1
|
Mustonen L, Nieminen JK, Koskela S, Kaunisto M, Kalso E, Tienari PJ, Harno H. HLA-Region Genetic Association Analysis of Breast Cancer Patients With and Without Persistent Postsurgical Neuropathic Pain. Eur J Pain 2025; 29:e70009. [PMID: 40084918 DOI: 10.1002/ejp.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Surgical nerve injuries lead to persistent neuropathic pain (NP) in up to 30% of patients. Among many other factors, polymorphisms in the human leukocyte antigen (HLA) genes have been suggested to contribute to the development of neuropathic pain. METHODS We performed a genetic association analysis of HLA class I and class II alleles in women who had been operated on for breast cancer. Patients had a surgeon-confirmed perioperative nerve injury and were examined 4-9 years after their surgery. Patients with painful (cases, n = 27) and painless (controls, n = 30) intercostobrachial nerve resection were studied. Cases included patients with definite NP with worst pain intensity in the past week ≥ 4/10 on a numerical rating scale (NRS) and controls had the same nerve injury with no NP or other pains. Whole-genome single nucleotide polymorphism data were produced, and HLA class I (HLA-A, -B, -C) and class II (HLA-DRB1, -DQA1, -DQB1 and -DPB1) alleles were determined by imputation. RESULTS HLA-DRB1*03:01, DQA1*05:01 and DQB1*02:01 alleles appeared to be associated with painful nerve injury after breast cancer surgery (nominal p = 0.007 for all, carriership OR = 12.0, 95% CI 1.38-104; FDR corrected p > 0.07). These alleles comprise the DR3-DQ2 haplotype, which is part of the ancestral haplotype AH8.1. CONCLUSIONS Our results provide further support for the role of HLA genetic variation in the development of persistent post-surgical neuropathic pain, which indirectly implies a mechanism involving immunological memory in this process. SIGNIFICANCE STATEMENT We report a novel association between the HLA-DR3-DQ2 haplotype and the development of persistent neuropathic pain after breast cancer surgery. Our results provide further evidence for the role of HLA polymorphism in persistent neuropathic pain.
Collapse
Affiliation(s)
- L Mustonen
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - J K Nieminen
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - S Koskela
- Department of Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - M Kaunisto
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - E Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- SleepWell Research Program, University of Helsinki, Helsinki, Finland
| | - P J Tienari
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - H Harno
- Clinical Neurosciences, Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- SleepWell Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Mack SJ, Single RM, Solberg OD, Thomson G, Erlich HA. Population genetic dissection of HLA-DPB1 amino acid polymorphism to infer selection. Hum Immunol 2024; 85:111151. [PMID: 39413638 PMCID: PMC11827675 DOI: 10.1016/j.humimm.2024.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Although allele frequency data for most HLA loci provide strong evidence for balancing selection at the allele level, the DPB1 locus is a notable exception, with allele frequencies compatible with neutral evolution (genetic drift) or directional selection in most populations. This discrepancy is especially interesting as evidence for balancing selection has been seen at the nucleotide and amino acid (AA) sequence levels for DPB1. We describe methods used to examine the global distribution of DPB1 alleles and their constituent AA sequences. These methods allow investigation of the influence of natural selection in shaping DPβ diversity in a hierarchical fashion for DPB1 alleles, all polymorphic DPB1 exon 2-encoded AA positions, as well as all pairs and trios of these AA positions. In addition, we describe how asymmetric linkage disequilibrium for all DPB1 exon 2-encoded AA pairs can be used to complement other methods. Application of these methods provides strong evidence for the operation of balancing selection on AA positions 56, 85-87, 36, 55 and 84 (listed in decreasing order of the strength of selection), but no evidence for balancing selection on DPB1 alleles.
Collapse
Affiliation(s)
- Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
3
|
Hu T, Mosbruger TL, Tairis NG, Dinou A, Jayaraman P, Sarmady M, Brewster K, Li Y, Hayeck TJ, Duke JL, Monos DS. Targeted and complete genomic sequencing of the major histocompatibility complex in haplotypic form of individual heterozygous samples. Genome Res 2024; 34:1500-1513. [PMID: 39327030 PMCID: PMC11534196 DOI: 10.1101/gr.278588.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The human major histocompatibility complex (MHC) is a ∼4 Mb genomic segment on Chromosome 6 that plays a pivotal role in the immune response. Despite its importance in various traits and diseases, its complex nature makes it challenging to accurately characterize on a routine basis. We present a novel approach allowing targeted sequencing and de novo haplotypic assembly of the MHC region in heterozygous samples, using long-read sequencing technologies. Our approach is validated using two reference samples, two family trios, and an African-American sample. We achieved excellent coverage (96.6%-99.9% with at least 30× depth) and high accuracy (99.89%-99.99%) for the different haplotypes. This methodology offers a reliable and cost-effective method for sequencing and fully characterizing the MHC without the need for whole-genome sequencing, facilitating broader studies on this important genomic segment and having significant implications in immunology, genetics, and medicine.
Collapse
Affiliation(s)
- Taishan Hu
- Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Timothy L Mosbruger
- Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Nikolaos G Tairis
- Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Amalia Dinou
- Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Pushkala Jayaraman
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Kingham Brewster
- Sequencing and Genotyping Center, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19713, USA
| | - Yang Li
- Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Tristan J Hayeck
- Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jamie L Duke
- Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Dimitri S Monos
- Immunogenetics Laboratory, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Single RM, Mack SJ, Solberg OD, Thomson G, Erlich HA. Natural Selection on HLA-DPB1 Amino Acids Operates Primarily on DP Serologic Categories. Hum Immunol 2024; 85:111153. [PMID: 39461275 DOI: 10.1016/j.humimm.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The DPB1 locus is notable among the classical HLA loci in that allele frequencies at this locus are consistent with genetic drift, whereas the frequencies of specific DPβ amino acids are consistent with the action of balancing selection. We investigated the influence of natural selection in shaping the diversity of three functional categories of DPB1 diversity defined by specific amino acid motifs, DPB1 T-cell epitopes, DPB1 supertypes and DP1-DP4 serologic categories (SCs), via Ewens-Watterson (EW) selective neutrality and asymmetric Linkage Disequilibrium (ALD) analyses in a worldwide sample of 136 populations. These EW analyses provide strong evidence for the operation of balancing selection on DP SCs, but no evidence for balancing selection on T-cell epitopes or supertypes. We further investigated the global distribution of SCs. Each SC is common in a different region of the world, with the DP1 SC most common in Southeast Asia and Oceania, the DP2 SC in North and South America, the DP3 SC in South America, and the DP4 SC in Europe. The DP2 SC is present in all populations, while 14% of populations are missing at least one DP1, DP3, or DP4 SC. We observed consistent DPA1∼DP SC haplotype associations across 10 populations from five global regions, and found that asymmetric linkage disequilibrium (LD) between the DPB1 locus and the four most-common DPA1 alleles (DPA1*01:03, *02:01, *02:02 and *03:01) is determined by variation at DPβ AA positions 85-87. These positions are in LD with both DPα positions 31 and 50. We conclude from these EW analyses that natural selection is primarily operating to maintain population-level diversity of DP SCs, rather than DPB1 alleles or other functional categories of DPB1 diversity.
