methylation, histone modification and chromatin remodeling.
Collapse
Affiliation(s)
- Zhongyao Xiao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Rongjing He
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zihan Zhao
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Taiping Chen
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Zhengzhou Ying
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
8
|
di Bari I, Ceccarini C, Curcetti M, Cesarano C, Croce AI, Adipietro I, Gallicchio MG, Palladino GP, Patrizio MP, Frisoli B, Santacroce R, D'Apolito M, D'Andrea G, Castriota OM, Pierri CL, Margaglione M. Uncovering a Genetic Diagnosis in a Pediatric Patient by Whole Exome Sequencing: A Modeling Investigation in Wiedemann-Steiner Syndrome. Genes (Basel) 2024; 15:1155. [PMID: 39336746 PMCID: PMC11431573 DOI: 10.3390/genes15091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Wiedemann-Steiner syndrome (WSS), a rare autosomal-dominant disorder caused by haploinsufficiency of the KMT2A gene product, is part of a group of disorders called chromatinopathies. Chromatinopathies are neurodevelopmental disorders caused by mutations affecting the proteins responsible for chromatin remodeling and transcriptional regulation. The resulting gene expression dysregulation mediates the onset of a series of clinical features such as developmental delay, intellectual disability, facial dysmorphism, and behavioral disorders. Aim of the Study: The aim of this study was to investigate a 10-year-old girl who presented with clinical features suggestive of WSS. Methods: Clinical and genetic investigations were performed. Whole exome sequencing (WES) was used for genetic testing, performed using Illumina technology. The bidirectional capillary Sanger resequencing technique was used in accordance with standard methodology to validate a mutation discovered by WES in all family members who were available. Utilizing computational protein modeling for structural and functional studies as well as in silico pathogenicity prediction models, the effect of the mutation was examined. Results: WES identified a de novo heterozygous missense variant in the KMT2A gene KMT2A(NM_001197104.2): c.3451C>G, p.(Arg1151Gly), absent in the gnomAD database. The variant was classified as Likely Pathogenetic (LP) according to the ACMG criteria and was predicted to affect the CXXC-type zinc finger domain functionality of the protein. Modeling of the resulting protein structure suggested that this variant changes the protein flexibility due to a variation in the Gibbs free energy and in the vibrational entropy energy difference between the wild-type and mutated domain, resulting in an alteration of the DNA binding affinity. Conclusions: A novel and de novo mutation discovered by the NGS approach, enhancing the mutation spectrum in the KMT2A gene, was characterized and associated with WSS. This novel KMT2A gene variant is suggested to modify the CXXC-type zinc finger domain functionality by affecting protein flexibility and DNA binding.
Collapse
Affiliation(s)
- Ighli di Bari
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Caterina Ceccarini
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Curcetti
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carla Cesarano
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Anna-Irma Croce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Iolanda Adipietro
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Grazia Gallicchio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Grazia Pia Palladino
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Pia Patrizio
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Benedetta Frisoli
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria D'Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giovanna D'Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Ombretta Michela Castriota
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 71122 Foggia, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
9
|
Yoon JG, Lim SK, Seo H, Lee S, Cho J, Kim SY, Koh HY, Poduri AH, Ramakumaran V, Vasudevan P, de Groot MJ, Ko JM, Han D, Chae JH, Lee CH. De novo missense variants in HDAC3 leading to epigenetic machinery dysfunction are associated with a variable neurodevelopmental disorder. Am J Hum Genet 2024; 111:1588-1604. [PMID: 39047730 PMCID: PMC11339613 DOI: 10.1016/j.ajhg.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Histone deacetylase 3 (HDAC3) is a crucial epigenetic modulator essential for various developmental and physiological functions. Although its dysfunction is increasingly recognized in abnormal phenotypes, to our knowledge, there have been no established reports of human diseases directly linked to HDAC3 dysfunction. Using trio exome sequencing and extensive phenotypic analysis, we correlated heterozygous de novo variants in HDAC3 with a neurodevelopmental disorder having variable clinical presentations, frequently associated with intellectual disability, developmental delay, epilepsy, and musculoskeletal abnormalities. In a cohort of six individuals, we identified missense variants in HDAC3 (c.277G>A [p.Asp93Asn], c.328G>A [p.Ala110Thr], c.601C>T [p.Pro201Ser], c. 797T>C [p.Leu266Ser], c.799G>A [p.Gly267Ser], and c.1075C>T [p.Arg359Cys]), all located in evolutionarily conserved sites and confirmed as de novo. Experimental studies identified defective deacetylation activity in the p.Asp93Asn, p.Pro201Ser, p.Leu266Ser, and p.Gly267Ser variants, positioned near the enzymatic pocket. In addition, proteomic analysis employing co-immunoprecipitation revealed that the disrupted interactions with molecules involved in the CoREST and NCoR complexes, particularly in the p.Ala110Thr variant, consist of a central pathogenic mechanism. Moreover, immunofluorescence analysis showed diminished nuclear to cytoplasmic fluorescence ratio in the p.Ala110Thr, p.Gly267Ser, and p.Arg359Cys variants, indicating impaired nuclear localization. Taken together, our study highlights that de novo missense variants in HDAC3 are associated with a broad spectrum of neurodevelopmental disorders, which emphasizes the complex role of HDAC3 in histone deacetylase activity, multi-protein complex interactions, and nuclear localization for proper physiological functions. These insights open new avenues for understanding the molecular mechanisms of HDAC3-related disorders and may inform future therapeutic strategies.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Kyun Lim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hoseok Seo
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hyun Yong Koh
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Annapurna H Poduri
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Pradeep Vasudevan
- LNR Genomic Medicine Service, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Martijn J de Groot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jung Min Ko
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.
| | - Chul-Hwan Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Ischemic/hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; The Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Agustsson VI, Bjornsson PA, Fridriksdottir A, Bjornsson HT, Ellingsen LM. Automated fingerprint analysis as a diagnostic tool for the genetic disorder Kabuki syndrome. GENETICS IN MEDICINE OPEN 2024; 2:101884. [PMID: 39669635 PMCID: PMC11613772 DOI: 10.1016/j.gimo.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 12/14/2024]
Abstract
Purpose Emerging therapeutic strategies for Kabuki syndrome (KS) make early diagnosis critical. Fingerprint analysis as a diagnostic aid for KS diagnosis could facilitate early diagnosis and expand the current patient base for clinical trials and natural history studies. Method Fingerprints of 74 individuals with KS, 1 individual with a KS-like phenotype, and 108 controls were collected through a mobile app. KS fingerprint patterns were studied using logistic regression and a convolutional neural network to differentiate KS individuals from controls. Results Our analysis identified 2 novel KS metrics (folding finger ridge count and simple pattern), which significantly differentiated KS fingerprints from controls, producing an area under the receiver operating characteristic curve value of 0.82 [0.75; 0.89] and a likelihood ratio of 9.0. This metric showed a sensitivity of 35.6% [23.73%; 47.46%] and a specificity of 96.04% [92.08%; 99.01%]. An independent artificial intelligence convolutional neural network classification-based method validated this finding and yielded comparable results, with a likelihood ratio of 8.7, sensitivity of 76.6%, and specificity of 91.2%. Conclusion Our findings suggest that automatic fingerprint analysis can have diagnostic use for KS and possible future utility for diagnosing other genetic disorders, enabling greater access to genetic diagnosis in areas with limited availability of genetic testing.
Collapse
Affiliation(s)
- Viktor Ingi Agustsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Pall Asgeir Bjornsson
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | - Hans Tomas Bjornsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lotta Maria Ellingsen
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
11
|
Kulkarni V, Chalipat S, Gupta A, Bhosle A, Bahal M. Basilicata-Akhtar Syndrome: Unraveling an Ultrarare Cause of Developmental Delay. Cureus 2024; 16:e67041. [PMID: 39286690 PMCID: PMC11405068 DOI: 10.7759/cureus.67041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
There is still more to learn about the etiology of extremely uncommon developmental disorders. A heterozygous or hemizygous pathogenic variation in male-specific lethal 3 (MSL3) causes the uncommon X-linked condition known as Basilicata-Akhtar syndrome, which is characterized by a global developmental delay that is evident from infancy, feeding difficulties, and muscle hypotonia. Thus far, over 40 cases have been documented. Here, we report the first case of Basilicata-Akhtar syndrome in India. A 3-year-old boy presented with global development delay. Physical examination revealed dysmorphism and hypotonia. After whole exome sequencing, exon 8 of the MSL3 gene on chromosome X showed evidence of a hemizygous single base pair deletion.
Collapse
Affiliation(s)
- Vishwanath Kulkarni
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Shiji Chalipat
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Aryan Gupta
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Akanksha Bhosle
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Mridu Bahal
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
12
|
van der Laan L, ten Voorde N, Mannens MMAM, Henneman P. Molecular signatures in Mendelian neurodevelopment: a focus on ubiquitination driven DNA methylation aberrations. Front Mol Neurosci 2024; 17:1446686. [PMID: 39135741 PMCID: PMC11317395 DOI: 10.3389/fnmol.2024.1446686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky ten Voorde
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Meza-Menchaca T, Albores-Medina A, Heredia-Mendez AJ, Ruíz-May E, Ricaño-Rodríguez J, Gallegos-García V, Esquivel A, Vettoretti-Maldonado G, Campos-Parra AD. Revisiting Epigenetics Fundamentals and Its Biomedical Implications. Int J Mol Sci 2024; 25:7927. [PMID: 39063168 PMCID: PMC11276703 DOI: 10.3390/ijms25147927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In light of the post-genomic era, epigenetics brings about an opportunity to better understand how the molecular machinery works and is led by a complex dynamic set of mechanisms, often intricate and complementary in many aspects. In particular, epigenetics links developmental biology and genetics, as well as many other areas of knowledge. The present work highlights substantial scopes and relevant discoveries related to the development of the term from its first notions. To our understanding, the concept of epigenetics needs to be revisited, as it is one of the most relevant and multifaceted terms in human knowledge. To redirect future novel experimental or theoretical efforts, it is crucial to compile all significant issues that could impact human and ecological benefit in the most precise and accurate manner. In this paper, the reader can find one of the widest compilations of the landmarks and epistemic considerations of the knowledge of epigenetics across the history of biology from the earliest epigenetic formulation to genetic determinism until the present. In the present work, we link the current body of knowledge and earlier pre-genomic concepts in order to propose a new definition of epigenetics that is faithful to its regulatory nature.
