1
|
Yang F, Wu S, Yu Z. Comparative analysis of whole chloroplast genomes of three common species of Nekemias from vine tea. Sci Rep 2024; 14:19107. [PMID: 39154140 PMCID: PMC11330525 DOI: 10.1038/s41598-024-69932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Nekemias grossedentata (N. grossedentata) is a medicinal and edible plant. The young leaves and tender stems are specifically utilized to manufacture vine tea, which is traditionally employed in the treatment of conditions such as the common cold fever, sore throat, jaundice hepatitis, and other ailments. The morphologically of N. grossedentata similar to Nekemias cantoniensis (N. cantoniensis) and Nekemias megalophylla (N. megalophylla), which lead to a chaotic market supply. Numerious studies have confirmed that chloroplast genomes and chromatography play important role in plant classification. Here, the whole chloroplast (cp) genomes of the three Nekemias species were sequenced in Illumina sequencing platform. Meanwhile, their chromatographic fingerprints have constructed using high-performance liquid chromatography (HPLC). The annotation results demonstrated that the three chloroplast genomes were typical quadripartite structures, with lengths of 162,147 bp (N. grossedentata), 161,981 bp (N. megalophylla), and 162,500 bp (N. cantoniensis), respectively. A total of 89 (N. grossedentata) /86 (N. megalophylla and N. cantoniensis) protein-coding genes, 37 tRNA gene and 8 rRNA genes were annotated. The IR/SC boundary regions were relatively conserved across the three species, although three regions (rps19-rpl2, rpl32-trnL-UAG, ccsA-ndhD) exhibited nucleotide diversity values (Pi) of variable sites higher than 1%. Phylogenetic analysis indicated that N. grossedentata had a closer genetic relationship with N. megalophylla than that of N. cantoniensis. Moreover, the chromatographic fingerprints revealed that the main functional components and genetic relatedness of three species were highly similar with their morphological results. In conclusion, N. grossedentata and N. megalophylla can be consider as the origin plants of vine tea. This study provides appropriate information for species identification, phylogeny, quality assessment of three medicinal plants of the genus Nekemias and will contribute to the standardization of vine tea raw materials.
Collapse
Affiliation(s)
- Feng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Shaoxiong Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Zhengwen Yu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Lee SR, Oh A, Son DC. Characterization, comparison, and phylogenetic analyses of chloroplast genomes of Euphorbia species. Sci Rep 2024; 14:15352. [PMID: 38961172 PMCID: PMC11222452 DOI: 10.1038/s41598-024-66102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
The genus Euphorbia (Euphorbiaceae) has near-cosmopolitan distribution and serves as a significant resource for both ornamental and medicinal purposes. Despite its economic importance, Euphorbia's taxonomy has long been challenged by the intricate nature of morphological traits exhibiting high levels of convergence. While molecular markers are essential for phylogenetic studies, their availability for Euphorbia has been limited. To address this gap, we conducted comparative analyses focusing on the chloroplast (CP) genomes of nine Euphorbia species, incorporating three newly sequenced and annotated accessions. In addition, phylogenetic informativeness and nucleotide diversity were computed to identify candidate markers for phylogenetic analyses among closely related taxa in the genus. Our investigation revealed relatively conserved sizes and structures of CP genomes across the studied species, with notable interspecific variations observed primarily in non-coding regions and IR/SC borders. By leveraging phylogenetic informativeness and nucleotide diversity, we identified rpoB gene as the optimal candidate for species delimitation and shallow-level phylogenetic inference within the genus. Through this comprehensive analysis of CP genomes across multiple taxa, our study sheds light on the evolutionary dynamics and taxonomic intricacies of Euphorbia, offering valuable insights into its CP genome evolution and taxonomy.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Ami Oh
- Department of Biology Education, College of Education, Chosun University, Gwangju, 61452, Republic of Korea
| | - Dong Chan Son
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, 11186, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Wei Q, Xue T, He S, Fang J, Zeng C. Comparative and phylogenetic analysis of the complete chloroplast genomes of 10 Artemisia selengensis resources based on high-throughput sequencing. BMC Genomics 2024; 25:561. [PMID: 38840044 PMCID: PMC11151499 DOI: 10.1186/s12864-024-10455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Artemisia selengensis, classified within the genus Artemisia of the Asteraceae family, is a perennial herb recognized for its dual utility in culinary and medicinal domains. There are few studies on the chloroplast genome of A. selengensis, and the phylogeographic classification is vague, which makes phylogenetic analysis and evolutionary studies very difficult. RESULTS The chloroplast genomes of 10 A. selengensis in this study were highly conserved in terms of gene content, gene order, and gene intron number. The genome lengths ranged from 151,148 to 151,257 bp and were typical of a quadripartite structure with a total GC content of approximately 37.5%. The chloroplast genomes of all species encode 133 genes, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Due to the contraction and expansion of the inverted repeats (IR), the overlap of ycf1 and ndhF genes occurred at the inverted repeats B (IRB) and short single copy sequence (SSC) boundaries. According to a codon use study, the frequent base in the chloroplast genome of A. selengensis' third codon position was A/T. The number of SSR repeats was 42-44, most of which were single nucleotide A/T repeats. Sequence alignment analysis of the chloroplast genome showed that variable regions were mainly distributed in single copy regions, nucleotide diversity values of 0 to 0.009 were calculated by sliding window analysis, 8 mutation hotspot regions were detected, and coding regions were more conserved than non-coding regions. Analysis of non-synonymous substitution (Ka) and synonymous substitution (Ks) revealed that accD, rps12, petB, and atpF genes were affected by positive selection and no genes were affected by neutral selection. Based on the findings of the phylogenetic analysis, Artemisia selengensis was sister to the genus Artemisia Chrysanthemum and formed a monophyletic group with other Artemisia genera. CONCLUSIONS In this research, the present study systematically compared the chloroplast genomic features of A. selengensis and provided important information for the study of the chloroplast genome of A. selengensis and the evolutionary relationships among Asteraceae species.
Collapse
Affiliation(s)
- Yuhang Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Qingying Wei
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Tianyuan Xue
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Sixiao He
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Jiao Fang
- School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Wang R, Lan Z, Luo Y, Deng Z. The complete Chloroplast genome of Stachys geobombycis and comparative analysis with related Stachys species. Sci Rep 2024; 14:8523. [PMID: 38609472 PMCID: PMC11014926 DOI: 10.1038/s41598-024-59132-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Herb genomics, at the forefront of traditional Chinese medicine research, combines genomics with traditional practices, facilitating the scientific validation of ancient remedies. This integration enhances public understanding of traditional Chinese medicine's efficacy and broadens its scope in modern healthcare. Stachys species encompass annual or perennial herbs or small shrubs, exhibiting simple petiolate or sessile leaves. Despite their wide-ranging applications across various fields, molecular data have been lacking, hindering the precise identification and taxonomic elucidation of Stachys species. To address this gap, we assembled the complete chloroplast (CP) genome of Stachys geobombycis and conducted reannotation and comparative analysis of seven additional species within the Stachys genus. The findings demonstrate that the CP genomes of these species exhibit quadripartite structures, with lengths ranging from 14,523 to 150,599 bp. Overall, the genome structure remains relatively conserved, hosting 131 annotated genes, including 87 protein coding genes, 36 tRNA genes, and 8 rRNA genes. Additionally, 78 to 98 SSRs and long repeat sequences were detected , and notably, 6 highly variable regions were identified as potential molecular markers in the CP genome through sequence alignment. Phylogenetic analysis based on Bayesian inference and maximum likelihood methods strongly supported the phylogenetic position of the genus Stachys as a member of Stachydeae tribe. Overall, this comprehensive bioinformatics study of Stachys CP genomes lays the groundwork for phylogenetic classification, plant identification, genetic engineering, evolutionary studies, and breeding research concerning medicinal plants within the Stachys genus.
Collapse
Affiliation(s)
- Ru Wang
- Hubei Key Laboratory of Biologic Resources Protection and Utilization (Hubei Minzu University), Enshi, 445000, China
| | - Zheng Lan
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yongjian Luo
- Hubei Key Laboratory of Biologic Resources Protection and Utilization (Hubei Minzu University), Enshi, 445000, China
- Central South University of Forestry and Technology, Key Laboratory of Forestry Biotechnology of Hunan Province, Changsha, 410000, China
| | - Zhijun Deng
- Hubei Key Laboratory of Biologic Resources Protection and Utilization (Hubei Minzu University), Enshi, 445000, China.
| |
Collapse
|
5
|
Li X, Li Z, Wang F, Zhao S, Xu C, Mao Z, Duan J, Feng Y, Yang Y, Shen L, Wang G, Yang Y, Yu LJ, Sang M, Han G, Wang X, Kuang T, Shen JR, Wang W. Structures and organizations of PSI-AcpPCI supercomplexes from red tidal and coral symbiotic photosynthetic dinoflagellates. Proc Natl Acad Sci U S A 2024; 121:e2315476121. [PMID: 38319970 PMCID: PMC10873603 DOI: 10.1073/pnas.2315476121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.
Collapse
Affiliation(s)
- Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Fangfang Wang
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai201204, China
| | - Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Caizhe Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- Department of Mechanical Engineering, Tsinghua University, Beijing100084, China
| | - Zhiyuan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Jialin Duan
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai201204, China
| | - Yue Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Yang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou571158, China
| | - Lili Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Guanglei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Min Sang
- China National Botanical Garden, Beijing100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Xuchu Wang
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou571158, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang550025, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| |
Collapse
|
6
|
Caycho E, La Torre R, Orjeda G. Assembly, annotation and analysis of the chloroplast genome of the Algarrobo tree Neltuma pallida (subfamily: Caesalpinioideae). BMC PLANT BIOLOGY 2023; 23:570. [PMID: 37974117 PMCID: PMC10652460 DOI: 10.1186/s12870-023-04581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Neltuma pallida is a tree that grows in arid soils in northwestern Peru. As a predominant species of the Equatorial Dry Forest ecoregion, it holds significant economic and ecological value for both people and environment. Despite this, the species is severely threatened and there is a lack of genetic and genomic research, hindering the proposal of evidence-based conservation strategies. RESULTS In this work, we conducted the assembly, annotation, analysis and comparison of the chloroplast genome of a N. pallida specimen with those of related species. The assembled chloroplast genome has a length of 162,381 bp with a typical quadripartite structure (LSC-IRA-SSC-IRB). The calculated GC content was 35.97%. However, this is variable between regions, with a higher GC content observed in the IRs. A total of 132 genes were annotated, of which 19 were duplicates and 22 contained at least one intron in their sequence. A substantial number of repetitive sequences of different types were identified in the assembled genome, predominantly tandem repeats (> 300). In particular, 142 microsatellites (SSR) markers were identified. The phylogenetic reconstruction showed that N. pallida grouped with the other Neltuma species and with Prosopis cineraria. The analysis of sequence divergence between the chloroplast genome sequences of N. pallida, N. juliflora, P. farcta and Strombocarpa tamarugo revealed a high degree of similarity. CONCLUSIONS The N. pallida chloroplast genome was found to be similar to those of closely related species. With a size of 162,831 bp, it had the classical chloroplast quadripartite structure and GC content of 35.97%. Most of the 132 identified genes were protein-coding genes. Additionally, over 800 repetitive sequences were identified, including 142 SSR markers. In the phylogenetic analysis, N. pallida grouped with other Neltuma spp. and P. cineraria. Furthermore, N. pallida chloroplast was highly conserved when compared with genomes of closely related species. These findings can be of great potential for further diversity studies and genetic improvement of N. pallida.