Collapse
Affiliation(s)
- Richard M Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States
| | - Steven J Mack
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States.
| | - Owen D Solberg
- Bioinformatics and Biostatistics, Monogram Biosciences, South San Francisco, CA, United States
| | - Glenys Thomson
- Department of Integrative Biology, University of California, Berkeley, CA, United States
| | - Henry A Erlich
- Center for Genetics, Children's Hospital & Research Center Oakland, Oakland, CA, United States
| |
Collapse
|
5
|
Houwaart T, Scholz S, Pollock NR, Palmer WH, Kichula KM, Strelow D, Le DB, Belick D, Hülse L, Lautwein T, Wachtmeister T, Wollenweber TE, Henrich B, Köhrer K, Parham P, Guethlein LA, Norman PJ, Dilthey AT. Complete sequences of six major histocompatibility complex haplotypes, including all the major MHC class II structures. HLA 2023; 102:28-43. [PMID: 36932816 PMCID: PMC10986641 DOI: 10.1111/tan.15020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
Accurate and comprehensive immunogenetic reference panels are key to the successful implementation of population-scale immunogenomics. The 5Mbp Major Histocompatibility Complex (MHC) is the most polymorphic region of the human genome and associated with multiple immune-mediated diseases, transplant matching and therapy responses. Analysis of MHC genetic variation is severely complicated by complex patterns of sequence variation, linkage disequilibrium and a lack of fully resolved MHC reference haplotypes, increasing the risk of spurious findings on analyzing this medically important region. Integrating Illumina, ultra-long Nanopore, and PacBio HiFi sequencing as well as bespoke bioinformatics, we completed five of the alternative MHC reference haplotypes of the current (GRCh38/hg38) build of the human reference genome and added one other. The six assembled MHC haplotypes encompass the DR1 and DR4 haplotype structures in addition to the previously completed DR2 and DR3, as well as six distinct classes of the structurally variable C4 region. Analysis of the assembled haplotypes showed that MHC class II sequence structures, including repeat element positions, are generally conserved within the DR haplotype supergroups, and that sequence diversity peaks in three regions around HLA-A, HLA-B+C, and the HLA class II genes. Demonstrating the potential for improved short-read analysis, the number of proper read pairs recruited to the MHC was found to be increased by 0.06%-0.49% in a 1000 Genomes Project read remapping experiment with seven diverse samples. Furthermore, the assembled haplotypes can serve as references for the community and provide the basis of a structurally accurate genotyping graph of the complete MHC region.
Collapse
Affiliation(s)
- Torsten Houwaart
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Scholz
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Nicholas R. Pollock
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - William H. Palmer
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Katherine M. Kichula
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Daniel Strelow
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Duyen B. Le
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Dana Belick
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Lisanna Hülse
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Lautwein
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Thorsten Wachtmeister
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tassilo E. Wollenweber
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl Köhrer
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Peter Parham
- Department of Structural Biology, and Department of Microbiology and ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, and Department of Microbiology and ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Paul J. Norman
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Alexander T. Dilthey
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
6
|
Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders. Brain Behav Immun 2023; 107:242-252. [PMID: 36270439 DOI: 10.1016/j.bbi.2022.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 12/05/2022] Open
Abstract
Human endogenous retroviruses (ERVs) are ancestorial retroviral elements that were integrated into our genome through germline infections and insertions during evolution. They have repeatedly been implicated in the aetiology and pathophysiology of numerous human disorders, particularly in those that affect the central nervous system. In addition to the known association of ERVs with multiple sclerosis and amyotrophic lateral sclerosis, a growing number of studies links the induction and expression of these retroviral elements with the onset and severity of neurodevelopmental and psychiatric disorders. Although these disorders differ in terms of overall disease pathology and causalities, a certain degree of (subclinical) chronic inflammation can be identified in all of them. Based on these commonalities, we discuss the bidirectional relationship between ERV expression and inflammation and highlight that numerous entry points to this reciprocal sequence of events exist, including initial infections with ERV-activating pathogens, exposure to non-infectious inflammatory stimuli, and conditions in which epigenetic silencing of ERV elements is disrupted.
Collapse
|
7
|
Goto RM, Warden CD, Shiina T, Hosomichi K, Zhang J, Kang TH, Wu X, Glass MC, Delany ME, Miller MM. The Gallus gallus RJF reference genome reveals an MHCY haplotype organized in gene blocks that contain 107 loci including 45 specialized, polymorphic MHC class I loci, 41 C-type lectin-like loci, and other loci amid hundreds of transposable elements. G3 (BETHESDA, MD.) 2022; 12:jkac218. [PMID: 35997588 PMCID: PMC9635633 DOI: 10.1093/g3journal/jkac218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
MHCY is a second major histocompatibility complex-like gene region in chickens originally identified by the presence of major histocompatibility complex class I-like and class II-like gene sequences. Up to now, the MHCY gene region has been poorly represented in genomic sequence data. A high density of repetitive sequence and multiple members of several gene families prevented the accurate assembly of short-read sequence data for MHCY. Identified here by single-molecule real-time sequencing sequencing of BAC clones for the Gallus gallus Red Jungle Fowl reference genome are 107 MHCY region genes (45 major histocompatibility complex class I-like, 41 c-type-lectin-like, 8 major histocompatibility complex class IIβ, 8 LENG9-like, 4 zinc finger protein loci, and a single only zinc finger-like locus) located amid hundreds of retroelements within 4 contigs representing the region. Sequences obtained for nearby ribosomal RNA genes have allowed MHCY to be precisely mapped with respect to the nucleolar organizer region. Gene sequences provide insights into the unusual structure of the MHCY class I molecules. The MHCY class I loci are polymorphic and group into 22 types based on predicted amino acid sequences. Some MHCY class I loci are full-length major histocompatibility complex class I genes. Others with altered gene structure are considered gene candidates. The amino acid side chains at many of the polymorphic positions in MHCY class I are directed away rather than into the antigen-binding groove as is typical of peptide-binding major histocompatibility complex class I molecules. Identical and nearly identical blocks of genomic sequence contribute to the observed multiplicity of identical MHCY genes and the large size (>639 kb) of the Red Jungle Fowl MHCY haplotype. Multiple points of hybridization observed in fluorescence in situ hybridization suggest that the Red Jungle Fowl MHCY haplotype is made up of linked, but physically separated genomic segments. The unusual gene content, the evidence of highly similar duplicated segments, and additional evidence of variation in haplotype size distinguish polymorphic MHCY from classical polymorphic major histocompatibility complex regions.
Collapse
Affiliation(s)
| | | | | | | | | | - Tae Hyuk Kang
- Integrative Genomics Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | - Xiwei Wu
- Integrative Genomics Core Facility, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA
| | | | | | - Marcia M Miller
- Corresponding author: Center for RNA Biology and Therapeutics, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA 91010-3000, USA.