Collapse
Affiliation(s)
- Thuluz Meza-Menchaca
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico;
| | - Alma Jaqueline Heredia-Mendez
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Cluster BioMimic®, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, Congregación el Haya, Xalapa 91073, Mexico;
| | - Jorge Ricaño-Rodríguez
- Centro de Eco-Alfabetización y Diálogo de Saberes, Universidad Veracruzana, Zona Universitaria, Xalapa 91090, Mexico;
| | - Verónica Gallegos-García
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico;
| | - Adriana Esquivel
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | - Giancarlo Vettoretti-Maldonado
- Laboratorio de Investigación en Ciencias Médico-Biológicas, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos s/n, Col. Unidad del Bosque, Xalapa 91010, Mexico; (A.J.H.-M.); (A.E.); (G.V.-M.)
| | | |
Collapse
|
14
|
Trajkova S, Kerkhof J, Rossi Sebastiano M, Pavinato L, Ferrero E, Giovenino C, Carli D, Di Gregorio E, Marinoni R, Mandrile G, Palermo F, Carestiato S, Cardaropoli S, Pullano V, Rinninella A, Giorgio E, Pippucci T, Dimartino P, Rzasa J, Rooney K, McConkey H, Petlichkovski A, Pasini B, Sukarova-Angelovska E, Campbell CM, Metcalfe K, Jenkinson S, Banka S, Mussa A, Ferrero GB, Sadikovic B, Brusco A. DNA methylation analysis in patients with neurodevelopmental disorders improves variant interpretation and reveals complexity. HGG ADVANCES 2024; 5:100309. [PMID: 38751117 PMCID: PMC11216013 DOI: 10.1016/j.xhgg.2024.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Analysis of genomic DNA methylation by generating epigenetic signature profiles (episignatures) is increasingly being implemented in genetic diagnosis. Here we report our experience using episignature analysis to resolve both uncomplicated and complex cases of neurodevelopmental disorders (NDDs). We analyzed 97 NDDs divided into (1) a validation cohort of 59 patients with likely pathogenic/pathogenic variants characterized by a known episignature and (2) a test cohort of 38 patients harboring variants of unknown significance or unidentified variants. The expected episignature was obtained in most cases with likely pathogenic/pathogenic variants (53/59 [90%]), a revealing exception being the overlapping profile of two SMARCB1 pathogenic variants with ARID1A/B:c.6200, confirmed by the overlapping clinical features. In the test cohort, five cases showed the expected episignature, including (1) novel pathogenic variants in ARID1B and BRWD3; (2) a deletion in ATRX causing MRXFH1 X-linked mental retardation; and (3) confirmed the clinical diagnosis of Cornelia de Lange (CdL) syndrome in mutation-negative CdL patients. Episignatures analysis of the in BAF complex components revealed novel functional protein interactions and common episignatures affecting homologous residues in highly conserved paralogous proteins (SMARCA2 M856V and SMARCA4 M866V). Finally, we also found sex-dependent episignatures in X-linked disorders. Implementation of episignature profiling is still in its early days, but with increasing utilization comes increasing awareness of the capacity of this methodology to help resolve the complex challenges of genetic diagnoses.
Collapse
Affiliation(s)
- Slavica Trajkova
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A5W9, Canada
| | - Matteo Rossi Sebastiano
- Molecular Biotechnology Center "Guido Tarone" University of Turin, 10126 Turin, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, CASSMedChem, 10126 Turin, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Enza Ferrero
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Chiara Giovenino
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Eleonora Di Gregorio
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Roberta Marinoni
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, Orbassano, TO 10049, Italy
| | - Flavia Palermo
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, Orbassano, TO 10049, Italy
| | - Silvia Carestiato
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy
| | - Verdiana Pullano
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin 10126, Italy
| | - Antonina Rinninella
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Biomedical and Biotechnological Sciences, Medical Genetics, University of Catania, 94124 Catania, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Paola Dimartino
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Jessica Rzasa
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A5W9, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A3K7, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A3K7, Canada
| | - Aleksandar Petlichkovski
- Department of Immunology and Human Genetics, Faculty of Medicine, University "Sv. Kiril I Metodij", Skopje 1000, Republic of Macedonia
| | - Barbara Pasini
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Elena Sukarova-Angelovska
- Department of Endocrinology and Genetics, Faculty of Medicine, University "Sv. Kiril I Metodij", Skopje 1000, Republic of Macedonia
| | - Christopher M Campbell
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Kay Metcalfe
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Sarah Jenkinson
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK; Division of Evolution, Infection & Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9WL, UK
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, 10126 Turin, Italy
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON N6A5W9, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A3K7, Canada
| | - Alfredo Brusco
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin 10126, Italy.
| |
Collapse
|
15
|
Avagliano L, Castiglioni S, Lettieri A, Parodi C, Di Fede E, Taci E, Grazioli P, Colombo EA, Gervasini C, Massa V. Intrauterine growth in chromatinopathies: A long road for better understanding and for improving clinical management. Birth Defects Res 2024; 116:e2383. [PMID: 38984779 DOI: 10.1002/bdr2.2383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Chromatinopathies are a heterogeneous group of genetic disorders caused by pathogenic variants in genes coding for chromatin state balance proteins. Remarkably, many of these syndromes present unbalanced postnatal growth, both under- and over-, although little has been described in the literature. Fetal growth measurements are common practice in pregnancy management and values within normal ranges indicate proper intrauterine growth progression; on the contrary, abnormalities in intrauterine fetal growth open the discussion of possible pathogenesis affecting growth even in the postnatal period. METHODS Among the numerous chromatinopathies, we have selected six of the most documented in the literature offering evidence about two fetal overgrowth (Sotos and Weaver syndrome) and four fetal undergrowth syndromes (Bohring Opitz, Cornelia de Lange, Floating-Harbor, and Meier Gorlin syndrome), describing their molecular characteristics, maternal biochemical results and early pregnancy findings, prenatal ultrasound findings, and postnatal characteristics. RESULTS/CONCLUSION To date, the scarce data in the literature on prenatal findings are few and inconclusive, even though these parameters may contribute to a more rapid and accurate diagnosis, calling for a better and more detailed description of pregnancy findings.
Collapse
Affiliation(s)
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
16
|
Boukas L, Luperchio TR, Razi A, Hansen KD, Bjornsson HT. Neuron-specific chromatin disruption at CpG islands and aging-related regions in Kabuki syndrome mice. Genome Res 2024; 34:696-710. [PMID: 38702196 PMCID: PMC11216309 DOI: 10.1101/gr.278416.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically shows phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption-the root of the pathogenesis-is similar in the different disease-relevant cell types. This is possible in principle, because all these cell types are subject to effects from the same causative gene, which has the same kind of function (e.g., methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2 and find that the chromatin accessibility changes in neurons are mostly distinct from changes in B or T cells. This is not because the neuronal accessibility changes occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that regulatory elements disrupted in B/T cells do show chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators and suggest that blood-derived episignatures, although useful diagnostically, may not be well suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.
Collapse
Affiliation(s)
- Leandros Boukas
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Teresa Romeo Luperchio
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Afrooz Razi
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Kasper D Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
- Landspitali University Hospital, 101 Reykjavík, Iceland
| |
Collapse
|
17
|
Vos N, Haghshenas S, van der Laan L, Russel PKM, Rooney K, Levy MA, Relator R, Kerkhof J, McConkey H, Maas SM, Vissers LELM, de Vries BBA, Pfundt R, Elting MW, van Hagen JM, Verbeek NE, Jongmans MCJ, Lakeman P, Rumping L, Bosch DGM, Vitobello A, Thauvin-Robinet C, Faivre L, Nambot S, Garde A, Willems M, Genevieve D, Nicolas G, Busa T, Toutain A, Gérard M, Bizaoui V, Isidor B, Merla G, Accadia M, Schwartz CE, Ounap K, Hoffer MJV, Nezarati MM, van den Boogaard MJH, Tedder ML, Rogers C, Brusco A, Ferrero GB, Spodenkiewicz M, Sidlow R, Mussa A, Trajkova S, McCann E, Mroczkowski HJ, Jansen S, Donker-Kaat L, Duijkers FAM, Stuurman KE, Mannens MMAM, Alders M, Henneman P, White SM, Sadikovic B, van Haelst MM. The detection of a strong episignature for Chung-Jansen syndrome, partially overlapping with Börjeson-Forssman-Lehmann and White-Kernohan syndromes. Hum Genet 2024; 143:761-773. [PMID: 38787418 PMCID: PMC11186873 DOI: 10.1007/s00439-024-02679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
Collapse
Affiliation(s)
- Niels Vos
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Liselot van der Laan
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Perle K M Russel
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Saskia M Maas
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Mariet W Elting
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Johanna M van Hagen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marjolijn C J Jongmans
- Department of Genetics, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Phillis Lakeman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Lynne Rumping
- Center for Medical Genetics, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Danielle G M Bosch
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonio Vitobello
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Laurence Faivre
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Sophie Nambot
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, FHU-TRANSLAD, Unité Fonctionnelle Innovation en Diagnostic Génomique Des Maladies Rares, 21000, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs», FHU-TRANSLAD, Dijon, France
| | - Aurore Garde
- Université de Bourgogne, Inserm U1231, Equipe GAD, Dijon, France
- CHU Dijon Bourgogne, Centre de Génétique, Centre de Référence Maladies Rares «Déficiences Intellectuelles de Causes Rares», FHU-TRANSLAD, Dijon, France
| | - Marjolaine Willems
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - David Genevieve
- INserm U1183, Department of Clinical Genetics, Montpellier University, 34090 CHU Montpellier, Montpellier, France
| | - Gaël Nicolas
- Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, Univ Rouen Normandie, 76000, Rouen, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, Marseille, France
| | - Annick Toutain
- Genetics Department, University Hospital, UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Marion Gérard
- APHP, Department of Genetics, Robert Debré Hospital, 75019, Paris, France
| | - Varoona Bizaoui
- Clinical Genetics and Neurodevelopmental Disorders, Centre Hospitalier de L'Estran, 50170, Pontorson, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000, Nantes, France
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Maria Accadia
- Servizio di Genetica Medica, Ospedale Cardinale G. Panico, Tricase, LE, Italy
| | - Charles E Schwartz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Katrin Ounap
- Department of Clinical Genetics, Genetic and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Mariëtte J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjan M Nezarati
- Genetics Program, North York General Hospital, Toronto, ON, M2K 1E1, Canada
| | | | | | | | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
- Unit of Medical Genetics, Città Della Salute e Della Scienza Hospital, Turin, Italy
| | - Giovanni B Ferrero
- Department of Clinical and Biological Science, University of Torino, Turin, Italy
| | | | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Turin, Italy
- Pediatric Clinical Genetics Unit, Regina Margherita Childrens' Hospital, Turin, Italy
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Turin, Italy
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women's Hospital, Liverpool, UK
| | - Henry J Mroczkowski
- Department of Pediatrics, Le Bonheur Children's Hospital, Memphis, TN, USA
- Division of Genetics, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sandra Jansen
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Laura Donker-Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Floor A M Duijkers
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marcel M A M Mannens
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
| | - Mieke M van Haelst
- Amsterdam UMC, Department of Human Genetics, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Reproduction & Development Research Institute, Amsterdam, The Netherlands.
