1
|
Zhou X, Liu W, Liang Z, Liang J, Zhang T, Gao W, Yang Z. Key epigenetic enzymes modulated by natural compounds contributes to tumorigenicity. Int J Biol Macromol 2025:140391. [PMID: 39880237 DOI: 10.1016/j.ijbiomac.2025.140391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Dysregulation of epigenetic regulation is observed in numerous tumor cells. The therapeutic effects of natural products on tumors were investigated through a comprehensive analysis of active ingredients derived from various structured natural products. The analysis focuses on regulating key enzymes involved in epigenetic control. To study the modulation of these enzymes for tumor treatment, the structural characteristics of natural products that impact tumorigenesis were identified. The presence of specific patterns suggests that compounds sharing structural similarities can potentially induce therapeutic effects on identical tumors through modulation of distinct modifying enzymes. Structurally analogous natural products can likewise achieve therapeutic effects across diverse tumor types via their interaction with a common epigenetic enzyme. There exist numerous flavonoids with the capability to modulate METTL3, thereby influencing the development of various tumors. The normalization process was implemented to account for a common phenomenon, wherein structurally distinct compounds effectively target the same tumor by modulating a shared key enzyme. By summarizing, valuable insights into the role of compound-epigenetic enzymes in tumor development have been obtained. This discovery establishes a crucial scientific foundation for the prevention and treatment of tumor development through the utilization of structurally similar natural active ingredients.
Collapse
Affiliation(s)
- Xiaoyue Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiali Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenyi Gao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai 200137, China.
| |
Collapse
|
2
|
Stolc V, Karhanek M, Freund F, Griko Y, Loftus DJ, Ohayon MM. Metabolic stress in space: ROS-induced mutations in mice hint at a new path to cancer. Redox Biol 2024; 78:103398. [PMID: 39586121 PMCID: PMC11625351 DOI: 10.1016/j.redox.2024.103398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024] Open
Abstract
Long-duration spaceflight beyond Earth's magnetosphere poses serious health risks, including muscle atrophy, bone loss, liver and kidney damage, and the Spaceflight-Associated Neuro-ocular Syndrome (SANS). RNA-seq of mice aboard the International Space Station (ISS) for 37 days revealed extraordinary hypermutation in tissue-specific genes, with guanine base conversion predominating, potentially contributing to spaceflight-associated health risks. Our results suggest that the genome-wide accelerated mutation that we measured, seemingly independent of radiation dose, was induced by oxidative damage from higher atmospheric carbon dioxide (CO2) levels and increased reactive oxygen species (ROS) on the ISS. This accelerated mutation, faster via RNA transcription than replication and more numerous than by radiation alone, unveils novel hotspots in the mammalian proteome. Notably, these hotspots correlate with commonly mutated genes across various human cancers, highlighting the ISS as a crucial platform for studying accelerated mutation, genome instability, and the induction of disease-causing mutations in model organisms. Our results suggest that metabolic processes can contribute to somatic mutation, and thus may play a role in the development of cancer. A metabolic link to genetic instability potentially has far-reaching implications for various diseases, with implications for human health on Earth and in space.
Collapse
Affiliation(s)
- Viktor Stolc
- NASA Ames Research Center, Moffett Field, CA, 94035, USA.
| | - Miloslav Karhanek
- Biomedical Research Center, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | | | - Yuri Griko
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - David J Loftus
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Maurice M Ohayon
- Stanford University, School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
3
|
Zheng C, Ma L, Song F, Tian L, Cai W, Li H, Duan Y. Comparative genomic analyses reveal evidence for adaptive A-to-I RNA editing in insect Adar gene. Epigenetics 2024; 19:2333665. [PMID: 38525798 DOI: 10.1080/15592294.2024.2333665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
Although A-to-I RNA editing leads to similar effects to A-to-G DNA mutation, nonsynonymous RNA editing (recoding) is believed to confer its adaptiveness by 'epigenetically' regulating proteomic diversity in a temporospatial manner, avoiding the pleiotropic effect of genomic mutations. Recent discoveries on the evolutionary trajectory of Ser>Gly auto-editing site in insect Adar gene demonstrated a selective advantage to having an editable codon compared to uneditable ones. However, apart from pure observations, quantitative approaches for justifying the adaptiveness of individual RNA editing sites are still lacking. We performed a comparative genomic analysis on 113 Diptera species, focusing on the Adar Ser>Gly auto-recoding site in Drosophila. We only found one species having a derived Gly at the corresponding site, and this occurrence was significantly lower than genome-wide random expectation. This suggests that the Adar Ser>Gly site is unlikely to be genomically replaced with G during evolution, and thus indicating the advantage of editable status over hardwired genomic alleles. Similar trends were observed for the conserved Ile>Met recoding in gene Syt1. In the light of evolution, we established a comparative genomic approach for quantitatively justifying the adaptiveness of individual editing sites. Priority should be given to such adaptive editing sites in future functional studies.
Collapse
Affiliation(s)
- Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Zhao T, Ma L, Xu S, Cai W, Li H, Duan Y. Narrowing down the candidates of beneficial A-to-I RNA editing by comparing the recoding sites with uneditable counterparts. Nucleus 2024; 15:2304503. [PMID: 38286757 PMCID: PMC10826634 DOI: 10.1080/19491034.2024.2304503] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 01/31/2024] Open
Abstract
Adar-mediated adenosine-to-inosine (A-to-I) RNA editing mainly occurs in nucleus and diversifies the transcriptome in a flexible manner. It has been a challenging task to identify beneficial editing sites from the sea of total editing events. The functional Ser>Gly auto-recoding site in insect Adar gene has uneditable Ser codons in ancestral nodes, indicating the selective advantage to having an editable status. Here, we extended this case study to more metazoan species, and also looked for all Drosophila recoding events with potential uneditable synonymous codons. Interestingly, in D. melanogaster, the abundant nonsynonymous editing is enriched in the codons that have uneditable counterparts, but the Adar Ser>Gly case suggests that the editable orthologous codons in other species are not necessarily edited. The use of editable versus ancestral uneditable codon is a smart way to infer the selective advantage of RNA editing, and priority might be given to these editing sites for functional studies due to the feasibility to construct an uneditable allele. Our study proposes an idea to narrow down the candidates of beneficial recoding sites. Meanwhile, we stress that the matched transcriptomes are needed to verify the conservation of editing events during evolution.
Collapse
Affiliation(s)
- Tianyou Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shiwen Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Jiang D, Kejiou N, Qiu Y, Palazzo AF, Pennell M. Genetic and selective constraints on the optimization of gene product diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603951. [PMID: 39091777 PMCID: PMC11291005 DOI: 10.1101/2024.07.17.603951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNA and protein expressed from the same gene can have diverse isoforms due to various post-transcriptional and post-translational modifications. For the vast majority of alternative isoforms, It is unknown whether they are adaptive or simply biological noise. As we cannot experimentally probe the function of each isoform, we can ask whether the distribution of isoforms across genes and across species is consistent with expectations from different evolutionary processes. However, there is currently no theoretical framework that can generate such predictions. To address this, we developed a mathematical model where isoform abundances are determined collectively by cis-acting loci, trans-acting factors, gene expression levels, and isoform decay rates to predict isoform abundance distributions across species and genes in the face of mutation, genetic drift, and selection. We found that factors beyond selection, such as effective population size and the number of cis-acting loci, significantly influence evolutionary outcomes. Notably, suboptimal phenotypes are more likely to evolve when the population is small and/or when the number of cis-loci is large. We also explored scenarios where modification processes have both beneficial and detrimental effects, revealing a non-monotonic relationship between effective population size and optimization, demonstrating how opposing selection pressures on cis- and trans-acting loci can constrain the optimization of gene product diversity. As a demonstration of the power of our theory, we compared the expected distribution of A-to-I RNA editing levels in coleoids and found this to be largely consistent with non-adaptive explanations.
Collapse
Affiliation(s)
- Daohan Jiang
- Department of Quantitative and Computational Biology, University of Southern California, USA
| | - Nevraj Kejiou
- Department of Biochemistry, University of Toronto, Canada
| | - Yi Qiu
- Department of Biochemistry, University of Toronto, Canada
| | | | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, USA
- Department of Biological Sciences, University of Southern California, USA
| |
Collapse
|
6
|
Zeng W, Lin J, Xie J, Fu Y, Lin Y, Chen T, Li B, Yu X, Chen W, Jiang D, Cheng J. RNA-dependent RNA polymerases regulate ascospore discharge through the exonic-sRNA-mediated RNAi pathway. mBio 2024; 15:e0037724. [PMID: 38752738 PMCID: PMC11237814 DOI: 10.1128/mbio.00377-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Ascospores, forcibly released into the air from perithecia, are the primary inoculum for Fusarium head blight. In Fusarium graminearum, the biological functions of four RNA-dependent RNA polymerases (RdRPs) (Fgrdrp1-4) have been reported, but their regulatory mechanisms are poorly understood and the function of Fgrdrp5 is still unknown. In this study, we found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays an important role in ascospore discharge, and they all participate in the generation of turgor pressure in a polyol-dependent manner. Moreover, these three genes all affect the maturation of ascospores. Deep sequencing and co-analysis of small RNA and mRNA certified that Fgrdrp1, Fgrdrp2, and Fgrdrp5 partly share their functions in the biogenesis and accumulation of exonic small interference RNA (ex-siRNA), and these three RdRPs negatively regulate the expression levels of ex-siRNA corresponding genes, including certain genes associated with ascospore development or discharge. Furthermore, the differentially expressed genes of deletion mutants, those involved in lipid and sugar metabolism or transport as well as sexual development-related transcription factors, may also contribute to the defects in ascospore maturation or ascospore discharge. In conclusion, our study suggested that the components of the dicer-dependent ex-siRNA-mediated RNA interference pathway include at least Fgrdrp1, Fgrdrp2, and Fgrdrp5. IMPORTANCE We found that in addition to Fgrdrp1 and Fgrdrp2, Fgrdrp5 also plays important roles in ascospore maturation and ascospore discharge of Fusarium graminearum. These three RNA-dependent RNA polymerases participate in the biogenesis and accumulation of exonic small interference RNA and then regulate ascospore discharge.