Collapse
Affiliation(s)
- Esteban Caycho
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru
| | - Renato La Torre
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru
| | - Gisella Orjeda
- Laboratory of Genomics and Bioinformatics for Biodiversity, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos, 15081, Lima, Peru.
| |
Collapse
|
7
|
Fu X, Xie DF, Zhou YY, Cheng RY, Zhang XY, Zhou SD, He XJ. Phylogeny and adaptive evolution of subgenus Rhizirideum (Amaryllidaceae, Allium) based on plastid genomes. BMC PLANT BIOLOGY 2023; 23:70. [PMID: 36726056 PMCID: PMC9890777 DOI: 10.1186/s12870-022-03993-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
The subgenus Rhizirideum in the genus Allium consists of 38 species worldwide and forms five sections (A. sect. Rhizomatosa, A. sect. Tenuissima, A. sect. Rhizirideum, A. sect. Eduardia, and A. sect. Caespitosoprason), A. sect. Caespitosoprason being merged into A. sect. Rhizomatosa recently. Previous studies on this subgenus mainly focused on separate sections. To investigate the inter-section and inter-subgenera phylogenetic relationships and adaptive evolution of A. subg. Rhizirideum, we selected thirteen representative species, which cover five sections of this subgenus and can represent four typical phenotypes of it. We conducted the comparative plastome analysis with our thirteen plastomes. And phylogenetic inferences with CDSs and complete sequences of plastomes of our thirteen species and another fifty-four related species were also performed. As a result, the A. subg. Rhizirideum plastomes were relatively conservative in structure, IR/SC borders, codon usage, and repeat sequence. In phylogenetic results, the inter-subgenera relationships among A. subg. Rhizirideum and other genus Allium subgenera were generally similar to the previous reports. In contrast, the inter-section relationships within our subgenus A. subg. Rhizirideum were newly resolved in this study. A. sect. Rhizomatosa and A. sect. Tenuissima were sister branches, which were then clustered with A. sect. Rhizirideum and A. sect. Eduardia successively. However, Allium Polyrhizum Turcz. ex Regel, type species of A. sect. Caespitosoprason, was resolved as the basal taxon of A. subg. Rhizirideum. Allium siphonanthum J. M. Xu was also found in clade A. subg. Cyathophora instead of clade A. subg. Rhizirideum. The selective pressure analysis was also conducted, and most protein-coding genes were under purifying selection. At the same time, just one gene, ycf2, was found under positive selection, and another three genes (rbcL, ycf1a, ycf1b) presented relaxed selection, which were all involved in the photosynthesis. The low temperature, dry climate, and high altitude of the extreme habitats where A. subg. Rhizirideum species grow might impose intense natural selection forces on their plastome genes for photosynthesis. In summary, our research provides new insights into the phylogeny and adaptive evolution of A. subg. Rhizirideum. Moreover, we suggest that the positions of the A. subg. Rhizirideum species A. polyrhizum and A. siphonanthum should be reconsidered.
Collapse
Affiliation(s)
- Xiao Fu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Yu-Yang Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Xiang-Yi Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, Sichuan, The People's Republic of China.
| |
Collapse
|
8
|
Pham MH, Tran TH, Le TD, Le TL, Hoang H, Chu HH. The Complete Chloroplast Genome of An Ophiorrhiza baviensis Drake Species Reveals Its Molecular Structure, Comparative, and Phylogenetic Relationships. Genes (Basel) 2023; 14:genes14010227. [PMID: 36672968 PMCID: PMC9859165 DOI: 10.3390/genes14010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Ophiorrhiza baviensis Drake, a flowering medical plant in the Rubiaceae, exists uncertainly within the Ophiorrhiza genus' evolutionary relationships. For the first time, the whole chloroplast (cp) genome of an O. baviensis Drake species was sequenced and annotated. Our findings demonstrate that the complete cp genome of O. baviensis is 154,770 bp in size, encoding a total of 128 genes, including 87 protein-coding genes, 8 rRNAs, and 33 tRNAs. A total of 59 SSRs were screened in the studied cp genome, along with six highly variable loci, which can be applied to generate significant molecular markers for the Ophiorrhiza genus. The comparative analysis of the O. baviensis cp genome with two published others of the Ophiorrhiza genus revealed a high similarity; however, there were some notable gene rearrangements in the O. densa plastome. The maximum likelihood phylogenetic trees were constructed based on the concatenation of the rps16 gene and the trnL-trnF intergenic spacer sequence, indicating a close relationship between the studied O. baviensis and other Ophiorrhiza. This study will provide a theoretical molecular basis for identifying O. baviensis Drake, as well as species of the Ophiorrhiza genus, and contribute to shedding light on the chloroplast genome evolution of Rubiaceae.
Collapse
Affiliation(s)
- Mai Huong Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science & Technology (VAST), Hanoi 100000, Vietnam
| | - Thu Hoai Tran
- Institute of Biotechnology (IBT), Vietnam Academy of Science & Technology (VAST), Hanoi 100000, Vietnam
| | - Thi Dung Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science & Technology (VAST), Hanoi 100000, Vietnam
| | - Tung Lam Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science & Technology (VAST), Hanoi 100000, Vietnam
| | - Ha Hoang
- Institute of Biotechnology (IBT), Vietnam Academy of Science & Technology (VAST), Hanoi 100000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science & Technology (VAST), Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, VAST, Hanoi 100000, Vietnam
- Correspondence:
| |
Collapse
|
9
|
Wang X, Xu KW, Lee SY, Wu J, Li Q, Chen BJ. Characterization of the chloroplast genome and phylogenetic analysis of Ceratopteris pteridoides (Pteridaceae). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Characterization and Comparative Analysis of Chloroplast Genomes in Five Uncaria Species Endemic to China. Int J Mol Sci 2022; 23:ijms231911617. [PMID: 36232915 PMCID: PMC9569570 DOI: 10.3390/ijms231911617] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Uncaria, a perennial vine from the Rubiaceae family, is a typical Chinese traditional medicine. Currently, uncertainty exists over the Uncaria genus’ evolutionary relationships and germplasm identification. The complete chloroplast genomes of four Uncaria species mentioned in the Chinese Pharmacopoeia and Uncaria scandens (an easily confused counterfeit) were sequenced and annotated. The findings demonstrated that the whole chloroplast genome of Uncaria genus is 153,780–155,138 bp in full length, encoding a total of 128–131 genes, containing 83–86 protein-coding genes, eight rRNAs and 37 tRNAs. These regions, which include eleven highly variable loci and 31–49 SSRs, can be used to create significant molecular markers for the Uncaria genus. The phylogenetic tree was constructed according to protein-coding genes and the whole chloroplast genome sequences of five Uncaria species using four methods. The topology of the two phylogenetic trees showed no difference. The sequences of U. rhynchophylla and U. scandens are clustered in one group, while the U. hirsuta and U. macrophylla are clustered in another group. U. sessilifructus is clustered together with the above two small clades. New insights on the relationship were revealed via phylogenetic research in five Uncaria species. This study will provide a theoretical basis for identifying U. rhynchophylla and its counterfeits, as well as the species of the Uncaria genus. This research provides the initial chloroplast genome report of Uncaria, contributes to elucidating the chloroplast genome evolution of Uncaria in China.
Collapse
|
11
|
Miao Y, Chen H, Xu W, Yang Q, Liu C, Huang L. Structural mutations of small single copy (SSC) region in the plastid genomes of five Cistanche species and inter-species identification. BMC PLANT BIOLOGY 2022; 22:412. [PMID: 36008757 PMCID: PMC9404617 DOI: 10.1186/s12870-022-03682-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cistanche is an important genus of Orobanchaceae, with critical medicinal, economic, and desertification control values. However, the phylogenetic relationships of Cistanche genus remained obscure. To date, no effective molecular markers have been reported to discriminate effectively the Cistanche closely related species reported here. In this study, we obtained and characterized the plastomes of four Cistanche species from China, to clarify the phylogenetic relationship within the genus, and to develop molecular markers for species discrimination. RESULTS: Four Cistanche species (Cistanche deserticola, Cistanche salsa, Cistanche tubulosa and Cistanche sinensis), were deep-sequenced with Illumina. Their plastomes were assembled using SPAdes and annotated using CPGAVAS2. The plastic genomes were analyzed in detail, finding that all showed the conserved quadripartite structure (LSC-IR-SSC-IR) and with full sizes ranging from 75 to 111 Kbp. We observed a significant contraction of small single copy region (SSC, ranging from 0.4-29 Kbp) and expansion of inverted repeat region (IR, ranging from 6-30 Kbp), with C. deserticola and C. salsa showing the smallest SSCs with only one gene (rpl32). Compared with other Orobanchaceae species, Cistanche species showed extremely high rates of gene loss and pseudogenization, as reported for other parasitic Orobanchaceae species. Furthermore, analysis of sequence divergence on protein-coding genes showed the three genes (rpl22, clpP and ycf2) had undergone positive selection in the Cistanche species under study. In addition, by comparison of all available Cistanche plastomes we found 25 highly divergent intergenic spacer (IGS) regions that were used to predict two DNA barcode markers (Cis-mk01 and Cis-mk02 based on IGS region trnR-ACG-trnN-GUU) and eleven specific DNA barcode markers using Ecoprimer software. Experimental validation showed 100% species discrimination success rate with both type of markers. CONCLUSION Our findings have shown that Cistanche species are an ideal model to investigate the structure variation, gene loss and pseudogenization during the process of plastome evolution in parasitic species, providing new insights into the evolutionary relationships among the Cistanche species. In addition, the developed DNA barcodes markers allow the proper species identification, ensuring the effective and safe use of Cistanche species as medicinal products.