- Amsterdam UMC, Department of Paediatrics, Emma Children's Hospital, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam UMC, Emma Center for Personalized Medicine, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Tsang E, Han VX, Flutter C, Alshammery S, Keating BA, Williams T, Gloss BS, Graham ME, Aryamanesh N, Pang I, Wong M, Winlaw D, Cardamone M, Mohammad S, Gold W, Patel S, Dale RC. Ketogenic diet modifies ribosomal protein dysregulation in KMT2D Kabuki syndrome. EBioMedicine 2024; 104:105156. [PMID: 38768529 PMCID: PMC11134553 DOI: 10.1016/j.ebiom.2024.105156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Kabuki syndrome (KS) is a genetic disorder caused by DNA mutations in KMT2D, a lysine methyltransferase that methylates histones and other proteins, and therefore modifies chromatin structure and subsequent gene expression. Ketones, derived from the ketogenic diet, are histone deacetylase inhibitors that can 'open' chromatin and encourage gene expression. Preclinical studies have shown that the ketogenic diet rescues hippocampal memory neurogenesis in mice with KS via the epigenetic effects of ketones. METHODS Single-cell RNA sequencing and mass spectrometry-based proteomics were used to explore molecular mechanisms of disease in individuals with KS (n = 4) versus controls (n = 4). FINDINGS Pathway enrichment analysis indicated that loss of function mutations in KMT2D are associated with ribosomal protein dysregulation at an RNA and protein level in individuals with KS (FDR <0.05). Cellular proteomics also identified immune dysregulation and increased abundance of other lysine modification and histone binding proteins, representing a potential compensatory mechanism. A 12-year-old boy with KS, suffering from recurrent episodes of cognitive decline, exhibited improved cognitive function and neuropsychological assessment performance after 12 months on the ketogenic diet, with concomitant improvement in transcriptomic ribosomal protein dysregulation. INTERPRETATION Our data reveals that lysine methyltransferase deficiency is associated with ribosomal protein dysfunction, with secondary immune dysregulation. Diet and the production of bioactive molecules such as ketone bodies serve as a significant environmental factor that can induce epigenetic changes and improve clinical outcomes. Integrating transcriptomic, proteomic, and clinical data can define mechanisms of disease and treatment effects in individuals with neurodevelopmental disorders. FUNDING This study was supported by the Dale NHMRC Investigator Grant (APP1193648) (R.D), Petre Foundation (R.D), and The Sydney Children's Hospital Foundation/Kids Research Early and Mid-Career Researcher Grant (E.T).
Collapse
Affiliation(s)
- Erica Tsang
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chloe Flutter
- The Kabuki Syndrome Foundation - Volunteer, Northbrook, IL, USA
| | - Sarah Alshammery
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Brooke A Keating
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Tracey Williams
- Kids Rehab, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Mark E Graham
- Biomedical Proteomics, Children's Medical Research Institute, The University of Sydney, Australia
| | - Nader Aryamanesh
- Bioinformatics Group, Children's Medical Research Institute, Westmead, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ignatius Pang
- Bioinformatics Group, Children's Medical Research Institute, Westmead, Sydney, NSW, Australia
| | - Melanie Wong
- The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - David Winlaw
- Heart Centre, Ann and Robert H. Lurie Children's Hospital of Chicago and Feinberg School of Medicine, Northwestern University, USA
| | - Michael Cardamone
- Sydney Children's Hospital, Randwick, NSW, Australia; School of Clinical Medicine, University of New South Wales, NSW, Australia
| | - Shekeeb Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy Gold
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW, Australia; Molecular Neurobiology Research Laboratory, Kids Research, The Children's Hospital at Westmead & the Children's Medical Research Institute, NSW, Australia
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, NSW, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Bukowska-Olech E, Majchrzak-Celińska A, Przyborska M, Jamsheer A. Chromatinopathies: insight in clinical aspects and underlying epigenetic changes. J Appl Genet 2024; 65:287-301. [PMID: 38180712 PMCID: PMC11003913 DOI: 10.1007/s13353-023-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Chromatinopathies (CPs), a group of rare inborn defects characterized by chromatin state imbalance, have evolved from initially resembling Cornelia de Lange syndrome to encompass a wide array of genetic diseases with diverse clinical presentations. The CPs classification now includes human developmental disorders caused by germline mutations in epigenes, genes that regulate the epigenome. Recent advances in next-generation sequencing have enabled the association of 154 epigenes with CPs, revealing distinctive DNA methylation patterns known as episignatures.It has been shown that episignatures are unique for a particular CP or share similarities among specific CP subgroup. Consequently, these episignatures have emerged as promising biomarkers for diagnosing and treating CPs, differentiating subtypes, evaluating variants of unknown significance, and facilitating targeted therapies tailored to the underlying epigenetic dysregulation.The following review was conducted to collect, summarize, and analyze data regarding CPs in such aspects as clinical evaluation encompassing long-term patient care, underlying epigenetic changes, and innovative molecular and bioinformatic methodologies that have been devised for the assessment of CPs. We have also shed light on promising novel treatment options that have surfaced in recent research and presented a synthesis of ongoing clinical trials, contributing to the current understanding of the dynamic and evolving nature of CPs investigation.
Collapse
Affiliation(s)
| | | | | | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
20
|
Bell CG. Epigenomic insights into common human disease pathology. Cell Mol Life Sci 2024; 81:178. [PMID: 38602535 PMCID: PMC11008083 DOI: 10.1007/s00018-024-05206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The epigenome-the chemical modifications and chromatin-related packaging of the genome-enables the same genetic template to be activated or repressed in different cellular settings. This multi-layered mechanism facilitates cell-type specific function by setting the local sequence and 3D interactive activity level. Gene transcription is further modulated through the interplay with transcription factors and co-regulators. The human body requires this epigenomic apparatus to be precisely installed throughout development and then adequately maintained during the lifespan. The causal role of the epigenome in human pathology, beyond imprinting disorders and specific tumour suppressor genes, was further brought into the spotlight by large-scale sequencing projects identifying that mutations in epigenomic machinery genes could be critical drivers in both cancer and developmental disorders. Abrogation of this cellular mechanism is providing new molecular insights into pathogenesis. However, deciphering the full breadth and implications of these epigenomic changes remains challenging. Knowledge is accruing regarding disease mechanisms and clinical biomarkers, through pathogenically relevant and surrogate tissue analyses, respectively. Advances include consortia generated cell-type specific reference epigenomes, high-throughput DNA methylome association studies, as well as insights into ageing-related diseases from biological 'clocks' constructed by machine learning algorithms. Also, 3rd-generation sequencing is beginning to disentangle the complexity of genetic and DNA modification haplotypes. Cell-free DNA methylation as a cancer biomarker has clear clinical utility and further potential to assess organ damage across many disorders. Finally, molecular understanding of disease aetiology brings with it the opportunity for exact therapeutic alteration of the epigenome through CRISPR-activation or inhibition.
Collapse
Affiliation(s)
- Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
21
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024; 143:607-624. [PMID: 36952035 PMCID: PMC10034257 DOI: 10.1007/s00439-023-02537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.