| |
Collapse
|
8
|
Zhang T, Li Y, Yuan X, Bao X, Chen L, Jiang X, He J. Establishment of NGS-based HLA 9-locus haplotypes in the Eastern Han Chinese population highlights the role of HLA-DP in donor selection for transplantation. HLA 2022; 100:582-596. [PMID: 36054323 DOI: 10.1111/tan.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
We collected human leukocyte antigen (HLA) typing data from 653 families in the Eastern Han Chinese population. HLA-A, B, C, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, DPA1, and DPB1 (HLA-11 loci) typing of 1,781 subjects was performed using a commercial next-generation sequencing (NGS) method in our laboratory. The phasing of haplotypes in each family was determined by Mendelian segregation. Haplotype analysis revealed 1,634 different haplotypes among a total of 2,230 haplotypes. The predominant haplotype was A*30:01-C*06:02-B*13:02-DRB1*07:01-DRB4*01:03-DQA1*02:01-DQB1*02:02-DPA1*02:01-DPB1*17:01 (HF = 4.04%), followed by A*02:07-C*01:02-B*46:01-DRB1*09:01-DRB4*01:03-DQA1*03:02-DQB1*03:03-DPA1*02:02-DPB1*05:01 (HF = 1.84%) and A*33:03-C*03:02-B*58:01-DRB1*03:01-DRB3*02:02-DQA1*05:01-DQB1*02:01-DPA1*01:03-DPB1*04:01 (HF = 1.48%), accounting for 7.35% of the total. Meanwhile 76.41% of all haplotypes were observed only once or twice (HF < 0.1%). Different from HLA-DRB3/4/5 and DQA1 loci, DP linkage markedly increased haplotype variation by 34.82% based on the 5-locus haplotype. The much weaker linkage disequilibrium (LD) of DQB1-DPB1 indicated the reason. We observed 10 analyzable recombination events, most of which occurred at DP loci. Even with the same common 5-locus haplotype, HLA-DP linkage alters the haplotype diversity and frequency. Analysis of related haplotype assignment and unrelated recipient-donor pairs matching at the 9-locus haplotype revealed that HLA-DP affects the donor selection strategy. Haplotype study of a large sample size using NGS identified linkage haplotypes beyond the 5 loci. LD, recombination events, and haplotype variation caused by DP loci emphasized that HLA 9-locus haplotype matching should be considered in donor selection, particularly the effect of DP loci. The finding lays the foundation for further studies on the effect of HLA-DP mismatch on transplantation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tengteng Zhang
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Li
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoni Yuan
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojing Bao
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Luyao Chen
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue Jiang
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun He
- Department of HLA Laboratory, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Shagin DA, Rebrikov DV. Molecular biology applications of the red king crab duplex-specific nuclease. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duplex-specific nuclease (DSN) from hepatopancreas of the craboid Paralithodes camtschaticus (red king crab) has a unique combination of properties. Along with thermal stability and a high optimal temperature of catalysis, this enzyme exhibits high substrate selectivity, cleaving only DNA in duplexes (DNA-DNA or DNA-RNA). Accordingly, it digests neither single strands (nor single-stranded regions) of DNA, nor RNA strands with any secondary structure. Such properties make it possible to create unique protocols based on DSN, which is also an important object of fundamental research in the field of nuclease evolution. The review considers diverse applications of the red king crab DSN in modern methods of molecular biology.
Collapse
|
10
|
Zhou D, Rudnicki M, Chua GT, Lawrance SK, Zhou B, Drew JL, Barbar-Smiley F, Armstrong TK, Hilt ME, Birmingham DJ, Passler W, Auletta JJ, Bowden SA, Hoffman RP, Wu YL, Jarjour WN, Mok CC, Ardoin SP, Lau YL, Yu CY. Human Complement C4B Allotypes and Deficiencies in Selected Cases With Autoimmune Diseases. Front Immunol 2021; 12:739430. [PMID: 34764957 PMCID: PMC8577214 DOI: 10.3389/fimmu.2021.739430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Human complement C4 is one of the most diverse but heritable effectors for humoral immunity. To help understand the roles of C4 in the defense and pathogenesis of autoimmune and inflammatory diseases, we determined the bases of polymorphisms including the frequent genetic deficiency of C4A and/or C4B isotypes. We demonstrated the diversities of C4A and C4B proteins and their gene copy number variations (CNVs) in healthy subjects and patients with autoimmune disease, such as type 1 diabetes, systemic lupus erythematosus (SLE) and encephalitis. We identified subjects with (a) the fastest migrating C4B allotype, B7, or (b) a deficiency of C4B protein caused by genetic mutation in addition to gene copy-number variation. Those variants and mutants were characterized, sequenced and specific techniques for detection developed. Novel findings were made in four case series. First, the amino acid sequence determinant for C4B7 was likely the R729Q variation at the anaphylatoxin-like region. Second, in healthy White subject MS630, a C-nucleotide deletion at codon-755 led to frameshift mutations in his single C4B gene, which was a private mutation. Third, in European family E94 with multiplex lupus-related mortality and low serum C4 levels, the culprit was a recurrent haplotype with HLA-A30, B18 and DR7 that segregated with two defective C4B genes and identical mutations at the donor splice site of intron-28. Fourth, in East-Asian subject E133P with anti-NMDA receptor encephalitis, the C4B gene had a mutation that changed tryptophan-660 to a stop-codon (W660x), which was present in a haplotype with HLA-DRB1*04:06 and B*15:27. The W660x mutation is recurrent among East-Asians with a frequency of 1.5% but not detectable among patients with SLE. A meticulous annotation of C4 sequences revealed clusters of variations proximal to sites for protein processing, activation and inactivation, and binding of interacting molecules.
Collapse
Affiliation(s)
- Danlei Zhou
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Michael Rudnicki
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gilbert T Chua
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Simon K Lawrance
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Biology & Earth Science, Otterbein University, Westerville, OH, United States
| | - Bi Zhou
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Joanne L Drew
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Fatima Barbar-Smiley
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Taylor K Armstrong
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, United States
| | - Miranda E Hilt
- Department of Biology & Earth Science, Otterbein University, Westerville, OH, United States
| | - Daniel J Birmingham
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Werner Passler
- Division of Nephrology and Dialysis, City Hospital, Bolzano, Italy
| | - Jeffrey J Auletta
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Hematology/Oncology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sasigarn A Bowden
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Endocrinology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Robert P Hoffman
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Division of Endocrinology, Nationwide Children's Hospital, Columbus, OH, United States
| | - Yee Ling Wu
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Wael N Jarjour
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, Hong Kong, SAR China
| | - Stacy P Ardoin
- Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Chack Yung Yu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Rheumatology, Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Challenges for the standardized reporting of NGS HLA genotyping: Surveying gaps between clinical and research laboratories. Hum Immunol 2021; 82:820-828. [PMID: 34479742 DOI: 10.1016/j.humimm.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Next generation sequencing (NGS) is being applied for HLA typing in research and clinical settings. NGS HLA typing has made it feasible to sequence exons, introns and untranslated regions simultaneously, with significantly reduced labor and reagent cost per sample, rapid turnaround time, and improved HLA genotype accuracy. NGS technologies bring challenges for cost-effective computation, data processing and exchange of NGS-based HLA data. To address these challenges, guidelines and specifications such as Genotype List (GL) String, Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING), and Histoimmunogenetics Markup Language (HML) were proposed to streamline and standardize reporting of HLA genotypes. As part of the 17th International HLA and Immunogenetics Workshop (IHIW), we implemented standards and systems for HLA genotype reporting that included GL String, MIRING and HML, and found that misunderstanding or misinterpretations of these standards led to inconsistencies in the reporting of NGS HLA genotyping results. This may be due in part to a historical lack of centralized data reporting standards in the histocompatibility and immunogenetics community. We have worked with software and database developers, clinicians and scientists to address these issues in a collaborative fashion as part of the Data Standard Hackathons (DaSH) for NGS. Here we report several categories of challenges to the consistent exchange of NGS HLA genotyping data we have observed. We hope to address these challenges in future DaSH for NGS efforts.
Collapse
|
12
|
Alper CA. The Path to Conserved Extended Haplotypes: Megabase-Length Haplotypes at High Population Frequency. Front Genet 2021; 12:716603. [PMID: 34422017 PMCID: PMC8378214 DOI: 10.3389/fgene.2021.716603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
This minireview describes the history of the conceptual development of conserved extended haplotypes (CEHs): megabase-length haplotypes that exist at high (≥0.5%) population frequency. My career began in internal medicine, shifted to pediatrics, and clinical practice changed to research. My research interest was initially in hematology: on plasma proteins, their metabolism, synthesis, and function. This narrowed to a focus on proteins of the human complement system, their role in immunity and their genetics, beginning with polymorphism and deficiency of C3. My group identified genetic polymorphisms and/or inherited deficiencies of C2, C4, C6, and C8. After defining glycine-rich beta glycoprotein as factor B (Bf) in the properdin system, we found that the genes for Bf (CFB), C2, C4A, and C4B were inherited as a single haplotypic unit which we named the "complotype." Complotypes are located within the major histocompatibility complex (MHC) between HLA-B and HLA-DRB1 and are designated (in arbitrary order) by their CFB, C2, C4A, and C4B types. Pedigree analysis revealed long stretches (several megabases) of apparently fixed DNA within the MHC that we referred to as "extended haplotypes" (later as "CEHs"). About 10 to 12 common CEHs constitute at least 25 - 30% of MHC haplotypes among European Caucasian populations. These CEHs contain virtually all the most common markers of MHC-associated diseases. In the case of type 1 diabetes, we have proposed a purely genetic and epigenetic model (with a small number of Mendelian recessive disease genes) that explains all the puzzling features of the disease, including its rising incidence.
