1
|
Taira M, Ozato K, Harland RM, Moody SA, Saint-Jeannet JP. Igor B. Dawid (1935-2024): A pioneer of developmental and molecular biology. Proc Natl Acad Sci U S A 2024; 121:e2414869121. [PMID: 39196617 DOI: 10.1073/pnas.2414869121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Affiliation(s)
- Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Richard M Harland
- Molecular and Cell Biology Department, Genetics, Genomics and Development Division, University of California, Berkeley, CA 94720
| | - Sally A Moody
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
| | | |
Collapse
|
2
|
Matos-Cruz V, Blasic J, Nickle B, Robinson PR, Hattar S, Halpern ME. Unexpected diversity and photoperiod dependence of the zebrafish melanopsin system. PLoS One 2011; 6:e25111. [PMID: 21966429 PMCID: PMC3178608 DOI: 10.1371/journal.pone.0025111] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/24/2011] [Indexed: 12/02/2022] Open
Abstract
Animals have evolved specialized photoreceptors in the retina and in extraocular tissues that allow them to measure light changes in their environment. In mammals, the retina is the only structure that detects light and relays this information to the brain. The classical photoreceptors, rods and cones, are responsible for vision through activation of rhodopsin and cone opsins. Melanopsin, another photopigment first discovered in Xenopus melanophores (Opn4x), is expressed in a small subset of retinal ganglion cells (RGCs) in the mammalian retina, where it mediates non-image forming functions such as circadian photoentrainment and sleep. While mammals have a single melanopsin gene (opn4), zebrafish show remarkable diversity with two opn4x-related and three opn4-related genes expressed in distinct patterns in multiple neuronal cell types of the developing retina, including bipolar interneurons. The intronless opn4.1 gene is transcribed in photoreceptors as well as in horizontal cells and produces functional photopigment. Four genes are also expressed in the zebrafish embryonic brain, but not in the photoreceptive pineal gland. We discovered that photoperiod length influences expression of two of the opn4-related genes in retinal layers involved in signaling light information to RGCs. Moreover, both genes are expressed in a robust diurnal rhythm but with different phases in relation to the light-dark cycle. The results suggest that melanopsin has an expanded role in modulating the retinal circuitry of fish.
Collapse
Affiliation(s)
- Vanessa Matos-Cruz
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joseph Blasic
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Benjamin Nickle
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Phyllis R. Robinson
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (MEH); (SH)
| | - Marnie E. Halpern
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (MEH); (SH)
| |
Collapse
|
3
|
Chan J, Mably JD. Dissection of cardiovascular development and disease pathways in zebrafish. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:111-53. [PMID: 21377626 DOI: 10.1016/b978-0-12-384878-9.00004-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The use of animal models in medicine has contributed significantly to the development of drug treatments and surgical procedures for the last century, in particular for cardiovascular disease. In order to model human disease in an animal, an appreciation of the strengths and limitations of the system are required to interpret results and design the logical sequence of steps toward clinical translation. As the world's population ages, cardiovascular disease will become even more prominent and further progress will be essential to stave off what seems destined to become a massive public health issue. Future treatments will require the imaginative application of current models as well as the generation of new ones. In this review, we discuss the resources available for modeling cardiovascular disease in zebrafish and the varied attributes of this system. We then discuss current zebrafish disease models and their potential that has yet to be exploited.
Collapse
Affiliation(s)
- Joanne Chan
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
4
|
Li Y, Chia JM, Bartfai R, Christoffels A, Yue GH, Ding K, Ho MY, Hill JA, Stupka E, Orban L. Comparative analysis of the testis and ovary transcriptomes in zebrafish by combining experimental and computational tools. Comp Funct Genomics 2010; 5:403-18. [PMID: 18629171 PMCID: PMC2447462 DOI: 10.1002/cfg.418] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 06/25/2004] [Accepted: 06/28/2004] [Indexed: 11/12/2022] Open
Abstract
Studies on the zebrafish model have contributed to our understanding of several important developmental processes, especially those that can be easily studied in the embryo. However, our knowledge on late events such as gonad differentiation in the zebrafish is still limited. Here we provide an analysis on the gene sets expressed in the adult zebrafish testis and ovary in an attempt to identify genes with potential role in (zebra)fish gonad development and function. We produced 10,533 expressed sequence tags (ESTs) from zebrafish testis or ovary and downloaded an additional 23,642 gonad-derived sequences from the zebrafish EST database. We clustered these sequences together with over 13,000 kidney-derived zebrafish ESTs to study partial transcriptomes for these three organs. We searched for genes with gonad-specific expression by screening macroarrays containing at least 2600 unique cDNA inserts with testis-, ovary- and kidney-derived cDNA probes. Clones hybridizing to only one of the two gonad probes were selected, and subsequently screened with computational tools to identify 72 genes with potentially testis-specific and 97 genes with potentially ovary-specific expression, respectively. PCR-amplification confirmed gonad-specificity for 21 of the 45 clones tested (all without known function). Our study, which involves over 47,000 EST sequences and specialized cDNA arrays, is the first analysis of adult organ transcriptomes of zebrafish at such a scale. The study of genes expressed in adult zebrafish testis and ovary will provide useful information on regulation of gene expression in teleost gonads and might also contribute to our understanding of the development and differentiation of reproductive organs in vertebrates.
Collapse
Affiliation(s)
- Yang Li
- Reproductive Genomics Group, Temasek Lifesciences Laboratory, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rouchka EC. Database of exact tandem repeats in the Zebrafish genome. BMC Genomics 2010; 11:347. [PMID: 20515480 PMCID: PMC2901318 DOI: 10.1186/1471-2164-11-347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 06/01/2010] [Indexed: 11/23/2022] Open
Abstract
Background Sequencing of the approximately 1.7 billion bases of the zebrafish genome is currently underway. To date, few high resolution genetic maps exist for the zebrafish genome, based mainly on single nucleotide polymorphisms (SNPs) and short microsatellite repeats. The desire to construct a higher resolution genetic map led to the construction of a database of tandemly repeating elements within the zebrafish Zv8 assembly. Description Exact tandem repeats with a repeat length of at least three bases and a copy number of at least 10 were reported. Repeats with a total length of 250 or fewer bases and their flanking regions were masked for known vertebrate repeats. Optimal primer pairs were computationally designed in the regions flanking the detected repeats. This database of exact tandem repeats can then be used as a resource by molecular biologists with interests in experimentally testing VNTRs within a zebrafish population. Conclusions A total of 116,915 repeats with a base length of at least three nucleotides were detected. The longest of these was a 54-base repeat with fourteen tandem copies. A significant number of repeats with a base length of 18, 24, 27 and 30 were detected, many with potentially novel proline-rich coding regions. Detection of exact tandem repeats in the zebrafish genome leads to a wealth of information regarding potential polymorphic sites for VNTRs. The association of many of these repeats with potentially novel yet similar coding regions yields an exciting potential for disease associated genes. A web interface for querying repeats is available at http://bioinformatics.louisville.edu/zebrafish/. This portal allows for users to search for a repeats of a selected base size from any valid specified region within the 25 linkage groups.
Collapse
Affiliation(s)
- Eric C Rouchka
- Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, Duthie Center, Room 208, Louisville, KY, USA.
| |
Collapse
|
6
|
|
7
|
Green J, Taylor JJ, Hindes A, Johnson SL, Goldsmith MI. A gain of function mutation causing skeletal overgrowth in the rapunzel mutant. Dev Biol 2009; 334:224-34. [PMID: 19632218 DOI: 10.1016/j.ydbio.2009.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/16/2009] [Accepted: 07/16/2009] [Indexed: 10/20/2022]
Abstract
Mechanisms that regulate the growth and form of the vertebrate skeleton are largely unknown. The zebrafish mutant rapunzel has heterozygous defects in bone development, resulting in skeletal overgrowth, thus identification of the genetic lesion underlying rapunzel might provide insight into the molecular basis of skeletogenesis. In this report, we demonstrate that the rapunzel mutant results from a missense mutation in the previously uncharacterized rpz gene. This conclusion is supported by genetic mapping, identification of a missense mutation in rapunzel(c14) in a highly conserved region of the rpz gene, and suppression of the rapunzel homozygous embryonic phenotype with morpholino knockdown of rpz. In addition, rpz transcripts are identified in regions correlating with the homozygous embryonic phenotype (head, pectoral fin buds, somites and fin fold). This report provides the first gene identification for a mutation affecting segment number in the zebrafish fin and development of both the fin ray (dermal) and the axial skeleton.
Collapse
Affiliation(s)
- Julie Green
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
8
|
Goldstone HMH, Stegeman JJ. Molecular Mechanisms of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Cardiovascular Embryotoxicity. Drug Metab Rev 2008; 38:261-89. [PMID: 16684661 DOI: 10.1080/03602530600570099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons are widespread environmental contaminants and potent developmental toxicants. Hallmarks of embryonic exposure include edema, hemorrhage, and mortality. Recent studies in zebrafish and chicken have revealed direct impairment of cardiac muscle growth that may underlie these overt symptoms. TCDD toxicity is mediated by the aryl hydrocarbon receptor, but downstream targets remain unclear. Oxidative stress and growth factor modulation have been implicated in TCDD cardiovascular toxicity. Gene expression profiling is elucidating additional pathways by which TCDD might act. We review our understanding of the mechanism of TCDD embryotoxicity at morphological and molecular levels.