Collapse
Affiliation(s)
- Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Haimei Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Wanqi Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qiaoqiao Yang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
12
|
Huang Y, Escalona M, Morrison G, Marimuthu MPA, Nguyen O, Toffelmier E, Shaffer HB, Litt A. Reference Genome Assembly of the Big Berry Manzanita (Arctostaphylos glauca). J Hered 2022; 113:188-196. [PMID: 35575079 PMCID: PMC9113465 DOI: 10.1093/jhered/esab071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/18/2021] [Indexed: 01/30/2023] Open
Abstract
Arctostaphylos (Ericaceae) species, commonly known as manzanitas, are an invaluable fire-adapted chaparral clade in the California Floristic Province (CFP), a world biodiversity hotspot on the west coast of North America. This diverse woody genus includes many rare and/or endangered taxa, and the genus plays essential ecological roles in native ecosystems. Despite their importance in conservation management, and the many ecological and evolutionary studies that have focused on manzanitas, virtually no research has been conducted on the genomics of any manzanita species. Here, we report the first genome assembly of a manzanita species, the widespread Arctostaphylos glauca. Consistent with the genomics strategy of the California Conservation Genomics project, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 271 scaffolds spanning 547Mb, close to the genome size estimated by flow cytometry. This assembly, with a scaffold N50 of 31Mb and BUSCO complete score of 98.2%, will be used as a reference genome for understanding the genetic diversity and the basis of adaptations of both common and rare and endangered manzanita species.
Collapse
Affiliation(s)
- Yi Huang
- Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Glen Morrison
- Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA
| | - Mohan P A Marimuthu
- UC Davis Genome Center, DNA Technologies and Expression Analysis Cores, University of California, Davis, CA 95691, USA
| | - Oanh Nguyen
- UC Davis Genome Center, DNA Technologies and Expression Analysis Cores, University of California, Davis, CA 95691, USA
| | - Erin Toffelmier
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
- the La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
| | - H Bradley Shaffer
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
- the La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-7239, USA
| | - Amy Litt
- Department of Botany and Plant Science, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Woodson JD. Control of chloroplast degradation and cell death in response to stress. Trends Biochem Sci 2022; 47:851-864. [DOI: 10.1016/j.tibs.2022.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
|
14
|
Miao H, Bao J, Li X, Ding Z, Tian X. Comparative analyses of chloroplast genomes in 'Red Fuji' apples: low rate of chloroplast genome mutations. PeerJ 2022; 10:e12927. [PMID: 35223207 PMCID: PMC8868015 DOI: 10.7717/peerj.12927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Fuji is a vital apple cultivar, and has been propagated clonally for nearly a century. The chloroplast genome variation of Fuji apples in China has not been investigated. METHODS This study used next-generation high-throughput sequencing and bioinformatics to compare and analyze the chloroplast genome of 24 Red Fuji varieties from nine regions in China. RESULTS The results showed that the 24 chloroplast genomes were highly conserved in genome size, structure, and organization. The length of the genomes ranged from 160,063 to 160,070 bp, and the GC content was 36.6%. Each of the 24 chloroplast genomes encoded 131 genes, including 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. The results of repeat sequence detection were consistent; the most common sequence was forward repeats (53.1%), and the least common sequence was complementary repeats (4.1%). The chloroplast genome sequence of Red Fuji was highly conserved. Two indels were detected, but the PI value was 0, and there were no SNP loci. The chloroplast genome variation rate of Red Fuji was low.
Collapse
Affiliation(s)
- Haoyu Miao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Jinbo Bao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Xueli Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Zhijie Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| | - Xinmin Tian
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Xinjiang, Urumqi, China
| |
Collapse
|
15
|
Kim H, Yang JH, Bustamante DE, Calderon MS, Mansilla A, Maggs CA, Hansen GI, Yoon HS. Organelle Genome Variation in the Red Algal Genus Ahnfeltia (Florideophyceae). Front Genet 2021; 12:724734. [PMID: 34646303 PMCID: PMC8503264 DOI: 10.3389/fgene.2021.724734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
The agarophyte Ahnfeltia (Ahnfeltiales, Rhodophyta) is a globally widespread genus with 11 accepted species names. Two of the most widespread species in this genus, A. plicata and A. fastigiata, may have diverged genetically due to past geographic changes and subsequent geographic isolation. To investigate this genomic and genetic diversity, we generated new plastid (ptDNAs) and mitochondrial genomes (mtDNAs) of these Ahnfeltia species from four different regions (A. plicata - Chile and UK and A. fastigiata - Korea and Oregon). Two architecture variations were found in the Ahnfeltia genomes: in ptDNA of A. fastigiata Oregon, the hypothetical pseudogene region was translocated, likely due to recombination with palindromic repeats or a gene transfer from a red algal plasmid. In mtDNA of A. fastigiata Korea, the composition of the group II intronic ORFs was distinct from others suggesting different scenarios of gain and loss of group II intronic ORFs. These features resulted in genome size differences between the two species. Overall gene contents of organelle genomes of Ahnfeltia were conserved. Phylogenetic analysis using concatenated genes from ptDNAs and mtDNAs supported the monophyly of the Ahnfeltiophycidae. The most probable individual gene trees showed that the Ahnfeltia populations were genetically diversified. These trees, the cox1 haplotype network, and a dN/dS analysis all supported the theory that these Ahnfeltia populations have diversified genetically in accordance with geographic distribution.
Collapse
Affiliation(s)
- Hocheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Peru
| | - Martha S Calderon
- Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, Punta Arenas, Chile
| | - Andres Mansilla
- Laboratorio de Macroalgas Antárticas y Subantárticas, Universidad de Magallanes, Punta Arenas, Chile
| | - Christine A Maggs
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Gayle I Hansen
- Marine Algal Biodiversity Research, Newport, OR, United States
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
16
|
Zhu B, Qian F, Hou Y, Yang W, Cai M, Wu X. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa (Brassicaceae). PLoS One 2021; 16:e0248556. [PMID: 33711072 PMCID: PMC7954331 DOI: 10.1371/journal.pone.0248556] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/01/2021] [Indexed: 12/05/2022] Open
Abstract
Eruca sativa Mill. (Brassicaceae) is an important edible vegetable and a potential medicinal plant due to the antibacterial activity of its seed oil. Here, the complete chloroplast (cp) genome of E. sativa was de novo assembled with a combination of long PacBio reads and short Illumina reads. The E. sativa cp genome had a quadripartite structure that was 153,522 bp in size, consisting of one large single-copy region of 83,320 bp and one small single-copy region of 17,786 bp which were separated by two inverted repeat (IRa and IRb) regions of 26,208 bp. This complete cp genome harbored 113 unique genes: 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Forty-nine long repetitive sequences and 69 simple sequence repeats were identified in the E. sativa cp genome. A codon usage analysis of the E. sativa cp genome showed a bias toward codons ending in A/T. The E. sativa cp genome was similar in size, gene composition, and linearity of the structural region when compared with other Brassicaceae cp genomes. Moreover, the analysis of the synonymous (Ks) and non-synonymous (Ka) substitution rates demonstrated that protein-coding genes generally underwent purifying selection pressure, expect ycf1, ycf2, and rps12. A phylogenetic analysis determined that E. sativa is evolutionarily close to important Brassica species, indicating that it may be possible to transfer favorable E. sativa alleles into other Brassica species. Our results will be helpful to advance genetic improvement and breeding of E. sativa, and will provide valuable information for utilizing E. sativa as an important resource to improve other Brassica species.
Collapse
Affiliation(s)
- Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fang Qian
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yunfeng Hou
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Weicheng Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xiaoming Wu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
17
|
Tieu Ngoc LN, Jung Park S, Thi Huong T, Lee KH, Kang H. N4-methylcytidine ribosomal RNA methylation in chloroplasts is crucial for chloroplast function, development, and abscisic acid response in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:570-582. [PMID: 32876986 DOI: 10.1111/jipb.13009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Although the essential role of messenger RNA methylation in the nucleus is increasingly understood, the nature of ribosomal RNA (rRNA) methyltransferases and the role of rRNA methylation in chloroplasts remain largely unknown. A recent study revealed that CMAL (for Chloroplast mr aW- Like) is a chloroplast-localized rRNA methyltransferase that is responsible for N4-methylcytidine (m4 C) in 16S chloroplast rRNA in Arabidopsis thaliana. In this study, we further examined the role of CMAL in chloroplast biogenesis and function, development, and hormone response. The cmal mutant showed reduced chlorophyll biosynthesis, photosynthetic activity, and growth-defect phenotypes, including severely stunted stems, fewer siliques, and lower seed yield. The cmal mutant was hypersensitive to chloroplast translation inhibitors, such as lincomycin and erythromycin, indicating that the m4 C-methylation defect in the 16S rRNA leads to a reduced translational activity in chloroplasts. Importantly, the stunted stem of the cmal mutant was partially rescued by exogenous gibberellic acid or auxin. The cmal mutant grew poorer than wild type, whereas the CMAL-overexpressing transgenic Arabidopsis plants grew better than wild type in the presence of abscisic acid. Altogether, these results indicate that CMAL is an indispensable rRNA methyltransferase in chloroplasts and is crucial for chloroplast biogenesis and function, photosynthesis, and hormone response during plant growth and development.
Collapse
Affiliation(s)
- Le Nguyen Tieu Ngoc
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
- Faculty of Forestry Agriculture, Tay Nguyen University, BuonMaThuot, DakLak, 63000, Vietnam
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Trinh Thi Huong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kwang Ho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
18
|
Li R, Jia X, Zhang J, Jia S, Liu T, Qu J, Wang X. The Complete Plastid Genomes of Seven Sargassaceae Species and Their Phylogenetic Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:747036. [PMID: 34804089 PMCID: PMC8602799 DOI: 10.3389/fpls.2021.747036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/04/2021] [Indexed: 05/03/2023]
Abstract
Sargassum is one of the most important genera of the family Sargassaceae in brown algae and is used to produce carrageenan, mannitol, iodine, and other economic substances. Here, seven complete plastid genomes of Sargassum ilicifolium var. conduplicatum, S. graminifolium, S. phyllocystum, S. muticum, S. feldmannii, S. mcclurei, and S. henslowianum were assembled using next-generation sequencing. The sizes of the seven circular genomes ranged from 124,258 to 124,563 bp, with two inverted regions and the same set of plastid genes, including 139 protein-coding genes (PCGs), 28 transfer (t)RNAs, and 6 ribosomal (r)RNAs. Compared with the other five available plastid genomes of Fucales, 136 PCGs were conserved, with two common ones shared with Coccophora langsdorfii, and one with S. fusiforme and S. horneri. The co-linear analysis identified two inversions of trnC(gca) and trnN(gtt) in ten Sargassum species, against S. horneri and C. langsdorfii. The phylogenetic analysis based on the plastid genomes of 55 brown algae (Phaeophyceae) showed four clades, whose ancient ancestor lived around 201.42 million years ago (Mya), and the internal evolutionary branches in Fucales started to be formed 92.52 Mya, while Sargassum species were divided into two subclades 14.33 Mya. Our novel plastid genomes provided evidence for the speciation of brown algae and plastid genomic evolution events.
