1
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Wu Z, Sinha S. SPREd: a simulation-supervised neural network tool for gene regulatory network reconstruction. BIOINFORMATICS ADVANCES 2024; 4:vbae011. [PMID: 38444538 PMCID: PMC10913396 DOI: 10.1093/bioadv/vbae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
Summary Reconstruction of gene regulatory networks (GRNs) from expression data is a significant open problem. Common approaches train a machine learning (ML) model to predict a gene's expression using transcription factors' (TFs') expression as features and designate important features/TFs as regulators of the gene. Here, we present an entirely different paradigm, where GRN edges are directly predicted by the ML model. The new approach, named "SPREd," is a simulation-supervised neural network for GRN inference. Its inputs comprise expression relationships (e.g. correlation, mutual information) between the target gene and each TF and between pairs of TFs. The output includes binary labels indicating whether each TF regulates the target gene. We train the neural network model using synthetic expression data generated by a biophysics-inspired simulation model that incorporates linear as well as non-linear TF-gene relationships and diverse GRN configurations. We show SPREd to outperform state-of-the-art GRN reconstruction tools GENIE3, ENNET, PORTIA, and TIGRESS on synthetic datasets with high co-expression among TFs, similar to that seen in real data. A key advantage of the new approach is its robustness to relatively small numbers of conditions (columns) in the expression matrix, which is a common problem faced by existing methods. Finally, we evaluate SPREd on real data sets in yeast that represent gold-standard benchmarks of GRN reconstruction and show it to perform significantly better than or comparably to existing methods. In addition to its high accuracy and speed, SPREd marks a first step toward incorporating biophysics principles of gene regulation into ML-based approaches to GRN reconstruction. Availability and implementation Data and code are available from https://github.com/iiiime/SPREd.
Collapse
Affiliation(s)
- Zijun Wu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
- H. Milton Steward School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
3
|
Song Y, Seward CH, Chen CY, LeBlanc A, Leddy AM, Stubbs L. Isolated loss of the AUTS2 long isoform, brain-wide or targeted to Calbindin-lineage cells, generates a specific suite of brain, behavioral, and molecular pathologies. Genetics 2024; 226:iyad182. [PMID: 37816306 PMCID: PMC10763537 DOI: 10.1093/genetics/iyad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/25/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay, and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2-linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with mutations in 3' exons (exons 8-19) that disrupt both major isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2-l target genes. Furthermore, in contrast to 3' Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity and repetitive behaviors, phenotypes exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1-expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.
Collapse
Affiliation(s)
- Yunshu Song
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Chih-Ying Chen
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | - Amber LeBlanc
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | | | - Lisa Stubbs
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Bhogale S, Seward C, Stubbs L, Sinha S. SEAMoD: A fully interpretable neural network for cis-regulatory analysis of differentially expressed genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.565900. [PMID: 38014229 PMCID: PMC10680628 DOI: 10.1101/2023.11.09.565900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A common way to investigate gene regulatory mechanisms is to identify differentially expressed genes using transcriptomics, find their candidate enhancers using epigenomics, and search for over-represented transcription factor (TF) motifs in these enhancers using bioinformatics tools. A related follow-up task is to model gene expression as a function of enhancer sequences and rank TF motifs by their contribution to such models, thus prioritizing among regulators. We present a new computational tool called SEAMoD that performs the above tasks of motif finding and sequence-to-expression modeling simultaneously. It trains a convolutional neural network model to relate enhancer sequences to differential expression in one or more biological conditions. The model uses TF motifs to interpret the sequences, learning these motifs and their relative importance to each biological condition from data. It also utilizes epigenomic information in the form of activity scores of putative enhancers and automatically searches for the most promising enhancer for each gene. Compared to existing neural network models of non-coding sequences, SEAMoD uses far fewer parameters, requires far less training data, and emphasizes biological interpretability. We used SEAMoD to understand regulatory mechanisms underlying the differentiation of neural stem cell (NSC) derived from mouse forebrain. We profiled gene expression and histone modifications in NSC and three differentiated cell types and used SEAMoD to model differential expression of nearly 12,000 genes with an accuracy of 81%, in the process identifying the Olig2, E2f family TFs, Foxo3, and Tcf4 as key transcriptional regulators of the differentiation process.
Collapse
|
5
|
Wu Z, Sinha S. SPREd: A simulation-supervised neural network tool for gene regulatory network reconstruction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566399. [PMID: 38014297 PMCID: PMC10680606 DOI: 10.1101/2023.11.09.566399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Reconstruction of gene regulatory networks (GRNs) from expression data is a significant open problem. Common approaches train a machine learning (ML) model to predict a gene's expression using transcription factors' (TFs') expression as features and designate important features/TFs as regulators of the gene. Here, we present an entirely different paradigm, where GRN edges are directly predicted by the ML model. The new approach, named "SPREd" is a simulation-supervised neural network for GRN inference. Its inputs comprise expression relationships (e.g., correlation, mutual information) between the target gene and each TF and between pairs of TFs. The output includes binary labels indicating whether each TF regulates the target gene. We train the neural network model using synthetic expression data generated by a biophysics-inspired simulation model that incorporates linear as well as non-linear TF-gene relationships and diverse GRN configurations. We show SPREd to outperform state-of-the-art GRN reconstruction tools GENIE3, ENNET, PORTIA and TIGRESS on synthetic datasets with high co-expression among TFs, similar to that seen in real data. A key advantage of the new approach is its robustness to relatively small numbers of conditions (columns) in the expression matrix, which is a common problem faced by existing methods. Finally, we evaluate SPREd on real data sets in yeast that represent gold standard benchmarks of GRN reconstruction and show it to perform significantly better than or comparably to existing methods. In addition to its high accuracy and speed, SPREd marks a first step towards incorporating biophysics principles of gene regulation into ML-based approaches to GRN reconstruction.
Collapse
Affiliation(s)
- Zijun Wu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Saurabh Sinha
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- H. Milton Steward School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| |
Collapse
|
6
|
Liu J, Tao J, Cai G, Chen J, Zhao L, Wang Y, Xu S, Chen R, Hu L, Cao J, Chen L, Tu Y. The altered hippocampal functional connectivity and serum brain-derived neurotrophic factor level predict cognitive decline in patients with knee osteoarthritis. Cereb Cortex 2023; 33:10584-10594. [PMID: 37653604 DOI: 10.1093/cercor/bhad305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
Patients with knee osteoarthritis (KOA) often suffer from cognitive decline and increased dementia risk, but the neurobiological mechanisms remain unclear. In this study, we evaluated cognitive performance and collected brain magnetic resonance imaging (MRI) data and blood samples from cognitively normal KOA patients at baseline sessions and reevaluated their cognition after 5 years. We also collected MRI data from matched healthy controls. Results showed that KOA patients exhibited dysregulated functional connectivities between the hippocampus and thalamus/superior frontal gyrus compared with healthy controls. The altered hippocampal functional connectivities were associated with serum brain-derived neurotrophic factor (BDNF) levels and spatial expression of genes enriched in synaptic plasticity. The hippocampus-thalamus functional connectivity was significantly correlated with patients' memory scores. Moreover, the baseline hippocampus-thalamus functional connectivity and BDNF levels significantly predicted the development of cognitive decline in KOA patients in the follow-up session. Our findings provide insight into the neurobiological underpinnings of KOA and cognitive decline.
Collapse
Affiliation(s)
- Jiao Liu
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jing Tao
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation, Ministry of Education, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Guiyan Cai
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jie Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Zhao
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yajun Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shurui Xu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruilin Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidian Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Song Y, Seward CH, Chen CY, LeBlanc A, Leddy AM, Stubbs L. Isolated loss of the AUTS2 long isoform, brain-wide or targeted to Calbindin -lineage cells, generates a specific suite of brain, behavioral and molecular pathologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539486. [PMID: 37205596 PMCID: PMC10187298 DOI: 10.1101/2023.05.04.539486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2- linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with C-terminal mutations that disrupt both isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2- l target genes. Furthermore, in contrast to C-terminal Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity, a phenotype exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1 -expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.