Collapse
Affiliation(s)
- Heather M H Goldstone
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
9
|
Kamei H, Lu L, Jiao S, Li Y, Gyrup C, Laursen LS, Oxvig C, Zhou J, Duan C. Duplication and diversification of the hypoxia-inducible IGFBP-1 gene in zebrafish. PLoS One 2008; 3:e3091. [PMID: 18769480 PMCID: PMC2518108 DOI: 10.1371/journal.pone.0003091] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/06/2008] [Indexed: 01/23/2023] Open
Abstract
Background Gene duplication is the primary force of new gene evolution. Deciphering whether a pair of duplicated genes has evolved divergent functions is often challenging. The zebrafish is uniquely positioned to provide insight into the process of functional gene evolution due to its amenability to genetic and experimental manipulation and because it possess a large number of duplicated genes. Methodology/Principal Findings We report the identification and characterization of two hypoxia-inducible genes in zebrafish that are co-ortholgs of human IGF binding protein-1 (IGFBP-1). IGFBP-1 is a secreted protein that binds to IGF and modulates IGF actions in somatic growth, development, and aging. Like their human and mouse counterparts, in adult zebrafish igfbp-1a and igfbp-1b are exclusively expressed in the liver. During embryogenesis, the two genes are expressed in overlapping spatial domains but with distinct temporal patterns. While zebrafish IGFBP-1a mRNA was easily detected throughout embryogenesis, IGFBP-1b mRNA was detectable only in advanced stages. Hypoxia induces igfbp-1a expression in early embryogenesis, but induces the igfbp-1b expression later in embryogenesis. Both IGFBP-1a and -b are capable of IGF binding, but IGFBP-1b has much lower affinities for IGF-I and -II because of greater dissociation rates. Overexpression of IGFBP-1a and -1b in zebrafish embryos caused significant decreases in growth and developmental rates. When tested in cultured zebrafish embryonic cells, IGFBP-1a and -1b both inhibited IGF-1-induced cell proliferation but the activity of IGFBP-1b was significantly weaker. Conclusions/Significance These results indicate subfunction partitioning of the duplicated IGFBP-1 genes at the levels of gene expression, physiological regulation, protein structure, and biological actions. The duplicated IGFBP-1 may provide additional flexibility in fine-tuning IGF signaling activities under hypoxia and other catabolic conditions.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ling Lu
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuang Jiao
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yun Li
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Claus Gyrup
- Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | - Lisbeth S. Laursen
- Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | - Jianfeng Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- * E-mail:
| |
Collapse
|
10
|
Deiters A, Yoder JA. Conditional transgene and gene targeting methodologies in zebrafish. Zebrafish 2008; 3:415-29. [PMID: 18377222 DOI: 10.1089/zeb.2006.3.415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The zebrafish has become a powerful tool for dissecting vertebrate gene function during embryogenesis. Numerous molecular systems have been developed to examine gene function in zebrafish, including transgenics for creating lineage-tracer lines of zebrafish that express a fluorescent protein as a marker for specific populations of cells, and antisense strategies, primarily morpholinos, for knocking down gene function. The focus of this review is to summarize the pros and cons of the currently available systems for functional genomics in zebrafish, and to discuss the need for future methodologies.
Collapse
Affiliation(s)
- Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
11
|
Henken DB, Rasooly RS, Javois L, Hewitt AT. The National Institutes of Health and the growth of the zebrafish as an experimental model organism. Zebrafish 2008; 1:105-10. [PMID: 18248222 DOI: 10.1089/zeb.2004.1.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The National Institutes of Health (NIH), an agency in the Department of Health and Human Services (DHHS), is a strong advocate of zebrafish and other animal model systems for biomedical and behavior research. In part because of strong funding support from NIH, zebrafish research is now providing fundamental insights into physiology, behavior, and the mechanisms of human disease. Over the past few years, the NIH has established a research infrastructure for the zebrafish community that includes genomic resources and tools for genetic analysis in this system. In addition, the NIH supports community resources such as the Zebrafish International Resource Center (ZIRC) and the Zebrafish Information Network (ZFIN). With the importance of zebrafish research now well-established, NIH will continue to fund a broad array of investigator-initiated studies that focus on issues critical to human health using this model system.
Collapse
Affiliation(s)
- Deborah B Henken
- Developmental Biology, Genetics and Teratology Branch, National Institute of Child Health and Human Development/NIH, Executive Building, Room 4B01, 9000 Rockville Pike, MSC 7510, Bethesda, MD 20892-7510, USA.
| | | | | | | | | |
Collapse
|
12
|
Hossain MS, Larsson A, Scherbak N, Olsson PE, Orban L. Zebrafish Androgen Receptor: Isolation, Molecular, and Biochemical Characterization1. Biol Reprod 2008; 78:361-9. [DOI: 10.1095/biolreprod.107.062018] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
13
|
Li L, Kobayashi M, Kaneko H, Nakajima-Takagi Y, Nakayama Y, Yamamoto M. Molecular evolution of Keap1. Two Keap1 molecules with distinctive intervening region structures are conserved among fish. J Biol Chem 2007; 283:3248-3255. [PMID: 18057000 DOI: 10.1074/jbc.m708702200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Keap1 is a BTB-Kelch-type substrate adaptor protein of the Cul3-dependent ubiquitin ligase complex. Keap1 facilitates the degradation of Nrf2, a transcription factor regulating the inducible expression of many cytoprotective genes. Through comparative genome analyses, we found that amino acid residues composing the pocket of Keap1 that interacts with Nrf2 are highly conserved among Keap1 orthologs and related proteins in all vertebrates and in certain invertebrates, including flies and mosquitoes. The interaction between Nrf2 and Keap1 appears to be widely preserved in vertebrates. Similarly, cysteine residues corresponding to Cys-273 and Cys-288 in the intervening region of mouse Keap1, which are essential for the repression of Nrf2 activity in cultured cells, are conserved among Keap1 orthologs in vertebrates and invertebrates, except fish. We found that fish have two types of Keap1, Keap1a and Keap1b. To our surprise, Keap1a and Keap1b contain the cysteine residue corresponding to Cys-288 and Cys-273, respectively. In our analysis of zebrafish Keap1a and Keap1b activities, both Keap1a and Keap1b were able to facilitate the degradation of Nrf2 protein and repress Nrf2-mediated target gene activation. Individual mutation of either residual cysteine residue in Keap1a and Keap1b disrupted the ability of Keap1 to repress Nrf2, indicating that the presence of either Cys-273 or Cys-288 is sufficient for fish Keap1 molecules to fully function. These results provide an important insight into the means by which Keap1 cysteines act as sensors of electrophiles and oxidants.
Collapse
Affiliation(s)
- Li Li
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Makoto Kobayashi
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.
| | - Hiroshi Kaneko
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yaeko Nakajima-Takagi
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yuko Nakayama
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Masayuki Yamamoto
- Environmental Response Project, Japan Science and Technology Agency, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan; Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
14
|
Bradley KM, Elmore JB, Breyer JP, Yaspan BL, Jessen JR, Knapik EW, Smith JR. A major zebrafish polymorphism resource for genetic mapping. Genome Biol 2007; 8:R55. [PMID: 17428331 PMCID: PMC1896001 DOI: 10.1186/gb-2007-8-4-r55] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 01/17/2007] [Accepted: 04/11/2007] [Indexed: 11/10/2022] Open
Abstract
We have identified 645,088 candidate polymorphisms in zebrafish and observe a single nucleotide polymorphism (SNP) validation rate of 71% to 86%, improving with polymorphism confidence score. Variant sites are non-random, with an excess of specific novel T- and A-rich motifs. We positioned half of the polymorphisms on zebrafish genetic and physical maps as a resource for positional cloning. We further demonstrate bulked segregant analysis using the anchored SNPs as a method for high-throughput genetic mapping in zebrafish.
Collapse
Affiliation(s)
- Kevin M Bradley
- Department of Medicine, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
| | - J Bradford Elmore
- Department of Medicine, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
| | - Joan P Breyer
- Department of Medicine, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
| | - Brian L Yaspan
- Department of Cancer Biology, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
| | - Jason R Jessen
- Department of Medicine, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
| | - Ela W Knapik
- Department of Medicine, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
| | - Jeffrey R Smith
- Department of Medicine, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
- Department of Cancer Biology, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Garland Avenue, Nashville, TN 37232-0275, USA
- Medical Research Service, VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| |
Collapse
|
15
|
Stickney HL, Imai Y, Draper B, Moens C, Talbot WS. Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Dev Biol 2007; 310:71-84. [PMID: 17727832 PMCID: PMC2683675 DOI: 10.1016/j.ydbio.2007.07.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/03/2007] [Accepted: 07/19/2007] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key mediators of dorsoventral patterning in vertebrates and are required for the induction of ventral fates in fish and frogs. A widely accepted model of dorsoventral patterning postulates that a morphogenetic BMP activity gradient patterns cell fates along the dorsoventral axis. Recent work in zebrafish suggests that the role of BMP signaling changes over time, with BMPs required for global dorsoventral patterning during early gastrulation and for tail patterning during late gastrulation and early somitogenesis. Key questions remain about the late phase, including which BMP ligands are required and how the functions of BMPs differ during the early and late gastrula stages. In a screen for dominant enhancers of mutations in the homeobox genes vox and vent, which function in parallel to bmp signaling, we identified an insertion mutation in bmp4. We then performed a reverse genetic screen to isolate a null allele of bmp4. We report the characterization of these two alleles and demonstrate that BMP4 is required during the later phase of BMP signaling for the specification of ventroposterior cell fates. Our results indicate that different bmp genes are essential at different stages. In addition, we present genetic evidence supporting a role for a morphogenetic BMP gradient in establishing mesodermal fates during the later phase of BMP signaling.