Collapse
Affiliation(s)
- Chester A Alper
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
14
|
Cun Y, Shi L, Kulski JK, Liu S, Yang J, Tao Y, Zhang X, Shi L, Yao Y. Haplotypic Associations and Differentiation of MHC Class II Polymorphic Alu Insertions at Five Loci With HLA-DRB1 Alleles in 12 Minority Ethnic Populations in China. Front Genet 2021; 12:636236. [PMID: 34305999 PMCID: PMC8292818 DOI: 10.3389/fgene.2021.636236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/08/2021] [Indexed: 01/11/2023] Open
Abstract
The analysis of polymorphic variations in the human major histocompatibility complex (MHC) class II genomic region on the short-arm of chromosome 6 is a scientific enquiry to better understand the diversity in population structure and the effects of evolutionary processes such as recombination, mutation, genetic drift, demographic history, and natural selection. In order to investigate associations between the polymorphisms of HLA-DRB1 gene and recent Alu insertions (POALINs) in the HLA class II region, we genotyped HLA-DRB1 and five Alu loci (AluDPB2, AluDQA2, AluDQA1, AluDRB1, AluORF10), and determined their allele frequencies and haplotypic associations in 12 minority ethnic populations in China. There were 42 different HLA-DRB1 alleles for ethnic Chinese ranging from 12 alleles in the Jinuo to 28 in the Yugur with only DRB1∗08:03, DRB1∗09:01, DRB1∗12:02, DRB1∗14:01, DRB1∗15:01, and DRB1∗15:02 present in all ethnic groups. The POALINs varied in frequency between 0.279 and 0.514 for AluDPB2, 0 and 0.127 for AluDQA2, 0.777 and 0.995 for AluDQA1, 0.1 and 0.455 for AluDRB1 and 0.084 and 0.368 for AluORF10. By comparing the data of the five-loci POALIN in 13 Chinese ethnic populations (including Han-Yunnan published data) against Japanese and Caucasian published data, marked differences were observed between the populations at the allelic or haplotypic levels. Five POALIN loci were in significant linkage disequilibrium with HLA-DRB1 in different populations and AluDQA1 had the highest percentage association with most of the HLA-DRB1 alleles, whereas the nearby AluDRB1 indel was strongly haplotypic for only DRB1∗01, DRB1∗10, DRB1∗15 and DRB1∗16. There were 30 five-locus POALIN haplotypes inferred in all populations with H5 (no Alu insertions except for AluDQA1) and H21 (only AluDPB2 and AluDQA1 insertions) as the two predominant haplotypes. Neighbor joining trees and principal component analyses of the Alu and HLA-DRB1 polymorphisms showed that genetic diversity of these genomic markers is associated strongly with the population characteristics of language family, migration and sociality. This comparative study of HLA-DRB1 alleles and multilocus, lineage POALIN frequencies of Chinese ethnic populations confirmed that POALINs whether investigated alone or together with the HLA class II alleles are informative genetic and evolutionary markers for the identification of allele and haplotype lineages and genetic variations within the same and/or different populations.
Collapse
Affiliation(s)
- Yina Cun
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Lei Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jerzy K Kulski
- Faculty of Health and Medical Sciences, University of Western Australia Medical School, Crawley, WA, Australia
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jia Yang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yufen Tao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xinwen Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Li Shi
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Disease, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
15
|
Osoegawa K, Creary LE, Montero-Martín G, Mallempati KC, Gangavarapu S, Caillier SJ, Santaniello A, Isobe N, Hollenbach JA, Hauser SL, Oksenberg JR, Fernández-Viňa MA. High Resolution Haplotype Analyses of Classical HLA Genes in Families With Multiple Sclerosis Highlights the Role of HLA-DP Alleles in Disease Susceptibility. Front Immunol 2021; 12:644838. [PMID: 34211458 PMCID: PMC8240666 DOI: 10.3389/fimmu.2021.644838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) susceptibility shows strong genetic associations with HLA alleles and haplotypes. We genotyped 11 HLA genes in 477 non-Hispanic European MS patients and their 954 unaffected parents using a validated next-generation sequencing (NGS) methodology. HLA haplotypes were assigned unequivocally by tracing HLA allele transmissions. We explored HLA haplotype/allele associations with MS using the genotypic transmission disequilibrium test (gTDT) and multiallelic TDT (mTDT). We also conducted a case-control (CC) study with all patients and 2029 healthy unrelated ethnically matched controls. We performed separate analyses of 54 extended multi-case families by reviewing transmission of haplotype blocks. The haplotype fragment including DRB5*01:01:01~DRB1*15:01:01:01 was significantly associated with predisposition (gTDT: p < 2.20e-16; mTDT: p =1.61e-07; CC: p < 2.22e-16) as reported previously. A second risk allele, DPB1*104:01 (gTDT: p = 3.69e-03; mTDT: p = 2.99e-03; CC: p = 1.00e-02), independent from the haplotype bearing DRB1*15:01 was newly identified. The allele DRB1*01:01:01 showed significant protection (gTDT: p = 8.68e-06; mTDT: p = 4.50e-03; CC: p = 1.96e-06). Two DQB1 alleles, DQB1*03:01 (gTDT: p = 2.86e-03; mTDT: p = 5.56e-02; CC: p = 4.08e-05) and DQB1*03:03 (gTDT: p = 1.17e-02; mTDT: p = 1.16e-02; CC: p = 1.21e-02), defined at two-field level also showed protective effects. The HLA class I block, A*02:01:01:01~C*03:04:01:01~B*40:01:02 (gTDT: p = 5.86e-03; mTDT: p = 3.65e-02; CC: p = 9.69e-03) and the alleles B*27:05 (gTDT: p = 6.28e-04; mTDT: p = 2.15e-03; CC: p = 1.47e-02) and B*38:01 (gTDT: p = 3.20e-03; mTDT: p = 6.14e-03; CC: p = 1.70e-02) showed moderately protective effects independently from each other and from the class II associated factors. By comparing statistical significance of 11 HLA loci and 19 haplotype segments with both untruncated and two-field allele names, we precisely mapped MS candidate alleles/haplotypes while eliminating false signals resulting from 'hitchhiking' alleles. We assessed genetic burden for the HLA allele/haplotype identified in this study. This family-based study including the highest-resolution of HLA alleles proved to be powerful and efficient for precise identification of HLA genotypes associated with both, susceptibility and protection to development of MS.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Lisa E. Creary
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gonzalo Montero-Martín
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kalyan C. Mallempati
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Sridevi Gangavarapu
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Stacy J. Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Adam Santaniello
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Marcelo A. Fernández-Viňa
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
16
|
Brown NK, Merkens H, Rozemuller EH, Bell D, Bui TM, Kearns J. Reduced PCR-generated errors from a hybrid capture-based NGS assay for HLA typing. Hum Immunol 2021; 82:296-301. [PMID: 33676750 DOI: 10.1016/j.humimm.2021.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Next generation sequencing (NGS) assays are state of the art for HLA genotyping. To sequence on an Illumina sequencer, the DNA of interest must be enriched, fragmented, and bookended with known oligonucleotide sequences, a process known as library construction. Many HLA genotyping assays enrich the target loci by long-range PCR (LR-PCR), prior to fragmentation. This PCR step has been reported to introduce errors in the DNA to be sequenced, including inaccurate replication of repeated sequences, and the in vitro recombination of alleles encoded on separate chromosomes. An alternative library construction method involves fragmentation of genomic DNA, followed by hybrid-capture (HC) enrichment of target HLA loci. This HC-based method involves PCR, but with far fewer cycles. Consequently, the HC method had significantly fewer PCR-induced errors, including more faithful replication of repeated sequences, and the near elimination of recombinant sequences. These improvements likely produce more accurate NGS sequencing data of HLA loci.