Collapse
Affiliation(s)
- Wenping Zeng
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jing Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weidong Chen
- USA Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington, USA
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Zou J, Du Y, Xing X, Huang P, Wang Z, Liu H, Wang Q, Xu J. Hyphal editing of the conserved premature stop codon in CHE1 is stimulated by oxidative stress in Fusarium graminearum. STRESS BIOLOGY 2024; 4:30. [PMID: 38864932 PMCID: PMC11169179 DOI: 10.1007/s44154-024-00174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Although genome-wide A-to-I editing mediated by adenosine-deaminase-acting-on-tRNA (ADAT) occurs during sexual reproduction in the presence of stage-specific cofactors, RNA editing is not known to occur during vegetative growth in filamentous fungi. Here we identified 33 A-to-I RNA editing events in vegetative hyphae of Fusarium graminearum and functionally characterized one conserved hyphal-editing site. Similar to ADAT-mediated editing during sexual reproduction, majority of hyphal-editing sites are in coding sequences and nonsynonymous, and have strong preference for U at -1 position and hairpin loops. Editing at TA437G, one of the hyphal-specific editing sites, is a premature stop codon correction (PSC) event that enables CHE1 gene to encode a full-length zinc fingertranscription factor. Manual annotations showed that this PSC site is conserved in CHE1 orthologs from closely-related Fusarium species. Whereas the che1 deletion and CHE1TAA (G438 to A) mutants had no detectable phenotype, the CHE1TGG (A437 to G) mutant was defective in hyphal growth, conidiation, sexual reproduction, and plant infection. However, the CHE1TGG mutant was increased in tolerance against oxidative stress and editing of TA437G in CHE1 was stimulated by H2O2 treatment in F. graminearum. These results indicate that fixation of the premature stop codon in CHE1 has a fitness cost on normal hyphal growth and reproduction but provides a benefit to tolerance against oxidative stress. Taken together, A-to-I editing events, although rare (not genome-wide), occur during vegetative growth and editing in CHE1 plays a role in response to oxidative stress in F. graminearum and likely in other fungal pathogens.
Collapse
Affiliation(s)
- Jingwen Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanfei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoxing Xing
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Panpan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zeyi Wang
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, 47907, IN, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - JinRong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Dept. of Botany and Plant Pathology, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
8
|
Wang Z, Bian Z, Wang D, Xu J. Functions and mechanisms of A-to-I RNA editing in filamentous ascomycetes. PLoS Pathog 2024; 20:e1012238. [PMID: 38843141 PMCID: PMC11156358 DOI: 10.1371/journal.ppat.1012238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Although lack of ADAR (adenosine deaminase acting on RNA) orthologs, genome-wide A-to-I editing occurs specifically during sexual reproduction in a number of filamentous ascomycetes, including Fusarium graminearum and Neurospora crassa. Unlike ADAR-mediated editing in animals, fungal A-to-I editing has a strong preference for hairpin loops and U at -1 position, which leads to frequent editing of UAG and UAA stop codons. Majority of RNA editing events in fungi are in the coding region and cause amino acid changes. Some of these editing events have been experimentally characterized for providing heterozygote and adaptive advantages in F. graminearum. Recent studies showed that FgTad2 and FgTad3, 2 ADAT (adenosine deaminase acting on tRNA) enzymes that normally catalyze the editing of A34 in the anticodon of tRNA during vegetative growth mediate A-to-I mRNA editing during sexual reproduction. Stage specificity of RNA editing is conferred by stage-specific expression of short transcript isoforms of FgTAD2 and FgTAD3 as well as cofactors such as AME1 and FIP5 that facilitate the editing of mRNA in perithecia. Taken together, fungal A-to-I RNA editing during sexual reproduction is catalyzed by ADATs and it has the same sequence and structural preferences with editing of A34 in tRNA.
Collapse
Affiliation(s)
- Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - JinRong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
9
|
Zawisza-Álvarez M, Peñuela-Melero J, Vegas E, Reverter F, Garcia-Fernàndez J, Herrera-Úbeda C. Exploring functional conservation in silico: a new machine learning approach to RNA-editing. Brief Bioinform 2024; 25:bbae332. [PMID: 38980372 PMCID: PMC11232462 DOI: 10.1093/bib/bbae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Around 50 years ago, molecular biology opened the path to understand changes in forms, adaptations, complexity, or the basis of human diseases through myriads of reports on gene birth, gene duplication, gene expression regulation, and splicing regulation, among other relevant mechanisms behind gene function. Here, with the advent of big data and artificial intelligence (AI), we focus on an elusive and intriguing mechanism of gene function regulation, RNA editing, in which a single nucleotide from an RNA molecule is changed, with a remarkable impact in the increase of the complexity of the transcriptome and proteome. We present a new generation approach to assess the functional conservation of the RNA-editing targeting mechanism using two AI learning algorithms, random forest (RF) and bidirectional long short-term memory (biLSTM) neural networks with an attention layer. These algorithms, combined with RNA-editing data coming from databases and variant calling from same-individual RNA and DNA-seq experiments from different species, allowed us to predict RNA-editing events using both primary sequence and secondary structure. Then, we devised a method for assessing conservation or divergence in the molecular mechanisms of editing completely in silico: the cross-testing analysis. This novel method not only helps to understand the conservation of the editing mechanism through evolution but could set the basis for achieving a better understanding of the adenosine-targeting mechanism in other fields.
Collapse
Affiliation(s)
- Michał Zawisza-Álvarez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Jesús Peñuela-Melero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
| | - Esteban Vegas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Calle Sinesio Delgado 4, 28029 Madrid, Spain
| | - Ferran Reverter
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
| | - Jordi Garcia-Fernàndez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Carlos Herrera-Úbeda
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Av. Digonal 643, 08028 Barcelona, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Feng C, Xin K, Du Y, Zou J, Xing X, Xiu Q, Zhang Y, Zhang R, Huang W, Wang Q, Jiang C, Wang X, Kang Z, Xu JR, Liu H. Unveiling the A-to-I mRNA editing machinery and its regulation and evolution in fungi. Nat Commun 2024; 15:3934. [PMID: 38729938 PMCID: PMC11087585 DOI: 10.1038/s41467-024-48336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
A-to-I mRNA editing in animals is mediated by ADARs, but the mechanism underlying sexual stage-specific A-to-I mRNA editing in fungi remains unknown. Here, we show that the eukaryotic tRNA-specific heterodimeric deaminase FgTad2-FgTad3 is responsible for A-to-I mRNA editing in Fusarium graminearum. This editing capacity relies on the interaction between FgTad3 and a sexual stage-specific protein called Ame1. Although Ame1 orthologs are widely distributed in fungi, the interaction originates in Sordariomycetes. We have identified key residues responsible for the FgTad3-Ame1 interaction. The expression and activity of FgTad2-FgTad3 are regulated through alternative promoters, alternative translation initiation, and post-translational modifications. Our study demonstrates that the FgTad2-FgTad3-Ame1 complex can efficiently edit mRNA in yeasts, bacteria, and human cells, with important implications for the development of base editors in therapy and agriculture. Overall, this study uncovers mechanisms, regulation, and evolution of RNA editing in fungi, highlighting the role of protein-protein interactions in modulating deaminase function.
Collapse
Affiliation(s)
- Chanjing Feng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kaiyun Xin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfei Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingwen Zou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxing Xing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Xiu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yijie Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiwei Huang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojie Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Zhang Y, Gao Z, Lei Y, Song L, He W, Liu J, Song M, Dai Y, Yang G, Gong A. FgFAD12 Regulates Vegetative Growth, Pathogenicity and Linoleic Acid Biosynthesis in Fusarium graminearum. J Fungi (Basel) 2024; 10:288. [PMID: 38667959 PMCID: PMC11051453 DOI: 10.3390/jof10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs), as important components of lipids, play indispensable roles in the development of all organisms. ∆12 fatty acid desaturase (FAD12) is a speed-determining step in the biosynthesis of PUFAs. Here, we report the characterization of FAD12 in Fusarium graminearum, which is the prevalent agent of Fusarium head blight, a destructive plant disease worldwide. The results demonstrated that deletion of the FgFAD12 gene resulted in defects in vegetative growth, conidial germination and plant pathogenesis but not sexual reproduction. A fatty acid analysis further proved that the deletion of FgFAD12 restrained the reaction of oleic acid to linoleic acid, and a large amount of oleic acid was detected in the cells. Moreover, the ∆Fgfad12 mutant showed increased resistance to osmotic stress and reduced tolerance to oxidative stress. The expression of FgFAD12 did show a temperature-dependent manner, which was not affected at a low temperature of 10 °C when compared to 25 °C. RNA-seq analysis further demonstrated that most genes enriched in fatty acid metabolism, the biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, fatty acid degradation, steroid biosynthesis and fatty acid elongation pathways were significantly up-regulated in the ∆Fgfad12 mutants. Overall, our results indicate that FgFAD12 is essential for linoleic acid biosynthesis and plays an important role in the infection process of F. graminearum.