Collapse
Affiliation(s)
- Heather L Stickney
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
16
|
Definition of the zebrafish genome using flow cytometry and cytogenetic mapping. BMC Genomics 2007; 8:195. [PMID: 17597531 PMCID: PMC1925092 DOI: 10.1186/1471-2164-8-195] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 06/27/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The zebrafish (Danio rerio) is an important vertebrate model organism system for biomedical research. The syntenic conservation between the zebrafish and human genome allows one to investigate the function of human genes using the zebrafish model. To facilitate analysis of the zebrafish genome, genetic maps have been constructed and sequence annotation of a reference zebrafish genome is ongoing. However, the duplicative nature of teleost genomes, including the zebrafish, complicates accurate assembly and annotation of a representative genome sequence. Cytogenetic approaches provide "anchors" that can be integrated with accumulating genomic data. RESULTS Here, we cytogenetically define the zebrafish genome by first estimating the size of each linkage group (LG) chromosome using flow cytometry, followed by the cytogenetic mapping of 575 bacterial artificial chromosome (BAC) clones onto metaphase chromosomes. Of the 575 BAC clones, 544 clones localized to apparently unique chromosomal locations. 93.8% of these clones were assigned to a specific LG chromosome location using fluorescence in situ hybridization (FISH) and compared to the LG chromosome assignment reported in the zebrafish genome databases. Thirty-one BAC clones localized to multiple chromosomal locations in several different hybridization patterns. From these data, a refined second generation probe panel for each LG chromosome was also constructed. CONCLUSION The chromosomal mapping of the 575 large-insert DNA clones allows for these clones to be integrated into existing zebrafish mapping data. An accurately annotated zebrafish reference genome serves as a valuable resource for investigating the molecular basis of human diseases using zebrafish mutant models.
Collapse
|
17
|
Braasch I, Schartl M, Volff JN. Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 2007. [PMID: 17498288 DOI: 10.1186/1471-2148-7-74.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coloration and color patterning belong to the most diverse phenotypic traits in animals. Particularly, teleost fishes possess more pigment cell types than any other group of vertebrates. As the result of an ancient fish-specific genome duplication (FSGD), teleost genomes might contain more copies of genes involved in pigment cell development than tetrapods. No systematic genomic inventory allowing to test this hypothesis has been drawn up so far for pigmentation genes in fish, and almost nothing is known about the evolution of these genes in different fish lineages. RESULTS Using a comparative genomic approach including phylogenetic reconstructions and synteny analyses, we have studied two major pigment synthesis pathways in teleost fish, the melanin and the pteridine pathways, with respect to different types of gene duplication. Genes encoding three of the four enzymes involved in the synthesis of melanin from tyrosine have been retained as duplicates after the FSGD. In the pteridine pathway, two cases of duplicated genes originating from the FSGD as well as several lineage-specific gene duplications were observed. In both pathways, genes encoding the rate-limiting enzymes, tyrosinase and GTP-cyclohydrolase I (GchI), have additional paralogs in teleosts compared to tetrapods, which have been generated by different modes of duplication. We have also observed a previously unrecognized diversity of gchI genes in vertebrates. In addition, we have found evidence for divergent resolution of duplicated pigmentation genes, i.e., differential gene loss in divergent teleost lineages, particularly in the tyrosinase gene family. CONCLUSION Mainly due to the FSGD, teleost fishes apparently have a greater repertoire of pigment synthesis genes than any other vertebrate group. Our results support an important role of the FSGD and other types of duplication in the evolution of pigmentation in fish.
Collapse
Affiliation(s)
- Ingo Braasch
- University of Würzburg, Physiological Chemistry I, Biozentrum, Am Hubland, Würzburg, Germany.
| | | | | |
Collapse
|
18
|
Braasch I, Schartl M, Volff JN. Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol Biol 2007; 7:74. [PMID: 17498288 PMCID: PMC1890551 DOI: 10.1186/1471-2148-7-74] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 05/11/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coloration and color patterning belong to the most diverse phenotypic traits in animals. Particularly, teleost fishes possess more pigment cell types than any other group of vertebrates. As the result of an ancient fish-specific genome duplication (FSGD), teleost genomes might contain more copies of genes involved in pigment cell development than tetrapods. No systematic genomic inventory allowing to test this hypothesis has been drawn up so far for pigmentation genes in fish, and almost nothing is known about the evolution of these genes in different fish lineages. RESULTS Using a comparative genomic approach including phylogenetic reconstructions and synteny analyses, we have studied two major pigment synthesis pathways in teleost fish, the melanin and the pteridine pathways, with respect to different types of gene duplication. Genes encoding three of the four enzymes involved in the synthesis of melanin from tyrosine have been retained as duplicates after the FSGD. In the pteridine pathway, two cases of duplicated genes originating from the FSGD as well as several lineage-specific gene duplications were observed. In both pathways, genes encoding the rate-limiting enzymes, tyrosinase and GTP-cyclohydrolase I (GchI), have additional paralogs in teleosts compared to tetrapods, which have been generated by different modes of duplication. We have also observed a previously unrecognized diversity of gchI genes in vertebrates. In addition, we have found evidence for divergent resolution of duplicated pigmentation genes, i.e., differential gene loss in divergent teleost lineages, particularly in the tyrosinase gene family. CONCLUSION Mainly due to the FSGD, teleost fishes apparently have a greater repertoire of pigment synthesis genes than any other vertebrate group. Our results support an important role of the FSGD and other types of duplication in the evolution of pigmentation in fish.
Collapse
Affiliation(s)
- Ingo Braasch
- University of Würzburg, Physiological Chemistry I, Biozentrum, Am Hubland, 97074 Würzburg, Germany
| | - Manfred Schartl
- University of Würzburg, Physiological Chemistry I, Biozentrum, Am Hubland, 97074 Würzburg, Germany
| | - Jean-Nicolas Volff
- University of Würzburg, Physiological Chemistry I, Biozentrum, Am Hubland, 97074 Würzburg, Germany
- Institut de Génomique Fonctionnelle, Université de Lyon, F-69003, France, INRA; CNRS, Université Lyon 1, Ecole Normale Supérieure, F-69364, France
| |
Collapse
|
19
|
Yang CT, Hindes AE, Hultman KA, Johnson SL. Mutations in gfpt1 and skiv2l2 cause distinct stage-specific defects in larval melanocyte regeneration in zebrafish. PLoS Genet 2007; 3:e88. [PMID: 17542649 PMCID: PMC1885281 DOI: 10.1371/journal.pgen.0030088] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 04/17/2007] [Indexed: 12/01/2022] Open
Abstract
The establishment of a single cell type regeneration paradigm in the zebrafish provides an opportunity to investigate the genetic mechanisms specific to regeneration processes. We previously demonstrated that regeneration melanocytes arise from cell division of the otherwise quiescent melanocyte precursors following larval melanocyte ablation with a small molecule, MoTP. The ease of ablating melanocytes by MoTP allows us to conduct a forward genetic screen for mechanisms specific to regeneration from such precursors or stem cells. Here, we reported the identification of two mutants, earthaj23e1 and juliej24e1 from a melanocyte ablation screen. Both mutants develop normal larval melanocytes, but upon melanocyte ablation, each mutation results in a distinct stage-specific defect in melanocyte regeneration. Positional cloning reveals that the earthaj23e1 mutation is a nonsense mutation in gfpt1 (glutamine:fructose-6-phosphate aminotransferase 1), the rate-limiting enzyme in glucosamine-6-phosphate biosynthesis. Our analyses reveal that a mutation in gfpt1 specifically affects melanocyte differentiation (marked by melanin production) at a late stage during regeneration and that gfpt1 acts cell autonomously in melanocytes to promote ontogenetic melanocyte darkening. We identified that the juliej24e1 mutation is a splice-site mutation in skiv2l2 (superkiller viralicidic activity 2-like 2), a predicted DEAD-box RNA helicase. Our in situ analysis reveals that the mutation in skiv2l2 causes defects in cell proliferation, suggesting that skiv2l2 plays a role in regulating melanoblast proliferation during early stages of melanocyte regeneration. This finding is consistent with previously described role for cell division during larval melanocyte regeneration. The analyses of these mutants reveal their stage-specific roles in melanocyte regeneration. Interestingly, these mutants identify regeneration-specific functions not only in early stages of the regeneration process, but also in late stages of differentiation of the regenerating melanocyte. We suggest that mechanisms of regeneration identified in this mutant screen may reveal fundamental differences between the mechanisms that establish differentiated cells during embryogenesis, and those involved in larval or adult growth. Programs of ontogenetic development and regeneration share many components. Differences in genetic requirements between regeneration and development may identify mechanisms specific to the stem cells that maintain cell populations in postembryonic stages, or identify other regeneration-specific functions. Here, we utilize a forward genetic approach that takes advantage of single cell type ablation and regeneration to isolate mechanisms specific to regeneration of the zebrafish melanocyte. Upon chemical ablation of melanocytes, zebrafish larvae reconstitute their larval pigment pattern from undifferentiated precursors or stem cells. We isolated two zebrafish mutants that develop embryonic melanocytes normally but fail to regenerate their melanocytes upon ablation. This phenotype suggests the regeneration-specific roles of the mutated genes. We further identified the mutations in gfpt1 and skiv2l2 and show their stage-specific roles in melanocyte regeneration. Interestingly, these mutants identify regeneration-specific functions not only in early stages of the regeneration process (skiv2l2), but also in late stages of differentiation of the regenerating melanocyte (gfpt1). We suggest that mechanisms of regeneration identified in this mutant screen may reveal fundamental differences between the mechanisms that establish differentiated cells during embryogenesis and those involved in larval or adult growth.