Collapse
Affiliation(s)
- Nicholas K Brown
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | | | | | - Derrick Bell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Thanh-Mai Bui
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jane Kearns
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Kulski JK, Suzuki S, Shiina T. SNP-Density Crossover Maps of Polymorphic Transposable Elements and HLA Genes Within MHC Class I Haplotype Blocks and Junction. Front Genet 2021; 11:594318. [PMID: 33537058 PMCID: PMC7848197 DOI: 10.3389/fgene.2020.594318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The genomic region (~4 Mb) of the human major histocompatibility complex (MHC) on chromosome 6p21 is a prime model for the study and understanding of conserved polymorphic sequences (CPSs) and structural diversity of ancestral haplotypes (AHs)/conserved extended haplotypes (CEHs). The aim of this study was to use a set of 95 MHC genomic sequences downloaded from a publicly available BioProject database at NCBI to identify and characterise polymorphic human leukocyte antigen (HLA) class I genes and pseudogenes, MICA and MICB, and retroelement indels as haplotypic lineage markers, and single-nucleotide polymorphism (SNP) crossover loci in DNA sequence alignments of different haplotypes across the Olfactory Receptor (OR) gene region (~1.2 Mb) and the MHC class I region (~1.8 Mb) from the GPX5 to the MICB gene. Our comparative sequence analyses confirmed the identity of 12 haplotypic retroelement markers and revealed that they partitioned the HLA-A/B/C haplotypes into distinct evolutionary lineages. Crossovers between SNP-poor and SNP-rich regions defined the sequence range of haplotype blocks, and many of these crossover junctions occurred within particular transposable elements, lncRNA, OR12D2, MUC21, MUC22, PSORS1A3, HLA-C, HLA-B, and MICA. In a comparison of more than 250 paired sequence alignments, at least 38 SNP-density crossover sites were mapped across various regions from GPX5 to MICB. In a homology comparison of 16 different haplotypes, seven CEH/AH (7.1, 8.1, 18.2, 51.x, 57.1, 62.x, and 62.1) had no detectable SNP-density crossover junctions and were SNP poor across the entire ~2.8 Mb of sequence alignments. Of the analyses between different recombinant haplotypes, more than half of them had SNP crossovers within 10 kb of LTR16B/ERV3-16A3_I, MLT1, Charlie, and/or THE1 sequences and were in close vicinity to structurally polymorphic Alu and SVA insertion sites. These studies demonstrate that (1) SNP-density crossovers are associated with putative ancestral recombination sites that are widely spread across the MHC class I genomic region from at least the telomeric OR12D2 gene to the centromeric MICB gene and (2) the genomic sequences of MHC homozygous cell lines are useful for analysing haplotype blocks, ancestral haplotypic landscapes and markers, CPSs, and SNP-density crossover junctions.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
18
|
Petersen MI, Carignano HA, Suarez Archilla G, Caffaro ME, Alvarez I, Miretti MM, Trono K. Expression-based analysis of genes related to single nucleotide polymorphism hits associated with bovine leukemia virus proviral load in Argentinean dairy cattle. J Dairy Sci 2020; 104:1993-2007. [PMID: 33246606 DOI: 10.3168/jds.2020-18924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022]
Abstract
In dairy cattle infected with bovine leukemia virus (BLV), the proviral load (PVL) level is directly related to the viral transmission from infected animals to their healthy herdmates. Two contrasting phenotypic groups can be identified when assessing PVL in peripheral blood of infected cows. A large number of reports point to bovine genetic variants (single nucleotide polymorphisms) as one of the key determinants underlying PVL level. However, biological mechanisms driving BLV PVL profiles and infection progression in cattle have not yet been elucidated. In this study, we evaluated whether a set of candidate genes affecting BLV PVL level according to whole genome association studies are differentially expressed in peripheral blood mononuclear cells derived from phenotypically contrasting groups of BLV-infected cows. During a 10-mo-long sampling scheme, 129 Holstein cows were phenotyped measuring anti-BLV antibody levels, PVL quantification, and white blood cell subpopulation counts. Finally, the expression of 8 genes (BOLA-DRB3, PRRC2A, ABT1, TNF, BAG6, BOLA-A, LY6G5B, and IER3) located within the bovine major histocompatibility complex region harboring whole genome association SNP hits was evaluated in 2 phenotypic groups: high PVL (n = 7) and low PVL (n = 8). The log2 initial fluorescence value (N0) transformed mean expression values for the ABT1 transcription factor were statistically different in high- and low-PVL groups, showing a higher expression of the ABT1 gene in low-PVL cows. The PRRC2A and IER3 genes had a significant positive (correlation coefficient = 0.61) and negative (correlation coefficient = -0.45) correlation with the lymphocyte counts, respectively. Additionally, the relationships between gene expression values and lymphocyte counts were modeled using linear regressions. Lymphocyte levels in infected cows were better explained (coefficient of determination = 0.56) when fitted a multiple linear regression model using both PRRC2A and IER3 expression values as independent variables. The present study showed evidence of differential gene expression between contrasting BLV infection phenotypes. These genes have not been previously related to BLV pathobiology. This valuable information represents a step forward in understanding the BLV biology and the immune response of naturally infected cows under a commercial milk production system. Efforts to elucidate biological mechanisms leading to BLV infection progression in cows are valuable for BLV control programs. Further studies integrating genotypic data, global transcriptome analysis, and BLV progression phenotypes are needed to better understand the BLV-host interaction.
Collapse
Affiliation(s)
- M I Petersen
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - H A Carignano
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Genética, Instituto Nacional de Tecnología Agropecuaria, B1686 Hurlingham, Argentina.