Collapse
Affiliation(s)
- Ruoran Li
- College of Life Sciences, Yantai University, Yantai, China
| | - Xuli Jia
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Shangang Jia,
| | - Tao Liu
- College of Life Sciences, Yantai University, Yantai, China
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Tao Liu,
| | - Jiangyong Qu
- College of Life Sciences, Yantai University, Yantai, China
- Jiangyong Qu,
| | - Xumin Wang
- College of Life Sciences, Yantai University, Yantai, China
- Xumin Wang,
| |
Collapse
|
19
|
Gu L, Su T, An MT, Hu GX. The Complete Chloroplast Genome of the Vulnerable Oreocharis esquirolii (Gesneriaceae): Structural Features, Comparative and Phylogenetic Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1692. [PMID: 33276435 PMCID: PMC7760870 DOI: 10.3390/plants9121692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/03/2022]
Abstract
Oreocharis esquirolii, a member of Gesneriaceae, is known as Thamnocharis esquirolii, which has been regarded a synonym of the former. The species is endemic to Guizhou, southwestern China, and is evaluated as vulnerable (VU) under the International Union for Conservation of Nature (IUCN) criteria. Until now, the sequence and genome information of O. esquirolii remains unknown. In this study, we assembled and characterized the complete chloroplast (cp) genome of O. esquirolii using Illumina sequencing data for the first time. The total length of the cp genome was 154,069 bp with a typical quadripartite structure consisting of a pair of inverted repeats (IRs) of 25,392 bp separated by a large single copy region (LSC) of 85,156 bp and a small single copy region (SSC) of18,129 bp. The genome comprised 114 unique genes with 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Thirty-one repeat sequences and 74 simple sequence repeats (SSRs) were identified. Genome alignment across five plastid genomes of Gesneriaceae indicated a high sequence similarity. Four highly variable sites (rps16-trnQ, trnS-trnG, ndhF-rpl32, and ycf 1) were identified. Phylogenetic analysis indicated that O. esquirolii grouped together with O. mileensis, supporting resurrection of the name Oreocharis esquirolii from Thamnocharisesquirolii. The complete cp genome sequence will contribute to further studies in molecular identification, genetic diversity, and phylogeny.
Collapse
Affiliation(s)
- Li Gu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (L.G.); (T.S.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang 550025, China
- Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Ting Su
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (L.G.); (T.S.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang 550025, China
- Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Ming-Tai An
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Guo-Xiong Hu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (L.G.); (T.S.)
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
20
|
Mohanta TK, Mishra AK, Khan A, Hashem A, Abd_Allah EF, Al-Harrasi A. Gene Loss and Evolution of the Plastome. Genes (Basel) 2020; 11:E1133. [PMID: 32992972 PMCID: PMC7650654 DOI: 10.3390/genes11101133] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Chloroplasts are unique organelles within the plant cells and are responsible for sustaining life forms on the earth due to their ability to conduct photosynthesis. Multiple functional genes within the chloroplast are responsible for a variety of metabolic processes that occur in the chloroplast. Considering its fundamental role in sustaining life on the earth, it is important to identify the level of diversity present in the chloroplast genome, what genes and genomic content have been lost, what genes have been transferred to the nuclear genome, duplication events, and the overall origin and evolution of the chloroplast genome. Our analysis of 2511 chloroplast genomes indicated that the genome size and number of coding DNA sequences (CDS) in the chloroplasts genome of algae are higher relative to other lineages. Approximately 10.31% of the examined species have lost the inverted repeats (IR) in the chloroplast genome that span across all the lineages. Genome-wide analyses revealed the loss of the Rbcl gene in parasitic and heterotrophic plants occurred approximately 56 Ma ago. PsaM, Psb30, ChlB, ChlL, ChlN, and Rpl21 were found to be characteristic signature genes of the chloroplast genome of algae, bryophytes, pteridophytes, and gymnosperms; however, none of these genes were found in the angiosperm or magnoliid lineage which appeared to have lost them approximately 203-156 Ma ago. A variety of chloroplast-encoded genes were lost across different species lineages throughout the evolutionary process. The Rpl20 gene, however, was found to be the most stable and intact gene in the chloroplast genome and was not lost in any of the analyzed species, suggesting that it is a signature gene of the plastome. Our evolutionary analysis indicated that chloroplast genomes evolved from multiple common ancestors ~1293 Ma ago and have undergone vivid recombination events across different taxonomic lineages.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Biotech and Omics Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman;
| | | | - Adil Khan
- Biotech and Omics Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, Giza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Ahmed Al-Harrasi
- Natural Product Laboratory, Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
21
|
Zhang RS, Yang J, Hu HL, Xia RX, Li YP, Su JF, Li Q, Liu YQ, Qin L. A high level of chloroplast genome sequence variability in the Sawtooth Oak Quercus acutissima. Int J Biol Macromol 2020; 152:340-348. [PMID: 32109476 DOI: 10.1016/j.ijbiomac.2020.02.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022]
Abstract
The Sawtooth Oak, Quercus acutissima Carruth., is an economically and ecologically important tree species in the family Fagaceae with a wide distribution in China. Here, we examined its intraspecific chloroplast (cp) genome variability using available and a newly sequenced genome. The new cp genome comes from a Q. acutissima individual collected from Shenyang (Northeast China; "Q. acutissima Shenyang" in the following), and then is compared with two recently published cp genomes from Tongchuan (Northwest China) and Nanjing (East China). The cp genome of Q. acutissima Shenyang exhibits a slightly larger genome size than the other two individuals, although each encodes 86 protein-coding genes, 40 tRNA genes and eight rRNA genes. We also found the length difference for the IR/SC boundary region among the three cp genomes. Sequence comparison revealed a high intraspecific genetic divergence: the three cp genomes differ by 332 sequence patterns including 77 single nucleotide polymorphisms, and 255 indels (each gap considered) scattering across 67 regions. Phylogenetic analyses based on the cp genome recovered the split between the subgenus Cerris and the subgenus Quercus, but revealed that three Q. acutissima individuals did not cluster together, indicating that even complete cp genome data fail to reproduce species boundaries in Asian members of section Cerris. Our results show that more complete plastomes covering remote ranges needs to be sequenced to provide a solid backbone for future population-scale in-depth studies and phylogenetic analysis of section Cerris.
Collapse
Affiliation(s)
- Ru-Song Zhang
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jian Yang
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Hua-Lei Hu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Run-Xi Xia
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yu-Ping Li
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jun-Fang Su
- Center for Experimental Teaching, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qun Li
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| | - Yan-Qun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
| | - Li Qin
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
22
|
Zhao X, Huang J, Chory J. Unraveling the Linkage between Retrograde Signaling and RNA Metabolism in Plants. TRENDS IN PLANT SCIENCE 2020; 25:141-147. [PMID: 31791654 DOI: 10.1016/j.tplants.2019.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 05/25/2023]
Abstract
Retrograde signals are signals that originate in organelles to regulate nuclear gene expression. In plant cells, retrograde signaling from both chloroplasts and mitochondria is essential for plant development and growth. Over the past few years, substantial progress has been made in unraveling the linkages between chloroplast retrograde signaling and nuclear RNA metabolism processes or plastidial RNA editing. These findings add to the complexity of the regulation of organelle-to-nucleus communication. Chloroplast development and function rely on the coordinated regulation of chloroplast and nuclear gene expression, especially under stress conditions. A better understanding of retrograde signaling and RNA metabolism, as well as their connection, is essential for breeding stress-tolerant plants to cope with the dynamic and rapidly changing environment.
Collapse
Affiliation(s)
- Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Jianyan Huang
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Baers LL, Breckels LM, Mills LA, Gatto L, Deery MJ, Stevens TJ, Howe CJ, Lilley KS, Lea-Smith DJ. Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism. PLANT PHYSIOLOGY 2019; 181:1721-1738. [PMID: 31578229 PMCID: PMC6878006 DOI: 10.1104/pp.19.00897] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 05/23/2023]
Abstract
Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and internal thylakoid membranes (TMs). However, localization of proteins within cyanobacterial cells is poorly understood. Using subcellular fractionation and quantitative proteomics, we produced an extensive subcellular proteome map of an entire cyanobacterial cell, identifying ∼67% of proteins in Synechocystis sp. PCC 6803, ∼1000 more than previous studies. Assigned to six specific subcellular regions were 1,712 proteins. Proteins involved in energy conversion localized to TMs. The majority of transporters, with the exception of a TM-localized copper importer, resided in the plasma membrane (PM). Most metabolic enzymes were soluble, although numerous pathways terminated in the TM (notably those involved in peptidoglycan monomer, NADP+, heme, lipid, and carotenoid biosynthesis) or PM (specifically, those catalyzing lipopolysaccharide, molybdopterin, FAD, and phylloquinol biosynthesis). We also identified the proteins involved in the TM and PM electron transport chains. The majority of ribosomal proteins and enzymes synthesizing the storage compound polyhydroxybuyrate formed distinct clusters within the data, suggesting similar subcellular distributions to one another, as expected for proteins operating within multicomponent structures. Moreover, heterogeneity within membrane regions was observed, indicating further cellular complexity. Cyanobacterial TM protein localization was conserved in Arabidopsis (Arabidopsis thaliana) chloroplasts, suggesting similar proteome organization in more developed photosynthetic organisms. Successful application of this technique in Synechocystis suggests it could be applied to mapping the proteomes of other cyanobacteria and single-celled organisms. The organization of the cyanobacterial cell revealed here substantially aids our understanding of these environmentally and biotechnologically important organisms.
Collapse
Affiliation(s)
- Laura L Baers
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Lisa M Breckels
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Computational Proteomics Unit, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Laurent Gatto
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- Computational Proteomics Unit, Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Michael J Deery
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Tim J Stevens
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH United Kingdom
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - David J Lea-Smith
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
24
|
Guyeux C, Charr JC, Tran HTM, Furtado A, Henry RJ, Crouzillat D, Guyot R, Hamon P. Evaluation of chloroplast genome annotation tools and application to analysis of the evolution of coffee species. PLoS One 2019; 14:e0216347. [PMID: 31188829 PMCID: PMC6561552 DOI: 10.1371/journal.pone.0216347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Chloroplast sequences are widely used for phylogenetic analysis due to their high degree of conservation in plants. Whole chloroplast genomes can now be readily obtained for plant species using new sequencing methods, giving invaluable data for plant evolution However new annotation methods are required for the efficient analysis of this data to deliver high quality phylogenetic analyses. In this study, the two main tools for chloroplast genome annotation were compared. More consistent detection and annotation of genes were produced with GeSeq when compared to the currently used Dogma. This suggests that the annotation of most of the previously annotated chloroplast genomes should now be updated. GeSeq was applied to species related to coffee, including 16 species of the Coffea and Psilanthus genera to reconstruct the ancestral chloroplast genomes and to evaluate their phylogenetic relationships. Eight genes in the plant chloroplast pan genome (consisting of 92 genes) were always absent in the coffee species analyzed. Notably, the two main cultivated coffee species (i.e. Arabica and Robusta) did not group into the same clade and differ in their pattern of gene evolution. While Arabica coffee (Coffea arabica) belongs to the Coffea genus, Robusta coffee (Coffea canephora) is associated with the Psilanthus genus. A more extensive survey of related species is required to determine if this is a unique attribute of Robusta coffee or a more widespread feature of coffee tree species.