Collapse
Affiliation(s)
- Yimei Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
- Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, China
| | - Zhen Gao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Yinyu Lei
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Liuye Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Weijie He
- College of Plant Science and Technology, Huazhong Agricultura University, Wuhan 430070, China;
| | - Jingrong Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Mengge Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Yafeng Dai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Guang Yang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Andong Gong
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
- Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, China
| |
Collapse
|
12
|
Niu G, Yang Q, Liao Y, Sun D, Tang Z, Wang G, Xu M, Wang C, Kang J. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes (Basel) 2024; 15:475. [PMID: 38674409 PMCID: PMC11050156 DOI: 10.3390/genes15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.
Collapse
Affiliation(s)
- Gang Niu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Qing Yang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Yihui Liao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Daiyuan Sun
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Zhe Tang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Ming Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiangang Kang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
13
|
Bian Z, Wang Z, Wang D, Xu JR. Sexual stage-specific A-to-I mRNA editing is mediated by tRNA-editing enzymes in fungi. Proc Natl Acad Sci U S A 2024; 121:e2319235121. [PMID: 38466838 PMCID: PMC10962958 DOI: 10.1073/pnas.2319235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
A-to-I RNA editing catalyzed by adenosine-deaminase-acting-on-RNA (ADARs) was assumed to be unique to metazoans because fungi and plants lack ADAR homologs. However, genome-wide messenger RNA (mRNA) editing was found to occur specifically during sexual reproduction in filamentous ascomycetes. Because systematic characterization of adenosine/cytosine deaminase genes has implicated the involvement of TAD2 and TAD3 orthologs in A-to-I editing, in this study, we used genetic and biochemical approaches to characterize the role of FgTAD2, an essential adenosine-deaminase-acting-on-tRNA (ADAT) gene, in mRNA editing in Fusarium graminearum. FgTAD2 had a sexual-stage-specific isoform and formed heterodimers with enzymatically inactive FgTAD3. Using a repeat-induced point (RIP) mutation approach, we identified 17 mutations in FgTAD2 that affected mRNA editing during sexual reproduction but had no effect on transfer RNA (tRNA) editing and vegetative growth. The functional importance of the H352Y and Q375*(nonsense) mutations in sexual reproduction and mRNA editing were confirmed by introducing specific point mutations into the endogenous FgTAD2 allele in the wild type. An in vitro assay was developed to show that FgTad2-His proteins purified from perithecia, but not from vegetative hyphae, had mRNA editing activities. Moreover, the H352Y mutation affected the enzymatic activity of FgTad2 to edit mRNA but had no effect on its ADAT activity. We also identified proteins co-purified with FgTad2-His by mass spectrometry analysis and found that two of them have the RNA recognition motif. Taken together, genetic and biochemical data from this study demonstrated that FgTad2, an ADAT, catalyzes A-to-I mRNA editing with the stage-specific isoform and cofactors during sexual reproduction in fungi.
Collapse
Affiliation(s)
- Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
14
|
Nkurikiyimfura O, Waheed A, Fang H, Yuan X, Chen L, Wang YP, Lu G, Zhan J, Yang L. Fitness difference between two synonymous mutations of Phytophthora infestans ATP6 gene. BMC Ecol Evol 2024; 24:36. [PMID: 38494489 PMCID: PMC10946160 DOI: 10.1186/s12862-024-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Sequence variation produced by mutation provides the ultimate source of natural selection for species adaptation. Unlike nonsynonymous mutation, synonymous mutations are generally considered to be selectively neutral but accumulating evidence suggests they also contribute to species adaptation by regulating the flow of genetic information and the development of functional traits. In this study, we analysed sequence characteristics of ATP6, a housekeeping gene from 139 Phytophthora infestans isolates, and compared the fitness components including metabolic rate, temperature sensitivity, aggressiveness, and fungicide tolerance among synonymous mutations. RESULTS We found that the housekeeping gene exhibited low genetic variation and was represented by two major synonymous mutants at similar frequency (0.496 and 0.468, respectively). The two synonymous mutants were generated by a single nucleotide substitution but differed significantly in fitness as well as temperature-mediated spatial distribution and expression. The synonymous mutant ending in AT was more common in cold regions and was more expressed at lower experimental temperature than the synonymous mutant ending in GC and vice versa. CONCLUSION Our results are consistent with the argument that synonymous mutations can modulate the adaptive evolution of species including pathogens and have important implications for sustainable disease management, especially under climate change.
Collapse
Affiliation(s)
- Oswald Nkurikiyimfura
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Abdul Waheed
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hanmei Fang
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoxian Yuan
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lixia Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, 611130, China
| | - Guodong Lu
- Department of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden.
| | - Lina Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
15
|
Duan Y, Ma L, Liu J, Liu X, Song F, Tian L, Cai W, Li H. The first A-to-I RNA editome of hemipteran species Coridius chinensis reveals overrepresented recoding and prevalent intron editing in early-diverging insects. Cell Mol Life Sci 2024; 81:136. [PMID: 38478033 PMCID: PMC10937787 DOI: 10.1007/s00018-024-05175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Metazoan adenosine-to-inosine (A-to-I) RNA editing resembles A-to-G mutation and increases proteomic diversity in a temporal-spatial manner, allowing organisms adapting to changeable environment. The RNA editomes in many major animal clades remain unexplored, hampering the understanding on the evolution and adaptation of this essential post-transcriptional modification. METHODS We assembled the chromosome-level genome of Coridius chinensis belonging to Hemiptera, the fifth largest insect order where RNA editing has not been studied yet. We generated ten head RNA-Seq libraries with DNA-Seq from the matched individuals. RESULTS We identified thousands of high-confidence RNA editing sites in C. chinensis. Overrepresentation of nonsynonymous editing was observed, but conserved recoding across different orders was very rare. Under cold stress, the global editing efficiency was down-regulated and the general transcriptional processes were shut down. Nevertheless, we found an interesting site with "conserved editing but non-conserved recoding" in potassium channel Shab which was significantly up-regulated in cold, serving as a candidate functional site in response to temperature stress. CONCLUSIONS RNA editing in C. chinensis largely recodes the proteome. The first RNA editome in Hemiptera indicates independent origin of beneficial recoding during insect evolution, which advances our understanding on the evolution, conservation, and adaptation of RNA editing.
Collapse
Affiliation(s)
- Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xinzhi Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Qi Z, Lu P, Long X, Cao X, Wu M, Xin K, Xue T, Gao X, Huang Y, Wang Q, Jiang C, Xu JR, Liu H. Adaptive advantages of restorative RNA editing in fungi for resolving survival-reproduction trade-offs. SCIENCE ADVANCES 2024; 10:eadk6130. [PMID: 38181075 PMCID: PMC10776026 DOI: 10.1126/sciadv.adk6130] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive advantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an adaptive mechanism enabling the resolution of genetic trade-offs.
Collapse
Affiliation(s)
- Zhaomei Qi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Lu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Long
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengchun Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kaiyun Xin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tuan Xue
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinlong Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qinhu Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Huiquan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
17
|
Ding M, Cao S, Xu D, Xia A, Wang Z, Wang W, Duan K, Wu C, Wang Q, Liang J, Wang D, Liu H, Xu JR, Jiang C. A non-pheromone GPCR is essential for meiosis and ascosporogenesis in the wheat scab fungus. Proc Natl Acad Sci U S A 2023; 120:e2313034120. [PMID: 37812726 PMCID: PMC10589705 DOI: 10.1073/pnas.2313034120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023] Open
Abstract
Meiosis is essential for generating genetic diversity and sexual spores, but the regulation of meiosis and ascosporogenesis is not clear in filamentous fungi, in which dikaryotic and diploid cells formed inside fruiting bodies are not free living and independent of pheromones or pheromone receptors. In this study, Gia1, a non-pheromone GPCR (G protein-coupled receptor) with sexual-specific expression in Fusarium graminearum, is found to be essential for ascosporogenesis. The gia1 mutant was normal in perithecium development, crozier formation, and karyogamy but failed to undergo meiosis, which could be partially rescued by a dominant active mutation in GPA1 and activation of the Gpmk1 pathway. GIA1 orthologs have conserved functions in regulating meiosis and ascosporogenesis in Sordariomycetes. GIA1 has a paralog, GIP1, in F. graminearum and other Hypocreales species which is essential for perithecium formation. GIP1 differed from GIA1 in expression profiles and downstream signaling during sexual reproduction. Whereas the C-terminal tail and IR3 were important for intracellular signaling, the N-terminal region and EL3 of Gia1 were responsible for recognizing its ligand, which is likely a protein enriched in developing perithecia, particularly in the gia1 mutant. Taken together, these results showed that GIA1 encodes a non-pheromone GPCR that regulates the entry into meiosis and ascosporogenesis via the downstream Gpmk1 MAP kinase pathway in F. graminearum and other filamentous ascomycetes.