| | - G Suarez Archilla
- Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, S2300 Rafaela, Argentina
| | - M E Caffaro
- Instituto de Genética, Instituto Nacional de Tecnología Agropecuaria, B1686 Hurlingham, Argentina
| | - I Alvarez
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - M M Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical, FCEQyN, Universidad Nacional de Misiones, N3300 Posadas, Argentina
| | - K Trono
- Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, B1686 Hurlingham, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
19
|
Aro-Heinilä A, Lönnberg T, Virta P. Covalently Mercurated Molecular Beacon for Discriminating the Canonical Nucleobases. Chembiochem 2020; 22:354-358. [PMID: 32827233 DOI: 10.1002/cbic.202000575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Indexed: 12/14/2022]
Abstract
A highly nucleobase-discriminating metalated nucleoside analogue, 3-fluoro-2-mercuri-6-methylaniline, was incorporated into an oligonucleotide molecular beacon. Fluorescence emission spectra were measured after the addition of four different complementary strands, in which the nucleobase opposite the metalated analogue varies. The fluorescence results showed a clear binding selectivity at room temperature, in the order G>T>C>A. The selectivity is based on the different affinities between the metalated nucleoside analogue and the canonical nucleobases. The synthesized probe is capable of robust discrimination between the two purine as well as the two pyrimidine bases by fluorescence at room temperature, and more sophisticated temperature analysis allows clear separation of every canonical nucleobase. The probe would, hence, be a suitable method for the detection of single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland
| | - Pasi Virta
- Department of Chemistry, University of Turku, Vatselankatu 2, 20014, Turku, Finland
| |
Collapse
|
20
|
Partanen J, Hyvärinen K, Bickeböller H, Bogunia-Kubik K, Crossland RE, Ivanova M, Perutelli F, Dressel R. Review of Genetic Variation as a Predictive Biomarker for Chronic Graft-Versus-Host-Disease After Allogeneic Stem Cell Transplantation. Front Immunol 2020; 11:575492. [PMID: 33193367 PMCID: PMC7604383 DOI: 10.3389/fimmu.2020.575492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is one of the major complications of allogeneic stem cell transplantation (HSCT). cGvHD is an autoimmune-like disorder affecting multiple organs and involves a dermatological rash, tissue inflammation and fibrosis. The incidence of cGvHD has been reported to be as high as 30% to 60% and there are currently no reliable tools for predicting the occurrence of cGvHD. There is therefore an important unmet clinical need for predictive biomarkers. The present review summarizes the state of the art for genetic variation as a predictive biomarker for cGvHD. We discuss three different modes of action for genetic variation in transplantation: genetic associations, genetic matching, and pharmacogenetics. The results indicate that currently, there are no genetic polymorphisms or genetic tools that can be reliably used as validated biomarkers for predicting cGvHD. A number of recommendations for future studies can be drawn. The majority of studies to date have been under-powered and included too few patients and genetic markers. Like in all complex multifactorial diseases, large collaborative genome-level studies are now needed to achieve reliable and unbiased results. Some of the candidate genes, in particular, CTLA4, HSPE, IL1R1, CCR6, FGFR1OP, and IL10, and some non-HLA variants in the HLA gene region have been replicated to be associated with cGvHD risk in independent studies. These associations should now be confirmed in large well-characterized cohorts with fine mapping. Some patients develop cGvHD despite very extensive immunosuppression and other treatments, indicating that the current therapeutic regimens may not always be effective enough. Hence, more studies on pharmacogenetics are also required. Moreover, all of these studies should be adjusted for diagnostic and clinical features of cGvHD. We conclude that future studies should focus on modern genome-level tools, such as machine learning, polygenic risk scores and genome-wide association study-transcription meta-analyses, instead of focusing on just single variants. The risk of cGvHD may be related to the summary level of immunogenetic differences, or whole genome histocompatibility between each donor-recipient pair. As the number of genome-wide analyses in HSCT is increasing, we are approaching an era where there will be sufficient data to incorporate these approaches in the near future.
Collapse
Affiliation(s)
- Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Kati Hyvärinen
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Rachel E Crossland
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Milena Ivanova
- Medical University, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Francesca Perutelli
- Haematological Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Busch R, Kollnberger S, Mellins ED. HLA associations in inflammatory arthritis: emerging mechanisms and clinical implications. Nat Rev Rheumatol 2020; 15:364-381. [PMID: 31092910 DOI: 10.1038/s41584-019-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our understanding of the mechanisms underlying HLA associations with inflammatory arthritis continues to evolve. Disease associations have been refined, and interactions of HLA genotype with other genes and environmental risk factors in determining disease risk have been identified. This Review provides basic information on the genetics and molecular function of HLA molecules, as well as general features of HLA associations with disease. Evidence is discussed regarding the various peptide-dependent and peptide-independent mechanisms by which HLA alleles might contribute to the pathogenesis of three types of inflammatory arthritis: rheumatoid arthritis, spondyloarthritis and systemic juvenile idiopathic arthritis. Also discussed are HLA allelic associations that shed light on the genetic heterogeneity of inflammatory arthritides and on the relationships between adult and paediatric forms of arthritis. Clinical implications range from improved diagnosis and outcome prediction to the possibility of using HLA associations in developing personalized strategies for the treatment and prevention of these diseases.
Collapse
Affiliation(s)
- Robert Busch
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK.
| | - Simon Kollnberger
- School of Medicine, Cardiff University, UHW Main Building, Heath Park, Cardiff, UK
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University Medical Center, Stanford, CA, USA.
| |
Collapse
|
22
|
Askar M, Madbouly A, Zhrebker L, Willis A, Kennedy S, Padros K, Rodriguez MB, Bach C, Spriewald B, Ameen R, Shemmari SA, Tarassi K, Tsirogianni A, Hamdy N, Mossallam G, Hönger G, Spinnler R, Fischer G, Fae I, Charlton R, Dunk A, Vayntrub TA, Halagan M, Osoegawa K, Fernández-Viña M. HLA Haplotypes In 250 Families: The Baylor Laboratory Results And A Perspective On A Core NGS Testing Model For The 17 th International HLA And Immunogenetics Workshop. Hum Immunol 2019; 80:897-905. [PMID: 31558329 DOI: 10.1016/j.humimm.2019.07.298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023]
Abstract
Since their inception, the International HLA & Immunogenetics Workshops (IHIW) served as a collaborative platform for exchange of specimens, reference materials, experiences and best practices. In this report we present a subset of the results of human leukocyte antigen (HLA) haplotypes in families tested by next generation sequencing (NGS) under the 17th IHIW. We characterized 961 haplotypes in 921 subjects belonging to 250 families from 8 countries (Argentina, Austria, Egypt, Jamaica, Germany, Greece, Kuwait, and Switzerland). These samples were tested in a single core laboratory in a high throughput fashion using 6 different reagents/software platforms. Families tested included patients evaluated clinically as transplant recipients (kidney and hematopoietic cell transplant) and their respective family members. We identified 486 HLA alleles at the following loci HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1, -DPB1 (77, 115, 68, 69, 10, 6, 4, 44, 31, 20 and 42 alleles, respectively). We also identified nine novel alleles with polymorphisms in coding regions. This approach of testing samples from multiple laboratories across the world in different stages of technology implementation in a single core laboratory may be useful for future international workshops. Although data presented may not be reflective of allele and haplotype frequencies in the countries to which the families belong, they represent an extensive collection of 3rd and 4th field resolution level 11-locus haplotype associations of 486 alleles identified in families from 8 countries.
Collapse
Affiliation(s)
- Medhat Askar
- Baylor University Medical Center, Dallas, TX, USA; Texas A&M Health Science Center College of Medicine, Bryan, TX, USA.
| | - Abeer Madbouly
- Bioinformatics Research, Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | | | | | - Karin Padros
- Primer Centro Argentino de Immunogenetica (PRICAI), Fundacion Favaloro, CABA, Argentina
| | | | - Christian Bach
- Departments of Internal Medicine & Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Bernd Spriewald
- Departments of Internal Medicine & Hematology and Oncology, Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Reem Ameen
- Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | | | | | | | - Nayera Hamdy
- National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Gideon Hönger
- Transplantation Immunology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Regina Spinnler
- HLA-Diagnostics and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Ingrid Fae
- Medical University of Vienna, Vienna, Austria
| | - Ronald Charlton
- Caribbean Bone Marrow Registry, Plantation, FL, USA; Laboratory Consultants of Florida, Jacksonville, FL, USA
| | - Arthur Dunk
- Caribbean Bone Marrow Registry, Plantation, FL, USA
| | | | - Michael Halagan
- Bioinformatics Research, Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Marcelo Fernández-Viña
- Stanford Blood Center, Palo Alto, CA, USA; Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
23
|
Getz J, Goldenstein M, Bonfim C, Funke VM, Colturato V, Hamerschlak N, Torres M, Sayer D, Boldt A, Pasquini R, Pereira NF. Investigation of MHC gamma block C4A and C4B polymorphisms in unrelated hematopoietic stem cell transplantation. Hematol Transfus Cell Ther 2019; 42:221-229. [PMID: 31801701 PMCID: PMC7417459 DOI: 10.1016/j.htct.2019.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/21/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Immunological life-threatening complications frequently occur in post-hematopoietic stem cell transplantation (HSCT), despite matching recipient and donor (R/D) pairs for classical human leukocyte antigens (HLA). Studies have shown that R/D non-HLA disparities within the major histocompatibility complex (MHC) are associated with adverse effects post-HSCT. Methods We investigated the impact of mismatches of single-nucleotide polymorphisms (SNPs) in C4A/C4B genes, for showing the highest diversity in the MHC gamma block, on 238 patients who underwent HLA 10/10 unrelated donor (URD) HSCT. The endpoints were acute graft-versus-host disease (aGVHD), chronic graft-versus-host disease (cGVHD) and mortality. One hundred and twenty-nine R/D pairs had 23 C4-SNPs typed by PCR-SSP (Gamma-Type™v.1.0), and 109 R/D pairs had these 23 SNPs identified by next-generation sequencing (NGS) using the Illumina platform. Results The percentage of patients who received HSC from HLA 10/10 donors with 1–7 mismatches was 42.9%. The R/D pairs were considered C4 mismatched when bearing at least one disparity. These mismatches were not found to be risk factors for aGVHD, cGVHD or mortality after unrelated HSCT when SNPs were analyzed together (matched or mm ≥ 1), independently or according to the percentage of incompatibilities (full match for 23 SNPs; 1–3 mm and >3 mm). An exception was the association between 1–3 mismatches at the composite of SNPs C13193/T14952/T19588 with the development of aGVHD (P = 0.012) and with grades III-IV of this disease (P = 0.004). Conclusion Our data are not consistent with the hypothesis that disparities in C4A/C4B SNPs increase the risks of post-HSCT adverse effects for the endpoints investigated in this study.