Collapse
|
8
|
Cerutti C, Shi JR, Vanacker JM. Multifaceted Transcriptional Network of Estrogen-Related Receptor Alpha in Health and Disease. Int J Mol Sci 2023; 24:ijms24054265. [PMID: 36901694 PMCID: PMC10002233 DOI: 10.3390/ijms24054265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Estrogen-related receptors (ERRα, β and γ in mammals) are orphan members of the nuclear receptor superfamily acting as transcription factors. ERRs are expressed in several cell types and they display various functions in normal and pathological contexts. Amongst others, they are notably involved in bone homeostasis, energy metabolism and cancer progression. In contrast to other nuclear receptors, the activities of the ERRs are apparently not controlled by a natural ligand but they rely on other means such as the availability of transcriptional co-regulators. Here we focus on ERRα and review the variety of co-regulators that have been identified by various means for this receptor and their reported target genes. ERRα cooperates with distinct co-regulators to control the expression of distinct sets of target genes. This exemplifies the combinatorial specificity of transcriptional regulation that induces discrete cellular phenotypes depending on the selected coregulator. We finally propose an integrated view of the ERRα transcriptional network.
Collapse
|
9
|
Chen CY, Seward CH, Song Y, Inamdar M, Leddy AM, Zhang H, Yoo J, Kao WC, Pawlowski H, Stubbs LJ. Galnt17 loss-of-function leads to developmental delay and abnormal coordination, activity, and social interactions with cerebellar vermis pathology. Dev Biol 2022; 490:155-171. [PMID: 36002036 PMCID: PMC10671221 DOI: 10.1016/j.ydbio.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
GALNT17 encodes a N-acetylgalactosaminyltransferase (GalNAc-T) protein specifically involved in mucin-type O-linked glycosylation of target proteins, a process important for cell adhesion, cell signaling, neurotransmitter activity, neurite outgrowth, and neurite sensing. GALNT17, also known as WBSCR17, is located at the edge of the Williams-Beuren Syndrome (WBS) critical region and adjacent to the AUTS2 locus, genomic regions associated with neurodevelopmental phenotypes that are thought to be co-regulated. Although previous data have implicated Galnt17 in neurodevelopment, the in vivo functions of this gene have not been investigated. In this study, we have analyzed behavioral, brain pathology, and molecular phenotypes exhibited by Galnt17 knockout (Galnt17-/-) mice. We show that Galnt17-/- mutants exhibit developmental neuropathology within the cerebellar vermis, along with abnormal activity, coordination, and social interaction deficits. Transcriptomic and protein analysis revealed reductions in both mucin type O-glycosylation and heparan sulfate synthesis in the developing mutant cerebellum along with disruption of pathways central to neuron differentiation, axon pathfinding, and synaptic signaling, consistent with the mutant neuropathology. These brain and behavioral phenotypes and molecular data confirm a specific role for Galnt17 in brain development and suggest new clues to factors that could contribute to phenotypes in certain WBS and AUTS2 syndrome patients.
Collapse
Affiliation(s)
- Chih-Ying Chen
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA; Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| | - Christopher H Seward
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA; Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Yunshu Song
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA; Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Manasi Inamdar
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Analise M Leddy
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jennifer Yoo
- Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Wei-Chun Kao
- Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Hanna Pawlowski
- Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Lisa J Stubbs
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA; Carl R. Woese Institute for Genomic Biology and School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
10
|
Xin H, Zhao SD. A compound decision approach to covariance matrix estimation. Biometrics 2022. [PMID: 35499364 DOI: 10.1111/biom.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
Covariance matrix estimation is a fundamental statistical task in many applications, but the sample covariance matrix is sub-optimal when the sample size is comparable to or less than the number of features. Such high-dimensional settings are common in modern genomics, where covariance matrix estimation is frequently employed as a method for inferring gene networks. To achieve estimation accuracy in these settings, existing methods typically either assume that the population covariance matrix has some particular structure, for example sparsity, or apply shrinkage to better estimate the population eigenvalues. In this paper, we study a new approach to estimating high-dimensional covariance matrices. We first frame covariance matrix estimation as a compound decision problem. This motivates defining a class of decision rules and using a nonparametric empirical Bayes g-modeling approach to estimate the optimal rule in the class. Simulation results and gene network inference in an RNA-seq experiment in mouse show that our approach is comparable to or can outperform a number of state-of-the-art proposals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huiqin Xin
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois
| |
Collapse
|
11
|
Seward CH, Saul MC, Troy JM, Dibaeinia P, Zhang H, Sinha S, Stubbs LJ. An epigenomic shift in amygdala marks the transition to maternal behaviors in alloparenting virgin female mice. PLoS One 2022; 17:e0263632. [PMID: 35192674 PMCID: PMC8863255 DOI: 10.1371/journal.pone.0263632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/23/2022] [Indexed: 11/25/2022] Open
Abstract
Adults of many species will care for young offspring that are not their own, a phenomenon called alloparenting. However, in many cases, nonparental adults must be sensitized by repeated or extended exposures to newborns before they will robustly display parental-like behaviors. To capture neurogenomic events underlying the transition to active parental caring behaviors, we analyzed brain gene expression and chromatin profiles of virgin female mice co-housed with pregnant dams during pregnancy and after birth. After an initial display of antagonistic behaviors and a surge of defense-related gene expression, we observed a dramatic shift in the chromatin landscape specifically in amygdala of the pup-exposed virgin females compared to females co-housed with mother before birth, accompanied by a dampening of anxiety-related gene expression. This epigenetic shift coincided with hypothalamic expression of the oxytocin gene and the emergence of behaviors and gene expression patterns classically associated with maternal care. The results outline a neurogenomic program associated with dramatic behavioral changes and suggest molecular networks relevant to human postpartum mental health.
Collapse
Affiliation(s)
- Christopher H. Seward
- Pacific Northwest Research Institute, Seattle, WA, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| | - Michael C. Saul
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| | - Joseph M. Troy
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Lisa J. Stubbs
- Pacific Northwest Research Institute, Seattle, WA, United States of America
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States of America
| |
Collapse
|
12
|
Yagound B, West AJ, Richardson MF, Selechnik D, Shine R, Rollins LA. Brain transcriptome analysis reveals gene expression differences associated with dispersal behaviour between range-front and range-core populations of invasive cane toads in Australia. Mol Ecol 2022; 31:1700-1715. [PMID: 35028988 PMCID: PMC9303232 DOI: 10.1111/mec.16347] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 11/27/2022]
Abstract
Understanding the mechanisms allowing invasive species to adapt to novel environments is a challenge in invasion biology. Many invaders demonstrate rapid evolution of behavioural traits involved in range expansion such as locomotor activity, exploration and risk‐taking. However, the molecular mechanisms that underpin these changes are poorly understood. In 86 years, invasive cane toads (Rhinella marina) in Australia have drastically expanded their geographic range westward from coastal Queensland to Western Australia. During their range expansion, toads have undergone extensive phenotypic changes, particularly in behaviours that enhance the toads’ dispersal ability. Common‐garden experiments have shown that some changes in behavioural traits related to dispersal are heritable. At the molecular level, it is currently unknown whether these changes in dispersal‐related behaviour are underlain by small or large differences in gene expression, nor is known the biological function of genes showing differential expression. Here, we used RNA‐seq to gain a better understanding of the molecular mechanisms underlying dispersal‐related behavioural changes. We compared the brain transcriptomes of toads from the Hawai'ian source population, as well as three distinct populations from across the Australian invasive range. We found markedly different gene expression profiles between the source population and Australian toads. By contrast, toads from across the Australian invasive range had very similar transcriptomic profiles. Yet, key genes with functions putatively related to dispersal behaviour showed differential expression between populations located at each end of the invasive range. These genes could play an important role in the behavioural changes characteristic of range expansion in Australian cane toads.