Collapse
Affiliation(s)
- Chao-Tsung Yang
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Anna E Hindes
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Keith A Hultman
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Stephen L Johnson
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Phillips RB, Amores A, Morasch MR, Wilson C, Postlethwait JH. Assignment of zebrafish genetic linkage groups to chromosomes. Cytogenet Genome Res 2006; 114:155-62. [PMID: 16825768 DOI: 10.1159/000093332] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 01/25/2006] [Indexed: 01/23/2023] Open
Abstract
In this report the zebrafish genetic linkage groups are assigned to specific chromosomes using fluorescence in situ hybridization (FISH) with BAC probes containing genes mapped to each linkage group (LG). Chromosomes were identified using a combination of relative size and arm ratios. The largest genetic maps generally corresponded to the largest chromosomes, but genetic recombination tended to be elevated in the smaller chromosomes and near telomeres. Large insert clones containing genes near telomeres often hybridized to telomeres of multiple chromosome pairs, suggesting the presence of shared subtelomeric repetitive DNAs near telomeres. Evidence from comparative gene mapping in medaka, zebrafish, pufferfish, and humans suggests that the linkage groups of these species have the content of duplicate proto-chromosomes. However, these duplicate linkage groups are not associated with chromosomes of similar size or morphology. This suggests that considerable chromosome restructuring occurred subsequent to the genome duplication in teleosts.
Collapse
Affiliation(s)
- R B Phillips
- Department of Biological Sciences, Washington State University, Vancouver 98686-9600, USA.
| | | | | | | | | |
Collapse
|
21
|
Shi X, Luo Y, Howley S, Dzialo A, Foley S, Hyde DR, Vihtelic TS. Zebrafish foxe3: roles in ocular lens morphogenesis through interaction with pitx3. Mech Dev 2006; 123:761-82. [PMID: 16963235 DOI: 10.1016/j.mod.2006.07.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 07/06/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022]
Abstract
Foxe3 is a winged helix/forkhead domain transcription factor necessary for mammalian and amphibian lens development. Human FOXE3 mutations cause anterior segment dysgenesis and cataracts. The zebrafish foxe3 cDNA was PCR amplified from 24 h post-fertilization (hpf) embryo cDNA. The zebrafish foxe3 gene consists of a single exon on chromosome 8 and encodes a 422 amino acid protein. This protein possesses 44% and 67% amino acid identity with the human FOXE3 and Xenopus FoxE4 proteins, respectively. A polyclonal antiserum was generated against a bacterial fusion protein containing the Foxe3 carboxyl terminus. The purified antiserum detects zebrafish Foxe3 on immunoblots, in embryo wholemounts, and frozen tissue sections. The zebrafish Foxe3 protein is first detected in the lens at 31hpf and is restricted to the nucleated cell population, including the epithelial and elongating fiber cells. Knockdown of Foxe3 protein using an antisense morpholino results in small lenses with multilayered epithelial cells and fiber cell dysmorphogenesis. The morphants posses normal retinas, although retinal cell proteins, including rhodopsin, are abnormally expressed in the morphant lens tissue. Functional interactions between foxe3 and pitx3 during lens development were assessed by RT-PCR and comparison of Foxe3 and Pitx3 protein expression in both foxe3 and pitx3 morphants. Immunoblots and immunohistochemistry reveal Pitx3 is expressed in the foxe3 morphant lens, while Pitx3 knockdown results in the elimination of Foxe3 expression. These data demonstrate that Foxe3 is necessary for lens development in zebrafish and that foxe3 lies genetically downstream of pitx3 in a zebrafish lens development pathway.
Collapse
Affiliation(s)
- Xiaohai Shi
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The last common ancestor between fish and mammals dates back to the very origin of the vertebrate lineage and today, half of modern vertebrates are fish. It is thus not surprising that several fish species have played important roles in recent years to advance our understanding of vertebrate genome evolution, to inform us on the structure of human genes, and, somewhat more unexpectedly, to provide leads to understanding the function of genes involved in human diseases. Genome sequence comparisons between such distantly related organisms are highly informative due to the accumulation of neutral mutations in nonfunctional regions. Yet humans and fishes share many developmental pathways, organ systems, and physiological mechanisms, making conclusions relevant to human biology. The respective advantages of zebrafish, medaka, Tetraodon, or Takifugu have been well exploited so far with bioinformatics analyses and molecular biology techniques. However the full potential of fish genomics is about to be unleashed with the integration of more traditional disciplines such as biochemistry and physiology, with the study of additional species such as carp, trout, or tilapia and a broadening of its applications to environmental genomics or aquaculture.
Collapse
Affiliation(s)
- Hugues Roest Crollius
- Dyogen Lab, Centre National de la Recherche Scientifique UMR8541, Ecole Normale Supérieure, 75005 Paris, France.
| | | |
Collapse
|
23
|
Tostivint H, Joly L, Lihrmann I, Parmentier C, Lebon A, Morisson M, Calas A, Ekker M, Vaudry H. Comparative genomics provides evidence for close evolutionary relationships between the urotensin II and somatostatin gene families. Proc Natl Acad Sci U S A 2006; 103:2237-42. [PMID: 16467151 PMCID: PMC1413727 DOI: 10.1073/pnas.0510700103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although urotensin II (UII) and somatostatin 1 (SS1) exhibit some structural similarities, their precursors do not show any appreciable sequence identity and, thus, it is widely accepted that the UII and SS1 genes do not derive from a common ancestral gene. The recent characterization of novel isoforms of these two peptides, namely urotensin II-related peptide (URP) and somatostatin 2 (SS2)/cortistatin (CST), provides new opportunity to revisit the phylogenetic relationships of UII and SS1 using a comparative genomics approach. In the present study, by radiation hybrid mapping and in silico sequence analysis, we have determined the chromosomal localization of the genes encoding UII- and somatostatin-related peptides in several vertebrate species, including human, chicken, and zebrafish. In most of the species investigated, the UII and URP genes are closely linked to the SS2/CST and SS1 genes, respectively. We also found that the UII-SS2/CST locus and the URP/SS1 locus are paralogous. Taken together, these data indicate that the UII and URP genes, on the one hand, and the SS1 and SS2/CST genes, on the other hand, arose through a segmental duplication of two ancestral genes that were already physically linked to each other. Our results also suggest that these two genes arose themselves through a tandem duplication of a single ancestral gene. It thus appears that the genes encoding UII- and somatostatin-related peptides belong to the same superfamily.
Collapse
Affiliation(s)
- Hervé Tostivint
- *Institut National de la Santé et de la Recherche Médicale Unité 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Lucille Joly
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Isabelle Lihrmann
- *Institut National de la Santé et de la Recherche Médicale Unité 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Caroline Parmentier
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique Unité Mixte Recherche 7101, Université Pierre et Marie Curie, 75252 Paris, France; and
| | - Alexis Lebon
- *Institut National de la Santé et de la Recherche Médicale Unité 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Mireille Morisson
- Laboratoire de Génétique Cellulaire, Institut National de la Recherche Agronomique, 31326 Castanet-Tolosan, France
| | - André Calas
- Laboratoire de Neurobiologie des Signaux Intercellulaires, Centre National de la Recherche Scientifique Unité Mixte Recherche 7101, Université Pierre et Marie Curie, 75252 Paris, France; and
| | - Marc Ekker
- Center for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Hubert Vaudry
- *Institut National de la Santé et de la Recherche Médicale Unité 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, University of Rouen, 76821 Mont-Saint-Aignan, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Abstract
Methods are presented for the derivation of zebrafish embryonic stem (ES) cell cultures that are initiated from blastula and gastrula stage embryos. To maintain pluripotency, the ES cells are cocultured with rainbow trout spleen cells from the RTS34st cell line. ES cells maintained for multiple passages on a feeder layer of growth-arrested RTS34st exhibit in vitro characteristics of pluripotency and produce viable germ cells following transplantation into a host embryo. The ES cells are able to undergo targeted plasmid insertion by homologous recombination, and methods are described for the introduction of a targeting vector by electroporation. Two strategies are described for the efficient isolation of homologous recombinants using a visual marker screen and positive-negative selection.