Collapse
Affiliation(s)
- Joselito Getz
- Hospital de Clínicas - Universidade Federal do Paraná (HC-UFPR), Curitiba, PR, Brazil.
| | - Monica Goldenstein
- Hospital de Clínicas - Universidade Federal do Paraná (HC-UFPR), Curitiba, PR, Brazil
| | - Carmem Bonfim
- Hospital de Clínicas - Universidade Federal do Paraná (HC-UFPR), Curitiba, PR, Brazil
| | - Vaneuza Moreira Funke
- Hospital de Clínicas - Universidade Federal do Paraná (HC-UFPR), Curitiba, PR, Brazil
| | | | | | - Margareth Torres
- Hospital Amaral Carvalho, Jaú, SP, Brazil; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Angelica Boldt
- Hospital de Clínicas - Universidade Federal do Paraná (HC-UFPR), Curitiba, PR, Brazil; Genetics Department - Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ricardo Pasquini
- Hospital de Clínicas - Universidade Federal do Paraná (HC-UFPR), Curitiba, PR, Brazil; Hospital Nossa Senhora das Graças, Curitiba, PR, Brazil
| | - Noemi Farah Pereira
- Hospital de Clínicas - Universidade Federal do Paraná (HC-UFPR), Curitiba, PR, Brazil
| |
Collapse
|
24
|
Barsakis K, Babrzadeh F, Chi A, Mallempati K, Pickle W, Mindrinos M, Fernández-Viña MA. Complete nucleotide sequence characterization of DRB5 alleles reveals a homogeneous allele group that is distinct from other DRB genes. Hum Immunol 2019; 80:437-448. [PMID: 30954494 PMCID: PMC6622178 DOI: 10.1016/j.humimm.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 01/28/2023]
Abstract
Next Generation Sequencing allows for testing and typing of entire genes of the HLA region. A better and comprehensive sequence assessment can be achieved by the inclusion of full gene sequences of all the common alleles at a given locus. The common alleles of DRB5 are under-characterized with the full exon-intron sequence of two alleles available. In the present study the DRB5 genes from 18 subjects alleles were cloned and sequenced; haplotype analysis showed that 17 of them had a single copy of DRB5 and one consanguineous subject was homozygous at all HLA loci. Methodological approaches including robust and efficient long-range PCR amplification, molecular cloning, nucleotide sequencing and de novo sequence assembly were combined to characterize DRB5 alleles. DRB5 sequences covering from 5'UTR to the end of intron 5 were obtained for DRB5*01:01, 01:02 and 02:02; partial coverage including a segment spanning exon 2 to exon 6 was obtained for DRB5*01:03, 01:08N and 02:03. Phylogenetic analysis of the generated sequences showed that the DRB5 alleles group together and have distinctive differences with other DRB loci. Novel intron variants of DRB5*01:01:01, 01:02 and 02:02 were identified. The newly characterized DRB5 intron variants of each DRB5 allele were found in subjects harboring distinct associations with alleles of DRB1, B and/or ethnicity. The new information provided by this study provides reference sequences for HLA typing methodologies. Extending sequence coverage may lead to identify the disease susceptibility factors of DRB5 containing haplotypes while the unexpected intron variations may shed light on understanding of the evolution of the DRB region.
Collapse
Affiliation(s)
- Konstantinos Barsakis
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA; Department of Biology, University of Crete, Heraklion, Crete 71003, Greece
| | - Farbod Babrzadeh
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Anjo Chi
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Kalyan Mallempati
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - William Pickle
- Stanford Blood Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Michael Mindrinos
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | |
Collapse
|
25
|
Aissani B, Martinez-Maza O, Kaslow RA, Wiener HW, Bream JH, Stosor V, Martinson JJ, Jacobson LP, Shrestha S. Increasing Levels of Serum Heat Shock Protein 70 Precede the Development of AIDS-Defining Non-Hodgkin Lymphoma Among Carriers of HLA-B8-DR3. J Acquir Immune Defic Syndr 2019; 81:266-273. [PMID: 31026237 PMCID: PMC6587227 DOI: 10.1097/qai.0000000000002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND We hypothesized that carriage of presumably high Hsp70-producing gene variants on a specific human major histocompatibility complex haplotype, the 8.1 ancestral haplotype (8.1AH), may predispose HIV-infected individuals to AIDS-non-Hodgkin lymphoma (NHL). SETTING We compared serum Hsp70 levels in the years preceding the diagnosis of AIDS-NHL in a matched case-control study (n = 151 pairs) nested in the Multicenter AIDS Cohort Study. METHODS We tested the impact of 8.1AH-specific single-nucleotide polymorphism (SNP) and joint SNP-human leukocyte antigen extended haplotypes previously associated with AIDS-NHL in the Multicenter AIDS Cohort Study on the circulating Hsp70 levels in mixed linear models. RESULTS We report elevated serum levels of Hsp70 in the 4 years preceding the diagnosis of AIDS-NHL in cases that carry 8.1AH, but not in noncarrier cases and not in carrier- or non-carrier-matched controls. The strongest predictor of higher serum Hsp70 was the haplotype A-G-A-C formed by SNPs rs537160(A) and rs1270942(G) in the complement factor CFB gene cluster, and rs2072633(A) and rs6467(C) in nearby RDBP and CYP21A2 located 70 Kb apart from the Hsp70 gene cluster. The association with A-G-A-C haplotype (beta = 0.718; standard error = 0.182; P = 0.0002) and with other 8.1AH-specific haplotypes including the high-producing tumor necrosis factor-alpha haplotype rs909253(G)-rs1800629(A) (beta = 0.308; standard error = 0.140; P = 0.032) were observed only with NHL identified as an AIDS-defining condition, but not as a post-AIDS condition, nor in combined AIDS and post-AIDS cases. CONCLUSION Our combined genetic and functional approach suggests that the altered level of Hsp70 is a correlate of 8.1AH-mediated AIDS-NHL. Further investigation of the Hsp70 gene cluster and nearby loci that are tagged by A-G-A-C could better elucidate the genetic determinants of the malignancy.