Collapse
Affiliation(s)
- Boris Yagound
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrea J West
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mark F Richardson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Daniel Selechnik
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lee A Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
13
|
McMeekin LJ, Joyce KL, Jenkins LM, Bohannon BM, Patel KD, Bohannon AS, Patel A, Fox SN, Simmons MS, Day JJ, Kralli A, Crossman DK, Cowell RM. Estrogen-related Receptor Alpha (ERRα) is Required for PGC-1α-dependent Gene Expression in the Mouse Brain. Neuroscience 2021; 479:70-90. [PMID: 34648866 PMCID: PMC9124582 DOI: 10.1016/j.neuroscience.2021.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022]
Abstract
Deficiency in peroxisome proliferator-activated receptor gamma coactivator 1-alpha. (PGC-1α) expression or function is implicated in numerous neurological and psychiatric disorders. PGC-1α is required for the expression of genes involved in synchronous neurotransmitter release, axonal integrity, and metabolism, especially in parvalbumin-positive interneurons. As a transcriptional coactivator, PGC-1α requires transcription factors to specify cell-type-specific gene programs; while much is known about these factors in peripheral tissues, it is unclear if PGC-1α utilizes these same factors in neurons. Here, we identified putative transcription factors controlling PGC-1α-dependent gene expression in the brain using bioinformatics and then validated the role of the top candidate in a knockout mouse model. We transcriptionally profiled cells overexpressing PGC-1α and searched for over-represented binding motifs in the promoters of upregulated genes. Binding sites of the estrogen-related receptor (ERR) family of transcription factors were enriched, and blockade of ERRα attenuated PGC-1α-mediated induction of mitochondrial and synaptic genes in cell culture. Localization in the mouse brain revealed enrichment of ERRα expression in parvalbumin-expressing neurons with tight correlation of expression with PGC-1α across brain regions. In ERRα null mice, PGC-1α-dependent genes were reduced in multiple regions, including neocortex, hippocampus, and cerebellum, though not to the extent observed in PGC-1α null mice. Behavioral assessment revealed ambulatory hyperactivity in response to amphetamine and impairments in sensorimotor gating without the overt motor impairment characteristic of PGC-1α null mice. These data suggest that ERRα is required for normal levels of expression of PGC-1α-dependent genes in neurons but that additional factors may be involved in their regulation.
Collapse
Affiliation(s)
- L J McMeekin
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - K L Joyce
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - L M Jenkins
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - B M Bohannon
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - K D Patel
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA
| | - A S Bohannon
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - A Patel
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - S N Fox
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - M S Simmons
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA.
| | - J J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - A Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - D K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - R M Cowell
- Department of Neuroscience, Drug Discovery Division, Southern Research, Birmingham, AL 35205, USA; Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
14
|
Uy FMK, Jernigan CM, Zaba NC, Mehrotra E, Miller SE, Sheehan MJ. Dynamic neurogenomic responses to social interactions and dominance outcomes in female paper wasps. PLoS Genet 2021; 17:e1009474. [PMID: 34478434 PMCID: PMC8415593 DOI: 10.1371/journal.pgen.1009474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022] Open
Abstract
Social interactions have large effects on individual physiology and fitness. In the immediate sense, social stimuli are often highly salient and engaging. Over longer time scales, competitive interactions often lead to distinct social ranks and differences in physiology and behavior. Understanding how initial responses lead to longer-term effects of social interactions requires examining the changes in responses over time. Here we examined the effects of social interactions on transcriptomic signatures at two times, at the end of a 45-minute interaction and 4 hours later, in female Polistes fuscatus paper wasp foundresses. Female P. fuscatus have variable facial patterns that are used for visual individual recognition, so we separately examined the transcriptional dynamics in the optic lobe and the non-visual brain. Results demonstrate much stronger transcriptional responses to social interactions in the non-visual brain compared to the optic lobe. Differentially regulated genes in response to social interactions are enriched for memory-related transcripts. Comparisons between winners and losers of the encounters revealed similar overall transcriptional profiles at the end of an interaction, which significantly diverged over the course of 4 hours, with losers showing changes in expression levels of genes associated with aggression and reproduction in paper wasps. On nests, subordinate foundresses are less aggressive, do more foraging and lay fewer eggs compared to dominant foundresses and we find losers shift expression of many genes in the non-visual brain, including vitellogenin, related to aggression, worker behavior, and reproduction within hours of losing an encounter. These results highlight the early neurogenomic changes that likely contribute to behavioral and physiological effects of social status changes in a social insect.
Collapse
Affiliation(s)
- Floria M. K. Uy
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Christopher M. Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Natalie C. Zaba
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Eshan Mehrotra
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Sara E. Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| | - Michael J. Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Traniello IM, Robinson GE. Neural and Molecular Mechanisms of Biological Embedding of Social Interactions. Annu Rev Neurosci 2021; 44:109-128. [PMID: 34236891 DOI: 10.1146/annurev-neuro-092820-012959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Animals operate in complex environments, and salient social information is encoded in the nervous system and then processed to initiate adaptive behavior. This encoding involves biological embedding, the process by which social experience affects the brain to influence future behavior. Biological embedding is an important conceptual framework for understanding social decision-making in the brain, as it encompasses multiple levels of organization that regulate how information is encoded and used to modify behavior. The framework we emphasize here is that social stimuli provoke short-term changes in neural activity that lead to changes in gene expression on longer timescales. This process, simplified-neurons are for today and genes are for tomorrow-enables the assessment of the valence of a social interaction, an appropriate and rapid response, and subsequent modification of neural circuitry to change future behavioral inclinations in anticipation of environmental changes. We review recent research on the neural and molecular basis of biological embedding in the context of social interactions, with a special focus on the honeybee.
Collapse
Affiliation(s)
- Ian M Traniello
- Neuroscience Program and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Gene E Robinson
- Neuroscience Program and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA; .,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
16
|
Vu TD, Iwasaki Y, Oshima K, Chiu MT, Nikaido M, Okada N. A unique neurogenomic state emerges after aggressive confrontations in males of the fish Betta splendens. Gene 2021; 784:145601. [PMID: 33766705 DOI: 10.1016/j.gene.2021.145601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Territorial defense involves frequent aggressive confrontations with competitors, but little is known about how brain-transcriptomic profiles change between individuals competing for territory establishment. Our previous study elucidated that when two fish Betta splendens males interact, transcriptomes across their brains synchronize in a way that reflects a mutual assessment process between them at the gene expression level. Here we aim to evaluate how the brain-transcriptomic profiles of opponents change immediately after shifting their social status (i.e., the winner/loser has emerged) and 30 min after this shift. We showed that changes in the expression of certain genes are unique to different fighting stages and the expression patterns of certain genes are transiently or persistently changed across all fighting stages. These brain transcriptomic responses are in accordance with behavioral changes across the fight. Strikingly, the specificity of the brain-transcriptomic synchronization of a pair during fighting was gradually lost after fighting ceased, leading to the emergence of a basal neurogenomic state in which the changes in gene expression were reduced to minimum and consistent across all individuals. This state shares common characteristics with the hibernation state that animals adopt to minimize their metabolic rates to save energy. Interestingly, expression changes for genes related to metabolism, autism spectrum disorder, and long-term memory still differentiated losers from winners. Together, the fighting system using male B. splendens provides a promising platform for investigating neurogenomic states of aggression in vertebrates.
Collapse
Affiliation(s)
- Trieu-Duc Vu
- School of Pharmacy, Kitasato University, Tokyo, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan; Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yuki Iwasaki
- Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | - Ming-Tzu Chiu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Norihiro Okada
- School of Pharmacy, Kitasato University, Tokyo, Japan; Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Nagahama Institute of Bio-Science and Technology, Nagahama, Japan.