Collapse
Affiliation(s)
- Lianchun Fan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | |
Collapse
|
25
|
Schonthaler HB, Lampert JM, von Lintig J, Schwarz H, Geisler R, Neuhauss SCF. A mutation in the silver gene leads to defects in melanosome biogenesis and alterations in the visual system in the zebrafish mutant fading vision. Dev Biol 2005; 284:421-36. [PMID: 16024012 DOI: 10.1016/j.ydbio.2005.06.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 06/01/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Forward genetic screens have been instrumental in defining molecular components of visual function. The zebrafish mutant fading vision (fdv) has been identified in such a screen due to defects in vision accompanied by hypopigmentation in the retinal pigment epithelium (RPE) and body melanocytes. The RPE forms the outer most layer of the retina, and its function is essential for vision. In fdv mutant larvae, the outer segments of photoreceptors are strongly reduced in length or absent due to defects in RPE cells. Ultrastructural analysis of RPE cells reveals dramatic cellular changes such as an absence of microvilli and vesicular inclusions. The retinoid profile is altered as judged by biochemical analysis, arguing for a partial block in visual pigment regeneration. Surprisingly, homozygous fdv vision mutants survive to adulthood and show, despite a persistence of the hypopigmentation, a partial recovery of retinal morphology. By positional cloning and subsequent morpholino knock-down, we identified a mutation in the silver gene as the molecular defect underlying the fdv phenotype. The Silver protein is required for intralumenal fibril formation in melanosomes by amylogenic cleavage. Our data reveal an unexpected link between melanosome biogenesis and the visual system, undetectable in cell culture.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosomes
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Genetic Linkage
- Genetic Markers
- Genome
- Homozygote
- Melanocytes/ultrastructure
- Melanosomes/physiology
- Melanosomes/ultrastructure
- Molecular Sequence Data
- Photoreceptor Cells, Vertebrate/ultrastructure
- Pigment Epithelium of Eye/ultrastructure
- Point Mutation
- Polymorphism, Genetic
- Protein Sorting Signals
- Protein Structure, Tertiary
- Radiation Hybrid Mapping
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Vision, Ocular/genetics
- Vision, Ocular/physiology
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish/physiology
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Helia B Schonthaler
- Swiss Federal Institute of Technology, Department of Biology, and Brain Research Institute of the University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Evans BR, Karchner SI, Franks DG, Hahn ME. Duplicate aryl hydrocarbon receptor repressor genes (ahrr1 and ahrr2) in the zebrafish Danio rerio: Structure, function, evolution, and AHR-dependent regulation in vivo. Arch Biochem Biophys 2005; 441:151-67. [PMID: 16122694 DOI: 10.1016/j.abb.2005.07.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 07/01/2005] [Accepted: 07/06/2005] [Indexed: 11/19/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The recently identified AHR repressor (AHRR) forms a negative feedback loop with the AHR. We investigated AHRR structure, function, evolution, and regulation in zebrafish, a powerful model in developmental biology and toxicology. We identified and cloned two distinct AHRR cDNAs that encode predicted proteins of 550 (AHRR1) and 573 (AHRR2) amino acids. The ahrr1 and ahrr2 genes map to zebrafish chromosomes 24 and 2, respectively, both of which share conserved synteny with human chromosome 5, the location of human AHRR. Mapping and phylogenetic analysis show that AHRR1 and AHRR2 are co-orthologs of the mammalian AHRR. In transient transfection assays, AHRR1 and AHRR2 repressed constitutive and TCDD-inducible transactivation by AHR2. Expression of both AHRR mRNAs was induced in ZF-L cells by AHR agonists but not by non-agonists. TCDD induced AHRR1 and AHRR2 expression in a dose-dependent manner in ZF-L cells, with EC50 values similar to those for induction of CYP1A. Both AHRRs were expressed and induced by TCDD in zebrafish embryos. Thus, zebrafish possess duplicate AHR-regulated AHRR paralogs that act in a negative feedback loop to repress the AHR signaling pathway.
Collapse
Affiliation(s)
- Brad R Evans
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | | | | |
Collapse
|
27
|
DeBruyne J, Hurd MW, Gutiérrez L, Kaneko M, Tan Y, Wells DE, Cahill GM. Isolation and phenogenetics of a novel circadian rhythm mutant in zebrafish. J Neurogenet 2005; 18:403-28. [PMID: 15763996 DOI: 10.1080/01677060490894540] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Widespread use of zebrafish (Danio rerio) in genetic analysis of embryonic development has led to rapid advances in the technology required to generate, map and clone mutated genes. To identify genes involved in the generation and regulation of vertebrate circadian rhythmicity, we screened for dominant mutations that affect the circadian periodicity of larval zebrafish locomotor behavior. In a screen of 6,500 genomes, we recovered 8 homozygous viable, semi-dominant mutants, and describe one of them here. The circadian period of the lager and lime (lag(dg2)) mutant is shortened by 0.7 h in heterozygotes,and 1.3 h in homozygotes. This mutation also shortens the period of the melatonin production rhythm measured from cultured pineal glands, indicating that the mutant gene product affects circadian rhythmicity at the tissue level, as well as at the behavioral level. This mutation also alters the sensitivity of pineal circadian period to temperature, but does not affect phase shifting responses to light. Linkage mapping with microsatellite markers indicates that the lag mutation is on chromosome 7. A zebrafish homolog of period1(per1) is the only known clock gene homolog that maps near the lag locus. However, all sequence variants found in per1 cDNA from lag(dg2) mutants are also present in wild type lines, and we were unable to detect any defect in per1 mRNA splicing, so this mutation may identify a novel clock gene.
Collapse
Affiliation(s)
- Jason DeBruyne
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Pfister P, Rodriguez I. Olfactory expression of a single and highly variable V1r pheromone receptor-like gene in fish species. Proc Natl Acad Sci U S A 2005; 102:5489-94. [PMID: 15809442 PMCID: PMC556222 DOI: 10.1073/pnas.0402581102] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory neurons expressing members of the seven-transmembrane V1r receptor superfamily allow mice to perceive pheromones. These receptors, which exhibit no sequence homology to any known protein except a weak similarity to taste receptors, have only been found in mammals. In the mouse, the V1r repertoire contains >150 members, which are expressed by neurons of the vomeronasal organ, a structure present exclusively in some tetrapod species. Here, we report the existence of a single V1r gene in multiple species of a non-terrestrial, vomeronasal organ-lacking taxon, the teleosts. In zebrafish, this V1r gene is expressed in chemosensory neurons of the olfactory rosette with a punctate distribution, strongly suggesting a role in chemodetection. This unique receptor gene exhibits a remarkably high degree of sequence variability between fish species. It likely corresponds to the original V1r present in the common ancestor of vertebrates, which led to the large and very diverse expansion of vertebrate pheromone receptor repertoires, and suggests the presence of V1rs in multiple nonmammalian phyla.
Collapse
Affiliation(s)
- Patrick Pfister
- Department of Zoology and Animal Biology and National Center of Competence in Research/Frontiers in Genetics, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | |
Collapse
|
29
|
Iovine MK, Higgins EP, Hindes A, Coblitz B, Johnson SL. Mutations in connexin43 (GJA1) perturb bone growth in zebrafish fins. Dev Biol 2005; 278:208-19. [PMID: 15649473 DOI: 10.1016/j.ydbio.2004.11.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 10/08/2004] [Accepted: 11/04/2004] [Indexed: 11/30/2022]
Abstract
Mechanisms that regulate the size and shape of bony structures are largely unknown. The molecular identification of the fin length mutant short fin (sof), which causes defects in the length of bony fin ray segments, may provide insights regarding the regulation of bone growth. In this report, we demonstrate that the sof phenotype is caused by mutations in the connexin43 (cx43) gene. This conclusion is supported by genetic mapping, reduced expression of cx43 in the original sof allele (sofb123), identification of missense mutations in three ENU-induced alleles, and by demonstration of partially abrogated cx43 function in sofb123 embryos. Expression of cx43 was identified in cells flanking the germinal region of newly growing segments as well as in the osteoblasts at segment boundaries. This pattern of cx43 expression in cells lateral to new segment growth is consistent with a model where cx43-expressing cells represent a biological ruler that measures segment size. This report identifies the first gene identification for a fin length mutation (sof) as well as the first connexin mutations in zebrafish, and therefore reveals a critical role for local cell-cell communication in the regulation of bone size and growth.
Collapse
Affiliation(s)
- M Kathryn Iovine
- Lehigh University, 111 Research Drive, Iacocca B-217, Bethlehem, PA 18015, USA.
| | | | | | | | | |
Collapse
|
30
|
Trueb B, Neuhauss SCF, Baertschi S, Rieckmann T, Schild C, Taeschler S. Fish possess multiple copies of fgfrl1, the gene for a novel FGF receptor. ACTA ACUST UNITED AC 2005; 1727:65-74. [PMID: 15652159 DOI: 10.1016/j.bbaexp.2004.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 11/17/2004] [Accepted: 12/06/2004] [Indexed: 11/24/2022]
Abstract
FGFRL1 is a novel FGF receptor that lacks the intracellular tyrosine kinase domain. While mammals, including man and mouse, possess a single copy of the FGFRL1 gene, fish have at least two copies, fgfrl1a and fgfrl1b. In zebrafish, both genes are located on chromosome 14, separated by about 10 cM. The two genes show a similar expression pattern in several zebrafish tissues, although the expression of fgfrl1b appears to be weaker than that of fgfrl1a. A clear difference is observed in the ovary of Fugu rubripes, which expresses fgfrl1a but not fgfrl1b. It is therefore possible that subfunctionalization has played a role in maintaining the two fgfrl1 genes during the evolution of fish. In human beings, the FGFRL1 gene is located on chromosome 4, adjacent to the SPON2, CTBP1 and MEAEA genes. These genes are also found adjacent to the fgfrl1a gene of Fugu, suggesting that FGFRL1, SPON2, CTBP1 and MEAEA were preserved as a coherent block during the evolution of Fugu and man.