Collapse
Affiliation(s)
- Mingyu Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Shulin Cao
- Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu210014, China
| | - Daiying Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Aliang Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Zeyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Wanshan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Kaili Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Chenyu Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Jie Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| |
Collapse
|
18
|
Xie Y, Chan PL, Kwan HS, Chang J. The Genome-Wide Characterization of Alternative Splicing and RNA Editing in the Development of Coprinopsis cinerea. J Fungi (Basel) 2023; 9:915. [PMID: 37755023 PMCID: PMC10532568 DOI: 10.3390/jof9090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Coprinopsis cinerea is one of the model species used in fungal developmental studies. This mushroom-forming Basidiomycetes fungus has several developmental destinies in response to changing environments, with dynamic developmental regulations of the organism. Although the gene expression in C. cinerea development has already been profiled broadly, previous studies have only focused on a specific stage or process of fungal development. A comprehensive perspective across different developmental paths is lacking, and a global view on the dynamic transcriptional regulations in the life cycle and the developmental paths is far from complete. In addition, knowledge on co- and post-transcriptional modifications in this fungus remains rare. In this study, we investigated the transcriptional changes and modifications in C. cinerea during the processes of spore germination, vegetative growth, oidiation, sclerotia formation, and fruiting body formation by inducing different developmental paths of the organism and profiling the transcriptomes using the high-throughput sequencing method. Transition in the identity and abundance of expressed genes drive the physiological and morphological alterations of the organism, including metabolism and multicellularity construction. Moreover, stage- and tissue-specific alternative splicing and RNA editing took place and functioned in C. cinerea. These modifications were negatively correlated to the conservation features of genes and could provide extra plasticity to the transcriptome during fungal development. We suggest that C. cinerea applies different molecular strategies in its developmental regulation, including shifts in expressed gene sets, diversifications of genetic information, and reversible diversifications of RNA molecules. Such features would increase the fungal adaptability in the rapidly changing environment, especially in the transition of developmental programs and the maintenance and balance of genetic and transcriptomic divergence. The multi-layer regulatory network of gene expression serves as the molecular basis of the functioning of developmental regulation.
Collapse
Affiliation(s)
- Yichun Xie
- State Key Laboratory of Agrobiotechnology, Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China;
| | - Po-Lam Chan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hoi-Shan Kwan
- Food Research Center, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jinhui Chang
- Department of Food Science and Nutrition, and Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
19
|
Ge F, Cao X, Jiang Y. A-to-I RNA editing shows dramatic up-regulation in osteosarcoma and broadly regulates tumor-related genes by altering microRNA target regions. J Appl Genet 2023; 64:493-505. [PMID: 37542613 DOI: 10.1007/s13353-023-00777-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
A-to-I RNA editing is a prevalent type of RNA modification in animals. The dysregulation of RNA editing has led to multiple human cancers. However, the role of RNA editing has never been studied in osteosarcoma, a complex bone cancer with unknown molecular basis. We retrieved the RNA-sequencing data from 24 primary osteosarcoma patients and 3 healthy controls. We systematically profiled the RNA editomes in these samples and quantitatively identified reliable differential editing sites (DES) between osteosarcoma and normal samples. RNA editing efficiency is dramatically increased in osteosarcoma, presumably due to the significant up-regulation of editing enzymes ADAR1 and ADAR2. Up-regulated DES in osteosarcoma are enriched in 3'UTRs. Strikingly, such 3'UTR sites are further enriched in microRNA binding regions of gene EMP2 and other oncogenes, abolishing the microRNA suppression on target genes. Accordingly, the expression of these tumor-promoting genes is elevated in osteosarcoma. There might be an RNA editing-dependent pathway leading to osteosarcoma. We expanded our knowledge on the potential roles of RNA editing in oncogenesis. Based on these molecular features, our work is valuable for future prognosis and diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Fuqun Ge
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xinyue Cao
- School of Clinical Medicine, Qilu Medical University, Zibo, 255300, Shandong, China
| | - Yankai Jiang
- Department of Joint Surgery, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| |
Collapse
|
20
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
21
|
Wang Z, Kim W, Wang YW, Yakubovich E, Dong C, Trail F, Townsend JP, Yarden O. The Sordariomycetes: an expanding resource with Big Data for mining in evolutionary genomics and transcriptomics. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1214537. [PMID: 37746130 PMCID: PMC10512317 DOI: 10.3389/ffunb.2023.1214537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 09/26/2023]
Abstract
Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium, Neurospora, and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon, Republic of Korea
| | - Yen-Wen Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Elizabeta Yakubovich
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Caihong Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Program in Microbiology, and Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Yuan Y, Mao X, Abubakar YS, Zheng W, Wang Z, Zhou J, Zheng H. Genome-Wide Characterization of the RNA Exosome Complex in Relation to Growth, Development, and Pathogenicity of Fusarium graminearum. Microbiol Spectr 2023; 11:e0505822. [PMID: 37158744 PMCID: PMC10269758 DOI: 10.1128/spectrum.05058-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
The RNA exosome complex is a conserved, multisubunit RNase complex that contributes to the processing and degradation of RNAs in mammalian cells. However, the roles of the RNA exosome in phytopathogenic fungi and how it relates to fungal development and pathogenicity remain unclear. Herein, we identified 12 components of the RNA exosome in the wheat fungal pathogen Fusarium graminearum. Live-cell imaging showed that all the components of the RNA exosome complex are localized in the nucleus. FgEXOSC1 and FgEXOSCA were successfully knocked out; they are both involved in the vegetative growth, sexual reproduction, and pathogenicity of F. graminearum. Moreover, deletion of FgEXOSC1 resulted in abnormal toxisomes, decreased deoxynivalenol (DON) production, and downregulation of the expression levels of DON biosynthesis genes. The RNA-binding domain and N-terminal region of FgExosc1 are required for its normal localization and functions. Transcriptome sequencing (RNA-seq) showed that the disruption of FgEXOSC1 resulted in differential expression of 3,439 genes. Genes involved in processing of noncoding RNA (ncRNA), rRNA and ncRNA metabolism, ribosome biogenesis, and ribonucleoprotein complex biogenesis were significantly upregulated. Furthermore, subcellular localization, green fluorescent protein (GFP) pulldown, and coimmunoprecipitation (co-IP) assays demonstrated that FgExosc1 associates with the other components of the RNA exosome to form the RNA exosome complex in F. graminearum. Deletion of FgEXOSC1 and FgEXOSCA reduced the relative expression of some of the other subunits of the RNA exosome. Deletion of FgEXOSC1 affected the localization of FgExosc4, FgExosc6, and FgExosc7. In summary, our study reveals that the RNA exosome is involved in vegetative growth, sexual reproduction, DON production, and pathogenicity of F. graminearum. IMPORTANCE The RNA exosome complex is the most versatile RNA degradation machinery in eukaryotes. However, little is known about how this complex regulates the development and pathogenicity of plant-pathogenic fungi. In this study, we systematically identified 12 components of the RNA exosome complex in Fusarium head blight fungus Fusarium graminearum and first unveiled their subcellular localizations and established their biological functions in relation to the fungal development and pathogenesis. All the RNA exosome components are localized in the nucleus. FgExosc1 and FgExoscA are both required for the vegetative growth, sexual reproduction, DON production and pathogenicity in F. graminearum. FgExosc1 is involved in ncRNA processing, rRNA and ncRNA metabolism process, ribosome biogenesis and ribonucleoprotein complex biogenesis. FgExosc1 associates with the other components of RNA exosome complex and form the exosome complex in F. graminearum. Our study provides new insights into the role of the RNA exosome in regulating RNA metabolism, which is associated with fungal development and pathogenicity.
Collapse
Affiliation(s)
- Yanping Yuan
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuzhao Mao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Wenhui Zheng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zonghua Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jie Zhou
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
23
|
Duan Y, Li H, Cai W. Adaptation of A-to-I RNA editing in bacteria, fungi, and animals. Front Microbiol 2023; 14:1204080. [PMID: 37293227 PMCID: PMC10244538 DOI: 10.3389/fmicb.2023.1204080] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
|
24
|
Lewis ZA. Expanding the proteome: A-to-I RNA editing provides an adaptive advantage. Proc Natl Acad Sci U S A 2023; 120:e2303563120. [PMID: 37036963 PMCID: PMC10120046 DOI: 10.1073/pnas.2303563120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Affiliation(s)
- Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
25
|
Xin K, Zhang Y, Fan L, Qi Z, Feng C, Wang Q, Jiang C, Xu JR, Liu H. Experimental evidence for the functional importance and adaptive advantage of A-to-I RNA editing in fungi. Proc Natl Acad Sci U S A 2023; 120:e2219029120. [PMID: 36917661 PMCID: PMC10041177 DOI: 10.1073/pnas.2219029120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in animals, and it occurs in fungi specifically during sexual reproduction. However, it is debatable whether A-to-I RNA editing is adaptive. Deciphering the functional importance of individual editing sites is essential for the mechanistic understanding of the adaptive advantages of RNA editing. Here, by performing gene deletion for 17 genes with conserved missense editing (CME) sites and engineering underedited (ue) and overedited (oe) mutants for 10 CME sites using site-specific mutagenesis at the native locus in Fusarium graminearum, we demonstrated that two CME sites in CME5 and CME11 genes are functionally important for sexual reproduction. Although the overedited mutant was normal in sexual reproduction, the underedited mutant of CME5 had severe defects in ascus and ascospore formation like the deletion mutant, suggesting that the CME site of CME5 is co-opted for sexual development. The preediting residue of Cme5 is evolutionarily conserved across diverse classes of Ascomycota, while the postediting one is rarely hardwired into the genome, implying that editing at this site leads to higher fitness than a genomic A-to-G mutation. More importantly, mutants expressing only the underedited or the overedited allele of CME11 are defective in ascosporogenesis, while those expressing both alleles displayed normal phenotypes, indicating that concurrently expressing edited and unedited versions of Cme11 is more advantageous than either. Our study provides convincing experimental evidence for the long-suspected adaptive advantages of RNA editing in fungi and likely in animals.