Collapse
Affiliation(s)
- Christophe Guyeux
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Jean-Claude Charr
- Femto-ST Institute, UMR 6174 CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Hue T. M. Tran
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | | | - Romain Guyot
- Institut de Recherche pour le Développement, UMR IPME, CIRAD, Université de Montpellier, Montpellier, France
- Department of Electronics and Automatization, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Perla Hamon
- Institut de Recherche pour le Développement, UMR DIADE, Université de Montpellier, Montpellier, France
| |
Collapse
|
25
|
Johnston IG. Tension and Resolution: Dynamic, Evolving Populations of Organelle Genomes within Plant Cells. MOLECULAR PLANT 2019; 12:764-783. [PMID: 30445187 DOI: 10.1016/j.molp.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Mitochondria and plastids form dynamic, evolving populations physically embedded in the fluctuating environment of the plant cell. Their evolutionary heritage has shaped how the cell controls the genetic structure and the physical behavior of its organelle populations. While the specific genes involved in these processes are gradually being revealed, the governing principles underlying this controlled behavior remain poorly understood. As the genetic and physical dynamics of these organelles are central to bioenergetic performance and plant physiology, this challenges both fundamental biology and strategies to engineer better-performing plants. This article reviews current knowledge of the physical and genetic behavior of mitochondria and chloroplasts in plant cells. An overarching hypothesis is proposed whereby organelles face a tension between genetic robustness and individual control and responsiveness, and different species resolve this tension in different ways. As plants are immobile and thus subject to fluctuating environments, their organelles are proposed to favor individual responsiveness, sacrificing genetic robustness. Several notable features of plant organelles, including large genomes, mtDNA recombination, fragmented organelles, and plastid/mitochondrial differences may potentially be explained by this hypothesis. Finally, the ways that quantitative and systems biology can help shed light on the plethora of open questions in this field are highlighted.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham, UK; Birmingham Institute for Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
26
|
Yang Z, Huang Y, An W, Zheng X, Huang S, Liang L. Sequencing and Structural Analysis of the Complete Chloroplast Genome of the Medicinal Plant Lycium chinense Mill. PLANTS (BASEL, SWITZERLAND) 2019; 8:E87. [PMID: 30987216 PMCID: PMC6524360 DOI: 10.3390/plants8040087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
Lycium chinense Mill, an important Chinese herbal medicine, is widely used as a dietary supplement and food. Here the chloroplast (CP) genome of L. chinense was sequenced and analyzed, revealing a size of 155,756 bp and with a 37.8% GC content. The L. chinense CP genome comprises a large single copy region (LSC) of 86,595 bp and a small single copy region (SSC) of 18,209 bp, and two inverted repeat regions (IRa and IRb) of 25,476 bp separated by the single copy regions. The genome encodes 114 genes, 16 of which are duplicated. Most of the 85 protein-coding genes (CDS) had standard ATG start codons, while 3 genes including rps12, psbL and ndhD had abnormal start codons (ACT and ACG). In addition, a strong A/T bias was found in the majority of simple sequence repeats (SSRs) detected in the CP genome. Analysis of the phylogenetic relationships among 16 species revealed that L. chinense is a sister taxon to Lycium barbarum. Overall, the complete sequence and annotation of the L. chinense CP genome provides valuable genetic information to facilitate precise understanding of the taxonomy, species and phylogenetic evolution of the Solanaceae family.
Collapse
Affiliation(s)
- Zerui Yang
- DNA Barcoding Laboratory for TCM Authentication, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yuying Huang
- DNA Barcoding Laboratory for TCM Authentication, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Wenli An
- DNA Barcoding Laboratory for TCM Authentication, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiasheng Zheng
- DNA Barcoding Laboratory for TCM Authentication, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Song Huang
- DNA Barcoding Laboratory for TCM Authentication, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Lingling Liang
- Pharmaceutical School, YouJiang Medical University for Nationalities, Baise 533000, China.
| |
Collapse
|
27
|
Sobanski J, Giavalisco P, Fischer A, Kreiner JM, Walther D, Schöttler MA, Pellizzer T, Golczyk H, Obata T, Bock R, Sears BB, Greiner S. Chloroplast competition is controlled by lipid biosynthesis in evening primroses. Proc Natl Acad Sci U S A 2019; 116:5665-5674. [PMID: 30833407 PMCID: PMC6431223 DOI: 10.1073/pnas.1811661116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In most eukaryotes, organellar genomes are transmitted preferentially by the mother, but molecular mechanisms and evolutionary forces underlying this fundamental biological principle are far from understood. It is believed that biparental inheritance promotes competition between the cytoplasmic organelles and allows the spread of so-called selfish cytoplasmic elements. Those can be, for example, fast-replicating or aggressive chloroplasts (plastids) that are incompatible with the hybrid nuclear genome and therefore maladaptive. Here we show that the ability of plastids to compete against each other is a metabolic phenotype determined by extremely rapidly evolving genes in the plastid genome of the evening primrose Oenothera Repeats in the regulatory region of accD (the plastid-encoded subunit of the acetyl-CoA carboxylase, which catalyzes the first and rate-limiting step of lipid biosynthesis), as well as in ycf2 (a giant reading frame of still unknown function), are responsible for the differences in competitive behavior of plastid genotypes. Polymorphisms in these genes influence lipid synthesis and most likely profiles of the plastid envelope membrane. These in turn determine plastid division and/or turnover rates and hence competitiveness. This work uncovers cytoplasmic drive loci controlling the outcome of biparental chloroplast transmission. Here, they define the mode of chloroplast inheritance, as plastid competitiveness can result in uniparental inheritance (through elimination of the "weak" plastid) or biparental inheritance (when two similarly "strong" plastids are transmitted).
Collapse
Affiliation(s)
- Johanna Sobanski
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Department Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Axel Fischer
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Julia M Kreiner
- Department of Ecology & Evolutionary Biology, University of Toronto, ON M5S 3B2, Canada
| | - Dirk Walther
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Tommaso Pellizzer
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynów 1I, 20-708, Poland
| | - Toshihiro Obata
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Ralph Bock
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Barbara B Sears
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312
| | - Stephan Greiner
- Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
28
|
Yu X, Zuo L, Lu D, Lu B, Yang M, Wang J. Comparative analysis of chloroplast genomes of five Robinia species: Genome comparative and evolution analysis. Gene 2019; 689:141-151. [DOI: 10.1016/j.gene.2018.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/18/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022]
|
29
|
He D, Gichira AW, Li Z, Nzei JM, Guo Y, Wang Q, Chen J. Intergeneric Relationships within the Early-Diverging Angiosperm Family Nymphaeaceae Based on Chloroplast Phylogenomics. Int J Mol Sci 2018; 19:E3780. [PMID: 30486510 PMCID: PMC6320877 DOI: 10.3390/ijms19123780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 02/02/2023] Open
Abstract
The order Nymphaeales, consisting of three families with a record of eight genera, has gained significant interest from botanists, probably due to its position as a basal angiosperm. The phylogenetic relationships within the order have been well studied; however, a few controversial nodes still remain in the Nymphaeaceae. The position of the Nuphar genus and the monophyly of the Nymphaeaceae family remain uncertain. This study adds to the increasing number of the completely sequenced plastid genomes of the Nymphaeales and applies a large chloroplast gene data set in reconstructing the intergeneric relationships within the Nymphaeaceae. Five complete chloroplast genomes were newly generated, including a first for the monotypic Euryale genus. Using a set of 66 protein-coding genes from the chloroplast genomes of 17 taxa, the phylogenetic position of Nuphar was determined and a monophyletic Nymphaeaceae family was obtained with convincing statistical support from both partitioned and unpartitioned data schemes. Although genomic comparative analyses revealed a high degree of synteny among the chloroplast genomes of the ancient angiosperms, key minor variations were evident, particularly in the contraction/expansion of the inverted-repeat regions and in RNA-editing events. Genome structure, and gene content and arrangement were highly conserved among the chloroplast genomes. The intergeneric relationships defined in this study are congruent with those inferred using morphological data.
Collapse
Affiliation(s)
- Dingxuan He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- School of Biological and Pharmaceutical Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
| | - Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - John M Nzei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Youhao Guo
- Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
30
|
Naef A, Abdullah R, Abdul Rashid N. Multiobjective optimization to reconstruct biological networks. Biosystems 2018; 174:22-36. [PMID: 30236951 DOI: 10.1016/j.biosystems.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/16/2018] [Accepted: 09/11/2018] [Indexed: 11/29/2022]
Abstract
Automated methods for reconstructing biological networks are becoming increasingly important in computational systems biology. Public databases containing information on biological processes for hundreds of organisms are assisting in the inference of such networks. This paper proposes a multiobjective genetic algorithm method to reconstruct networks related to metabolism and protein interaction. Such a method utilizes structural properties of scale-free networks and known biological information about individual genes and proteins to reconstruct metabolic networks represented as enzyme graph and protein interaction networks. We test our method on four commonly-used protein networks in yeast. Two are networks related to the metabolism of the yeast: KEGG and BioCyc. The other two datasets are networks from protein-protein interaction: Krogan and BioGrid. Experimental results show that the proposed method is capable of reconstructing biological networks by combining different omics data and structural characteristics of scale-free networks. However, the proposed method to reconstruct the network is time-consuming because several evaluations must be performed. We parallelized this method on GPU to overcome this limitation by parallelizing the objective functions of the presented method. The parallel method shows a significant reduction in the execution time over the GPU card which yields a 492-fold speedup.
Collapse
Affiliation(s)
- Ahmed Naef
- School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - Rosni Abdullah
- School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia; National Advanced IPv6 Centre (Nav6) 6th Floor, School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Nur'Aini Abdul Rashid
- College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Saudi Arabia
| |
Collapse
|
31
|
Amado Cattáneo RM, Diambra L, McCarthy AN. Phylogenomics of tomato chloroplasts using assembly and alignment-free method. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 29:1128-1138. [PMID: 29338473 DOI: 10.1080/24701394.2017.1419214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phylogenetics and population genetics are central disciplines in evolutionary biology. Both are based on the comparison of single DNA sequences, or a concatenation of a number of these. However, with the advent of next-generation DNA sequencing technologies, the approaches that consider large genomic data sets are of growing importance for the elucidation of evolutionary relationships among species. Among these approaches, the assembly and alignment-free methods which allow an efficient distance computation and phylogeny reconstruction are of great importance. However, it is not yet clear under what quality conditions and abundance of genomic data such methods are able to infer phylogenies accurately. In the present study we assess the method originally proposed by Fan et al. for whole genome data, in the elucidation of Tomatoes' chloroplast phylogenetics using short read sequences. We find that this assembly and alignment-free method is capable of reproducing previous results under conditions of high coverage, given that low frequency k-mers (i.e. error prone data) are effectively filtered out. Finally, we present a complete chloroplast phylogeny for the best data quality candidates of the recently published 360 tomato genomes.