Collapse
Affiliation(s)
- Beat Trueb
- ITI Research Institute, University of Bern, Murtenstrasse 35, CH-3010 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
31
|
Schäfer M, Kinzel D, Neuner C, Schartl M, Volff JN, Winkler C. Hedgehog and retinoid signalling confines nkx2.2b expression to the lateral floor plate of the zebrafish trunk. Mech Dev 2005; 122:43-56. [PMID: 15582776 DOI: 10.1016/j.mod.2004.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/07/2004] [Accepted: 09/09/2004] [Indexed: 10/26/2022]
Abstract
The ventral neural tube of vertebrates consists of distinct neural progenitor domains positioned along the dorsoventral (DV) axis that develop different types of moto- and interneurons. Several signalling molecules, most notably Sonic Hedgehog (Shh), retinoic acid (RA) and fibroblast growth factor (FGF) have been implicated in the generation of these domains. Shh is secreted from the floor plate, the ventral most neural tube structure that consists of the medial (MFP) and the lateral floor plate (LFP). While the MFP is well characterized, organization and function of the LFP remains unclear. Here, we describe the novel homeobox gene nkx2.2b that is strongly expressed in the trunk LFP of zebrafish and thus represents a unique marker for the characterization of LFP formation and the identification of LFP deficient mutants. nkx2.2b and its paralog nkx2.2a (formerly known as nk2.2 and nkx2.2) arose by gene duplication in zebrafish. Both duplicates show significant differences in their expression patterns. For example, while prominent nkx2.2a expression has been described in the ventral brain [Barth, K.A., Wilson, S.W., 1995. Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755-1768], hardly any expression can be found in the trunk LFP, which is in contrast to nkx2.2b. Overexpression, mutant and inhibitor analyses show that nkx2.2b expression in the LFP is up-regulated by Shh, but repressed by retinoids and ectopic islet-1 (isl1) expression. In contrast to previously described zebrafish trunk LFP markers, like e.g. tal2 or foxa2, nkx2.2b is exclusively expressed in the LFP. Thus, it represents a unique tool to analyse the mechanisms of ventral neural tube patterning in zebrafish.
Collapse
Affiliation(s)
- Matthias Schäfer
- Department of Physiological Chemistry I, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Shi X, Bosenko DV, Zinkevich NS, Foley S, Hyde DR, Semina EV, Vihtelic TS. Zebrafish pitx3 is necessary for normal lens and retinal development. Mech Dev 2004; 122:513-27. [PMID: 15804565 DOI: 10.1016/j.mod.2004.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 11/11/2004] [Accepted: 11/19/2004] [Indexed: 01/23/2023]
Abstract
The human PITX3 gene encodes a bicoid-like homeodomain transcription factor associated with a variety of congenital ocular conditions, including anterior segment dysgenesis, Peter's anomaly, and cataracts. We identified a zebrafish pitx3 gene encoding a protein (Pitx3) that possesses 63% amino acid identity with human PITX3. The zebrafish pitx3 gene encompasses approximately 16.5kb on chromosome 13 and consists of four exons, which is similar to the genomic organization of other pitx genes. Expression of the zebrafish pitx3 gene was studied by in situ mRNA hybridization and RT-PCR. The pitx3 transcripts were detected throughout development with the greatest level of expression occurring in the developing lens and brain at 24hpf. In adults, the highest expression was detected in the eye. Morpholinos were used to knockdown expression of the Pitx3 protein and a control morpholino that contains five mismatched bases was used to confirm the specificity of the phenotypes. The morphants had small eyes, misshapen heads and reduced jaws and fins relative to controls. The morphants exhibited abnormalities in lens development and their retinas contained pyknotic nuclei accompanied by a reduction in the number of cells in different neuronal classes. This suggests the lens is required for retinal development or Pitx3 has an unexpected role in retinal cell differentiation or survival. These results demonstrate zebrafish pitx3 represents a true ortholog of the human PITX3 gene and the general function of the Pitx3 protein in lens development is conserved between mammals and the teleost fish.
Collapse
Affiliation(s)
- Xiaohai Shi
- Department of Biological Sciences, Center for Zebrafish Research, Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Torres-Vázquez J, Gitler AD, Fraser SD, Berk JD, Fishman MC, Childs S, Epstein JA, Weinstein BM. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell 2004; 7:117-23. [PMID: 15239959 DOI: 10.1016/j.devcel.2004.06.008] [Citation(s) in RCA: 287] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 11/17/2022]
Abstract
Major vessels of the vertebrate circulatory system display evolutionarily conserved and reproducible anatomy, but the cues guiding this stereotypic patterning remain obscure. In the nervous system, axonal pathways are shaped by repulsive cues provided by ligands of the semaphorin family that are sensed by migrating neuronal growth cones through plexin receptors. We show that proper blood vessel pathfinding requires the endothelial receptor PlexinD1 and semaphorin signals, and we identify mutations in plexinD1 in the zebrafish vascular patterning mutant out of bounds. These results reveal the fundamental conservation of repulsive patterning mechanisms between axonal migration in the central nervous system and vascular endothelium during angiogenesis.
Collapse
Affiliation(s)
- Jesús Torres-Vázquez
- Laboratory of Molecular Genetics, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hsiao CD, Ekker M, Tsai HJ. Skin-specific expression of ictacalcin, a homolog of the S100 genes, during zebrafish embryogenesis. Dev Dyn 2004; 228:745-50. [PMID: 14648852 DOI: 10.1002/dvdy.10411] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Full-length cDNA coding for the ictacalcin gene, a homolog of the S100 genes, was isolated in zebrafish and mapped on linkage group 16 using the LN54 radiation hybrid panel. The homology and phylogenetic analyses, based on the deduced amino acid sequences, showed the orthologous relationship of ictacalcin genes between zebrafish and other fish species. However, ictacalcin genes constitute an out-group with respect to other members of the S100 gene family. This result supports the findings that fish ictacalcin genes are new members of the S100 gene family and may have evolved after the divergence of teleosts and tetrapods. The zebrafish ictacalcin gene was zygotically transcribed from 12 hours postfertilization onward and was stably expressed throughout adulthood. During zebrafish embryogenesis, the ictacalcin gene was specifically expressed in striated epidermal cells covering the entire embryo. The ictacalcin staining in keratinocytes of striated epithelia was absent in the cytoplasm surrounding the nuclei, but it was highly concentrated in the peripheral margin. Tissues enriched with epithelia folds, such as olfactory epithelium, hatching gland, pectoral fin buds, urogenital opening, and pharynx, showed a robust ictacalcin expression. The strikingly heavy staining of ictacalcin in the pharyngeal region provides us with an early marker to follow the pharynx formation in zebrafish embryos.
Collapse
Affiliation(s)
- Chung-Der Hsiao
- Institute of Molecular and Cell Biology, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
35
|
Abstract
The human necdin/MAGE gene family has over 50 members, but most of the proteins encoded by these genes are of unknown function. We have now identified a single locus in Danio rerio that encodes a putative protein with significant coding sequence similarity to the mammalian NDN/MAGE genes. Analysis of the complete Fugu ribripes genome sequence also suggests that there is only a single MAGE-like gene in teleost fish. mage is expressed in the larval and adult brain, specifically the retina, the medial region of the telencephalon, periventricular gray zone of the optic tectum, and most highly in the cerebellar corpus. The discovery of a zebrafish NDN/MAGE gene expressed the developing brain facilitates studies of the MAGE homology domain in vertebrate development.
Collapse
|
36
|
Bosak N, Faraut T, Mikawa S, Uenishi H, Kiuchi S, Hiraiwa H, Hayashi T, Yasue H. Construction of a high-resolution comparative gene map between swine chromosome region 6q11-->q21 and human chromosome 19 q-arm by RH mapping of 51 genes. Cytogenet Genome Res 2004; 102:109-15. [PMID: 14970688 DOI: 10.1159/000075734] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 07/28/2003] [Indexed: 11/19/2022] Open
Abstract
A comprehensive and comparative map was constructed for the porcine chromosome (SSC) 6q11-->q21 region, where the gene(s) responsible for the maldevelopment of embryos are localized using swine populations of the National Institute of Animal Industry, Japan (NIAI). Since the chromosomal region corresponds to a region of human chromosome (HSA) 19q13.1-->q13.3 based on bi-directional chromosome painting, primer pairs were designed from porcine cDNA sequences identified, on a sequence comparison basis, as being transcripts from genes orthologous to those in the HSA region. Fifty-one genes were successfully assigned to a swine radiation hybrid (RH) map with LOD scores greater than 6. ERF and PSMD8 genes were assigned to SSC4 and SSC1, respectively. The remaining 49 genes were assigned to SSC6, demonstrating that the synteny between the SSC6 and HSA19 chromosomal regions is essentially conserved, therefore confirming, the results of bi-directional chromosome painting. However, when examined precisely, rearrangements have apparently occurred within the region of conserved synteny. For the ERF and PSMD8 genes assigned to SSCs other than SSC6, additional mapping using somatic cell hybrid (SCH) panels was performed to confirm the results of RH-mapping.
Collapse
Affiliation(s)
- N Bosak
- Genome Research Department, National Institute of Agrobiological Sciences, Ikenodai, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Christie TL, Mui R, White TW, Valdimarsson G. Molecular cloning, functional analysis, and RNA expression analysis of connexin45.6: a zebrafish cardiovascular connexin. Am J Physiol Heart Circ Physiol 2004; 286:H1623-32. [PMID: 14704230 DOI: 10.1152/ajpheart.00800.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the vertebrate cardiovascular system, gap junctions function in intercellular communication essential for both the coordinated propagation of the heartbeat and the control of vasomotor responses in the vascular system. Connexins, the protein subunits of gap junctions, are coded by a multigene family. In this study, a connexin gene (zfCx45.6), which exhibits 53% amino acid identity to chick Cx42, was cloned from zebrafish genomic DNA. With the use of the LN54 radiation hybrid panel, zfCx45.6 was mapped to zebrafish linkage group 9. Northern blots and RT-PCR revealed the presence of zfCx45.6 mRNA in the embryo before 2 h postfertilization (hpf) and then again beginning at about 12 hpf, after which time no major changes in relative expression levels were detected. In the adult, zfCx45.6 mRNA continued to be detected in the heart, as well as the brain, liver, and ovary, but not the lens. Whole mount in situ hybridization revealed zfCx45.6 mRNA was expressed at high levels in the major vessels of the entire embryo and in both the atrium and ventricle of the adult heart. Expression of zfCx45.6 channels in paired Xenopus oocytes produced high levels of intercellular coupling that was voltage sensitive. With the previous isolation of zebrafish Cx43 and Cx43.4, zebrafish orthologues have now been isolated for three of the four connexins expressed in the mammalian cardiovascular system.