Collapse
Affiliation(s)
- Kaiyun Xin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Yang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Ligang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Zhaomei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Chanjing Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi712100, China
| |
Collapse
|
26
|
Liao W, Nie W, Ahmad I, Chen G, Zhu B. The occurrence, characteristics, and adaptation of A-to-I RNA editing in bacteria: A review. Front Microbiol 2023; 14:1143929. [PMID: 36960293 PMCID: PMC10027721 DOI: 10.3389/fmicb.2023.1143929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
A-to-I RNA editing is a very important post-transcriptional modification or co-transcriptional modification that creates isoforms and increases the diversity of proteins. In this process, adenosine (A) in RNA molecules is hydrolyzed and deaminated into inosine (I). It is well known that ADAR (adenosine deaminase acting on RNA)-dependent A-to-I mRNA editing is widespread in animals. Next, the discovery of A-to-I mRNA editing was mediated by TadA (tRNA-specific adenosine deaminase) in Escherichia coli which is ADAR-independent event. Previously, the editing event S128P on the flagellar structural protein FliC enhanced the bacterial tolerance to oxidative stress in Xoc. In addition, the editing events T408A on the enterobactin iron receptor protein XfeA act as switches by controlling the uptake of Fe3+ in response to the concentration of iron in the environment. Even though bacteria have fewer editing events, the great majority of those that are currently preserved have adaptive benefits. Interestingly, it was found that a TadA-independent A-to-I RNA editing event T408A occurred on xfeA, indicating that there may be other new enzymes that perform a function like TadA. Here, we review recent advances in the characteristics, functions, and adaptations of editing in bacteria.
Collapse
Affiliation(s)
- Weixue Liao
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhan Nie
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Wenhan Nie,
| | - Iftikhar Ahmad
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Gongyou Chen
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Bo Zhu,
| |
Collapse
|
27
|
Nowrousian M. The Role of Chromatin and Transcriptional Control in the Formation of Sexual Fruiting Bodies in Fungi. Microbiol Mol Biol Rev 2022; 86:e0010422. [PMID: 36409109 PMCID: PMC9769939 DOI: 10.1128/mmbr.00104-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fungal fruiting bodies are complex, three-dimensional structures that arise from a less complex vegetative mycelium. Their formation requires the coordinated action of many genes and their gene products, and fruiting body formation is accompanied by major changes in the transcriptome. In recent years, numerous transcription factor genes as well as chromatin modifier genes that play a role in fruiting body morphogenesis were identified, and through research on several model organisms, the underlying regulatory networks that integrate chromatin structure, gene expression, and cell differentiation are becoming clearer. This review gives a summary of the current state of research on the role of transcriptional control and chromatin structure in fruiting body development. In the first part, insights from transcriptomics analyses are described, with a focus on comparative transcriptomics. In the second part, examples of more detailed functional characterizations of the role of chromatin modifiers and/or transcription factors in several model organisms (Neurospora crassa, Aspergillus nidulans, Sordaria macrospora, Coprinopsis cinerea, and Schizophyllum commune) that have led to a better understanding of regulatory networks at the level of chromatin structure and transcription are discussed.
Collapse
Affiliation(s)
- Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
28
|
Zhang J, Xu C. Gene product diversity: adaptive or not? Trends Genet 2022; 38:1112-1122. [PMID: 35641344 PMCID: PMC9560964 DOI: 10.1016/j.tig.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 01/24/2023]
Abstract
One gene does not equal one RNA or protein. The genomic revolution has revealed numerous different RNA and protein molecules that can be produced from one gene, such as circular RNAs generated by back-splicing, proteins with residues mismatching the genomic encoding because of RNA editing, and proteins extended in the C terminus via stop codon readthrough in translation. Are these diverse products results of exquisite gene regulations or imprecise biological processes? While there are cases where the gene product diversity appears beneficial, genome-scale patterns suggest that much of this diversity arises from nonadaptive, molecular errors. This finding has important implications for studying the functions of diverse gene products and for understanding the fundamental properties and evolution of cellular life.
Collapse
Affiliation(s)
- Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Chuan Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Feng C, Cao X, Du Y, Chen Y, Xin K, Zou J, Jin Q, Xu JR, Liu H. Uncovering Cis-Regulatory Elements Important for A-to-I RNA Editing in Fusarium graminearum. mBio 2022; 13:e0187222. [PMID: 36102513 PMCID: PMC9600606 DOI: 10.1128/mbio.01872-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing independent of adenosine deaminase acting on RNA (ADAR) enzymes was discovered in fungi recently, and shown to be crucial for sexual reproduction. However, the underlying mechanism for editing is unknown. Here, we combine genome-wide comparisons, proof-of-concept experiments, and machine learning to decipher cis-regulatory elements of A-to-I editing in Fusarium graminearum. We identified plenty of RNA primary sequences and secondary structural features that affect editing specificity and efficiency. Although hairpin loop structures contribute importantly to editing, unlike in animals, the primary sequences have more profound influences on editing than secondary structures. Nucleotide preferences at adjacent positions of editing sites are the most important features, especially preferences at the -1 position. Unexpectedly, besides the number of positions with preferred nucleotides, the combination of preferred nucleotides with depleted ones at different positions are also important for editing. Some cis-sequence features have distinct importance for editing specificity and efficiency. Machine learning models built from diverse sequence and secondary structural features can accurately predict genome-wide editing sites but not editing levels, indicating that the cis-regulatory principle of editing efficiency is more complex than that of editing specificity. Nevertheless, our model interpretation provides insights into the quantitative contribution of each feature to the prediction of both editing sites and levels. We found that efficient editing of FG3G34330 transcripts depended on the full-length RNA molecule, suggesting that additional RNA structural elements may also contribute to editing efficiency. Our work uncovers multidimensional cis-regulatory elements important for A-to-I RNA editing in F. graminearum, helping to elucidate the fungal editing mechanism. IMPORTANCE A-to-I RNA editing is a new epigenetic phenomenon that is crucial for sexual reproduction in fungi. Deciphering cis-regulatory elements of A-to-I RNA editing can help us elucidate the editing mechanism and develop a model that accurately predicts RNA editing. In this study, we discovered multiple RNA sequence and secondary structure features important for A-to-I editing in Fusarium graminearum. We also identified the cis-sequence features with distinct importance for editing specificity and efficiency. The potential importance of full-length RNA molecules for editing efficiency is also revealed. This study represents the first comprehensive investigation of the cis-regulatory principles of A-to-I RNA editing in fungi.
Collapse
Affiliation(s)
- Chanjing Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyu Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Yanfei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yitong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaiyun Xin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingwen Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
30
|
Sordaria macrospora Sterile Mutant pro34 Is Impaired in Respiratory Complex I Assembly. J Fungi (Basel) 2022; 8:jof8101015. [PMID: 36294581 PMCID: PMC9605262 DOI: 10.3390/jof8101015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
The formation of fruiting bodies is a highly regulated process that requires the coordinated formation of different cell types. By analyzing developmental mutants, many developmental factors have already been identified. Yet, a complete understanding of fruiting body formation is still lacking. In this study, we analyzed developmental mutant pro34 of the filamentous ascomycete Sordaria macrospora. Genome sequencing revealed a deletion in the pro34 gene encoding a putative mitochondrial complex I assembly factor homologous to Neurospora crassa CIA84. We show that PRO34 is required for fast vegetative growth, fruiting body and ascospore formation. The pro34 transcript undergoes adenosine to inosine editing, a process correlated with sexual development in fruiting body-forming ascomycetes. Fluorescence microscopy and western blot analysis showed that PRO34 is a mitochondrial protein, and blue-native PAGE revealed that the pro34 mutant lacks mitochondrial complex I. Inhibitor experiments revealed that pro34 respires via complexes III and IV, but also shows induction of alternative oxidase, a shunt pathway to bypass complexes III and IV. We discuss the hypothesis that alternative oxidase is induced to prevent retrograde electron transport to complex I intermediates, thereby protecting from oxidative stress.
Collapse
|
31
|
RNA modifications: importance in immune cell biology and related diseases. Signal Transduct Target Ther 2022; 7:334. [PMID: 36138023 PMCID: PMC9499983 DOI: 10.1038/s41392-022-01175-9] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
RNA modifications have become hot topics recently. By influencing RNA processes, including generation, transportation, function, and metabolization, they act as critical regulators of cell biology. The immune cell abnormality in human diseases is also a research focus and progressing rapidly these years. Studies have demonstrated that RNA modifications participate in the multiple biological processes of immune cells, including development, differentiation, activation, migration, and polarization, thereby modulating the immune responses and are involved in some immune related diseases. In this review, we present existing knowledge of the biological functions and underlying mechanisms of RNA modifications, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, and adenosine-to-inosine (A-to-I) RNA editing, and summarize their critical roles in immune cell biology. Via regulating the biological processes of immune cells, RNA modifications can participate in the pathogenesis of immune related diseases, such as cancers, infection, inflammatory and autoimmune diseases. We further highlight the challenges and future directions based on the existing knowledge. All in all, this review will provide helpful knowledge as well as novel ideas for the researchers in this area.