Collapse
Affiliation(s)
- Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
van der Laan L, Karimi K, Rooney K, Lauffer P, McConkey H, Caro P, Relator R, Levy MA, Bhai P, Mignot C, Keren B, Briuglia S, Sobering AK, Li D, Vissers LELM, Dingemans AJM, Valenzuela I, Verberne EA, Misra-Isrie M, Zwijnenburg PJG, Waisfisz Q, Alders M, Sailer S, Schaaf CP, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. DNA methylation episignature, extension of the clinical features, and comparative epigenomic profiling of Hao-Fountain syndrome caused by variants in USP7. Genet Med 2024; 26:101050. [PMID: 38126281 DOI: 10.1016/j.gim.2023.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
PURPOSE Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karim Karimi
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Peter Lauffer
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Pilar Caro
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Hôpital Armand Trousseau, Paris, France AND Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris, France
| | - Boris Keren
- APHP Sorbonne Université, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Silvana Briuglia
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Andrew K Sobering
- AU/UGA Medical Partnership Campus of the Medical College of Georgia, Athens, Georgia; Windward Islands Research and Education Foundation, True Blue, St. George's, Grenada; St. George's University School of Medicine, Department of Biochemistry, Grenada
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania Perelman school of Medicine, Philadelphia, PA
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Irene Valenzuela
- Àrea de Genètica Clínica i Malalties Minoritàries, Hospital Vall d'Hebron, Barcelona, Spain
| | - Eline A Verberne
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Petra J G Zwijnenburg
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastian Sailer
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Rahit KMTH, Avramovic V, Chong JX, Tarailo-Graovac M. GPAD: a natural language processing-based application to extract the gene-disease association discovery information from OMIM. BMC Bioinformatics 2024; 25:84. [PMID: 38413851 PMCID: PMC10898068 DOI: 10.1186/s12859-024-05693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Thousands of genes have been associated with different Mendelian conditions. One of the valuable sources to track these gene-disease associations (GDAs) is the Online Mendelian Inheritance in Man (OMIM) database. However, most of the information in OMIM is textual, and heterogeneous (e.g. summarized by different experts), which complicates automated reading and understanding of the data. Here, we used Natural Language Processing (NLP) to make a tool (Gene-Phenotype Association Discovery (GPAD)) that could syntactically process OMIM text and extract the data of interest. RESULTS GPAD applies a series of language-based techniques to the text obtained from OMIM API to extract GDA discovery-related information. GPAD can inform when a particular gene was associated with a specific phenotype, as well as the type of validation-whether through model organisms or cohort-based patient-matching approaches-for such an association. GPAD extracted data was validated with published reports and was compared with large language model. Utilizing GPAD's extracted data, we analysed trends in GDA discoveries, noting a significant increase in their rate after the introduction of exome sequencing, rising from an average of about 150-250 discoveries each year. Contrary to hopes of resolving most GDAs for Mendelian disorders by now, our data indicate a substantial decline in discovery rates over the past five years (2017-2022). This decline appears to be linked to the increasing necessity for larger cohorts to substantiate GDAs. The rising use of zebrafish and Drosophila as model organisms in providing evidential support for GDAs is also observed. CONCLUSIONS GPAD's real-time analyzing capacity offers an up-to-date view of GDA discovery and could help in planning and managing the research strategies. In future, this solution can be extended or modified to capture other information in OMIM and scientific literature.
Collapse
Affiliation(s)
- K M Tahsin Hassan Rahit
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vladimir Avramovic
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
- Brotman-Baty Institute, Seattle, WA, 98195, USA
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
25
|
Clark KJ, Lubin EE, Gonzalez EM, Sangree AK, Layo-Carris DE, Durham EL, Ahrens-Nicklas RC, Nomakuchi TT, Bhoj EJ. NeuroTri2-VISDOT: An open-access tool to harness the power of second trimester human single cell data to inform models of Mendelian neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578438. [PMID: 38352329 PMCID: PMC10862881 DOI: 10.1101/2024.02.01.578438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Whole exome and genome sequencing, coupled with refined bioinformatic pipelines, have enabled improved diagnostic yields for individuals with Mendelian conditions and have led to the rapid identification of novel syndromes. For many Mendelian neurodevelopmental disorders (NDDs), there is a lack of pre-existing model systems for mechanistic work. Thus, it is critical for translational researchers to have an accessible phenotype- and genotype-informed approach for model system selection. Single-cell RNA sequencing data can be informative in such an approach, as it can indicate which cell types express a gene of interest at the highest levels across time. For Mendelian NDDs, such data for the developing human brain is especially useful. A valuable single-cell RNA sequencing dataset of the second trimester developing human brain was produced by Bhaduri et al in 2021, but access to these data can be limited by computing power and the learning curve of single-cell data analysis. To reduce these barriers for translational research on Mendelian NDDs, we have built the web-based tool, Neurodevelopment in Trimester 2 - VIsualization of Single cell Data Online Tool (NeuroTri2-VISDOT), for exploring this single-cell dataset, and we have employed it in several different settings to demonstrate its utility for the translational research community.
Collapse
Affiliation(s)
- Kelly J. Clark
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Emily E. Lubin
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Elizabeth M. Gonzalez
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Annabel K. Sangree
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | | | | | - Rebecca C. Ahrens-Nicklas
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| | | | - Elizabeth J. Bhoj
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| |
Collapse
|
26
|
Yang Q, Zhang Q, Yi S, Zhang S, Yi S, Zhou X, Qin Z, Chen B, Luo J. Novel germline variants in KMT2C in Chinese patients with Kleefstra syndrome-2. Front Neurol 2024; 15:1340458. [PMID: 38356881 PMCID: PMC10864639 DOI: 10.3389/fneur.2024.1340458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Kleefstra syndrome (KLEFS) refers to a rare inherited neurodevelopmental disorder characterized by intellectual disability (ID), language and motor delays, behavioral abnormalities, abnormal facial appearance, and other variable clinical features. KLEFS is subdivided into two subtypes: Kleefstra syndrome-1 (KLEFS1, OMIM: 610253), caused by a heterozygous microdeletion encompassing the Euchromatic Histone Lysine Methyltransferase 1 (EHMT1) gene on chromosome 9q34.3 or pathogenic variants in the EHMT1 gene, and Kleefstra syndrome-2 (KLEFS2, OMIM: 617768), caused by pathogenic variants in the KMT2C gene. More than 100 cases of KLEFS1 have been reported with pathogenic variants in the EHMT1 gene. However, only 13 patients with KLEFS2 have been reported to date. In the present study, five unrelated Chinese patients were diagnosed with KLEFS2 caused by KMT2C variants through whole-exome sequencing (WES). We identified five different variants of the KMT2C gene in these patients: c.9166C>T (p.Gln3056*), c.9232_9247delCAGCGATCAGAACCGT (p.Gln3078fs*13), c.5068dupA (p.Arg1690fs*10), c.10815_10819delAAGAA (p.Lys3605fs*7), and c.6911_6912insA (p.Met2304fs*8). All five patients had a clinical profile similar to that of patients with KLEFS2. To analyze the correlation between the genotype and phenotype of KLEFS2, we examined 18 variants and their associated phenotypes in 18 patients with KLEFS2. Patients carrying KMT2C variants presented with a wide range of phenotypic defects and an extremely variable phenotype. We concluded that the core phenotypes associated with KMT2C variants were intellectual disability, facial dysmorphisms, language and motor delays, behavioral abnormalities, hypotonia, short stature, and weight loss. Additionally, sex may be one factor influencing the outcome. Our findings expand the phenotypic and genetic spectrum of KLEFS2 and help to clarify the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xunzhao Zhou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Biyan Chen
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
27
|
Larrigan S, Joshi SV, Mattar P. Divergent phenotypes in constitutive versus conditional mutant mouse models of Sifrim-Hitz-Weiss syndrome. Hum Mol Genet 2023; 32:3361-3373. [PMID: 37738575 PMCID: PMC10695680 DOI: 10.1093/hmg/ddad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023] Open
Abstract
Chromatin remodellers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), however, their functions during brain development are not fully understood. Here, we focused on Sifrim-Hitz-Weiss Syndrome (SIHIWES)-an intellectual disability disorder caused by mutations in the CHD4 chromodomain helicase gene. We utilized mouse genetics to excise the Chd4 ATPase/helicase domain-either constitutively, or conditionally in the developing telencephalon. Conditional heterozygotes exhibited no change in cortical size and cellular composition, and had only subtle behavioral phenotypes. Telencephalon-specific conditional knockouts had marked reductions in cortical growth, reduced numbers of upper-layer neurons, and exhibited alterations in anxiety and repetitive behaviors. Despite the fact that whole-body heterozygotes exhibited comparable growth defects, they were unaffected in these behaviors, but instead exhibited female-specific alterations in learning and memory. These data reveal unexpected phenotypic divergence arising from differences in the spatiotemporal deployment of loss-of-function manipulations, underscoring the importance of context in chromatin remodeller function during neurodevelopment.
Collapse
Affiliation(s)
- Sarah Larrigan
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shrilaxmi V Joshi
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pierre Mattar
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
28
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
29
|
Negri ML, D'Annunzio S, Vitali G, Zippo A. May the force be with you: Nuclear condensates function beyond transcription control: Potential nongenetic functions of nuclear condensates in physiological and pathological conditions. Bioessays 2023; 45:e2300075. [PMID: 37530178 DOI: 10.1002/bies.202300075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Over the past decade, research has revealed biomolecular condensates' relevance in diverse cellular functions. Through a phase separation process, they concentrate macromolecules in subcompartments shaping the cellular organization and physiology. In the nucleus, biomolecular condensates assemble relevant biomolecules that orchestrate gene expression. We here hypothesize that chromatin condensates can also modulate the nongenetic functions of the genome, including the nuclear mechanical properties. The importance of chromatin condensates is supported by the genetic evidence indicating that mutations in their members are causative of a group of rare Mendelian diseases named chromatinopathies (CPs). Despite a broad spectrum of clinical features and the perturbations of the epigenetic machinery characterizing the CPs, recent findings highlighted negligible changes in gene expression. These data argue in favor of possible noncanonical functions of chromatin condensates in regulating the genome's spatial organization and, consequently, the nuclear mechanics. In this review, we discuss how condensates may impact nuclear mechanical properties, thus affecting the cellular response to mechanical cues and, eventually, cell fate and identity. Chromatin condensates organize macromolecules in the nucleus orchestrating the transcription regulation and mutations in their members are responsible for rare diseases named chromatinopathies. We argue that chromatin condensates, in concert with the nuclear lamina, may also govern the nuclear mechanical properties affecting the cellular response to external cues.