Collapse
Affiliation(s)
| | - Luis Diambra
- a Facultad de Ciencias Exactas-UNLP , CREG , La Plata , Argentina.,b CONICET , Buenos Aires , Argentina
| | - Andrés Norman McCarthy
- a Facultad de Ciencias Exactas-UNLP , CREG , La Plata , Argentina.,c CICPBA , La Plata , Argentina
| |
Collapse
|
32
|
Piot A, Hackel J, Christin PA, Besnard G. One-third of the plastid genes evolved under positive selection in PACMAD grasses. PLANTA 2018; 247:255-266. [PMID: 28956160 DOI: 10.1007/s00425-017-2781-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 05/10/2023]
Abstract
We demonstrate that rbcL underwent strong positive selection during the C 3 -C 4 photosynthetic transitions in PACMAD grasses, in particular the 3' end of the gene. In contrast, selective pressures on other plastid genes vary widely and environmental drivers remain to be identified. Plastid genomes have been widely used to infer phylogenetic relationships among plants, but the selective pressures driving their evolution have not been systematically investigated. In our study, we analyse all protein-coding plastid genes from 113 species of PACMAD grasses (Poaceae) to evaluate the selective pressures driving their evolution. Our analyses confirm that the gene encoding the large subunit of RubisCO (rbcL) evolved under strong positive selection after C3-C4 photosynthetic transitions. We highlight new codons in rbcL that underwent parallel changes, in particular those encoding the C-terminal part of the protein. C3-C4 photosynthetic shifts did not significantly affect the evolutionary dynamics of other plastid genes. Instead, while two-third of the plastid genes evolved under purifying selection or neutrality, 25 evolved under positive selection across the PACMAD clade. This set of genes encode for proteins involved in diverse functions, including self-replication of plastids and photosynthesis. Our results suggest that plastid genes widely adapt to changing ecological conditions, but factors driving this evolution largely remain to be identified.
Collapse
Affiliation(s)
- Anthony Piot
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Jan Hackel
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Guillaume Besnard
- Laboratoire Evolution and Diversité Biologique (EDB, UMR 5174), CNRS/ENSFEA/IRD/Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
33
|
Park I, Kim WJ, Yang S, Yeo SM, Li H, Moon BC. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species. PLoS One 2017; 12:e0184257. [PMID: 28863163 PMCID: PMC5581188 DOI: 10.1371/journal.pone.0184257] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/21/2017] [Indexed: 11/18/2022] Open
Abstract
Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC–trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.
Collapse
Affiliation(s)
- Inkyu Park
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Wook-jin Kim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sungyu Yang
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sang-Min Yeo
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hulin Li
- Department of Agronomy, Yanbian University Agriculture College, Yanji, China
| | - Byeong Cheol Moon
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Asaf S, Khan AL, Khan MA, Waqas M, Kang SM, Yun BW, Lee IJ. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis. Sci Rep 2017; 7:7556. [PMID: 28790364 PMCID: PMC5548756 DOI: 10.1038/s41598-017-07891-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/05/2017] [Indexed: 11/26/2022] Open
Abstract
We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.
Collapse
Affiliation(s)
- Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abdul Latif Khan
- Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
35
|
Wang CL, Ding MQ, Zou CY, Zhu XM, Tang Y, Zhou ML, Shao JR. Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences. Sci Rep 2017; 7:6514. [PMID: 28747666 PMCID: PMC5529468 DOI: 10.1038/s41598-017-06638-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/15/2017] [Indexed: 11/09/2022] Open
Abstract
Buckwheat is a nutritional and economically crop belonging to Polygonaceae, Fagopyrum. To better understand the mutation patterns and evolution trend in the chloroplast (cp) genome of buckwheat, and found sufficient number of variable regions to explore the phylogenetic relationships of this genus, two complete cp genomes of buckwheat including Fagopyrum dibotrys (F. dibotrys) and Fagopyrum luojishanense (F. luojishanense) were sequenced, and other two Fagopyrum cp genomes were used for comparative analysis. After morphological analysis, the main difference among these buckwheat were height, leaf shape, seeds and flower type. F. luojishanense was distinguishable from the cultivated species easily. Although the F. dibotrys and two cultivated species has some similarity, they different in habit and component contents. The cp genome of F. dibotrys was 159,320 bp while the F. luojishanense was 159,265 bp. 48 and 61 SSRs were found in F. dibotrys and F. luojishanense respectively. Meanwhile, 10 highly variable regions among these buckwheat species were located precisely. The phylogenetic relationships among four Fagopyrum species based on complete cp genomes was showed. The results suggested that F. dibotrys is more closely related to Fagopyrum tataricum. These data provided valuable genetic information for Fagopyrum species identification, taxonomy, phylogenetic study and molecular breeding.
Collapse
Affiliation(s)
- Cheng-Long Wang
- School of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Meng-Qi Ding
- School of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, 625014, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chen-Yan Zou
- School of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Xue-Mei Zhu
- School of Resources and Environment, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu Tang
- Department of Tourism Culture, Sichuan Higher Institute of Cuisine, Chengdu, Sichuan, 610072, China
| | - Mei-Liang Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ji-Rong Shao
- School of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, 625014, China.
| |
Collapse
|
36
|
Satjarak A, Graham LE. Comparative DNA sequence analyses of Pyramimonas parkeae (Prasinophyceae) chloroplast genomes. JOURNAL OF PHYCOLOGY 2017; 53:415-424. [PMID: 28130930 DOI: 10.1111/jpy.12515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
Prasinophytes form a paraphyletic assemblage of early diverging green algae, which have the potential to reveal the traits of the last common ancestor of the main two green lineages: (i) chlorophyte algae and (ii) streptophyte algae. Understanding the genetic composition of prasinophyte algae is fundamental to understanding the diversification and evolutionary processes that may have occurred in both green lineages. In this study, we sequenced the chloroplast genome of Pyramimonas parkeae NIES254 and compared it with that of P. parkeae CCMP726, the only other fully sequenced P. parkeae chloroplast genome. The results revealed that P. parkeae chloroplast genomes are surprisingly variable. The chloroplast genome of NIES254 was larger than that of CCMP726 by 3,204 bp, the NIES254 large single copy was 288 bp longer, the small single copy was 5,088 bp longer, and the IR was 1,086 bp shorter than that of CCMP726. Similarity values of the two strains were almost zero in four large hot spot regions. Finally, the strains differed in copy number for three protein-coding genes: ycf20, psaC, and ndhE. Phylogenetic analyses using 16S and 18S rDNA and rbcL sequences resolved a clade consisting of these two P. parkeae strains and a clade consisting of these plus other Pyramimonas isolates. These results are consistent with past studies indicating that prasinophyte chloroplast genomes display a higher level of variation than is commonly found among land plants. Consequently, prasinophyte chloroplast genomes may be less useful for inferring the early history of Viridiplantae than has been the case for land plant diversification.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Liu LX, Li R, Worth JRP, Li X, Li P, Cameron KM, Fu CX. The Complete Chloroplast Genome of Chinese Bayberry ( Morella rubra, Myricaceae): Implications for Understanding the Evolution of Fagales. FRONTIERS IN PLANT SCIENCE 2017; 8:968. [PMID: 28713393 PMCID: PMC5492642 DOI: 10.3389/fpls.2017.00968] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
Morella rubra (Myricaceae), also known as Chinese bayberry, is an economically important, subtropical, evergreen fruit tree. The phylogenetic placement of Myricaceae within Fagales and the origin of Chinese bayberry's domestication are still unresolved. In this study, we report the chloroplast (cp) genome of M. rubra and take advantage of several previously reported chloroplast genomes from related taxa to examine patterns of evolution in Fagales. The cp genomes of three M. rubra individuals were 159,478, 159,568, and 159.586 bp in length, respectively, comprising a pair of inverted repeat (IR) regions (26,014-26,069 bp) separated by a large single-copy (LSC) region (88,683-88,809 bp) and a small single-copy (SSC) region (18,676-18,767 bp). Each cp genome encodes the same 111 unique genes, consisting of 77 different protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes, with 18 duplicated in the IRs. Comparative analysis of chloroplast genomes from four representative Fagales families revealed the loss of infA and the pseudogenization of ycf15 in all analyzed species, and rpl22 has been pseudogenized in M. rubra and Castanea mollissima, but not in Juglans regia or Ostrya rehderiana. The genome size variations are detected mainly due to the length of intergenic spacers rather than gene loss, gene pseudogenization, IR expansion or contraction. The phylogenetic relationships yielded by the complete genome sequences strongly support the placement of Myricaceae as sister to Juglandaceae. Furthermore, seven cpDNA markers (trnH-psbA, psbA-trnK, rps2-rpoC2, ycf4-cemA, petD-rpoA, ndhE-ndhG, and ndhA intron) with relatively high levels of variation and variable cpSSR loci were identified within M. rubra, which will be useful in future research characterizing the population genetics of M. rubra and investigating the origin of domesticated Chinese bayberry.
Collapse
Affiliation(s)
- Lu-Xian Liu
- Laboratory of Plant Germplasm and Genetic Engineering, College of Life Sciences, Henan UniversityKaifeng, China
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
| | - Rui Li
- Food Inspection and Testing Institute of Henan ProvinceZhengzhou, China
| | - James R. P. Worth
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research InstituteIbaraki, Japan
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang UniversityHangzhou, China
| | - Pan Li
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
- *Correspondence: Pan Li,
| | | | - Cheng-Xin Fu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang UniversityHangzhou, China
| |
Collapse
|
38
|
Tong W, Kim TS, Park YJ. Rice Chloroplast Genome Variation Architecture and Phylogenetic Dissection in Diverse Oryza Species Assessed by Whole-Genome Resequencing. RICE (NEW YORK, N.Y.) 2016; 9:57. [PMID: 27757948 PMCID: PMC5069220 DOI: 10.1186/s12284-016-0129-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/07/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chloroplast genome variations have been detected, despite its overall conserved structure, which has been valuable for plant population genetics and evolutionary studies. Here, we described chloroplast variation architecture of 383 rice accessions from diverse regions and different ecotypes, in order to mine the rice chloroplast genome variation architecture and phylogenetic. RESULTS A total of 3677 variations across the chloroplast genome were identified with an average density of 27.33 per kb, in which wild rice showing a higher variation density than cultivated groups. Chloroplast genome nucleotide diversity investigation indicated a high degree of diversity in wild rice than in cultivated rice. Genetic distance estimation revealed that African rice showed a low level of breeding and connectivity with the Asian rice, suggesting the big distinction of them. Population structure and principal component analysis revealed the existence of clear clustering of African and Asian rice, as well as the indica and japonica in Asian cultivated rice. Phylogenetic analysis based on maximum likelihood and Bayesian inference methods and the population splits test suggested and supported the independent origins of indica and japonica within Asian cultivated rice. In addition, the African cultivated rice was thought to be domesticated differently from Asian cultivated rice. CONCLUSIONS The chloroplast genome variation architecture in Asian and African rice are different, as well as within Asian or African rice. Wild rice and cultivated rice also have distinct nucleotide diversity or genetic distance. In chloroplast level, the independent origins of indica and japonica within Asian cultivated rice were suggested and the African cultivated rice was thought to be domesticated differently from Asian cultivated rice. These results will provide more candidate evidence for the further rice chloroplast genomic and evolution studies.