Collapse
|
32
|
Jiang H, Zhang Y, Wang W, Cao X, Xu H, Liu H, Qi J, Jiang C, Wang C. FgCsn12 Is Involved in the Regulation of Ascosporogenesis in the Wheat Scab Fungus Fusarium graminearum. Int J Mol Sci 2022; 23:10445. [PMID: 36142356 PMCID: PMC9499528 DOI: 10.3390/ijms231810445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive disease worldwide. Ascospores are the primary inoculum of F. graminearum, and sexual reproduction is a critical step in its infection cycle. In this study, we characterized the functions of FgCsn12. Although the ortholog of FgCsn12 in budding yeast was reported to have a direct interaction with Csn5, which served as the core subunit of the COP9 signalosome, the interaction between FgCsn12 and FgCsn5 was not detected through the yeast two-hybrid assay. The deletion of FgCSN12 resulted in slight defects in the growth rate, conidial morphology, and pathogenicity. Instead of forming four-celled, uninucleate ascospores, the Fgcsn12 deletion mutant produced oval ascospores with only one or two cells and was significantly defective in ascospore discharge. The 3'UTR of FgCsn12 was dispensable for vegetative growth but essential for sexual reproductive functions. Compared with those of the wild type, 1204 genes and 2240 genes were up- and downregulated over twofold, respectively, in the Fgcsn12 mutant. Taken together, FgCsn12 demonstrated an important function in the regulation of ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Hang Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Wanshan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Xinyu Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huaijian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Junshan Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
33
|
Genome-Wide Identification and Characterization of RNA/DNA Differences Associated with Fusarium graminearum Infection in Wheat. Int J Mol Sci 2022; 23:ijms23147982. [PMID: 35887327 PMCID: PMC9316857 DOI: 10.3390/ijms23147982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
RNA/DNA difference (RDD) is a post-transcriptional modification playing a crucial role in regulating diverse biological processes in eukaryotes. Although it has been extensively studied in plant chloroplast and mitochondria genomes, RDDs in plant nuclear genomes are not well studied at present. Here, we investigated the RDDs associated with fusarium head blight (FHB) through a novel method by comparing the RNA-seq data between Fusarium-infected and control samples of four wheat genotypes. A total of 187 high-confidence unique RDDs in 36 genes were identified, representing the first landscape of the FHB-responsive RDD in wheat. The majority (26) of these 36 RDD genes were correlated either positively or negatively with FHB levels. Effects of these RDDs on RNA and protein sequences have been identified, their editing frequency and the expression level of the corresponding genes provided, and the prediction of the effect on the minimum folding free energy of mRNA, miRNA binding, and colocation of RDDs with conserved domains presented. RDDs were predicted to induce modifications in the mRNA and protein structures of the corresponding genes. In two genes, TraesCS1B02G294300 and TraesCS3A02G263900, editing was predicted to enhance their affinity with tae-miR9661-5p and tae-miR9664-3p, respectively. To our knowledge, this study is the first report of the association between RDD and FHB in wheat; this will contribute to a better understanding of the molecular basis underlying FHB resistance, and potentially lead to novel strategies to improve wheat FHB resistance through epigenetic methods.
Collapse
|
34
|
Lu P, Chen D, Qi Z, Wang H, Chen Y, Wang Q, Jiang C, Xu JR, Liu H. Landscape and regulation of alternative splicing and alternative polyadenylation in a plant pathogenic fungus. THE NEW PHYTOLOGIST 2022; 235:674-689. [PMID: 35451076 DOI: 10.1111/nph.18164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) contribute significantly to the regulation of gene expression in higher eukaryotes. Their biological impact in filamentous fungi, however, is largely unknown. Here we combine PacBio Isoform-Sequencing and strand-specific RNA-sequencing of multiple tissues and mutant characterization to reveal the landscape and regulation of AS and APA in Fusarium graminearum. We generated a transcript annotation comprising 51 617 isoforms from 17 189 genes. In total, 4997 and 11 133 genes are alternatively spliced and polyadenylated, respectively. Majority of the AS events alter coding sequences. Unexpectedly, the AS transcripts containing premature-termination codons are not sensitive to nonsense-mediated messenger RNA decay. Unlike in yeasts and animals, distal APA sites have strong signals, but proximal APA isoforms are highly expressed in F. graminearum. The 3'-end processing factors FgRNA15, FgHRP1, and FgFIP1 play roles in promoting proximal APA site usage and intron splicing. A genome-wide increase in intron inclusion and distal APA site usage and downregulation of the spliceosomal and 3'-end processing factors were observed in older and quiescent tissues, indicating intron inclusion and 3'-untranslated region lengthening as novel mechanisms in regulating aging and dormancy in fungi. This study provides new insights into the complexity and regulation of AS and APA in filamentous fungi.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhaomei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yitong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
35
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
36
|
Lohmar JM, Rhoades NA, Patel TN, Proctor RH, Hammond TM, Brown DW. A-to-I mRNA editing controls spore death induced by a fungal meiotic drive gene in homologous and heterologous expression systems. Genetics 2022; 221:6528853. [PMID: 35166849 DOI: 10.1093/genetics/iyac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/06/2022] [Indexed: 11/13/2022] Open
Abstract
Spore killers are meiotic drive elements that can block development of sexual spores in fungi. In the maize ear rot and mycotoxin-producing fungus Fusarium verticillioides, a spore killer called SkK has been mapped to a 102-kb interval of chromosome V. Here, we show that a gene within this interval, SKC1, is required for SkK-mediated spore killing and meiotic drive. We also demonstrate that SKC1 is associated with at least four transcripts, two sense (sense-SKC1a and sense-SKC1b) and two antisense (antisense-SKC1a and antisense-SKC1b). Both antisense SKC1 transcripts lack obvious protein-coding sequences and thus appear to be non-coding RNAs. In contrast, sense-SKC1a is a protein-coding transcript that undergoes A-to-I editing to sense-SKC1b in sexual tissue. Translation of sense-SKC1a produces a 70 amino acid protein (Skc1a), whereas translation of sense-SKC1b produces an 84 amino acid protein (Skc1b). Heterologous expression analysis of SKC1 transcripts shows that sense-SKC1a also undergoes A-to-I editing to sense-SKC1b during the Neurospora crassa sexual cycle. Site directed mutagenesis studies indicate that Skc1b is responsible for spore killing in F. verticillioides and that it induces most meiotic cells to die in N. crassa. Finally, we report that SKC1 homologs are present in over 20 Fusarium species. Overall, our results demonstrate that fungal meiotic drive elements like SKC1 can influence the outcome of meiosis by hijacking a cell's A-to-I editing machinery and that the involvement of A-to-I editing in a fungal meiotic drive system does not preclude its horizontal transfer to a distantly related species.
Collapse
Affiliation(s)
- Jessica M Lohmar
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, Illinois, 61604, USA
| | - Nicholas A Rhoades
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Tejas N Patel
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, Illinois, 61604, USA
| | - Thomas M Hammond
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, USA
| | - Daren W Brown
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, Illinois, 61604, USA
| |
Collapse
|
37
|
Merényi Z, Virágh M, Gluck-Thaler E, Slot JC, Kiss B, Varga T, Geösel A, Hegedüs B, Bálint B, Nagy LG. Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes). eLife 2022; 11:71348. [PMID: 35156613 PMCID: PMC8893723 DOI: 10.7554/elife.71348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Multicellularity has been one of the most important innovations in the history of life. The role of gene regulatory changes in driving transitions to multicellularity is being increasingly recognized; however, factors influencing gene expression patterns are poorly known in many clades. Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, natural antisense transcripts, and developmental gene expression, but not RNA editing or a ‘developmental hourglass,’ act in concert to shape its transcriptome during fruiting body development. We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young genes showed more developmental and allele-specific expression variation, possibly because of weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. These results prompted us to define a set of conserved genes specifically regulated only during complex morphogenesis by excluding young genes and accounting for deeply conserved ones shared with species showing simple sexual development. Analysis of the resulting gene set revealed evolutionary and functional associations with complex multicellularity, which allowed us to speculate they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.
Collapse
Affiliation(s)
- Zsolt Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - Jason C Slot
- Department of Plant Pathology, Ohio State University, Columbus, United States
| | - Brigitta Kiss
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Torda Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - András Geösel
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Botond Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary
| |
Collapse
|
38
|
Min B, Wu B, Gaskell J, Zhang J, Toapanta C, Ahrendt S, Blanchette RA, Master E, Cullen D, Hibbett DS, Grigoriev IV. RNA-editing in Basidiomycota, revisited. ISME COMMUNICATIONS 2021; 1:70. [PMID: 37938697 PMCID: PMC9723688 DOI: 10.1038/s43705-021-00037-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/08/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Byoungnam Min
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Baojun Wu
- Biology Department, Clark University, Worcester, MA, USA
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, WI, USA
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
| | - Christina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | | | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
39
|
Jeon J, Lee SH. RNA Modification and Its Implication in Plant Pathogenic Fungi. THE PLANT PATHOLOGY JOURNAL 2021; 37:505-511. [PMID: 34897243 PMCID: PMC8666238 DOI: 10.5423/ppj.rw.07.2021.0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
Interaction of a pathogen with its host plant requires both flexibility and rapid shift in gene expression programs in response to environmental cues associated with host cells. Recently, a growing volume of data on the diversity and ubiquity of internal RNA modifications has led to the realization that such modifications are highly dynamic and yet evolutionarily conserved system. This hints at these RNA modifications being an additional regulatory layer for genetic information, culminating in epitranscriptome concept. In plant pathogenic fungi, however, the presence and the biological roles of RNA modifications are largely unknown. Here we delineate types of RNA modifications, and provide examples demonstrating roles of such modifications in biology of filamentous fungi including fungal pathogens. We also discuss the possibility that RNA modification systems in fungal pathogens could be a prospective target for new agrochemicals.