| |
Collapse
|
17
|
Scholtes C, Giguère V. Transcriptional Regulation of ROS Homeostasis by the ERR Subfamily of Nuclear Receptors. Antioxidants (Basel) 2021; 10:antiox10030437. [PMID: 33809291 PMCID: PMC7999130 DOI: 10.3390/antiox10030437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) such as superoxide anion (O2•-) and hydrogen peroxide (H2O2) are generated endogenously by processes such as mitochondrial oxidative phosphorylation, or they may arise from exogenous sources like bacterial invasion. ROS can be beneficial (oxidative eustress) as signaling molecules but also harmful (oxidative distress) to cells when ROS levels become unregulated in response to physiological, pathological or pharmacological insults. Indeed, abnormal ROS levels have been shown to contribute to the etiology of a wide variety of diseases. Transcriptional control of metabolic genes is a crucial mechanism to coordinate ROS homeostasis. Therefore, a better understanding of how ROS metabolism is regulated by specific transcription factors can contribute to uncovering new therapeutic strategies. A large body of work has positioned the estrogen-related receptors (ERRs), transcription factors belonging to the nuclear receptor superfamily, as not only master regulators of cellular energy metabolism but, most recently, of ROS metabolism. Herein, we will review the role played by the ERRs as transcriptional regulators of ROS generation and antioxidant mechanisms and also as ROS sensors. We will assess how the control of ROS homeostasis by the ERRs can be linked to physiology and disease and the possible contribution of manipulating ERR activity in redox medicine.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada;
| | - Vincent Giguère
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada;
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
18
|
Jones BM, Rao VD, Gernat T, Jagla T, Cash-Ahmed AC, Rubin BER, Comi TJ, Bhogale S, Husain SS, Blatti C, Middendorf M, Sinha S, Chandrasekaran S, Robinson GE. Individual differences in honey bee behavior enabled by plasticity in brain gene regulatory networks. eLife 2020; 9:e62850. [PMID: 33350385 PMCID: PMC7755388 DOI: 10.7554/elife.62850] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding the regulatory architecture of phenotypic variation is a fundamental goal in biology, but connections between gene regulatory network (GRN) activity and individual differences in behavior are poorly understood. We characterized the molecular basis of behavioral plasticity in queenless honey bee (Apis mellifera) colonies, where individuals engage in both reproductive and non-reproductive behaviors. Using high-throughput behavioral tracking, we discovered these colonies contain a continuum of phenotypes, with some individuals specialized for either egg-laying or foraging and 'generalists' that perform both. Brain gene expression and chromatin accessibility profiles were correlated with behavioral variation, with generalists intermediate in behavior and molecular profiles. Models of brain GRNs constructed for individuals revealed that transcription factor (TF) activity was highly predictive of behavior, and behavior-associated regulatory regions had more TF motifs. These results provide new insights into the important role played by brain GRN plasticity in the regulation of behavior, with implications for social evolution.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Vikyath D Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Department of Physics, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Tim Gernat
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Tobias Jagla
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Benjamin ER Rubin
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Troy J Comi
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
| | - Shounak Bhogale
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Syed S Husain
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
| | - Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Martin Middendorf
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig UniversityLeipzigGermany
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Center for Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Neuroscience Program, University of Illinois at Urbana–ChampaignUrbanaUnited States
- Department of Entomology, University of Illinois at Urbana–ChampaignUrbanaUnited States
| |
Collapse
|
19
|
Rhodes JS, Rendeiro C, Mun JG, Du K, Thaman P, Snyder A, Pinardo H, Drnevich J, Chandrasekaran S, Lai CS, Schimpf KJ, Kuchan MJ. Brain α-Tocopherol Concentration and Stereoisomer Profile Alter Hippocampal Gene Expression in Weanling Mice. J Nutr 2020; 150:3075-3085. [PMID: 32937657 DOI: 10.1093/jn/nxaa249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Alpha-tocopherol (αT), the bioactive constituent of vitamin E, is essential for fertility and neurological development. Synthetic αT (8 stereoisomers; all rac-αT) is added to infant formula at higher concentrations than natural αT (RRR-αT only) to adjust for bio-potency differences, but its effects on brain development are poorly understood. OBJECTIVES The objective was to determine the impact of bio-potency-adjusted dietary all rac-αT versus RRR-αT, fed to dams, on the hippocampal gene expression in weanling mice. METHODS Male/female pairs of C57BL/6J mice were fed AIN 93-G containing RRR-αT (NAT) or all rac-αT (SYN) at 37.5 or 75 IU/kg (n = 10/group) throughout gestation and lactation. Male pups were euthanized at 21 days. Half the brain was evaluated for the αT concentration and stereoisomer distribution. The hippocampus was dissected from the other half, and RNA was extracted and sequenced. Milk αT was analyzed in separate dams. RESULTS A total of 797 differentially expressed genes (DEGs) were identified in the hippocampi across the 4 dietary groups, at a false discovery rate of 10%. Comparing the NAT-37.5 group to the NAT-75 group or the SYN-37.5 group to the SYN-75 group, small differences in brain αT concentrations (10%; P < 0.05) led to subtle changes (<10%) in gene expression of 600 (NAT) or 487 genes (SYN), which were statistically significant. Marked differences in brain αT stereoisomer profiles (P < 0.0001) had a small effect on fewer genes (NAT-37.5 vs. SYN-37.5, 179; NAT-75 vs. SYN-75, 182). Most of the DEGs were involved in transcription regulation and synapse formation. A network analysis constructed around known vitamin E interacting proteins (VIPs) revealed a group of 32 DEGs between NAT-37.5 vs. SYN-37.5, explained by expression of the gene for the VIP, protein kinase C zeta (Pkcz). CONCLUSIONS In weanling mouse hippocampi, a network of genes involved in transcription regulation and synapse formation was differentially affected by dam diet αT concentration and source: all rac-αT or RRR-αT.
Collapse
Affiliation(s)
- Justin S Rhodes
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,Center for Nutrition, Learning and Memory, University of Illinois, Urbana-Champaign, Illinois, USA.,Department of Psychology, University of Illinois, Urbana-Champaign, Illinois, USA.,Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Catarina Rendeiro
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,Center for Nutrition, Learning and Memory, University of Illinois, Urbana-Champaign, Illinois, USA.,School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan G Mun
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,Center for Nutrition, Learning and Memory, University of Illinois, Urbana-Champaign, Illinois, USA.,Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Kristy Du
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,Center for Nutrition, Learning and Memory, University of Illinois, Urbana-Champaign, Illinois, USA.,Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Pragya Thaman
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,Department of Psychology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Amanda Snyder
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,Center for Nutrition, Learning and Memory, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Heinrich Pinardo
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,Center for Nutrition, Learning and Memory, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Jenny Drnevich
- High Performance Biological Computing and the Roy J Carver Biotechnology Center, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Chron-Si Lai
- Center for Nutrition, Learning and Memory, University of Illinois, Urbana-Champaign, Illinois, USA.,Abbott Nutrition, Columbus, Ohio, USA
| | | | - Matthew J Kuchan
- Center for Nutrition, Learning and Memory, University of Illinois, Urbana-Champaign, Illinois, USA.,Abbott Nutrition, Columbus, Ohio, USA
| |
Collapse
|
20
|
Sinha S, Jones BM, Traniello IM, Bukhari SA, Halfon MS, Hofmann HA, Huang S, Katz PS, Keagy J, Lynch VJ, Sokolowski MB, Stubbs LJ, Tabe-Bordbar S, Wolfner MF, Robinson GE. Behavior-related gene regulatory networks: A new level of organization in the brain. Proc Natl Acad Sci U S A 2020; 117:23270-23279. [PMID: 32661177 PMCID: PMC7519311 DOI: 10.1073/pnas.1921625117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.
Collapse
Affiliation(s)
- Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Beryl M Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
| | - Syed A Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Informatics Program, University of Illinois, Urbana-Champaign, IL 61820
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109
| | - Paul S Katz
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Jason Keagy
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14260
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Lisa J Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801;
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|
21
|
Aristizabal MJ, Anreiter I, Halldorsdottir T, Odgers CL, McDade TW, Goldenberg A, Mostafavi S, Kobor MS, Binder EB, Sokolowski MB, O'Donnell KJ. Biological embedding of experience: A primer on epigenetics. Proc Natl Acad Sci U S A 2020; 117:23261-23269. [PMID: 31624126 PMCID: PMC7519272 DOI: 10.1073/pnas.1820838116] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Biological embedding occurs when life experience alters biological processes to affect later life health and well-being. Although extensive correlative data exist supporting the notion that epigenetic mechanisms such as DNA methylation underlie biological embedding, causal data are lacking. We describe specific epigenetic mechanisms and their potential roles in the biological embedding of experience. We also consider the nuanced relationships between the genome, the epigenome, and gene expression. Our ability to connect biological embedding to the epigenetic landscape in its complexity is challenging and complicated by the influence of multiple factors. These include cell type, age, the timing of experience, sex, and DNA sequence. Recent advances in molecular profiling and epigenome editing, combined with the use of comparative animal and human longitudinal studies, should enable this field to transition from correlative to causal analyses.