Collapse
Affiliation(s)
- Wei Tong
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, 32439 Republic of Korea
| | - Tae-Sung Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, 32439 Republic of Korea
- Department of Agricultural Sciences, College of Natural Sciences, Korea National Open University, Seoul, 03087 Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan, 32439 Republic of Korea
- Center for Crop Genetic Resource and Breeding (CCGRB), Kongju National University, Cheonan, 31080 Republic of Korea
| |
Collapse
|
39
|
Olejniczak SA, Łojewska E, Kowalczyk T, Sakowicz T. Chloroplasts: state of research and practical applications of plastome sequencing. PLANTA 2016; 244:517-27. [PMID: 27259501 PMCID: PMC4983300 DOI: 10.1007/s00425-016-2551-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/29/2016] [Indexed: 05/07/2023]
Abstract
This review presents origins, structure and expression of chloroplast genomes. It also describes their sequencing, analysis and modification, focusing on potential practical uses and biggest challenges of chloroplast genome modification. During the evolution of eukaryotes, cyanobacteria are believed to have merged with host heterotrophic cell. Afterward, most of cyanobacterial genes from cyanobacteria were transferred to cell nucleus or lost in the process of endosymbiosis. As a result of these changes, a primary plastid was established. Nowadays, plastid genome (plastome) is almost always circular, has a size of 100-200 kbp (120-160 in land plants), and harbors 100-120 highly conserved unique genes. Plastids have their own gene expression system, which is similar to one of their cyanobacterial ancestors. Two different polymerases, plastid-derived PEP and nucleus-derived NEP, participate in transcription. Translation is similar to the one observed in cyanobacteria, but it also utilizes protein translation factors and positive regulatory mRNA elements absent from bacteria. Plastoms play an important role in genetic transformation. Transgenes are introduced into them either via gene gun (in undamaged tissues) or polyethylene glycol treatment (when protoplasts are targeted). Antibiotic resistance markers are the most common tool used for selection of transformed plants. In recent years, plastome transformation emerged as a promising alternative to nuclear transformation because of (1) high yield of target protein, (2) removing the risk of outcrossing with weeds, (3) lack of silencing mechanisms, and (4) ability to engineer the entire metabolic pathways rather than single gene traits. Currently, the main directions of such research regard: developing efficient enzyme, vaccine antigen, and biopharmaceutical protein production methods in plant cells and improving crops by increasing their resistance to a wide array of biotic and abiotic stresses. Because of that, the detailed knowledge of plastome structure and mechanism of functioning started to play a major role.
Collapse
Affiliation(s)
- Szymon Adam Olejniczak
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| | - Ewelina Łojewska
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Tomasz Sakowicz
- Department of Genetics and Plant Molecular Biology and Biotechnology, The University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| |
Collapse
|
40
|
Ni L, Zhao Z, Dorje G, Ma M. The Complete Chloroplast Genome of Ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae), an Alpine Tibetan Herb. PLoS One 2016; 11:e0158488. [PMID: 27391235 PMCID: PMC4938499 DOI: 10.1371/journal.pone.0158488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Scrophularia dentata is an important Tibetan medicinal plant and traditionally used for the treatment of exanthema and fever in Traditional Tibetan Medicine (TTM). However, there is little sequence and genomic information available for S. dentata. In this paper, we report the complete chloroplast genome sequence of S. dentata and it is the first sequenced member of the Sect. Tomiophyllum within Scrophularia (Scrophulariaceae). The gene order and organization of the chloroplast genome of S. dentata are similar to other Lamiales chloroplast genomes. The plastome is 152,553 bp in length and includes a pair of inverted repeats (IRs) of 25,523 bp that separate a large single copy (LSC) region of 84,058 bp and a small single copy (SSC) region of 17,449 bp. It has 38.0% GC content and includes 114 unique genes, of which 80 are protein-coding, 30 are transfer RNA, and 4 are ribosomal RNA. Also, it contains 21 forward repeats, 19 palindrome repeats and 41 simple sequence repeats (SSRs). The repeats and SSRs within S. dentata were compared with those of S. takesimensis and present certain discrepancies. The chloroplast genome of S. dentata was compared with other five publicly available Lamiales genomes from different families. All the coding regions and non-coding regions (introns and intergenic spacers) within the six chloroplast genomes have been extracted and analysed. Furthermore, the genome divergent hotspot regions were identified. Our studies could provide basic data for the alpine medicinal species conservation and molecular phylogenetic researches of Scrophulariaceae and Lamiales.
Collapse
Affiliation(s)
- Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhili Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail:
| | - Gaawe Dorje
- Tibetan Traditional Medical College, Lhasa, China
| | - Mi Ma
- Tibetan Traditional Medical College, Lhasa, China
| |
Collapse
|
41
|
Lim GS, Barrett CF, Pang CC, Davis JI. Drastic reduction of plastome size in the mycoheterotrophic Thismia tentaculata relative to that of its autotrophic relative Tacca chantrieri. AMERICAN JOURNAL OF BOTANY 2016; 103:1129-37. [PMID: 27335389 DOI: 10.3732/ajb.1600042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/06/2016] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Heterotrophic angiosperms tend to have reduced plastome sizes relative to those of their autotrophic relatives because genes that code for proteins involved in photosynthesis are lost. However, some plastid-encoded proteins may have vital nonphotosynthetic functions, and the plastome therefore may be retained after the loss of photosynthesis. METHODS We sequenced the plastome of the mycoheterotrophic species Thismia tentaculata and a representative of its sister genus, Tacca chantrieri, using next-generation technology, and we compared sequences and structures of genes and genomes of these species. KEY RESULTS The plastome of Tacca chantrieri is similar to those of other autotrophic taxa of Dioscoreaceae, except in a few local rearrangements and one gene loss. The plastome of Thismia tentaculata is ca. 16 kbp long with a quadripartite structure and is among the smallest known plastomes. Synteny is minimal between the plastomes of Tacca chantrieri and Thismia tentaculata. The latter includes only 12 candidate genes, with all except accD involved in protein synthesis. Of the 12 genes, trnE, trnfM, and accD are frequently among the few that remain in depauperate plastomes. CONCLUSIONS The plastome of Thismia tentaculata, like those of most other heterotrophic plants, includes a small number of genes previously suggested to be essential to plastome survival.
Collapse
Affiliation(s)
- Gwynne S Lim
- The New York Botanical Garden, Pfizer Plant Research Laboratory, 2900 Southern Boulevard, Bronx, New York 10458 USA L. H. Bailey Hortorium, Section of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, New York 14853 USA
| | - Craig F Barrett
- Department of Biology, Life Sciences Building, PO Box 6057, Morgantown, West Virginia 26506 USA
| | - Chun-Chiu Pang
- School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jerrold I Davis
- L. H. Bailey Hortorium, Section of Plant Biology, 412 Mann Library Building, Cornell University, Ithaca, New York 14853 USA
| |
Collapse
|
42
|
PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis. Cell Discov 2016; 2:16003. [PMID: 27462450 PMCID: PMC4870678 DOI: 10.1038/celldisc.2016.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/27/2016] [Indexed: 11/14/2022] Open
Abstract
The biogenesis of photosystem I (PSI), cytochrome b6f (Cytb6f) and NADH dehydrogenase (NDH) complexes relies on the spatially and temporally coordinated expression and translation of both nuclear and chloroplast genes. Here we report the identification of photosystem biogenesis regulator 1 (PBR1), a nuclear-encoded chloroplast RNA-binding protein that regulates the concerted biogenesis of NDH, PSI and Cytb6f complexes. We identified Ycf1, one of the two largest chloroplast genome-encoded open reading frames as the direct downstream target protein of PBR1. Biochemical and molecular analyses reveal that PBR1 regulates Ycf1 translation by directly binding to its mRNA. Surprisingly, we further demonstrate that relocation of the chloroplast gene Ycf1 fused with a plastid-transit sequence to the nucleus bypasses the requirement of PBR1 for Ycf1 translation, which sufficiently complements the defects in biogenesis of NDH, PSI and Cytb6f complexes in PBR1-deficient plants. Remarkably, the nuclear-encoded PBR1 tightly controls the expression of the chloroplast gene Ycf1 at the translational level, which is sufficient to sustain the coordinated biogenesis of NDH, PSI and Cytb6f complexes as a whole. Our findings provide deep insights into better understanding of how a predominant nuclear-encoded factor can act as a migratory mediator and undergoes selective translational regulation of the target plastid gene in controlling biogenesis of photosynthetic complexes.
Collapse
|
43
|
Johnston IG, Williams BP. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention. Cell Syst 2016; 2:101-11. [PMID: 27135164 DOI: 10.1016/j.cels.2016.01.013] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/14/2015] [Accepted: 01/27/2016] [Indexed: 11/18/2022]
Abstract
Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species.