Collapse
Affiliation(s)
- Maria Luce Negri
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Sarah D'Annunzio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Vitali
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessio Zippo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
30
|
Feng L, Barrows D, Zhong L, Mätlik K, Porter EG, Djomo AM, Yau I, Soshnev AA, Carroll TS, Wen D, Hatten ME, Garcia BA, Allis CD. Altered chromatin occupancy of patient-associated H4 mutants misregulate neuronal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560141. [PMID: 37808786 PMCID: PMC10557780 DOI: 10.1101/2023.09.29.560141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Chromatin is a crucial regulator of gene expression and tightly controls development across species. Mutations in only one copy of multiple histone genes were identified in children with developmental disorders characterized by microcephaly, but their mechanistic roles in development remain unclear. Here we focus on dominant mutations affecting histone H4 lysine 91. These H4K91 mutants form aberrant nuclear puncta at specific heterochromatin regions. Mechanistically, H4K91 mutants demonstrate enhanced binding to the histone variant H3.3, and ablation of H3.3 or the H3.3-specific chaperone DAXX diminishes the mutant localization to chromatin. Our functional studies demonstrate that H4K91 mutant expression increases chromatin accessibility, alters developmental gene expression through accelerating pro-neural differentiation, and causes reduced mouse brain size in vivo, reminiscent of the microcephaly phenotypes of patients. Together, our studies unveil a distinct molecular pathogenic mechanism from other known histone mutants, where H4K91 mutants misregulate cell fate during development through abnormal genomic localization.
Collapse
Affiliation(s)
- Lijuan Feng
- The Rockefeller University, Laboratory of Chromatin Biology and Epigenetics, New York, NY
| | - Douglas Barrows
- The Rockefeller University, Bioinformatics Resource Center, New York, NY
| | - Liangwen Zhong
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
| | - Kärt Mätlik
- The Rockefeller University, Laboratory of Developmental Neurobiology, New York, NY
| | - Elizabeth G. Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Annaelle M. Djomo
- The Rockefeller University, Laboratory of Chromatin Biology and Epigenetics, New York, NY
| | - Iris Yau
- The Rockefeller University, Laboratory of Chromatin Biology and Epigenetics, New York, NY
- Hunter College of the City University of New York, Yalow Honors Scholar Program, New York, NY
| | - Alexey A. Soshnev
- The Rockefeller University, Laboratory of Chromatin Biology and Epigenetics, New York, NY
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX
| | - Thomas S. Carroll
- The Rockefeller University, Bioinformatics Resource Center, New York, NY
| | - Duancheng Wen
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY
| | - Mary E. Hatten
- The Rockefeller University, Laboratory of Developmental Neurobiology, New York, NY
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - C. David Allis
- The Rockefeller University, Laboratory of Chromatin Biology and Epigenetics, New York, NY
| |
Collapse
|
31
|
Boukas L, Luperchio TR, Razi A, Hansen KD, Bjornsson HT. Neuron-specific chromatin disruption at CpG islands and aging-related regions in Kabuki syndrome mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551456. [PMID: 37577516 PMCID: PMC10418197 DOI: 10.1101/2023.08.01.551456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many Mendelian developmental disorders caused by coding variants in epigenetic regulators have now been discovered. Epigenetic regulators are broadly expressed, and each of these disorders typically exhibits phenotypic manifestations from many different organ systems. An open question is whether the chromatin disruption - the root of the pathogenesis - is similar in the different disease-relevant cell types. This is possible in principle, since all these cell-types are subject to effects from the same causative gene, that has the same kind of function (e.g. methylates histones) and is disrupted by the same germline variant. We focus on mouse models for Kabuki syndrome types 1 and 2, and find that the chromatin accessibility abnormalities in neurons are mostly distinct from those in B or T cells. This is not because the neuronal abnormalities occur at regulatory elements that are only active in neurons. Neurons, but not B or T cells, show preferential chromatin disruption at CpG islands and at regulatory elements linked to aging. A sensitive analysis reveals that the regions disrupted in B/T cells do exhibit chromatin accessibility changes in neurons, but these are very subtle and of uncertain functional significance. Finally, we are able to identify a small set of regulatory elements disrupted in all three cell types. Our findings reveal the cellular-context-specific effect of variants in epigenetic regulators, and suggest that blood-derived "episignatures" may not be well-suited for understanding the mechanistic basis of neurodevelopment in Mendelian disorders of the epigenetic machinery.
Collapse
Affiliation(s)
- Leandros Boukas
- Department of Pediatrics, Children’s National Hospital
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | | | - Afrooz Razi
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
| | - Kasper D. Hansen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
- Department of Biomedical Engineering, Johns Hopkins School of Medicine
| | - Hans T. Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine
- Department of Pediatrics, Johns Hopkins University School of Medicine
- Faculty of Medicine, University of Iceland
- Landspitali University Hospital
| |
Collapse
|
32
|
Appiah B, Fullio CL, Ossola C, Bertani I, Restelli E, Cheffer A, Polenghi M, Haffner C, Garcia‐Miralles M, Zeis P, Treppner M, Bovio P, Schlichtholz L, Mas‐Sanchez A, Zografidou L, Winter J, Binder H, Grün D, Kalebic N, Taverna E, Vogel T. DOT1L activity affects neural stem cell division mode and reduces differentiation and ASNS expression. EMBO Rep 2023; 24:e56233. [PMID: 37382163 PMCID: PMC10398646 DOI: 10.15252/embr.202256233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.
Collapse
Affiliation(s)
- Bismark Appiah
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Present address:
Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Camila L Fullio
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | | | | | - Arquimedes Cheffer
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | - Christiane Haffner
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | - Marta Garcia‐Miralles
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Patrice Zeis
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS‐MCB)FreiburgGermany
| | - Martin Treppner
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Center for Data Analysis and ModelingAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Patrick Bovio
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Laura Schlichtholz
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Aina Mas‐Sanchez
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Institute of Molecular Biology (IMB) gGmbHMainzGermany
| | - Lea Zografidou
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Jennifer Winter
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- German Resilience CentreUniversity Medical Center MainzMainzGermany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Center for Data Analysis and ModelingAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Dominic Grün
- Würzburg Institute of Systems ImmunologyMax Planck Research Group at Julius‐Maximilians‐University WürzburgWürzburgGermany
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz‐Center for Infection Research (HZI)WürzburgGermany
| | | | | | - Tanja Vogel
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical FacultyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS), Albert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
33
|
Haghshenas S, Foroutan A, Bhai P, Levy MA, Relator R, Kerkhof J, McConkey H, Skinner CD, Caylor RC, Tedder ML, Stevenson RE, Sadikovic B, Schwartz CE. Identification of a DNA methylation signature for Renpenning syndrome (RENS1), a spliceopathy. Eur J Hum Genet 2023; 31:879-886. [PMID: 36797465 PMCID: PMC10400603 DOI: 10.1038/s41431-023-01313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The challenges and ambiguities in providing an accurate diagnosis for patients with neurodevelopmental disorders have led researchers to apply epigenetics as a technique to validate the diagnosis provided based on the clinical examination and genetic testing results. Genome-wide DNA methylation analysis has recently been adapted for clinical testing of patients with genetic neurodevelopmental disorders. In this paper, preliminary data demonstrating a DNA methylation signature for Renpenning syndrome (RENS1 - OMIM 309500), which is an X-linked recessive neurodevelopmental disorder caused by variants in polyglutamine-binding protein 1 (PQBP1) is reported. The identified episignature was then utilized to construct a highly sensitive and specific binary classification model. Besides providing evidence for the existence of a DNA methylation episignature for Renpenning syndrome, this study increases the knowledge of the molecular mechanisms related to the disease. Moreover, the availability of more subjects in future may facilitate the establishment of an episignature that can be utilized for diagnosis in a clinical setting and for reclassification of variants of unknown clinical significance.
Collapse
Affiliation(s)
- Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | - Pratibha Bhai
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada
| | | | | | | | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, N6A 5W9, Canada.
| | - Charles E Schwartz
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
34
|
Ng R, Kalinousky A, Harris J. Epigenetics of cognition and behavior: insights from Mendelian disorders of epigenetic machinery. J Neurodev Disord 2023; 15:16. [PMID: 37245029 PMCID: PMC10224589 DOI: 10.1186/s11689-023-09482-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/04/2023] [Indexed: 05/29/2023] Open
Abstract
Epigenetics, one mechanism by which gene expression can change without any changes to the DNA sequence, was described nearly a century ago. However, the importance of epigenetic processes to neurodevelopment and higher order neurological functions like cognition and behavior is only now being realized. A group of disorders known as the Mendelian disorders of the epigenetic machinery are caused by the altered function of epigenetic machinery proteins, which consequently affects downstream expression of many genes. These disorders almost universally have cognitive dysfunction and behavioral issues as core features. Here, we review what is known about the neurodevelopmental phenotypes of some key examples of these disorders divided into categories based on the underlying function of the affected protein. Understanding these Mendelian disorders of the epigenetic machinery can illuminate the role of epigenetic regulation in typical brain function and can lead to future therapies and better management for a host of neurodevelopmental and neuropsychological disorders.
Collapse
Affiliation(s)
- Rowena Ng
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allison Kalinousky
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA.
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Khazaei S, Chen CCL, Andrade AF, Kabir N, Azarafshar P, Morcos SM, França JA, Lopes M, Lund PJ, Danieau G, Worme S, Adnani L, Nzirorera N, Chen X, Yogarajah G, Russo C, Zeinieh M, Wong CJ, Bryant L, Hébert S, Tong B, Sihota TS, Faury D, Puligandla E, Jawhar W, Sandy V, Cowan M, Nakada EM, Jerome-Majewska LA, Ellezam B, Gomes CC, Denecke J, Lessel D, McDonald MT, Pizoli CE, Taylor K, Cocanougher BT, Bhoj EJ, Gingras AC, Garcia BA, Lu C, Campos EI, Kleinman CL, Garzia L, Jabado N. Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration. Cell 2023; 186:1162-1178.e20. [PMID: 36931244 PMCID: PMC10112048 DOI: 10.1016/j.cell.2023.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/04/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.