Collapse
Affiliation(s)
- Tara L Christie
- Department of Zoology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | |
Collapse
|
38
|
Taylor MR, Hurley JB, Van Epps HA, Brockerhoff SE. A zebrafish model for pyruvate dehydrogenase deficiency: rescue of neurological dysfunction and embryonic lethality using a ketogenic diet. Proc Natl Acad Sci U S A 2004; 101:4584-9. [PMID: 15070761 PMCID: PMC384790 DOI: 10.1073/pnas.0307074101] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defects in the pyruvate dehydrogenase (PDH) complex result in severe neurological dysfunction, congenital lactic acidosis, growth retardation, and early death. Current treatments for PDH deficiency are administered postnatally and are generally unsuccessful. Because many patients with this disease are born with irreversible defects, a model system for the development of effective pre- and postnatal therapies would be of great value. In a behavioral genetic screen aimed to identify zebrafish with visual function defects, we previously isolated two alleles of the recessive lethal mutant no optokinetic response a (noa). Here we report that noa is deficient for dihydrolipoamide S-acetyltransferase (Dlat), the PDH E2 subunit, and exhibits phenotypes similar to human patients with PDH deficiency. To rescue the deficiency, we added ketogenic substrates to the water in which the embryos develop. This treatment successfully restored vision, promoted feeding behavior, reduced lactic acidosis, and increased survival. Our study demonstrates an approach for establishing effective therapies for PDH deficiency and other congenital diseases that affect early embryonic development.
Collapse
Affiliation(s)
- Michael R Taylor
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA.
| | | | | | | |
Collapse
|
39
|
Abstract
Systematic identification of skeletal dysplasias in model vertebrates provides insight into the pathogenesis of human skeletal disorders and can aid in the identification of orthologous human genes. We are undertaking a mutagenesis screen for skeletal dysplasias in adult zebrafish, using radiography to detect abnormalities in skeletal anatomy and bone morphology. We have isolated chihuahua, a dominant mutation causing a general defect in bone growth. Heterozygous chihuahua fish have phenotypic similarities to human osteogenesis imperfecta, a skeletal dysplasia caused by mutations in the type I collagen genes. Mapping and molecular characterization of the chihuahua mutation indicates that the defect resides in the gene encoding the collagen I(alpha1) chain. Thus, chihuahua accurately models osteogenesis imperfecta at the biologic and molecular levels, and will prove an important resource for studies on the disease pathophysiology. Radiography is a practical screening tool to detect subtle skeletal abnormalities in the adult zebrafish. The identification of chihuahua demonstrates that mutant phenotypes analogous to human skeletal dysplasias will be discovered.
Collapse
Affiliation(s)
- Shannon Fisher
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA.
| | | | | |
Collapse
|
40
|
Prüfert K, Winkler C, Paulin-Levasseur M, Krohne G. The lamina-associated polypeptide 2 (LAP2) genes of zebrafish and chicken: no LAP2α isoform is synthesised by non-mammalian vertebrates. Eur J Cell Biol 2004; 83:403-11. [PMID: 15506564 DOI: 10.1078/0171-9335-00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian lamina-associated polypeptide 2 (LAP2) gene encodes six isoforms (LAP2alpha, beta, delta, epsilon, gamma, zeta) that are synthesised from alternatively spliced mRNAs. The mammalian LAP2alpha is one of the predominant isoforms and localised in the nucleoplasm whereas LAP2beta, delta, epsilon, and gamma are integral membrane proteins of the inner nuclear membrane. We have analysed the LAP2 gene structure of the zebrafish Danio rerio as an attractive lower vertebrate model organism. The zebrafish LAP2 (ZLAP2) gene without regulatory sequences spans approximately 19 kb of genomic DNA. It contains 15 exons that encode the isoforms ZLAP2beta, gamma, and omega which are localised in the inner nuclear membrane. By radiation hybrid mapping, we have located the gene onto linkage group 4 between EST markers fc01g04 (213.97cR) and fb49f01 (215.69cR). The identification of a chicken genomic clone comprising the complete coding region of the avian LAP2 gene enabled us to compare the LAP2 gene structure amongst vertebrates. In contrast to the mammalian LAP2 gene, the zebrafish and the chicken sequences do not encode for an alpha-isoform. In parallel we searched for an alpha-isoform in birds using polyclonal and monoclonal LAP2 antibodies specific for the common evolutionary conserved aminoterminal domain present in all isoforms. We detected LAP2beta as the predominant isoform but no LAP2alpha in tissues of 10-day-old chicken embryos and cultured chicken fibroblasts thus confirming the genomic analysis. The comparison of each zebrafish and chicken LAP2 exon with the corresponding exons of the human LAP2 gene demonstrates that the degree of identity at the amino acid level is much higher between the human and chicken than between the human and zebrafish sequences. By Blast search with the nucleotide and amino acid sequences of the human LAP2alpha, we did not find any significant homologies in databases of the zebrafish and chicken sequences. Our data suggest that LAP2alpha is a novelty of mammals.
Collapse
Affiliation(s)
- Kristina Prüfert
- Division of Electron Microscopy, Biocenter, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
41
|
Zhou Y. Update of the Expressed Sequence Tag (EST) and Radiation Hybrid Panel Projects. Methods Cell Biol 2004; 77:273-93. [PMID: 15602917 DOI: 10.1016/s0091-679x(04)77015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Yi Zhou
- Division of Hematology/Oncology, Children's Hospital Boston Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
42
|
Schartl M, Nanda I, Kondo M, Schmid M, Asakawa S, Sasaki T, Shimizu N, Henrich T, Wittbrodt J, Furutani-Seiki M, Kondoh H, Himmelbauer H, Hong Y, Koga A, Nonaka M, Mitani H, Shima A. Current status of medaka genetics and genomics. The Medaka Genome Initiative (MGI). Methods Cell Biol 2004; 77:173-99. [PMID: 15602912 DOI: 10.1016/s0091-679x(04)77010-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Manfred Schartl
- Biocenter, University of Wuerzburg, Am Hubland, D-97074 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Berdougo E, Coleman H, Lee DH, Stainier DYR, Yelon D. Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development 2003; 130:6121-9. [PMID: 14573521 DOI: 10.1242/dev.00838] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The embryonic vertebrate heart is composed of two major chambers, a ventricle and an atrium, each of which has a characteristic size, shape and functional capacity that contributes to efficient circulation. Chamber-specific gene expression programs are likely to regulate key aspects of chamber formation. Here, we demonstrate that epigenetic factors also have a significant influence on chamber morphogenesis. Specifically, we show that an atrium-specific contractility defect has a profound impact on ventricular development. We find that the zebrafish locus weak atrium encodes an atrium-specific myosin heavy chain that is required for atrial myofibrillar organization and contraction. Despite their atrial defects, weak atrium mutants can maintain circulation through ventricular contraction. However, the weak atrium mutant ventricle becomes unusually compact,exhibiting a thickened myocardial wall, a narrow lumen and changes in myocardial gene expression. As weak atrium/atrial myosin heavy chainis expressed only in the atrium, the ventricular phenotypes in weak atrium mutants represent a secondary response to atrial dysfunction. Thus, not only is cardiac form essential for cardiac function, but there also exists a reciprocal relationship in which function can influence form. These findings are relevant to our understanding of congenital defects in cardiac chamber morphogenesis.
Collapse
Affiliation(s)
- Eli Berdougo
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
44
|
Rhinn M, Lun K, Amores A, Yan YL, Postlethwait JH, Brand M. Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling. Mech Dev 2003; 120:919-36. [PMID: 12963112 DOI: 10.1016/s0925-4773(03)00135-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The organizer at the midbrain-hindbrain boundary (MHB) forms at the interface between Otx2 and Gbx2 expressing cell populations, but how these gene expression domains are set up and integrated with the remaining machinery controlling MHB development is unclear. Here we report the isolation, mapping, chromosomal synteny and spatiotemporal expression of gbx1 and gbx2 in zebrafish. We focus in particular on the expression of these genes during development of the midbrain-hindbrain territory. Our results suggest that these genes function in this area in a complex fashion, as evidenced by their highly dynamic expression patterns and relation to Fgf signaling. Analysis of gbx1 and gbx2 expression during formation of the MHB in mutant embryos for pax2.1, fgf8 and pou2 (noi, ace, spg), as well as Fgf-inhibition experiments, show that gbx1 acts upstream of these genes in MHB development. In contrast, gbx2 activation requires ace (fgf8) function, and in the hindbrain primordium, also spg (pou2). We propose that in zebrafish, gbx genes act repeatedly in MHB development, with gbx1 acting during the positioning period of the MHB at gastrula stages, and gbx2 functioning after initial formation of the MHB, from late gastrulation stages onwards. Transplantation studies furthermore reveal that at the gastrula stage, Fgf8 signals from the hindbrain primordium into the underlying mesendoderm. Apart from the general involvement of gbx genes in MHB development reported also in other vertebrates, these results emphasize that early MHB development can be divided into multiple steps with different genetic requirements with respect to gbx gene function and Fgf signaling. Moreover, our results provide an example for switching of a specific gene function of gbx1 versus gbx2 between orthologous genes in zebrafish and mammals.