Collapse
Affiliation(s)
- Maria J Aristizabal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V52 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Thorhildur Halldorsdottir
- Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Candice L Odgers
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Psychological Science, University of California, Irvine, CA 92697
- Sanford School of Public Policy, Duke University, Durham, NC 27708
| | - Thomas W McDade
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Anthropology, Northwestern University, Evanston, IL 60208
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| | - Anna Goldenberg
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Computer Science, Hospital for Sick Children, Vector Institute, University of Toronto, Toronto, ON, M5G OA4, Canada
| | - Sara Mostafavi
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Statistics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V52 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Elisabeth B Binder
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada;
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada
| | - Kieran J O'Donnell
- Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada;
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, QC, H4H 1R3, Canada
| |
Collapse
|
22
|
Lee J, Molley TG, Seward CH, Abdeen AA, Zhang H, Wang X, Gandhi H, Yang JL, Gaus K, Kilian KA. Geometric regulation of histone state directs melanoma reprogramming. Commun Biol 2020; 3:341. [PMID: 32620903 PMCID: PMC7334222 DOI: 10.1038/s42003-020-1067-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma displays a high degree of cellular plasticity during disease progression. Signals in the tumor microenvironment are believed to influence melanoma plasticity through changes in the epigenetic state to guide dynamic differentiation and de-differentiation. Here we uncover a relationship between geometric features at perimeter regions of melanoma aggregates, and reprogramming to a stem cell-like state through histone marks H3K4Me2 and H3K9Ac. Using an in vitro tumor microengineering approach, we find spatial enrichment of these histone modifications with concurrent expression of stemness markers. The epigenetic modifier PRDM14 overlaps with H3K9Ac and shows elevated expression in cells along regions of perimeter curvature. siRNA knockdown of PRDM14 abolishes the MIC phenotype suggesting a role in regulating melanoma heterogeneity. Our results suggest mechanotransduction at the periphery of melanoma aggregates may orchestrate the activity of epigenetic modifiers to regulate histone state, cellular plasticity, and tumorigenicity. Junmin Lee et al. study the role of geometric features at the perimeter regions of melanoma aggregates in programming stem cell-like state through histone marks. They use a tumor microengineering approach in vitro and report a spatial enrichment of histone modifications with stemness markers. Their work uncovers a mechanotransduction signaling that regulates epigenetic modifiers to regulate tumorigenicity.
Collapse
Affiliation(s)
- Junmin Lee
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thomas G Molley
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,School of Chemistry, School of Materials Science and Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher H Seward
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amr A Abdeen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xiaochun Wang
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hetvi Gandhi
- European Molecular Biology Laboratory Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jia-Lin Yang
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Katharina Gaus
- European Molecular Biology Laboratory Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,School of Chemistry, School of Materials Science and Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia. .,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
23
|
Behavioral and brain- transcriptomic synchronization between the two opponents of a fighting pair of the fish Betta splendens. PLoS Genet 2020; 16:e1008831. [PMID: 32555673 PMCID: PMC7299326 DOI: 10.1371/journal.pgen.1008831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/05/2020] [Indexed: 01/13/2023] Open
Abstract
Conspecific male animals fight for resources such as food and mating opportunities but typically stop fighting after assessing their relative fighting abilities to avoid serious injuries. Physiologically, how the fighting behavior is controlled remains unknown. Using the fighting fish Betta splendens, we studied behavioral and brain-transcriptomic changes during the fight between the two opponents. At the behavioral level, surface-breathing, and biting/striking occurred only during intervals between mouth-locking. Eventually, the behaviors of the two opponents became synchronized, with each pair showing a unique behavioral pattern. At the physiological level, we examined the expression patterns of 23,306 brain transcripts using RNA-sequencing data from brains of fighting pairs after a 20-min (D20) and a 60-min (D60) fight. The two opponents in each D60 fighting pair showed a strong gene expression correlation, whereas those in D20 fighting pairs showed a weak correlation. Moreover, each fighting pair in the D60 group showed pair-specific gene expression patterns in a grade of membership analysis (GoM) and were grouped as a pair in the heatmap clustering. The observed pair-specific individualization in brain-transcriptomic synchronization (PIBS) suggested that this synchronization provides a physiological basis for the behavioral synchronization. An analysis using the synchronized genes in fighting pairs of the D60 group found genes enriched for ion transport, synaptic function, and learning and memory. Brain-transcriptomic synchronization could be a general phenomenon and may provide a new cornerstone with which to investigate coordinating and sustaining social interactions between two interacting partners of vertebrates. Agonistic encounters induce changes in the brain and behavior, but their underlying molecular mechanisms remain poorly understood. The fighting fish Betta splendens are small freshwater fish that are well known for their aggressiveness and are widely used to study aggression. Here, by measuring aggressive behavior displays (bite/strike/surface-breathing) between two opponents during fighting, we demonstrate that the two opponents in each fighting pair showed similar fighting configurations by influencing each other. In addition, we compared brain gene expression between opponents and showed synchronization of gene expression within a fighting pair, leading to pair-specific synchronization in genes associated with ion transport, synapse function, and learning and memory. This study presents the possibility that similar behaviors in pairs of animals under similar conditions may trigger synchronizing waves of transcription between the individuals, providing a hint to support the idea that fighting behaviors contain cooperative aspects at the molecular level.
Collapse
|
24
|
Peng PC, Khoueiry P, Girardot C, Reddington JP, Garfield DA, Furlong EEM, Sinha S. The Role of Chromatin Accessibility in cis-Regulatory Evolution. Genome Biol Evol 2020; 11:1813-1828. [PMID: 31114856 PMCID: PMC6601868 DOI: 10.1093/gbe/evz103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Transcription factor (TF) binding is determined by sequence as well as chromatin accessibility. Although the role of accessibility in shaping TF-binding landscapes is well recorded, its role in evolutionary divergence of TF binding, which in turn can alter cis-regulatory activities, is not well understood. In this work, we studied the evolution of genome-wide binding landscapes of five major TFs in the core network of mesoderm specification, between Drosophila melanogaster and Drosophila virilis, and examined its relationship to accessibility and sequence-level changes. We generated chromatin accessibility data from three important stages of embryogenesis in both Drosophila melanogaster and Drosophila virilis and recorded conservation and divergence patterns. We then used multivariable models to correlate accessibility and sequence changes to TF-binding divergence. We found that accessibility changes can in some cases, for example, for the master regulator Twist and for earlier developmental stages, more accurately predict binding change than is possible using TF-binding motif changes between orthologous enhancers. Accessibility changes also explain a significant portion of the codivergence of TF pairs. We noted that accessibility and motif changes offer complementary views of the evolution of TF binding and developed a combined model that captures the evolutionary data much more accurately than either view alone. Finally, we trained machine learning models to predict enhancer activity from TF binding and used these functional models to argue that motif and accessibility-based predictors of TF-binding change can substitute for experimentally measured binding change, for the purpose of predicting evolutionary changes in enhancer activity.