Collapse
Affiliation(s)
- Sima Khazaei
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Nisha Kabir
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Pariya Azarafshar
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Shahir M Morcos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Josiane Alves França
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Lopes
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peder J Lund
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Geoffroy Danieau
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Samantha Worme
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Lata Adnani
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Nadine Nzirorera
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Marine College, Shandong University, Weihai 264209, China
| | - Gayathri Yogarajah
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Caterina Russo
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Michele Zeinieh
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Laura Bryant
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven Hébert
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Bethany Tong
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Tianna S Sihota
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Damien Faury
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Evan Puligandla
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Wajih Jawhar
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Child Health and Human Development, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Veronica Sandy
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Mitra Cowan
- McGill Integrated Core for Animal Modeling (MICAM), McGill University, Montreal, QC, Canada
| | - Emily M Nakada
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Loydie A Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Carolina Cavalieri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Human Genetics, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Marie T McDonald
- Division of Medical Genetics, Duke University Hospital, Durham, NC, USA
| | - Carolyn E Pizoli
- Division of Pediatric Neurology, Duke University Hospital, Durham, NC, USA
| | - Kathryn Taylor
- Division of Medical Genetics, Duke University Hospital, Durham, NC, USA
| | | | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Eric I Campos
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Livia Garzia
- Cancer Research Program, The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Orthopedic Surgery, Faculty of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
36
|
Górecki M, Kozioł I, Kopystecka A, Budzyńska J, Zawitkowska J, Lejman M. Updates in KMT2A Gene Rearrangement in Pediatric Acute Lymphoblastic Leukemia. Biomedicines 2023; 11:biomedicines11030821. [PMID: 36979800 PMCID: PMC10045821 DOI: 10.3390/biomedicines11030821] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
The KMT2A (formerly MLL) encodes the histone lysine-specific N-methyltransferase 2A and is mapped on chromosome 11q23. KMT2A is a frequent target for recurrent translocations in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), or mixed lineage (biphenotypic) leukemia (MLL). Over 90 KMT2A fusion partners have been identified until now, including the most recurring ones—AFF1, MLLT1, and MLLT3—which encode proteins regulating epigenetic mechanisms. The presence of distinct KMT2A rearrangements is an independent dismal prognostic factor, while very few KMT2A rearrangements display either a good or intermediate outcome. KMT2A-rearranged (KMT2A-r) ALL affects more than 70% of new ALL diagnoses in infants (<1 year of age), 5–6% of pediatric cases, and 15% of adult cases. KMT2A-rearranged (KMT2A-r) ALL is characterized by hyperleukocytosis, a relatively high incidence of central nervous system (CNS) involvement, an aggressive course with early relapse, and early relapses resulting in poor prognosis. The exact pathways of fusions and the effects on the final phenotypic activity of the disease are still subjects of much research. Future trials could consider the inclusion of targeted immunotherapeutic agents and prioritize the identification of prognostic factors, allowing for the less intensive treatment of some infants with KMT2A ALL. The aim of this review is to summarize our knowledge and present current insight into the mechanisms of KMT2A-r ALL, portray their characteristics, discuss the clinical outcome along with risk stratification, and present novel therapeutic strategies.
Collapse
Affiliation(s)
- Mateusz Górecki
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ilona Kozioł
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Agnieszka Kopystecka
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Budzyńska
- Student Scientific Society of the Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
37
|
Tooze RS, Calpena E, Weber A, Wilson LC, Twigg SRF, Wilkie AOM. Review of Recurrently Mutated Genes in Craniosynostosis Supports Expansion of Diagnostic Gene Panels. Genes (Basel) 2023; 14:615. [PMID: 36980886 PMCID: PMC10048212 DOI: 10.3390/genes14030615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Craniosynostosis, the premature fusion of the cranial sutures, affects ~1 in 2000 children. Although many patients with a genetically determined cause harbor a variant in one of just seven genes or have a chromosomal abnormality, over 60 genes are known to be recurrently mutated, thus comprising a long tail of rarer diagnoses. Genome sequencing for the diagnosis of rare diseases is increasingly used in clinical settings, but analysis of the data is labor intensive and involves a trade-off between achieving high sensitivity or high precision. PanelApp, a crowd-sourced disease-focused set of gene panels, was designed to enable prioritization of variants in known disease genes for a given pathology, allowing enhanced identification of true-positives. For heterogeneous disorders like craniosynostosis, these panels must be regularly updated to ensure that diagnoses are not being missed. We provide a systematic review of genetic literature on craniosynostosis over the last 5 years, including additional results from resequencing a 42-gene panel in 617 affected individuals. We identify 16 genes (representing a 25% uplift) that should be added to the list of bona fide craniosynostosis disease genes and discuss the insights that these new genes provide into pathophysiological mechanisms of craniosynostosis.
Collapse
Affiliation(s)
- Rebecca S. Tooze
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Astrid Weber
- Liverpool Centre for Genomic Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool L8 7SS, UK
| | - Louise C. Wilson
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
38
|
van der Laan L, Rooney K, Alders M, Relator R, McConkey H, Kerkhof J, Levy MA, Lauffer P, Aerden M, Theunis M, Legius E, Tedder ML, Vissers LELM, Koene S, Ruivenkamp C, Hoffer MJV, Wieczorek D, Bramswig NC, Herget T, González VL, Santos-Simarro F, Tørring PM, Denomme-Pichon AS, Isidor B, Keren B, Julia S, Schaefer E, Francannet C, Maillard PY, Misra-Isrie M, Van Esch H, Mannens MMAM, Sadikovic B, van Haelst MM, Henneman P. Episignature Mapping of TRIP12 Provides Functional Insight into Clark-Baraitser Syndrome. Int J Mol Sci 2022; 23:ijms232213664. [PMID: 36430143 PMCID: PMC9690904 DOI: 10.3390/ijms232213664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Clark-Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12. We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark-Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Kathleen Rooney
- Department of Pathology and Laboratory Medicine, Western University, London, ON N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, ON N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Department of Pathology and Laboratory Medicine, Western University, London, ON N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Michael A. Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
| | - Peter Lauffer
- Department of Pediatric Endocrinology, Emma Children’s Hospital, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mio Aerden
- Centre for Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Miel Theunis
- Centre for Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Eric Legius
- Centre for Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | | | - Lisenka E. L. M. Vissers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mariette J. V. Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Nuria C. Bramswig
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Vanesa López González
- Sección Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, CIBERER, 30120 Murcia, Spain
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, 28029 Madrid, Spain
| | - Pernille M. Tørring
- Department of Clinical Genetics, Odense University Hospital, 5000 Odense, Denmark
| | - Anne-Sophie Denomme-Pichon
- UF6254 Innovation en Diagnostic Genomique des Maladies Rares, 21070 Dijon, France
- Équipe Génétique des Anomalies du Développement (GAD), CHU Dijon-Bourgogne, 21000 Dijon, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | - Boris Keren
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, 75013 Paris, France
| | - Sophie Julia
- Service de Génétique Clinique, CHU Toulouse, 31300 Toulouse, France
| | - Elise Schaefer
- Service de Génétique Clinique, CHU Toulouse, 31300 Toulouse, France
| | - Christine Francannet
- Service de Genetique Medicale, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | | | - Mala Misra-Isrie
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Hilde Van Esch
- Centre for Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON N6A 5W9, Canada
- Correspondence: (B.S.); (P.H.)
| | - Mieke M. van Haelst
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Correspondence: (B.S.); (P.H.)
| |
Collapse
|
39
|
van der Laan L, Rooney K, Trooster TM, Mannens MM, Sadikovic B, Henneman P. DNA methylation episignatures: insight into copy number variation. Epigenomics 2022; 14:1373-1388. [PMID: 36537268 DOI: 10.2217/epi-2022-0287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this review we discuss epigenetic disorders that result from aberrations in genes linked to epigenetic regulation. We describe current testing methods for the detection of copy number variants (CNVs) in Mendelian disorders, dosage sensitivity, reciprocal phenotypes and the challenges of test selection and overlapping clinical features in genetic diagnosis. We discuss aberrations of DNA methylation and propose a role for episignatures as a novel clinical testing method in CNV disorders. Finally, we postulate that episignature mapping in CNV disorders may provide novel insights into the molecular mechanisms of disease and unlock key findings of the genome-wide impact on disease gene networks.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Kathleen Rooney
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Tessa Ma Trooster
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Marcel Mam Mannens
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, N5A 3K7, Canada.,Verspeeten Clinical Genome Centre, London Health Science Centre, London, Ontario, N6A 5W9, Canada
| | - Peter Henneman
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, Amsterdam, 1105 AZ, The Netherlands
| |
Collapse
|
40
|
Lipinski M, Niñerola S, Fuentes-Ramos M, Valor LM, Del Blanco B, López-Atalaya JP, Barco A. CBP Is Required for Establishing Adaptive Gene Programs in the Adult Mouse Brain. J Neurosci 2022; 42:7984-8001. [PMID: 36109165 PMCID: PMC9617619 DOI: 10.1523/jneurosci.0970-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental factors and life experiences impinge on brain circuits triggering adaptive changes. Epigenetic regulators contribute to this neuroadaptation by enhancing or suppressing specific gene programs. The paralogous transcriptional coactivators and lysine acetyltransferases CREB binding protein (CBP) and p300 are involved in brain plasticity and stimulus-dependent transcription, but their specific roles in neuroadaptation are not fully understood. Here we investigated the impact of eliminating either CBP or p300 in excitatory neurons of the adult forebrain of mice from both sexes using inducible and cell type-restricted knock-out strains. The elimination of CBP, but not p300, reduced the expression and chromatin acetylation of plasticity genes, dampened activity-driven transcription, and caused memory deficits. The defects became more prominent in elderly mice and in paradigms that involved enduring changes in transcription, such as kindling and environmental enrichment, in which CBP loss interfered with the establishment of activity-induced transcriptional and epigenetic changes in response to stimulus or experience. These findings further strengthen the link between CBP deficiency in excitatory neurons and etiopathology in the nervous system.SIGNIFICANCE STATEMENT How environmental conditions and life experiences impinge on mature brain circuits to elicit adaptive responses that favor the survival of the organism remains an outstanding question in neurosciences. Epigenetic regulators are thought to contribute to neuroadaptation by initiating or enhancing adaptive gene programs. In this article, we examined the role of CREB binding protein (CBP) and p300, two paralogous transcriptional coactivators and histone acetyltransferases involved in cognitive processes and intellectual disability, in neuroadaptation in adult hippocampal circuits. Our experiments demonstrate that CBP, but not its paralog p300, plays a highly specific role in the epigenetic regulation of neuronal plasticity gene programs in response to stimulus and provide unprecedented insight into the molecular mechanisms underlying neuroadaptation.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Sergio Niñerola
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Miguel Fuentes-Ramos
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Luis M Valor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Jose P López-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Campus de Sant Joan, 03550 Alicante, Spain
| |
Collapse
|
41
|
Di Fede E, Grazioli P, Lettieri A, Parodi C, Castiglioni S, Taci E, Colombo EA, Ancona S, Priori A, Gervasini C, Massa V. Epigenetic disorders: Lessons from the animals–animal models in chromatinopathies. Front Cell Dev Biol 2022; 10:979512. [PMID: 36225316 PMCID: PMC9548571 DOI: 10.3389/fcell.2022.979512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatinopathies are defined as genetic disorders caused by mutations in genes coding for protein involved in the chromatin state balance. So far 82 human conditions have been described belonging to this group of congenital disorders, sharing some molecular features and clinical signs. For almost all of these conditions, no specific treatment is available. For better understanding the molecular cascade caused by chromatin imbalance and for envisaging possible therapeutic strategies it is fundamental to combine clinical and basic research studies. To this end, animal modelling systems represent an invaluable tool to study chromatinopathies. In this review, we focused on available data in the literature of animal models mimicking the human genetic conditions. Importantly, affected organs and abnormalities are shared in the different animal models and most of these abnormalities are reported as clinical manifestation, underlying the parallelism between clinics and translational research.