Collapse
Affiliation(s)
- Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541,
Korea
- Plant Immunity Center, Seoul National University, Seoul 08826,
Korea
| | - Song Hee Lee
- Plant Immunity Center, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
40
|
Piontkivska H, Wales-McGrath B, Miyamoto M, Wayne ML. ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biol Evol 2021; 13:evab240. [PMID: 34694399 PMCID: PMC8586724 DOI: 10.1093/gbe/evab240] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine Deaminases that Act on RNA (ADARs) are RNA editing enzymes that play a dynamic and nuanced role in regulating transcriptome and proteome diversity. This editing can be highly selective, affecting a specific site within a transcript, or nonselective, resulting in hyperediting. ADAR editing is important for regulating neural functions and autoimmunity, and has a key role in the innate immune response to viral infections, where editing can have a range of pro- or antiviral effects and can contribute to viral evolution. Here we examine the role of ADAR editing across a broad range of viral groups. We propose that the effect of ADAR editing on viral replication, whether pro- or antiviral, is better viewed as an axis rather than a binary, and that the specific position of a given virus on this axis is highly dependent on virus- and host-specific factors, and can change over the course of infection. However, more research needs to be devoted to understanding these dynamic factors and how they affect virus-ADAR interactions and viral evolution. Another area that warrants significant attention is the effect of virus-ADAR interactions on host-ADAR interactions, particularly in light of the crucial role of ADAR in regulating neural functions. Answering these questions will be essential to developing our understanding of the relationship between ADAR editing and viral infection. In turn, this will further our understanding of the effects of viruses such as SARS-CoV-2, as well as many others, and thereby influence our approach to treating these deadly diseases.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, Ohio, USA
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Brain Health Research Institute, Kent State University, Ohio, USA
| | | | - Michael Miyamoto
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
41
|
Torres AG, Rodríguez-Escribà M, Marcet-Houben M, Santos Vieira H, Camacho N, Catena H, Murillo Recio M, Rafels-Ybern À, Reina O, Torres F, Pardo-Saganta A, Gabaldón T, Novoa E, Ribas de Pouplana L. Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res 2021; 49:7011-7034. [PMID: 34125917 PMCID: PMC8266599 DOI: 10.1093/nar/gkab461] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
The modification of adenosine to inosine at the wobble position (I34) of tRNA anticodons is an abundant and essential feature of eukaryotic tRNAs. The expansion of inosine-containing tRNAs in eukaryotes followed the transformation of the homodimeric bacterial enzyme TadA, which generates I34 in tRNAArg and tRNALeu, into the heterodimeric eukaryotic enzyme ADAT, which modifies up to eight different tRNAs. The emergence of ADAT and its larger set of substrates, strongly influenced the tRNA composition and codon usage of eukaryotic genomes. However, the selective advantages that drove the expansion of I34-tRNAs remain unknown. Here we investigate the functional relevance of I34-tRNAs in human cells and show that a full complement of these tRNAs is necessary for the translation of low-complexity protein domains enriched in amino acids cognate for I34-tRNAs. The coding sequences for these domains require codons translated by I34-tRNAs, in detriment of synonymous codons that use other tRNAs. I34-tRNA-dependent low-complexity proteins are enriched in functional categories related to cell adhesion, and depletion in I34-tRNAs leads to cellular phenotypes consistent with these roles. We show that the distribution of these low-complexity proteins mirrors the distribution of I34-tRNAs in the phylogenetic tree.
Collapse
Affiliation(s)
- Adrian Gabriel Torres
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marta Rodríguez-Escribà
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marina Marcet-Houben
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Catalonia 08034, Spain
| | | | - Noelia Camacho
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Helena Catena
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Marina Murillo Recio
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Àlbert Rafels-Ybern
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Francisco Miguel Torres
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
| | - Ana Pardo-Saganta
- Centre for Applied Medical Research (CIMA Universidad de Navarra), Pamplona 31008, Spain
| | - Toni Gabaldón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Catalonia 08034, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia 08010, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
- University Pompeu Fabra, Barcelona, Catalonia 08003, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia 08028, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia 08010, Spain
| |
Collapse
|
42
|
Sun M, Bian Z, Luan Q, Chen Y, Wang W, Dong Y, Chen L, Hao C, Xu JR, Liu H. Stage-specific regulation of purine metabolism during infectious growth and sexual reproduction in Fusarium graminearum. THE NEW PHYTOLOGIST 2021; 230:757-773. [PMID: 33411336 DOI: 10.1111/nph.17170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Ascospores generated during sexual reproduction are the primary inoculum for the wheat scab fungus Fusarium graminearum. Purine metabolism is known to play important roles in fungal pathogens but its lifecycle stage-specific regulation is unclear. By characterizing the genes involved in purine de novo and salvage biosynthesis pathways, we showed that de novo syntheses of inosine, adenosine and guanosine monophosphates (IMP, AMP and GMP) are important for vegetative growth, sexual/asexual reproduction, and infectious growth, whereas purine salvage synthesis is dispensable for these stages in F. graminearum. Addition of GMP rescued the defects of the Fgimd1 mutant in vegetative growth and conidiation but not sexual reproduction, whereas addition of AMP rescued all of these defects of the Fgade12 mutant, suggesting that the function of de novo synthesis of GMP rather than AMP is distinct in sexual stages. Moreover, Acd1, an ortholog of AMP deaminase, is dispensable for growth but essential for ascosporogenesis and pathogenesis, suggesting that AMP catabolism has stage-specific functions during sexual reproduction and infectious growth. The expression of almost all the genes involved in de novo purine synthesis is downregulated during sexual reproduction and infectious growth relative to vegetative growth. This study revealed that F. graminearum has stage-specific regulation of purine metabolism during infectious growth and sexual reproduction.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiaoqiao Luan
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yitong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongrong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
43
|
Abstract
RNA editing is an important posttranscriptional process that alters the genetic information of RNA encoded by genomic DNA. Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in animal kingdom, catalyzed by adenosine deaminases acting on RNA (ADARs). Recently, genome-wide A-to-I RNA editing is discovered in fungi, involving adenosine deamination mechanisms distinct from animals. Aiming to draw more attention to RNA editing in fungi, here we discuss the considerations for deep sequencing data preparation and the available various methods for detecting RNA editing, with a special emphasis on their usability for fungal RNA editing detection. We describe computational protocols for the identification of candidate RNA editing sites in fungi by using two software packages REDItools and RES-Scanner with RNA sequencing (RNA-Seq) and genomic DNA sequencing (DNA-Seq) data.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
44
|
Genome-Wide Identification of U-To-C RNA Editing Events for Nuclear Genes in Arabidopsis thaliana. Cells 2021; 10:cells10030635. [PMID: 33809209 PMCID: PMC8001311 DOI: 10.3390/cells10030635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cytosine-to-Uridine (C-to-U) RNA editing involves the deamination phenomenon, which is observed in animal nucleus and plant organelles; however, it has been considered the U-to-C is confined to the organelles of limited non-angiosperm plant species. Although previous RNA-seq-based analysis implied U-to-C RNA editing events in plant nuclear genes, it has not been broadly accepted due to inadequate confirmatory analyses. Here we examined the U-to-C RNA editing in Arabidopsis tissues at different developmental stages of growth. In this study, the high-throughput RNA sequencing (RNA-seq) of 12-day-old and 20-day-old Arabidopsis seedlings was performed, which enabled transcriptome-wide identification of RNA editing sites to analyze differentially expressed genes (DEGs) and nucleotide base conversions. The results showed that DEGs were expressed to higher levels in 12-day-old seedlings than in 20-day-old seedlings. Additionally, pentatricopeptide repeat (PPR) genes were also expressed at higher levels, as indicated by the log2FC values. RNA-seq analysis of 12-day- and 20-day-old Arabidopsis seedlings revealed candidates of U-to-C RNA editing events. Sanger sequencing of both DNA and cDNA for all candidate nucleotide conversions confirmed the seven U-to-C RNA editing sites. This work clearly demonstrated presence of U-to-C RNA editing for nuclear genes in Arabidopsis, which provides the basis to study the mechanism as well as the functions of the unique post-transcriptional modification.