Collapse
Affiliation(s)
- Pei-Chen Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign.,Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Pierre Khoueiry
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,American University of Beirut (AUB), Department of Biochemistry and Molecular Genetics, Beirut, Lebanon
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - James P Reddington
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - David A Garfield
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.,IRI-Life Sciences, Humboldt Universität zu Berlin, Berlin, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
25
|
Zhao SD, Nguyen YT. Nonparametric false discovery rate control for identifying simultaneous signals. Electron J Stat 2020. [DOI: 10.1214/19-ejs1663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Weisner PA, Chen CY, Sun Y, Yoo J, Kao WC, Zhang H, Baltz ET, Troy JM, Stubbs L. A Mouse Mutation That Dysregulates Neighboring Galnt17 and Auts2 Genes Is Associated with Phenotypes Related to the Human AUTS2 Syndrome. G3 (BETHESDA, MD.) 2019; 9:3891-3906. [PMID: 31554716 PMCID: PMC6829118 DOI: 10.1534/g3.119.400723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/19/2019] [Indexed: 01/23/2023]
Abstract
AUTS2 was originally discovered as the gene disrupted by a translocation in human twins with Autism spectrum disorder, intellectual disability, and epilepsy. Since that initial finding, AUTS2-linked mutations and variants have been associated with a very broad array of neuropsychiatric disorders, sugg esting that AUTS2 is required for fundamental steps of neurodevelopment. However, genotype-phenotype correlations in this region are complicated, because most mutations could also involve neighboring genes. Of particular interest is the nearest downstream neighbor of AUTS2, GALNT17, which encodes a brain-expressed N-acetylgalactosaminyltransferase of unknown brain function. Here we describe a mouse (Mus musculus) mutation, T(5G2;8A1)GSO (abbreviated 16Gso), a reciprocal translocation that breaks between Auts2 and Galnt17 and dysregulates both genes. Despite this complex regulatory effect, 16Gso homozygotes model certain human AUTS2-linked phenotypes very well. In addition to abnormalities in growth, craniofacial structure, learning and memory, and behavior, 16Gso homozygotes display distinct pathologies of the cerebellum and hippocampus that are similar to those associated with autism and other types of AUTS2-linked neurological disease. Analyzing mutant cerebellar and hippocampal transcriptomes to explain this pathology, we identified disturbances in pathways related to neuron and synapse maturation, neurotransmitter signaling, and cellular stress, suggesting possible cellular mechanisms. These pathways, coupled with the translocation's selective effects on Auts2 isoforms and coordinated dysregulation of Galnt17, suggest novel hypotheses regarding the etiology of the human "AUTS2 syndrome" and the wide array of neurodevelopmental disorders linked to variance in this genomic region.
Collapse
Affiliation(s)
- P Anne Weisner
- Carl R. Woese Institute for Genomic Biology
- Neuroscience Program
| | - Chih-Ying Chen
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | - Younguk Sun
- Carl R. Woese Institute for Genomic Biology
- Department of Cell and Developmental Biology, and
| | | | | | | | | | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology,
- Neuroscience Program
- Department of Cell and Developmental Biology, and
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana IL 61802
| |
Collapse
|
27
|
Subregion-specific rules govern the distribution of neuronal immediate-early gene induction. Proc Natl Acad Sci U S A 2019; 117:23304-23310. [PMID: 31636216 DOI: 10.1073/pnas.1913658116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The induction of immediate-early gene (IEG) expression in brain nuclei in response to an experience is necessary for the formation of long-term memories. Additionally, the rapid dynamics of IEG induction and decay motivates the common use of IEG expression as markers for identification of neuronal assemblies ("ensembles") encoding recent experience. However, major gaps remain in understanding the rules governing the distribution of IEGs within neuronal assemblies. Thus, the extent of correlation between coexpressed IEGs, the cell specificity of IEG expression, and the spatial distribution of IEG expression have not been comprehensively studied. To address these gaps, we utilized quantitative multiplexed single-molecule fluorescence in situ hybridization (smFISH) and measured the expression of IEGs (Arc, Egr2, and Nr4a1) within spiny projection neurons (SPNs) in the dorsal striatum of mice following acute exposure to cocaine. Exploring the relevance of our observations to other brain structures and stimuli, we also analyzed data from a study of single-cell RNA sequencing of mouse cortical neurons. We found that while IEG expression is graded, the expression of multiple IEGs is tightly correlated at the level of individual neurons. Interestingly, we observed that region-specific rules govern the induction of IEGs in SPN subtypes within striatal subdomains. We further observed that IEG-expressing assemblies form spatially defined clusters within which the extent of IEG expression correlates with cluster size. Together, our results suggest the existence of IEG-expressing neuronal "superensembles," which are associated in spatial clusters and characterized by coherent and robust expression of multiple IEGs.
Collapse
|
28
|
Social history and exposure to pathogen signals modulate social status effects on gene regulation in rhesus macaques. Proc Natl Acad Sci U S A 2019; 117:23317-23322. [PMID: 31611381 DOI: 10.1073/pnas.1820846116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Social experience is an important predictor of disease susceptibility and survival in humans and other social mammals. Chronic social stress is thought to generate a proinflammatory state characterized by elevated antibacterial defenses and reduced investment in antiviral defense. Here we manipulated long-term social status in female rhesus macaques to show that social subordination alters the gene expression response to ex vivo bacterial and viral challenge. As predicted by current models, bacterial lipopolysaccharide polarizes the immune response such that low status corresponds to higher expression of genes in NF-κB-dependent proinflammatory pathways and lower expression of genes involved in the antiviral response and type I IFN signaling. Counter to predictions, however, low status drives more exaggerated expression of both NF-κB- and IFN-associated genes after cells are exposed to the viral mimic Gardiquimod. Status-driven gene expression patterns are linked not only to social status at the time of sampling, but also to social history (i.e., past social status), especially in unstimulated cells. However, for a subset of genes, we observed interaction effects in which females who fell in rank were more strongly affected by current social status than those who climbed the social hierarchy. Taken together, our results indicate that the effects of social status on immune cell gene expression depend on pathogen exposure, pathogen type, and social history-in support of social experience-mediated biological embedding in adulthood, even in the conventionally memory-less innate immune system.
Collapse
|
29
|
Bukhari SA, Saul MC, James N, Bensky MK, Stein LR, Trapp R, Bell AM. Neurogenomic insights into paternal care and its relation to territorial aggression. Nat Commun 2019; 10:4437. [PMID: 31570726 PMCID: PMC6768867 DOI: 10.1038/s41467-019-12212-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Motherhood is characterized by dramatic changes in brain and behavior, but less is known about fatherhood. Here we report that male sticklebacks—a small fish in which fathers provide care—experience dramatic changes in neurogenomic state as they become fathers. Some genes are unique to different stages of paternal care, some genes are shared across stages, and some genes are added to the previously acquired neurogenomic state. Comparative genomic analysis suggests that some of these neurogenomic dynamics resemble changes associated with pregnancy and reproduction in mammalian mothers. Moreover, gene regulatory analysis identifies transcription factors that are regulated in opposite directions in response to a territorial challenge versus during paternal care. Altogether these results show that some of the molecular mechanisms of parental care might be deeply conserved and might not be sex-specific, and suggest that tradeoffs between opposing social behaviors are managed at the gene regulatory level. Compared to motherhood, the molecular changes associated with fatherhood are less understood. Here, the authors investigate gene expression changes associated with paternal care in male stickleback fish, and compare them with patterns in territorial aggression.
Collapse
Affiliation(s)
- Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA.,Illinois Informatics Institute, University of Illinois, Urbana Champaign, 616 E. Green St., Urbana, IL, 61820, USA.,Department of Evolution, Ecology and Behavior, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA.,Jackson Labs, 600 Main St., Bar Harbor, ME, 04609, USA
| | - Noelle James
- Neuroscience Program, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Miles K Bensky
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Laura R Stein
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.,Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Room 314, Norman, OK, 73019, USA
| | - Rebecca Trapp
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.,Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, IN, 47907, USA
| | - Alison M Bell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, 1206 Gregory Drive, Urbana, IL, 61801, USA. .,Department of Evolution, Ecology and Behavior, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA. .,Neuroscience Program, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA. .,Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
30
|
Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-Tissue Chemistry: Principles and Applications. Annu Rev Biophys 2019; 47:355-376. [PMID: 29792820 PMCID: PMC6359929 DOI: 10.1146/annurev-biophys-070317-032905] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past five years, a rapidly developing experimental approach has enabled high-resolution and high-content information retrieval from intact multicellular animal (metazoan) systems. New chemical and physical forms are created in the hydrogel-tissue chemistry process, and the retention and retrieval of crucial phenotypic information regarding constituent cells and molecules (and their joint interrelationships) are thereby enabled. For example, rich data sets defining both single-cell-resolution gene expression and single-cell-resolution activity during behavior can now be collected while still preserving information on three-dimensional positioning and/or brain-wide wiring of those very same neurons-even within vertebrate brains. This new approach and its variants, as applied to neuroscience, are beginning to illuminate the fundamental cellular and chemical representations of sensation, cognition, and action. More generally, reimagining metazoans as metareactants-or positionally defined three-dimensional graphs of constituent chemicals made available for ongoing functionalization, transformation, and readout-is stimulating innovation across biology and medicine.