Collapse
Affiliation(s)
- Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Esi Taci
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, Milan, Italy
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, Milan, Italy
- *Correspondence: Valentina Massa,
| |
Collapse
|
42
|
DNA Methylation Signature for JARID2-Neurodevelopmental Syndrome. Int J Mol Sci 2022; 23:ijms23148001. [PMID: 35887345 PMCID: PMC9322505 DOI: 10.3390/ijms23148001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
JARID2 (Jumonji, AT Rich Interactive Domain 2) pathogenic variants cause a neurodevelopmental syndrome, that is characterized by developmental delay, cognitive impairment, hypotonia, autistic features, behavior abnormalities and dysmorphic facial features. JARID2 encodes a transcriptional repressor protein that regulates the activity of various histone methyltransferase complexes. However, the molecular etiology is not fully understood, and JARID2-neurodevelopmental syndrome may vary in its typical clinical phenotype. In addition, the detection of variants of uncertain significance (VUSs) often results in a delay of final diagnosis which could hamper the appropriate care. In this study we aim to detect a specific and sensitive DNA methylation signature for JARID2-neurodevelopmental syndrome. Peripheral blood DNA methylation profiles from 56 control subjects, 8 patients with (likely) pathogenic JARID2 variants and 3 patients with JARID2 VUSs were analyzed. DNA methylation analysis indicated a clear and robust separation between patients with (likely) pathogenic variants and controls. A binary model capable of classifying patients with the JARID2-neurodevelopmental syndrome was constructed on the basis of the identified episignature. Patients carrying VUSs clustered with the control group. We identified a distinct DNA methylation signature associated with JARID2-neurodevelopmental syndrome, establishing its utility as a biomarker for this syndrome and expanding the EpiSign diagnostic test.
Collapse
|
43
|
Mannens MMAM, Lombardi MP, Alders M, Henneman P, Bliek J. Further Introduction of DNA Methylation (DNAm) Arrays in Regular Diagnostics. Front Genet 2022; 13:831452. [PMID: 35860466 PMCID: PMC9289263 DOI: 10.3389/fgene.2022.831452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Methylation tests have been used for decades in regular DNA diagnostics focusing primarily on Imprinting disorders or specific loci annotated to specific disease associated gene promotors. With the introduction of DNA methylation (DNAm) arrays such as the Illumina Infinium HumanMethylation450 Beadchip array or the Illumina Infinium Methylation EPIC Beadchip array (850 k), it has become feasible to study the epigenome in a timely and cost-effective way. This has led to new insights regarding the complexity of well-studied imprinting disorders such as the Beckwith Wiedemann syndrome, but it has also led to the introduction of tests such as EpiSign, implemented as a diagnostic test in which a single array experiment can be compared to databases with known episignatures of multiple genetic disorders, especially neurodevelopmental disorders. The successful use of such DNAm tests is rapidly expanding. More and more disorders are found to be associated with discrete episignatures which enables fast and definite diagnoses, as we have shown. The first examples of environmentally induced clinical disorders characterized by discrete aberrant DNAm are discussed underlining the broad application of DNAm testing in regular diagnostics. Here we discuss exemplary findings in our laboratory covering this broad range of applications and we discuss further use of DNAm tests in the near future.
Collapse
|
44
|
Castiglioni S, Di Fede E, Bernardelli C, Lettieri A, Parodi C, Grazioli P, Colombo EA, Ancona S, Milani D, Ottaviano E, Borghi E, Massa V, Ghelma F, Vignoli A, Lesma E, Gervasini C. KMT2A: Umbrella Gene for Multiple Diseases. Genes (Basel) 2022; 13:genes13030514. [PMID: 35328068 PMCID: PMC8949091 DOI: 10.3390/genes13030514] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 02/05/2023] Open
Abstract
KMT2A (Lysine methyltransferase 2A) is a member of the epigenetic machinery, encoding a lysine methyltransferase responsible for the transcriptional activation through lysine 4 of histone 3 (H3K4) methylation. KMT2A has a crucial role in gene expression, thus it is associated to pathological conditions when found mutated. KMT2A germinal mutations are associated to Wiedemann–Steiner syndrome and also in patients with initial clinical diagnosis of several other chromatinopathies (i.e., Coffin–Siris syndromes, Kabuki syndrome, Cornelia De Lange syndrome, Rubinstein–Taybi syndrome), sharing an overlapping phenotype. On the other hand, KMT2A somatic mutations have been reported in several tumors, mainly blood malignancies. Due to its evolutionary conservation, the role of KMT2A in embryonic development, hematopoiesis and neurodevelopment has been explored in different animal models, and in recent decades, epigenetic treatments for disorders linked to KMT2A dysfunction have been extensively investigated. To note, pharmaceutical compounds acting on tumors characterized by KMT2A mutations have been formulated, and even nutritional interventions for chromatinopathies have become the object of study due to the role of microbiota in epigenetic regulation.
Collapse
Affiliation(s)
- Silvia Castiglioni
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisabetta Di Fede
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Clara Bernardelli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Antonella Lettieri
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Parodi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Paolo Grazioli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Adele Colombo
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Silvia Ancona
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Emerenziana Ottaviano
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Elisa Borghi
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Valentina Massa
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
| | - Filippo Ghelma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Aglaia Vignoli
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- Child NeuroPsychiatry Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Elena Lesma
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
| | - Cristina Gervasini
- Department of Health Sciences, Università Degli Studi di Milano, 20142 Milan, Italy; (S.C.); (E.D.F.); (C.B.); (A.L.); (C.P.); (P.G.); (E.A.C.); (S.A.); (E.O.); (E.B.); (V.M.); (F.G.); (A.V.); (E.L.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Università Degli Studi di Milano, 20142 Milan, Italy
- Correspondence: ; Tel.: +39-0250-3230-28
| |
Collapse
|
45
|
Peymani F, Farzeen A, Prokisch H. RNA sequencing role and application in clinical diagnostic. Pediatr Investig 2022; 6:29-35. [PMID: 35382420 PMCID: PMC8960934 DOI: 10.1002/ped4.12314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 12/31/2022] Open
Abstract
Although whole-exome sequencing and whole-genome sequencing has tremendously improved our understanding of the genetic etiology of human disorders, about half of the patients still do not receive a molecular diagnosis. The high fraction of variants with uncertain significance and the challenges of interpretation of noncoding variants have urged scientists to implement RNA sequencing (RNA-seq) in the diagnostic approach as a high throughput assay to complement genomic data with functional evidence. RNA-seq data can be used to identify aberrantly spliced genes, detect allele-specific expression, and identify gene expression outliers. Amongst eight studies utilizing RNA-seq, a mean diagnostic uplift of 15% has been reported. Here, we provide an overview of how RNA-seq has been implemented to aid in identifying the causal variants of Mendelian disorders.