Collapse
|
45
|
Liang J, Fu X, Hao C, Bian Z, Liu H, Xu JR, Wang G. FgBUD14 is important for ascosporogenesis and involves both stage-specific alternative splicing and RNA editing during sexual reproduction. Environ Microbiol 2021; 23:5052-5068. [PMID: 33645871 DOI: 10.1111/1462-2920.15446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
In wheat head blight fungus Fusarium graminearum, A-to-I RNA editing occurs specifically during sexual reproduction. Among the genes with premature stop codons (PSCs) that require RNA editing to encode full-length proteins, FgBUD14 also had alternative splicing events in perithecia. In this study, we characterized the functions of FgBUD14 and its post-transcriptional modifications during sexual reproduction. The Fgbud14 deletion mutant was slightly reduced in growth, conidiation and virulence. Although deletion of FgBUD14 had no effect on perithecium morphology, the Fgbud14 mutant was defective in crozier formation and ascus development. The FgBud14-GFP localized to the apex of ascogenous hyphae and croziers, which may be related to its functions during early sexual development. During vegetative growth and asexual reproduction, FgBud14-GFP localized to hyphal tips and both ends of conidia. Furthermore, mutations blocking the splicing of intron 2 that has the PSC site had no effect on the function of FgBUD14 during sexual reproduction but caused a similar defect in growth with Fgbud14 mutant. Expression of the non-editable FgBUD14Intron2-TAA mutant allele also failed to complement the Fgbud14 mutant. Taken together, FgBUD14 plays important roles in ascus development, and both alternative splicing and RNA editing occur specifically to its transcripts during sexual reproduction in F. graminearum.
Collapse
Affiliation(s)
- Jie Liang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xianhui Fu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaofeng Hao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Huiquan Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
46
|
Abstract
RNA editing of adenosines to inosines contributes to a wide range of biological processes by regulating gene expression post-transcriptionally. To understand the effect, accurate mapping of inosines is necessary. The most conventional method to identify an editing site is to compare the cDNA sequence with its corresponding genomic sequence. However, this method has a high false discovery rate because guanosine signals, due to experimental errors or noise in the obtained sequences, contaminate genuine inosine signals detected as guanosine. To ensure high accuracy, we developed the Inosine Chemical Erasing (ICE) method to accurately and biochemically identify inosines in RNA strands utilizing inosine cyanoethylation and reverse transcription-PCR. Furthermore, we applied this technique to next-generation sequencing technology, called ICE-seq, to conduct an unbiased genome-wide screening of A-to-I editing sites in the transcriptome.
Collapse
|
47
|
Zawisza-Álvarez M, Pérez-Calles C, Gattoni G, Garcia-Fernàndez J, Benito-Gutiérrez È, Herrera-Úbeda C. The ADAR Family in Amphioxus: RNA Editing and Conserved Orthologous Site Predictions. Genes (Basel) 2020; 11:genes11121440. [PMID: 33265998 PMCID: PMC7761149 DOI: 10.3390/genes11121440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 01/21/2023] Open
Abstract
RNA editing is a relatively unexplored process in which transcribed RNA is modified at specific nucleotides before translation, adding another level of regulation of gene expression. Cephalopods use it extensively to increase the regulatory complexity of their nervous systems, and mammals use it too, but less prominently. Nevertheless, little is known about the specifics of RNA editing in most of the other clades and the relevance of RNA editing from an evolutionary perspective remains unknown. Here we analyze a key element of the editing machinery, the ADAR (adenosine deaminase acting on RNA) gene family, in an animal with a key phylogenetic position at the root of chordates: the cephalochordate amphioxus. We show, that as in cephalopods, ADAR genes in amphioxus are predominantly expressed in the nervous system; we identify a number of RNA editing events in amphioxus; and we provide a newly developed method to identify RNA editing events in highly polymorphic genomes using orthology as a guide. Overall, our work lays the foundations for future comparative analysis of RNA-editing events across the metazoan tree.
Collapse
Affiliation(s)
- Michał Zawisza-Álvarez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08007 Barcelona, Spain; (M.Z.-Á.); (C.P.-C.); (J.G.-F.)
| | - Claudia Pérez-Calles
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08007 Barcelona, Spain; (M.Z.-Á.); (C.P.-C.); (J.G.-F.)
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08007 Barcelona, Spain; (M.Z.-Á.); (C.P.-C.); (J.G.-F.)
| | - Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
- Correspondence: (È.B.-G.); (C.H.-Ú.)
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, 08007 Barcelona, Spain; (M.Z.-Á.); (C.P.-C.); (J.G.-F.)
- Correspondence: (È.B.-G.); (C.H.-Ú.)
| |
Collapse
|
48
|
Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum. PLoS Genet 2020; 16:e1009185. [PMID: 33137093 PMCID: PMC7660929 DOI: 10.1371/journal.pgen.1009185] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum. Fusarium graminearum is the major causal agent of Fusarium Head Blight, a devastating disease of wheat and barley worldwide. Epigenetic regulation related to histone acetylation is involved in fungal development and invasive growth. Here, we functionally characterized the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and revealed its role in histone acetylation. By interacting with the FgEsa1 HAT of the NuA4 complex, Fng1 mediated H4 acetylation and was important for growth, conidiation, sexual development and pathogenicity. The fng1 mutant was unstable and a total of 34 spontaneous suppressors were isolated. Suppressor mutations were identified in four genes. While three of them, FgRPD3, FgSIN3, and FgSDS3, are key components of the Rpd3 HDAC complex, the other one encodes a glutamine-rich protein appeared to be a novel component of the Rpd3 HDAC complex in filamentous ascomycetes. Nevertheless, none of the mutation occurred in components of other HDAC complexes. Most of spontaneous suppressors were still defective in sexual reproduction and plant infection, indicating a stage-specific relationship between Fng1 and the Rpd3 HDAC complex. FgRpd3 and FgSds3 likely co-localized with Fng1 in euchromatin and played a critical role in vegetative growth. Approximately half of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3. Most of these genes had no homologs in yeast, suggesting Fng1 and Rpd3 HDAC complex likely regulates genes unique to F. graminearum and filamentous fungi and with high genetic variations. Taken together, our data showed the functional relationship between Fng1 and the Rpd3 HDAC complex in H4 acetylation and hyphal growth, which has not been reported in other fungi.
Collapse
|
49
|
Yin J, Hao C, Niu G, Wang W, Wang G, Xiang P, Xu JR, Zhang X. FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearum. Environ Microbiol 2020; 22:5373-5386. [PMID: 33000483 DOI: 10.1111/1462-2920.15266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Ascospores are the primary inoculum in Fusarium graminearum, a causal agent of wheat head blight. In a previous study, FgPAL1 was found to be upregulated in the Fgama1 mutant and important for ascosporogenesis. However, the biological function of this well-conserved gene in filamentous ascomycetes is not clear. In this study, we characterized its functions in growth, differentiation and pathogenesis. The Fgpal1 mutant had severe growth defects and often displayed abnormal hyphal tips. It was defective in infectious growth in rachis tissues and spreading in wheat heads. The Fgpal1 mutant produced conidia with fewer septa and more nuclei per compartment than the wild type. In actively growing hyphal tips, FgPal1-GFP mainly localized to the subapical collar and septa. The FgPal1 and LifeAct partially co-localized at the subapical region in an interdependent manner. The Fgpal1 mutant was normal in meiosis with eight nuclei in developing asci but most asci were aborted. Taken together, our results showed that FgPal1 plays a role in maintaining polarized tip growth and coordination between nuclear division and cytokinesis, and it is also important for infectious growth and developments of ascospores by the free cell formation process.
Collapse
Affiliation(s)
- Jinrong Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ping Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Xue Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
50
|
Chen Z, Zehraoui E, Atanasoff-Kardjalieff AK, Strauss J, Studt L, Ponts N. Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum. PLoS Genet 2020; 16:e1009125. [PMID: 33091009 PMCID: PMC7608984 DOI: 10.1371/journal.pgen.1009125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/03/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
Fusarium head blight is a destructive disease of grains resulting in reduced yields and contamination of grains with mycotoxins worldwide; Fusarium graminearum is its major causal agent. Chromatin structure changes play key roles in regulating mycotoxin biosynthesis in filamentous fungi. Using a split-marker approach in three F. graminearum strains INRA156, INRA349 and INRA812 (PH-1), we knocked out the gene encoding H2A.Z, a ubiquitous histone variant reported to be involved in a diverse range of biological processes in yeast, plants and animals, but rarely studied in filamentous fungi. All ΔH2A.Z mutants exhibit defects in development including radial growth, sporulation, germination and sexual reproduction, but with varying degrees of severity between them. Heterogeneity of osmotic and oxidative stress response as well as mycotoxin production was observed in ΔH2A.Z strains. Adding-back wild-type H2A.Z in INRA349ΔH2A.Z could not rescue the phenotypes. Whole genome sequencing revealed that, although H2A.Z has been removed from the genome and the deletion cassette is inserted at H2A.Z locus only, mutations occur at other loci in each mutant regardless of the genetic background. Genes affected by these mutations encode proteins involved in chromatin remodeling, such as the helicase Swr1p or an essential subunit of the histone deacetylase Rpd3S, and one protein of unknown function. These observations suggest that H2A.Z and the genes affected by such mutations are part or the same genetic interaction network. Our results underline the genetic plasticity of F. graminearum facing detrimental gene perturbation. These findings suggest that intergenic suppressions rescue deleterious phenotypes in ΔH2A.Z strains, and that H2A.Z may be essential in F. graminearum. This assumption is further supported by the fact that H2A.Z deletion failed in another Fusarium spp., i.e., the rice pathogen Fusarium fujikuroi.
Collapse
Affiliation(s)
| | | | - Anna K. Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | | |
Collapse
|