Collapse
Affiliation(s)
- Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jennifer Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Kristin Overton
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA;
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA; .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA.,H oward Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
31
|
Abstract
Our social environment, from the microscopic to the macro-social, affects us for the entirety of our lives. One integral line of research to examine how interpersonal and societal environments can get "under the skin" is through the lens of epigenetics. Epigenetic mechanisms are adaptations made to our genome in response to our environment which include tags placed on and removed from the DNA itself to how our DNA is packaged, affecting how our genes are read, transcribed, and interact. These tags are affected by social environments and can persist over time; this may aid us in responding to experiences and exposures, both the enriched and the disadvantageous. From memory formation to immune function, the experience-dependent plasticity of epigenetic modifications to micro- and macro-social environments may contribute to the process of learning from comfort, pain, and stress to better survive in whatever circumstances life has in store.
Collapse
Affiliation(s)
- Sarah M Merrill
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Gladish
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, BC, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
- Human Early Learning Partnership, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
32
|
Social status alters chromatin accessibility and the gene regulatory response to glucocorticoid stimulation in rhesus macaques. Proc Natl Acad Sci U S A 2018; 116:1219-1228. [PMID: 30538209 PMCID: PMC6347725 DOI: 10.1073/pnas.1811758115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Low social status is an important predictor of disease susceptibility and mortality risk in humans and other social mammals. These effects are thought to stem in part from dysregulation of the glucocorticoid (GC)-mediated stress response. However, the molecular mechanisms that connect low social status and GC dysregulation to downstream health outcomes remain elusive. Here, we used an in vitro GC challenge to investigate the consequences of experimentally manipulated social status (i.e., dominance rank) for immune cell gene regulation in female rhesus macaques, using paired control and GC-treated peripheral blood mononuclear cell samples. We show that social status not only influences immune cell gene expression but also chromatin accessibility at hundreds of regions in the genome. Social status effects on gene expression were less pronounced following GC treatment than under control conditions. In contrast, social status effects on chromatin accessibility were stable across conditions, resulting in an attenuated relationship between social status, chromatin accessibility, and gene expression after GC exposure. Regions that were more accessible in high-status animals and regions that become more accessible following GC treatment were enriched for a highly concordant set of transcription factor binding motifs, including motifs for the GC receptor cofactor AP-1. Together, our findings support the hypothesis that social status alters the dynamics of GC-mediated gene regulation and identify chromatin accessibility as a mechanism involved in social stress-driven GC resistance. More broadly, they emphasize the context-dependent nature of social status effects on gene regulation and implicate epigenetic remodeling of chromatin accessibility as a contributing factor.
Collapse
|
33
|
Margineanu MB, Mahmood H, Fiumelli H, Magistretti PJ. L-Lactate Regulates the Expression of Synaptic Plasticity and Neuroprotection Genes in Cortical Neurons: A Transcriptome Analysis. Front Mol Neurosci 2018; 11:375. [PMID: 30364173 PMCID: PMC6191511 DOI: 10.3389/fnmol.2018.00375] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Lactate, a product of aerobic glycolysis in astrocytes, is required for memory formation and consolidation, and has recently emerged as a signaling molecule for neurons and various cell types in peripheral tissues. In particular lactate stimulates mRNA expression of a few plasticity-related genes. Here, we describe a RNA-seq study that unravels genome-wide transcriptomic responses to this energy metabolite in cortical neurons. Our results show that mRNA expression of 20 immediate-early genes involved in the MAPK signaling pathway and in synaptic plasticity were increased by more than twofold following 1 h of lactate stimulation. This effect was dependent on NMDA receptor (NMDAR) activity since it was prevented by pre-treatment with MK-801. Comparison with published datasets showed that a significant proportion of genes modulated by lactate were similarly regulated by a stimulation protocol activating specifically synaptic NMDARs known to result in upregulation of pro-survival and downregulation of pro-death genes. Remarkably, transcriptional responses to lactate were reproduced by NADH (for 74 of the 113 genes, FDR < 0.05), suggesting a redox-dependent mechanism of action. Longer-term gene expression changes observed after 6 h of lactate treatment affected genes involved in regulating neuronal excitability and genes coding for proteins localized at synapses. Gene set enrichment analyses performed with ranked lists of expressed genes revealed effects on molecular functions involved in epigenetic modulation, and on processes relevant to sleep physiology and behavioral phenotypes such as anxiety and hyperactivity. Overall, these results strengthen the notion that lactate effectively regulates activity-dependent and synaptic genes, and highlight new signaling effects of lactate in plasticity and neuroprotection.
Collapse
Affiliation(s)
- Michael B Margineanu
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hanan Mahmood
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hubert Fiumelli
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pierre J Magistretti
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
34
|
Shpigler HY, Saul MC, Murdoch EE, Corona F, Cash-Ahmed AC, Seward CH, Chandrasekaran S, Stubbs LJ, Robinson GE. Honey bee neurogenomic responses to affiliative and agonistic social interactions. GENES BRAIN AND BEHAVIOR 2018; 18:e12509. [PMID: 30094933 DOI: 10.1111/gbb.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
Social interactions can be divided into two categories, affiliative and agonistic. How neurogenomic responses reflect these opposing valences is a central question in the biological embedding of experience. To address this question, we exposed honey bees to a queen larva, which evokes nursing, an affiliative alloparenting interaction, and measured the transcriptomic response of the mushroom body brain region at different times after exposure. Hundreds of genes were differentially expressed at distinct time points, revealing a dynamic temporal patterning of the response. Comparing these results to our previously published research on agonistic aggressive interactions, we found both shared and unique transcriptomic responses to each interaction. The commonly responding gene set was enriched for nuclear receptor signaling, the set specific to nursing was enriched for olfaction and neuron differentiation, and the set enriched for aggression was enriched for cytoskeleton, metabolism, and chromosome organization. Whole brain histone profiling after the affiliative interaction revealed few changes in chromatin accessibility, suggesting that the transcriptomic changes derive from already accessible areas of the genome. Although only one stimulus of each type was studied, we suggest that elements of the observed transcriptomic responses reflect molecular encoding of stimulus valence, thus priming individuals for future encounters. This hypothesis is supported by behavioral analyses showing that bees responding to either the affiliative or agonistic stimulus exhibited a higher probability of repeating the same behavior but a lower probability of performing the opposite behavior. These findings add to our understanding of the biological embedding at the molecular level.
Collapse
Affiliation(s)
- Hagai Y Shpigler
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Emma E Murdoch
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Frida Corona
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois.,Department of Cell and Developmental Biology, UIUC, Urbana, Illinois
| | | | - Lisa J Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois.,Department of Cell and Developmental Biology, UIUC, Urbana, Illinois.,Neuroscience Program, UIUC, Urbana, Illinois
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois.,Neuroscience Program, UIUC, Urbana, Illinois.,Department of Entomology, UIUC, Urbana, Illinois
| |
Collapse
|
35
|
Saul MC, Blatti C, Yang W, Bukhari SA, Shpigler HY, Troy JM, Seward CH, Sloofman L, Chandrasekaran S, Bell AM, Stubbs L, Robinson GE, Zhao SD, Sinha S. Cross-species systems analysis of evolutionary toolkits of neurogenomic response to social challenge. GENES BRAIN AND BEHAVIOR 2018; 18:e12502. [PMID: 29968347 DOI: 10.1111/gbb.12502] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Social challenges like territorial intrusions evoke behavioral responses in widely diverging species. Recent work has showed that evolutionary "toolkits"-genes and modules with lineage-specific variations but deep conservation of function-participate in the behavioral response to social challenge. Here, we develop a multispecies computational-experimental approach to characterize such a toolkit at a systems level. Brain transcriptomic responses to social challenge was probed via RNA-seq profiling in three diverged species-honey bees, mice and three-spined stickleback fish-following a common methodology, allowing fair comparisons across species. Data were collected from multiple brain regions and multiple time points after social challenge exposure, achieving anatomical and temporal resolution substantially greater than previous work. We developed statistically rigorous analyses equipped to find homologous functional groups among these species at the levels of individual genes, functional and coexpressed gene modules, and transcription factor subnetworks. We identified six orthogroups involved in response to social challenge, including groups represented by mouse genes Npas4 and Nr4a1, as well as common modulation of systems such as transcriptional regulators, ion channels, G-protein-coupled receptors and synaptic proteins. We also identified conserved coexpression modules enriched for mitochondrial fatty acid metabolism and heat shock that constitute the shared neurogenomic response. Our analysis suggests a toolkit wherein nuclear receptors, interacting with chaperones, induce transcriptional changes in mitochondrial activity, neural cytoarchitecture and synaptic transmission after social challenge. It shows systems-level mechanisms that have been repeatedly co-opted during evolution of analogous behaviors, thus advancing the genetic toolkit concept beyond individual genes.