Collapse
Affiliation(s)
- Iain G Johnston
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
44
|
Wang Y, Zhan DF, Jia X, Mei WL, Dai HF, Chen XT, Peng SQ. Complete Chloroplast Genome Sequence of Aquilaria sinensis (Lour.) Gilg and Evolution Analysis within the Malvales Order. FRONTIERS IN PLANT SCIENCE 2016; 7:280. [PMID: 27014304 PMCID: PMC4781844 DOI: 10.3389/fpls.2016.00280] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/21/2016] [Indexed: 05/11/2023]
Abstract
Aquilaria sinensis (Lour.) Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp) genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A. sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb) of 26,113 bp each. The GC content of the genome was 37.11%. The A. sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A. sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A. sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A. sinensis as a sister to G. bancanus within the Malvales order. The complete A. sinensis cp genome information will be highly beneficial for further studies on this traditional medicinal plant. Moreover, the results will enhance our understanding about the evolution of cp genomes of the Malvales order, particularly with regard to the role of A. sinensis in plant systematics and evolution.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Di-Feng Zhan
- College of Agronomy, Hainan UniversityHaikou, China
| | - Xian Jia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen UniversityXiamen, China
| | - Wen-Li Mei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Hao-Fu Dai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiong-Ting Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Xiong-Ting Chen
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Shi-Qing Peng
| |
Collapse
|
45
|
Lu RS, Li P, Qiu YX. The Complete Chloroplast Genomes of Three Cardiocrinum (Liliaceae) Species: Comparative Genomic and Phylogenetic Analyses. FRONTIERS IN PLANT SCIENCE 2016; 7:2054. [PMID: 28119727 PMCID: PMC5222849 DOI: 10.3389/fpls.2016.02054] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/22/2016] [Indexed: 05/22/2023]
Abstract
The genus Cardiocrinum (Endlicher) Lindley (Liliaceae) comprises three herbaceous perennial species that are distributed in East Asian temperate-deciduous forests. Although all three Cardiocrinum species have horticultural and medical uses, studies related to species identification and molecular phylogenetic analysis of this genus have not been reported. Here, we report the complete chloroplast (cp) sequences of each Cardiocrinum species using Illumina paired-end sequencing technology. The cp genomes of C. giganteum, C. cathayanum, and C. cordatum were found to be 152,653, 152,415, and 152,410 bp in length, respectively, including a pair of inverted repeat (IR) regions (26,364-26,500 bp) separated by a large single-copy (LSC) region (82,186-82,368 bp) and a small single-copy (SSC) region (17,309-17,344 bp). Each cp genome contained the same 112 unique genes consisting of 30 transfer RNA genes, 4 ribosomal RNA genes, and 78 protein-coding genes. Gene content, gene order, AT content, and IR/SC boundary structures were almost the same among the three Cardiocrinum cp genomes, yet their lengths varied due to contraction/expansion of the IR/SC borders. Simple sequence repeat (SSR) analysis further indicated the richest SSRs in these cp genomes to be A/T mononucleotides. A total of 45, 57, and 45 repeats were identified in C. giganteum, C. cathayanum, and C. cordatum, respectively. Six cpDNA markers (rps19, rpoC2-rpoC1, trnS-psbZ, trnM-atpE, psaC-ndhE, ycf15-ycf1) with the percentage of variable sites higher than 0.95% were identified. Phylogenomic analyses of the complete cp genomes and 74 protein-coding genes strongly supported the monophyly of Cardiocrinum and a sister relationship between C. cathayanum and C. cordatum. The availability of these cp genomes provides valuable genetic information for further population genetics and phylogeography studies on Cardiocrinum.
Collapse
|
46
|
Kim HT, Kim JS, Moore MJ, Neubig KM, Williams NH, Whitten WM, Kim JH. Seven New Complete Plastome Sequences Reveal Rampant Independent Loss of the ndh Gene Family across Orchids and Associated Instability of the Inverted Repeat/Small Single-Copy Region Boundaries. PLoS One 2015; 10:e0142215. [PMID: 26558895 PMCID: PMC4641739 DOI: 10.1371/journal.pone.0142215] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/19/2015] [Indexed: 12/26/2022] Open
Abstract
Earlier research has revealed that the ndh loci have been pseudogenized, truncated, or deleted from most orchid plastomes sequenced to date, including in all available plastomes of the two most species-rich subfamilies, Orchidoideae and Epidendroideae. This study sought to resolve deeper-level phylogenetic relationships among major orchid groups and to refine the history of gene loss in the ndh loci across orchids. The complete plastomes of seven orchids, Oncidium sphacelatum (Epidendroideae), Masdevallia coccinea (Epidendroideae), Sobralia callosa (Epidendroideae), Sobralia aff. bouchei (Epidendroideae), Elleanthus sodiroi (Epidendroideae), Paphiopedilum armeniacum (Cypripedioideae), and Phragmipedium longifolium (Cypripedioideae) were sequenced and analyzed in conjunction with all other available orchid and monocot plastomes. Most ndh loci were found to be pseudogenized or lost in Oncidium, Paphiopedilum and Phragmipedium, but surprisingly, all ndh loci were found to retain full, intact reading frames in Sobralia, Elleanthus and Masdevallia. Character mapping suggests that the ndh genes were present in the common ancestor of orchids but have experienced independent, significant losses at least eight times across four subfamilies. In addition, ndhF gene loss was correlated with shifts in the position of the junction of the inverted repeat (IR) and small single-copy (SSC) regions. The Orchidaceae have unprecedented levels of homoplasy in ndh gene presence/absence, which may be correlated in part with the unusual life history of orchids. These results also suggest that ndhF plays a role in IR/SSC junction stability.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea
| | - Jung Sung Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea
| | - Michael J. Moore
- Department of Biology, Oberlin College, Oberlin, Ohio, United States of America
| | - Kurt M. Neubig
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Norris H. Williams
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - W. Mark Whitten
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea
| |
Collapse
|
47
|
Tong W, He Q, Wang XQ, Yoon MY, Ra WH, Li F, Yu J, Oo WH, Min SK, Choi BW, Heo EB, Yun BK, Kim KW, Kim TS, Lee CY, Park YJ. A chloroplast variation map generated using whole genome re-sequencing of Korean landrace rice reveals phylogenetic relationships amongOryza sativasubspecies. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Tong
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Qiang He
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Xiao-Qiang Wang
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Min-Young Yoon
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Won-Hee Ra
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Fengpeng Li
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Jie Yu
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Win Htet Oo
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Sun-Kyung Min
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Bu-Woong Choi
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Eun-Beom Heo
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Byoung-Kook Yun
- Department of Industrial and Systems Engineering; College of Engineering; Kongju National University; Cheonan 331-717 Korea
| | - Kyu-Won Kim
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Tae-Sung Kim
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
| | - Chang-Yong Lee
- Department of Industrial and Systems Engineering; College of Engineering; Kongju National University; Cheonan 331-717 Korea
| | - Yong-Jin Park
- Department of Plant Resources; College of Industrial Sciences; Kongju National University; Yesan 340-702 Korea
- Legume Bio-Resource Center of Green Manure; Kongju National University; Yesan 340-702 Korea
| |
Collapse
|
48
|
Cho KS, Yun BK, Yoon YH, Hong SY, Mekapogu M, Kim KH, Yang TJ. Complete Chloroplast Genome Sequence of Tartary Buckwheat (Fagopyrum tataricum) and Comparative Analysis with Common Buckwheat (F. esculentum). PLoS One 2015; 10:e0125332. [PMID: 25966355 PMCID: PMC4428892 DOI: 10.1371/journal.pone.0125332] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022] Open
Abstract
We report the chloroplast (cp) genome sequence of tartary buckwheat (Fagopyrum tataricum) obtained by next-generation sequencing technology and compared this with the previously reported common buckwheat (F. esculentum ssp. ancestrale) cp genome. The cp genome of F. tataricum has a total sequence length of 159,272 bp, which is 327 bp shorter than the common buckwheat cp genome. The cp gene content, order, and orientation are similar to those of common buckwheat, but with some structural variation at tandem and palindromic repeat frequencies and junction areas. A total of seven InDels (around 100 bp) were found within the intergenic sequences and the ycf1 gene. Copy number variation of the 21-bp tandem repeat varied in F. tataricum (four repeats) and F. esculentum (one repeat), and the InDel of the ycf1 gene was 63 bp long. Nucleotide and amino acid have highly conserved coding sequence with about 98% homology and four genes—rpoC2, ycf3, accD, and clpP—have high synonymous (Ks) value. PCR based InDel markers were applied to diverse genetic resources of F. tataricum and F. esculentum, and the amplicon size was identical to that expected in silico. Therefore, these InDel markers are informative biomarkers to practically distinguish raw or processed buckwheat products derived from F. tataricum and F. esculentum.
Collapse
Affiliation(s)
- Kwang-Soo Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, South Korea
- * E-mail:
| | - Bong-Kyoung Yun
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, South Korea
| | - Young-Ho Yoon
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, South Korea
| | - Su-Young Hong
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, South Korea
| | - Manjulatha Mekapogu
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, South Korea
| | - Kyung-Hee Kim
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Phygen Genomics Institute, Gwanak Century Tower, Kwanak-gu, Seoul, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
49
|
Twyford AD. Testing evolutionary hypotheses for DNA barcoding failure in willows. Mol Ecol 2014; 23:4674-6. [PMID: 25263402 DOI: 10.1111/mec.12892] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/03/2014] [Accepted: 08/18/2014] [Indexed: 12/26/2022]
Abstract
The goal of DNA barcoding is to enable the rapid identification of taxa from short diagnostic DNA sequence profiles. But how feasible is this objective when many evolutionary processes, such as hybridization and selective sweeps, cause alleles to be shared among related taxa? In this issue of Molecular Ecology, Percy et al. (2014) test the full suite of seven candidate plant barcoding loci in a broad geographic sample of willow species. They show exceptional plastid haplotype sharing between species across continents, with most taxa not possessing a unique barcode sequence. Using population genetic and molecular dating analyses, they implicate hybridization and selective sweeps, but not incomplete lineage sorting, as the historical processes causing widespread haplotype sharing among willow taxa. This study represents an exceptional case of how poorly barcoding can perform, and highlights methodological issues using universal organellar regions for species identification.
Collapse
Affiliation(s)
- Alex D Twyford
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY, 13244, USA; Institute of Evolutionary Biology, Ashworth Laboratories, The University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
50
|
Wang D, Yu J. Plastid-LCGbase: a collection of evolutionarily conserved plastid-associated gene pairs. Nucleic Acids Res 2014; 43:D990-5. [PMID: 25378306 PMCID: PMC4383908 DOI: 10.1093/nar/gku1070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plastids carry their own genetic material that encodes a variable set of genes that are limited in number but functionally important. Aside from orthology, the lineage-specific order and orientation of these genes are also relevant. Here, we develop a database, Plastid-LCGbase (http://lcgbase.big.ac.cn/plastid-LCGbase/), which focuses on organizational variability of plastid genes and genomes from diverse taxonomic groups. The current Plastid-LCGbase contains information from 470 plastid genomes and exhibits several unique features. First, through a genome-overview page generated from OrganellarGenomeDRAW, it displays general arrangement of all plastid genes (circular or linear). Second, it shows patterns and modes of all paired plastid genes and their physical distances across user-defined lineages, which are facilitated by a step-wise stratification of taxonomic groups. Third, it divides the paired genes into three categories (co-directionally-paired genes or CDPGs, convergently-paired genes or CPGs and divergently-paired genes or DPGs) and three patterns (separation, overlap and inclusion) and provides basic statistics for each species. Fourth, the gene pairing scheme is expandable, where neighboring genes can also be included in species-/lineage-specific comparisons. We hope that Plastid-LCGbase facilitates gene variation (insertion-deletion, translocation and rearrangement) and transcription-level studies of plastid genomes.
Collapse
Affiliation(s)
- Dapeng Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China Stem Cell Laboratory, UCL Cancer Institute, University College London, London WC1E 6BT, UK
| | - Jun Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| |
Collapse
|