Collapse
Affiliation(s)
- Muriel Rhinn
- Department of Genetics, Max Planck Institute for Molecular Cell Biology and Genetics, University of Dresden, Pfotenhauer Strasse 108, 01307 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Goldsmith MI, Fisher S, Waterman R, Johnson SL. Saltatory control of isometric growth in the zebrafish caudal fin is disrupted in long fin and rapunzel mutants. Dev Biol 2003; 259:303-17. [PMID: 12871703 DOI: 10.1016/s0012-1606(03)00186-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Zebrafish fins grow by sequentially adding new segments of bone to the distal end of each fin ray. In wild type zebrafish, segment addition is regulated such that an isometric relationship is maintained between fin length and body length over the lifespan of the growing fish. Using a novel, surrogate marker for fin growth in conjunction with cell proliferation assays, we demonstrate here that segment addition is not continuous, but rather proceeds by saltation. Saltation is a fundamental growth mechanism shared by disparate vertebrates, including humans. We further demonstrate that segment addition proceeds in conjunction with cyclic bursts of cell proliferation in the distal fin ray mesenchyme. In contrast, cells in the distal fin epidermis proliferate at a constant rate throughout the fin ray growth cycle. Finally, we show that two separate fin overgrowth mutants, long fin and rapunzel, bypass the stasis phase of the fin ray growth cycle to develop asymmetrical and symmetrical fin overgrowth, respectively.
Collapse
Affiliation(s)
- Matthew I Goldsmith
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
46
|
Winkler C, Schafer M, Duschl J, Schartl M, Volff JN. Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. Genome Res 2003; 13:1067-81. [PMID: 12743018 PMCID: PMC403662 DOI: 10.1101/gr.1097503] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In mammals, the unique midkine (mdk) gene encodes a secreted heparin-binding growth factor with neurotrophic activity. Here, we show the presence of two functional mdk genes named mdka and mdkb in zebrafish and rainbow trout. Both midkine proteins are clearly different from the related pleiotrophin, which was also identified in zebrafish and other fishes. Zebrafish mdka and mdkb genes map to linkage groups LG7 and LG25, respectively, both presenting synteny to human chromosome 11, in which the unique human ortholog mdk is located. At least four other genes unique in mammals are also present as duplicates on LG7 and LG25. Phylogenetic and divergence analyses suggested that LG7/LG25 paralogs including mdka and mdkb have been formed at approximately the same time, early during the evolution of the fish lineage. Hence, zebrafish and rainbow trout mdka and mdkb might have been generated by an ancient block duplication, and might be remnants of the proposed fish-specific whole-genome duplication. In contrast to the ubiquitous expression of their mammalian counterpart, zebrafish mdka and mdkb are expressed in spatially restricted, mostly nonoverlapping patterns during embryonic development and strongly in distinct domains in the adult brain. Ectopic ubiquitous expression of both mdk genes in early zebrafish embryos caused completely distinct effects on neural crest and floorplate development. These data indicate that mdka and mdkb underwent functional divergence after duplication. This provides an outstanding model to analyze the molecular mechanisms that lead to differences in pathways regulating the formation of homologous embryonic structures in different vertebrates.
Collapse
Affiliation(s)
- Christoph Winkler
- Department of Physiological Chemistry I, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
47
|
Hansen IA, To TT, Wortmann S, Burmester T, Winkler C, Meyer SR, Neuner C, Fassnacht M, Allolio B. The pro-opiomelanocortin gene of the zebrafish (Danio rerio). Biochem Biophys Res Commun 2003; 303:1121-8. [PMID: 12684052 DOI: 10.1016/s0006-291x(03)00475-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cDNA and the gene for pro-opiomelanocortin (POMC) in the zebrafish (Danio rerio) were isolated and analyzed. The gene consists of three exons and two short introns and has a similar overall structural organization as in Homo sapiens. Intron 1 (339 bp) divides the 5(') untranslated region from the coding region while intron 2 (1522 bp) is located between the signal peptide and the sequence encoding ACTH. Transcription starts 26 bp downstream of a TATA box and there is one polyadenylation signal in the 3(') untranslated region. The cDNA comprises of 964 bp with an open reading frame encoding a 222 amino acid hormone prepropeptide that is split into six putative hormones. Sequence comparison of zebrafish POMC to sequences of various other vertebrate species reveals four regions that are highly conserved during the evolution of vertebrates-the N-terminal region, ACTH, beta-MSH, and beta-endorphin, whereas the connecting peptides show a much higher degree of variability. Phylogenetic analysis of the POMC sequences of various vertebrate species resulted in the expected pattern of species evolution. In situ hybridization demonstrated POMC expression in a cluster of cells (corticotrophs) in the pituitary of the zebrafish as early as 23 h after fertilization. These findings will facilitate the use of the zebrafish as a model organism in the study of the physiological role of POMC-derived peptides.
Collapse
Affiliation(s)
- Immo A Hansen
- Endocrinology and Diabetes Unit, University of Wuerzburg, Josef-Schneider-Strasse 2, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Suh YH, Shin YK, Kook MC, Oh KI, Park WS, Kim SH, Lee IS, Park HJ, Huh TL, Park SH. Cloning, genomic organization, alternative transcripts and expression analysis of CD99L2, a novel paralog of human CD99, and identification of evolutionary conserved motifs. Gene 2003; 307:63-76. [PMID: 12706889 DOI: 10.1016/s0378-1119(03)00401-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human CD99 (MIC2) is a 32 kDa cell surface protein and its encoding gene is localized to the pseudoautosomal regions of both Xp and Yp chromosomes. Although sequences of several genes such as human PBDX and MIC2R are known to be related to that of CD99, the murine counterpart of CD99 has not been reported. Here we have identified a novel CD99 mouse paralog, named as CD99L2 (CD99 antigen-like 2), and its human, rat and zebrafish genes. Unlike the rapidly evolved CD99 gene, these CD99L2 genes were highly conserved among those species. However, the genomic organization of human and mouse CD99L2 genes showed a difference in their exon numbers possibly due to exon duplication during evolution. In addition, comparative analysis of the cDNA sequences identified the presence of variants in the region around the exons 3 and 4 even within a species due to a differential splicing event, resulting in species-specific patterns in their transcripts. As determined by in situ hybridization analysis, the CD99L2 gene appeared to be expressed particularly high in neuronal cells despite its ubiquitous distribution. The highly expression on neuronal cells without any variations between species reflects a dominant role of this molecule during neural development. Amino acid sequence alignment revealed five putative functional regions highly conserved between CD99L2 and CD99, indicating a close relationship between the two genes. Moreover, human and mouse CD99L2 were located on their X chromosomes, respectively, whereas the zebrafish mic2l1 gene was in the LG7 chromosome. These observations support the inference that the evolutionary conserved gene, CD99L2, originated from a common ancestor gene of CD99, and its high conservation among species implies at least some essential function.
Collapse
Affiliation(s)
- Young Ho Suh
- Department of Pathology, Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Solomon KS, Kudoh T, Dawid IB, Fritz A. Zebrafish foxi1 mediates otic placode formation and jaw development. Development 2003; 130:929-40. [PMID: 12538519 DOI: 10.1242/dev.00308] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The otic placode is a transient embryonic structure that gives rise to the inner ear. Although inductive signals for otic placode formation have been characterized, less is known about the molecules that respond to these signals within otic primordia. Here, we identify a mutation in zebrafish, hearsay, which disrupts the initiation of placode formation. We show that hearsay disrupts foxi1, a forkhead domain-containing gene, which is expressed in otic precursor cells before placodes become visible; foxi1 appears to be the earliest marker known for the otic anlage. We provide evidence that foxi1 regulates expression of pax8, indicating a very early role for this gene in placode formation. In addition, foxi1 is expressed in the developing branchial arches, and jaw formation is disrupted in hearsay mutant embryos.
Collapse
Affiliation(s)
- Keely S Solomon
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
50
|
Rawls JF, Frieda MR, McAdow AR, Gross JP, Clayton CM, Heyen CK, Johnson SL. Coupled mutagenesis screens and genetic mapping in zebrafish. Genetics 2003; 163:997-1009. [PMID: 12663538 PMCID: PMC1462478 DOI: 10.1093/genetics/163.3.997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Forward genetic analysis is one of the principal advantages of the zebrafish model system. However, managing zebrafish mutant lines derived from mutagenesis screens and mapping the corresponding mutations and integrating them into the larger collection of mutations remain arduous tasks. To simplify and focus these endeavors, we developed an approach that facilitates the rapid mapping of new zebrafish mutations as they are generated through mutagenesis screens. We selected a minimal panel of 149 simple sequence length polymorphism markers for a first-pass genome scan in crosses involving C32 and SJD inbred lines. We also conducted a small chemical mutagenesis screen that identified several new mutations affecting zebrafish embryonic melanocyte development. Using our first-pass marker panel in bulked-segregant analysis, we were able to identify the genetic map positions of these mutations as they were isolated in our screen. Rapid mapping of the mutations facilitated stock management, helped direct allelism tests, and should accelerate identification of the affected genes. These results demonstrate the efficacy of coupling mutagenesis screens with genetic mapping.
Collapse
Affiliation(s)
- John F Rawls
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|