Collapse
Affiliation(s)
- Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Wei Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Syed A Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Interdisciplinary Informatics Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Hagai Y Shpigler
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Ecology, Evolution and Behavior, Hebrew University, Jerusalem, Israel
| | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Interdisciplinary Informatics Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Laura Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Genetics and Genomic Sciences, Mount Sinai Health System, New York, New York
| | | | - Alison M Bell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Interdisciplinary Informatics Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Interdisciplinary Informatics Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sihai D Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
36
|
The evolution of a series of behavioral traits is associated with autism-risk genes in cavefish. BMC Evol Biol 2018; 18:89. [PMID: 29909776 PMCID: PMC6004695 DOI: 10.1186/s12862-018-1199-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background An essential question in evolutionary biology is whether shifts in a set of polygenic behaviors share a genetic basis across species. Such a behavioral shift is seen in the cave-dwelling Mexican tetra, Astyanax mexicanus. Relative to surface-dwelling conspecifics, cavefish do not school (asocial), are hyperactive and sleepless, adhere to a particular vibration stimulus (imbalanced attention), behave repetitively, and show elevated stress hormone levels. Interestingly, these traits largely overlap with the core symptoms of human autism spectrum disorder (ASD), raising the possibility that these behavioral traits are underpinned by a similar set of genes (i.e. a repeatedly used suite of genes). Result Here, we explored whether modification of ASD-risk genes underlies cavefish evolution. Transcriptomic analyses revealed that > 58.5% of 3152 cavefish orthologs to ASD-risk genes are significantly up- or down-regulated in the same direction as genes in postmortem brains from ASD patients. Enrichment tests suggest that ASD-risk gene orthologs in A. mexicanus have experienced more positive selection than other genes across the genome. Notably, these positively selected cavefish ASD-risk genes are enriched for pathways involved in gut function, inflammatory diseases, and lipid/energy metabolism, similar to symptoms that frequently coexist in ASD patients. Lastly, ASD drugs mitigated cavefish’s ASD-like behaviors, implying shared aspects of neural processing. Conclusion Overall, our study indicates that ASD-risk genes and associated pathways (especially digestive, immune and metabolic pathways) may be repeatedly used for shifts in polygenic behaviors across evolutionary time. Electronic supplementary material The online version of this article (10.1186/s12862-018-1199-9) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Emerging Roles of Estrogen-Related Receptors in the Brain: Potential Interactions with Estrogen Signaling. Int J Mol Sci 2018; 19:ijms19041091. [PMID: 29621182 PMCID: PMC5979530 DOI: 10.3390/ijms19041091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 01/22/2023] Open
Abstract
In addition to their well-known role in the female reproductive system, estrogens can act in the brain to regulate a wide range of behaviors and physiological functions in both sexes. Over the past few decades, genetically modified animal models have greatly increased our knowledge about the roles of estrogen receptor (ER) signaling in the brain in behavioral and physiological regulations. However, less attention has been paid to the estrogen-related receptors (ERRs), the members of orphan nuclear receptors whose sequences are homologous to ERs but lack estrogen-binding ability. While endogenous ligands of ERRs remain to be determined, they seemingly share transcriptional targets with ERs and their expression can be directly regulated by ERs through the estrogen-response element embedded within the regulatory region of the genes encoding ERRs. Despite the broad expression of ERRs in the brain, we have just begun to understand the fundamental roles they play at molecular, cellular, and circuit levels. Here, we review recent research advancement in understanding the roles of ERs and ERRs in the brain, with particular emphasis on ERRs, and discuss possible cross-talk between ERs and ERRs in behavioral and physiological regulations.
Collapse
|
38
|
Shpigler HY, Saul MC, Corona F, Block L, Cash Ahmed A, Zhao SD, Robinson GE. Deep evolutionary conservation of autism-related genes. Proc Natl Acad Sci U S A 2017; 114:9653-9658. [PMID: 28760967 PMCID: PMC5594688 DOI: 10.1073/pnas.1708127114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
E. O. Wilson proposed in Sociobiology that similarities between human and animal societies reflect common mechanistic and evolutionary roots. When introduced in 1975, this controversial hypothesis was beyond science's ability to test. We used genomic analyses to determine whether superficial behavioral similarities in humans and the highly social honey bee reflect common molecular mechanisms. Here, we report that gene expression signatures for individual bees unresponsive to various salient social stimuli are significantly enriched for autism spectrum disorder-related genes. These signatures occur in the mushroom bodies, a high-level integration center of the insect brain. Furthermore, our finding of enrichment was unique to autism spectrum disorders; brain gene expression signatures from other honey bee behaviors do not show this enrichment, nor do datasets from other human behavioral and health conditions. These results demonstrate deep conservation for genes associated with a human social pathology and individual differences in insect social behavior, thus providing an example of how comparative genomics can be used to test sociobiological theory.
Collapse
Affiliation(s)
- Hagai Y Shpigler
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Frida Corona
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Lindsey Block
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Amy Cash Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Sihai D Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
39
|
Bukhari SA, Saul MC, Seward CH, Zhang H, Bensky M, James N, Zhao SD, Chandrasekaran S, Stubbs L, Bell AM. Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genet 2017; 13:e1006840. [PMID: 28704398 PMCID: PMC5509087 DOI: 10.1371/journal.pgen.1006840] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/27/2017] [Indexed: 11/18/2022] Open
Abstract
Animals exhibit dramatic immediate behavioral plasticity in response to social interactions, and brief social interactions can shape the future social landscape. However, the molecular mechanisms contributing to behavioral plasticity are unclear. Here, we show that the genome dynamically responds to social interactions with multiple waves of transcription associated with distinct molecular functions in the brain of male threespined sticklebacks, a species famous for its behavioral repertoire and evolution. Some biological functions (e.g., hormone activity) peaked soon after a brief territorial challenge and then declined, while others (e.g., immune response) peaked hours afterwards. We identify transcription factors that are predicted to coordinate waves of transcription associated with different components of behavioral plasticity. Next, using H3K27Ac as a marker of chromatin accessibility, we show that a brief territorial intrusion was sufficient to cause rapid and dramatic changes in the epigenome. Finally, we integrate the time course brain gene expression data with a transcriptional regulatory network, and link gene expression to changes in chromatin accessibility. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction. Social interactions provoke changes in the brain and behavior but their underlying molecular mechanisms remain obscure. Male sticklebacks are small fish whose fitness depends on their ability to defend a territory. Here, by measuring the time course of gene expression in response to a territorial challenge in two brain regions, we show that a single brief territorial intrusion provoked waves of gene expression that persisted for hours afterwards, with waves of transcription associated with distinct biological processes. Moreover, a single territorial challenge caused dramatic changes to the epigenome. Changes in chromatin accessibility corresponded to changes in gene expression, and to the activity of transcription factors operating within gene regulatory networks. This study reveals rapid and dramatic epigenomic plasticity in response to a brief, highly consequential social interaction. These results suggest that meaningful social interactions (even brief ones) can provoke waves of transcription and changes to the epigenome which lead to changes in neural functioning, and those changes are a mechanism by which animals update their assessment of their social world.
Collapse
Affiliation(s)
- Syed Abbas Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Illinois Informatics Institute, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Michael C. Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Christopher H. Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Miles Bensky
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Noelle James
- Neuroscience Program, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Department of Statistics, University of Illinois, Urbana Champaign, Urbana, IL United States of America
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, MA, United States of America
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Department of Cell and Developmental Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
| | - Alison M. Bell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- Neuroscience Program, University of Illinois, Urbana Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|