Collapse
Affiliation(s)
- Fatemeh Peymani
- School of Medicine, Institute of Human GeneticsTechnical University of MunichMunichGermany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre MunichNeuherbergGermany
| | - Aiman Farzeen
- School of Medicine, Institute of Human GeneticsTechnical University of MunichMunichGermany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre MunichNeuherbergGermany
| | - Holger Prokisch
- School of Medicine, Institute of Human GeneticsTechnical University of MunichMunichGermany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Centre MunichNeuherbergGermany
| |
Collapse
|
46
|
Salah A, Almannai M, Ojaimi MA, Radefeldt M, Gulati N, Iqbal M, Alawbathani S, Al-Ali R, Beetz C, El-Hattab AW. A homozygous frame-shift variant in PROSER1 is associated with developmental delay, hypotonia, genitourinary malformations, and distinctive facial features. Clin Genet 2022; 101:565-570. [PMID: 35229282 DOI: 10.1111/cge.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
We report four children from three related families who presented with a similar phenotype characterized by developmental delay, hypotonia, seizures, failure-to-thrive, strabismus, drooling, recurrent otitis media, hearing impairment, and genitourinary malformations. They also shared common facial features including arched eyebrows, prominent eyes, broad nasal bridge, low-hanging columella, open mouth, thick lower lip, protruding tongue, large low-set ears, and parietal bossing. Exome sequencing for affected individuals revealed a homozygous frame-shift variant, c.1833del; p.(Thr612Glnfs*22), in PROSER1 which encodes the proline and serine rich protein 1 (PROSER1). PROSER1 has recently been found to be part of the histone methyltransferases KMT2C/KMT2D complexes. PROSER1 stabilizes TET2, a member of TET family of DNA demethylases which is involved in recruiting the enhancer-associated KMT2C/KMT2D complexes and mediating DNA demethylation, activating gene expression. Therefore, PROSER1 may play vital and potentially general roles in gene regulation, consistent with the wide phenotypic spectrum observed in the individuals presented here. The consistent phenotype, the loss-of-function predicted from the frame-shift, the co-segregation of the phenotype in our large pedigree, the vital role of PROSER1 in gene regulation, and the association of related genes with neurodevelopmental disorders argue for the loss of PROSER1 to be the cause for a novel recognizable syndrome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Azza Salah
- Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Mode Al Ojaimi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | | | | | | | - Ayman W El-Hattab
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Clinical Genetics, University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
47
|
Brunet T, Berutti R, Dill V, Hecker JS, Choukair D, Andres S, Deschauer M, Diehl-Schmid J, Krenn M, Eckstein G, Graf E, Gasser T, Strom TM, Hoefele J, Götze KS, Meitinger T, Wagner M. Clonal Hematopoiesis as a pitfall in germline variant interpretation in the context of Mendelian disorders. Hum Mol Genet 2022; 31:2386-2395. [PMID: 35179199 DOI: 10.1093/hmg/ddac034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/12/2022] Open
Abstract
Clonal hematopoiesis due to somatic mutations in hematopoietic stem/progenitor cells is an age-related phenomenon and commonly observed when sequencing blood DNA in elderly individuals. Several genes that are implicated in clonal hematopoiesis are also associated with Mendelian disorders when mutated in the germline, potentially leading to variant misinterpretation. We performed a literature search to identify genes associated with age-related clonal hematopoiesis followed by an OMIM query to identify the subset of genes in which germline variants are associated with Mendelian disorders. We retrospectively screened for diagnostic cases in which the presence of age-related clonal hematopoiesis confounded exome sequencing data interpretation. We found 58 genes in which somatic mutations are implicated in clonal hematopoiesis while germline variants in the same genes are associated with Mendelian (mostly neurodevelopmental) disorders. Using five selected cases of individuals with suspected monogenic disorders, we illustrate how clonal hematopoiesis in either variant databases or exome sequencing datasets poses a pitfall, potentially leading to variant misclassification and erroneous conclusions regarding gene-disease associations.
Collapse
Affiliation(s)
- Theresa Brunet
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Veronika Dill
- Technical University Munich, School of Medicine, Department of Medicine III
| | - Judith S Hecker
- Technical University Munich, School of Medicine, Department of Medicine III
| | - Daniela Choukair
- Division of Paediatric Endocrinology and Diabetology, University Children's Hospital, Heidelberg, Germany
| | - Stephanie Andres
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Janine Diehl-Schmid
- Technical University of Munich, School of Medicine, Department of Psychiatry and Psychotherapy, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Krenn
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany.,Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gertrud Eckstein
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany
| | - Thomas Gasser
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany
| | - Katharina S Götze
- Technical University Munich, School of Medicine, Department of Medicine III
| | - Thomas Meitinger
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, School of Medicine, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
48
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
49
|
Riedhammer KM, Burgemeister AL, Cantagrel V, Amiel J, Siquier-Pernet K, Boddaert N, Hertecant J, Kannouche PL, Pouvelle C, Htun S, Slavotinek AM, Beetz C, Diego-Alvarez D, Kampe K, Fleischer N, Awamleh Z, Weksberg R, Kopajtich R, Meitinger T, Suleiman J, El-Hattab AW. OUP accepted manuscript. Hum Mol Genet 2022; 31:3083-3094. [PMID: 35512351 PMCID: PMC9476618 DOI: 10.1093/hmg/ddac098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND TASP1 encodes an endopeptidase activating histone methyltransferases of the KMT2 family. Homozygous loss-of-function variants in TASP1 have recently been associated with Suleiman-El-Hattab syndrome. We report six individuals with Suleiman-El-Hattab syndrome and provide functional characterization of this novel histone modification disorder in a multi-omics approach. METHODS Chromosomal microarray/exome sequencing in all individuals. Western blotting from fibroblasts in two individuals. RNA sequencing and proteomics from fibroblasts in one individual. Methylome analysis from blood in two individuals. Knock-out of tasp1 orthologue in zebrafish and phenotyping. RESULTS All individuals had biallelic TASP1 loss-of-function variants and a phenotype including developmental delay, multiple congenital anomalies (including cardiovascular and posterior fossa malformations), a distinct facial appearance and happy demeanor. Western blot revealed absence of TASP1. RNA sequencing/proteomics showed HOX gene downregulation (HOXA4, HOXA7, HOXA1 and HOXB2) and dysregulation of transcription factor TFIIA. A distinct methylation profile intermediate between control and Kabuki syndrome (KMT2D) profiles could be produced. Zebrafish tasp1 knock-out revealed smaller head size and abnormal cranial cartilage formation in tasp1 crispants. CONCLUSION This work further delineates Suleiman-El-Hattab syndrome, a recognizable neurodevelopmental syndrome. Possible downstream mechanisms of TASP1 deficiency include perturbed HOX gene expression and dysregulated TFIIA complex. Methylation pattern suggests that Suleiman-El-Hattab syndrome can be categorized into the group of histone modification disorders including Wiedemann-Steiner and Kabuki syndrome.
Collapse
Affiliation(s)
- Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | | | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR, 75015 Paris, France
| | - Jeanne Amiel
- Department of Genetics, AP-HP, Necker Enfants Malades Hospital, Université Paris Cité, Imagine Institute, 75015 Paris, France
| | - Karine Siquier-Pernet
- Developmental Brain Disorders Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR, 75015 Paris, France
| | - Nathalie Boddaert
- Département de radiologie pédiatrique, INSERM UMR 1163 and INSERM U1000, AP-HP, Necker Enfants Malades Hospital, 75015 Paris, France
| | - Jozef Hertecant
- Division of Genetics and Metabolics, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Patricia L Kannouche
- CNRS UMR 9019, Université Paris-Saclay, Equipe labellisée Ligue contre le Cancer, Gustave Roussy, 94805 Villejuif, France
| | - Caroline Pouvelle
- CNRS UMR 9019, Université Paris-Saclay, Equipe labellisée Ligue contre le Cancer, Gustave Roussy, 94805 Villejuif, France
| | - Stephanie Htun
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | - Zain Awamleh
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Robert Kopajtich
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayman W El-Hattab
- To whom correspondence should be addressed at: College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates. Tel: +971 508875123; Fax: +97137131044;
| |
Collapse
|
50
|
Di Candia F, Fontana P, Paglia P, Falco M, Rosano C, Piscopo C, Cappuccio G, Siano MA, De Brasi D, Mandato C, De Maggio I, Squeo GM, Monica MD, Scarano G, Lonardo F, Strisciuglio P, Merla G, Melis D. Clinical heterogeneity of Kabuki syndrome in a cohort of Italian patients and review of the literature. Eur J Pediatr 2022; 181:171-187. [PMID: 34232366 PMCID: PMC8760211 DOI: 10.1007/s00431-021-04108-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Kabuki syndrome (KS) is a well-recognized disorder characterized by postnatal growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability. The syndrome is caused by KMT2D gene mutations or less frequently KDM6A gene mutations or deletions. We report a systematic evaluation of KS patients from Campania region of Italy; data were also compared with literature ones. We collected data of 15 subjects (8 males and 7 females with age range 10-26 years; mean age 16.9 years) with confirmed diagnosis of KS, representing the entire cohort of patients from Campania Region. Each patient performed biochemical testing and instrumental investigation. Neuro-intellectual development, cranio-facial dysmorphisms, and multisystem involvement data were collected retrospectively. For each category, type of defects and frequency of the anomalies were analyzed. Our observation shows that KS patients from Campania region have some particular and previously underscored, neurological and immunological findings. We found high prevalence of EEG's abnormalities (43%) and MRI brain abnormalities (60%). Microcephaly resulted more common in our series (33%), if compared with major cohorts described in literature. Biochemical features of immunodeficiency and autoimmune diseases including thyroid autoimmunity, polyserositis, and vitiligo were observed with high prevalence (54.5%). Low immunoglobulins levels were a frequent finding. Lymphocyte class investigation showed significantly reduced CD8 levels in one patient.Conclusions: These data confirm great heterogeneity of clinical manifestations in KS and suggest to introduce further clinical diagnostic criteria in order to perform a correct and precocious diagnosis. What is Known • Kabuki syndrome is characterized by growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability • Immune dysfunction is a common finding but autoimmune diseases are rarely seen • Neurological features are common What is New • Some particular facial features could help gestalt diagnosis (hypertelorism, broad nasal bridge, micrognathia, tooth agenesis, cutaneous haemangiomas and strabismus) • Higher prevalence of autoimmune disorders than previously reported • Particular neurological features are present in this cohort (EEG and MRI brain abnormalities).
Collapse
Affiliation(s)
- Francesca Di Candia
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Paolo Fontana
- Medical Genetics Unit, San Pio Hospital, Benevento, Italy
| | - Pamela Paglia
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Mariateresa Falco
- Pediatric Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo, 1 – 84131 Salerno, Italy
| | - Carmen Rosano
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Carmelo Piscopo
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gerarda Cappuccio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Maria Anna Siano
- Pediatric Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, (Salerno), Baronissi, Italy
| | - Daniele De Brasi
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Claudia Mandato
- Department of Pediatrics, AORN Santobono-Pausilipon, Napoli, Italy
| | - Ilaria De Maggio
- grid.413172.2Medical Genetics Unit, Cardarelli Hospital, Napoli, Italy
| | - Gabriella Maria Squeo
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | | | | | | | - Pietro Strisciuglio
- grid.411293.c0000 0004 1754 9702Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy
| | - Giuseppe Merla
- grid.413503.00000 0004 1757 9135Division of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Daniela Melis
- Pediatric Unit, Translational Medicine Department, Federico II University Hospital, Naples, Italy. .,Pediatric Unit, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", (Salerno), Baronissi, Italy. .,Pediatric Unit, San Giovanni di Dio e Ruggi d'Aragona University Hospital, Via San Leonardo, 1 - 84131, Salerno, Italy.
| |
Collapse
|