Collapse
Affiliation(s)
- Brahim Aissani
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Otoniel Martinez-Maza
- Departments of Obstetrics and Gynecology
- Microbiology, Immunology & Molecular Genetics; and
- Epidemiology, University of California at Los Angeles, Los Angeles, CA
| | - Richard A. Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Currently Professor Emeritus of Epidemiology
| | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Jeremy J. Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA; and
| | - Lisa P. Jacobson
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
26
|
Osoegawa K, Mallempati KC, Gangavarapu S, Oki A, Gendzekhadze K, Marino SR, Brown NK, Bettinotti MP, Weimer ET, Montero-Martín G, Creary LE, Vayntrub TA, Chang CJ, Askar M, Mack SJ, Fernández-Viña MA. HLA alleles and haplotypes observed in 263 US families. Hum Immunol 2019; 80:644-660. [PMID: 31256909 DOI: 10.1016/j.humimm.2019.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/17/2022]
Abstract
The 17th International HLA and Immunogenetics Workshop (IHIW) conducted a project entitled "The Study of Haplotypes in Families by NGS HLA". We investigated the HLA haplotypes of 1017 subjects in 263 nuclear families sourced from five US clinical immunogenetics laboratories, primarily as part of the evaluation of related donor candidates for hematopoietic stem cell and solid organ transplantation. The parents in these families belonged to five broad groups - African (72 parents), Asian (115), European (210), Hispanic (118) and "Other" (11). High-resolution HLA genotypes were generated for each subject using next-generation sequencing (NGS) HLA typing systems. We identified the HLA haplotypes in each family using HaplObserve, software that builds haplotypes in families by reviewing HLA allele segregation from parents to children. We calculated haplotype frequencies within each broad group, by treating the parents in each family as unrelated individuals. We also calculated standard measures of global linkage disequilibrium (LD) and conditional asymmetric LD for each ethnic group, and used untruncated and two-field allele names to investigate LD patterns. Finally we demonstrated the utility of consensus DNA sequences in identifying novel variants, confirming them using HLA allele segregation at the DNA sequence level.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA.
| | - Kalyan C Mallempati
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Sridevi Gangavarapu
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | - Arisa Oki
- HLA Laboratory, City of Hope, Duarte, CA, USA
| | | | - Susana R Marino
- Transplant Immunology Laboratory, The University of Chicago Medicine, Chicago, IL, USA
| | - Nicholas K Brown
- Transplant Immunology Laboratory, The University of Chicago Medicine, Chicago, IL, USA
| | | | - Eric T Weimer
- Department of Pathology & Laboratory Medicine, UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Gonzalo Montero-Martín
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA; Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lisa E Creary
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA; Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tamara A Vayntrub
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA
| | | | - Medhat Askar
- Baylor University Medical Center, Dallas, TX, USA
| | - Steven J Mack
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Marcelo A Fernández-Viña
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA; Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
27
|
Buckley AR, Ideker T, Carter H, Schork NJ. Rare variant phasing using paired tumor:normal sequence data. BMC Bioinformatics 2019; 20:265. [PMID: 31132991 PMCID: PMC6537421 DOI: 10.1186/s12859-019-2753-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Background In standard high throughput sequencing analysis, genetic variants are not assigned to a homologous chromosome of origin. This process, called haplotype phasing, can reveal information important for understanding the relationship between genetic variants and biological phenotypes. For example, in genes that carry multiple heterozygous missense variants, phasing resolves whether one or both gene copies are altered. Here, we present a novel approach to phasing variants that takes advantage of unique properties of paired tumor:normal sequencing data from cancer studies. Results VAF phasing uses changes in variant allele frequency (VAF) between tumor and normal samples in regions of somatic chromosomal gain or loss to phase germline variants. We apply VAF phasing to 6180 samples from the Cancer Genome Atlas (TCGA) and demonstrate that our method is highly concordant with other standard phasing methods, and can phase an average of 33% more variants than other read-backed phasing methods. Using variant annotation tools designed to score gene haplotypes, we find a suggestive association between carrying multiple missense variants in a single copy of a cancer predisposition gene and earlier age of cancer diagnosis. Conclusions VAF phasing exploits unique properties of tumor genomes to increase the number of germline variants that can be phased over standard read-backed methods in paired tumor:normal samples. Our phase-informed association testing results call attention to the need to develop more tools for assessing the joint effect of multiple genetic variants. Electronic supplementary material The online version of this article (10.1186/s12859-019-2753-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra R Buckley
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Human Biology Program, J. Craig Venter Institute, La Jolla, CA, USA
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Cancer Cell Map Initiative (CCMI), University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,Cancer Cell Map Initiative (CCMI), University of California San Diego, La Jolla, CA, USA
| | - Nicholas J Schork
- Human Biology Program, J. Craig Venter Institute, La Jolla, CA, USA. .,Department of Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute, Phoenix, AZ, USA. .,Departments of Family Medicine and Public Health and Psychiatry, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
28
|
Spottiswoode CN, Busch R. Vive la difference! Self/non-self recognition and the evolution of signatures of identity in arms races with parasites. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180206. [PMID: 30967089 PMCID: PMC6388040 DOI: 10.1098/rstb.2018.0206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
In arms races with parasites, hosts can evolve defences exhibiting extensive variability within populations, which signals individual identity ('signatures'). However, few such systems have evolved, suggesting that the conditions for their evolution are uncommon. We review (a) polymorphic egg markings that allow hosts of brood-parasitic birds to recognize and reject parasitic eggs, and (b) polymorphic tissue antigens encoded in the major histocompatibility complex (MHC), which present self- and pathogen-derived peptides to T cells of the immune system. Despite the profound differences between these systems, they share analogous features: (i) self/non-self discrimination by a highly specific recognition system (bird eyes and T-cell antigen receptor, respectively), which antagonists may escape by evolving evasion or mimicry; (ii) a self substrate upon which diversifying selection can act (eggs, and MHC molecules); (iii) acquired knowledge of self (resulting in acceptance of own eggs, and immune tolerance); and (iv) fitness costs associated with attack on self or lack of parasite detection. We suggest that these features comprise a set of requirements for parasites to drive the evolution of identity signatures in hosts, which diminish the likelihood of recognition errors. This may help to explain the variety of trajectories arising from arms races in different antagonistic contexts. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
Collapse
Affiliation(s)
- Claire N. Spottiswoode
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Robert Busch
- Department of Life Sciences, Whitelands College, University of Roehampton, Holybourne Avenue, London SW15 4JD, UK
| |
Collapse
|
29
|
Osoegawa K, Mack SJ, Prestegaard M, Fernández-Viña MA. Tools for building, analyzing and evaluating HLA haplotypes from families. Hum Immunol 2019; 80:633-643. [PMID: 30735756 DOI: 10.1016/j.humimm.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 11/17/2022]
Abstract
The highly polymorphic classical human leukocyte antigen (HLA) genes display strong linkage disequilibrium (LD) that results in conserved multi-locus haplotypes. For unrelated individuals in defined populations, HLA haplotype frequencies can be estimated using the expectation-maximization (EM) method. Haplotypes can also be constructed using HLA allele segregation from nuclear families. It is straightforward to identify many HLA genotyping inconsistencies by visually reviewing HLA allele segregation in family members. It is also possible to identify potential crossover events when two or more children are available in a nuclear family. This process of visual inspection can be unwieldy, and we developed the "HaplObserve" program to standardize the process and automatically build haplotypes using family-based HLA allele segregation. HaplObserve facilitates systematically building haplotypes, and reporting potential crossover events. HLA Haplotype Validator (HLAHapV) is a program originally developed to impute chromosomal phase from genotype data using reference haplotype data. We updated and adapted HLAHapV to systematically compare observed and estimated haplotypes. We also used HLAHapV to identify haplotypes when uninformative HLA genotypes are present in families. Finally, we developed "pould", an R package that calculates haplotype frequencies, and estimates standard measures of global (locus-level) LD from both observed and estimated haplotypes.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA.
| | - Steven J Mack
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | - Marcelo A Fernández-Viña
- Histocompatibility, Immunogenetics & Disease Profiling Laboratory, Stanford Blood Center, Palo Alto, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
30
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
31
|
Askar M, Sayer D, Wang T, Haagenson M, Spellman SR, Lee SJ, Madbouly A, Fleischhauer K, Hsu KC, Verneris MR, Thomas D, Zhang A, Sobecks RM, Majhail NS. Analysis of Single Nucleotide Polymorphisms in the Gamma Block of the Major Histocompatibility Complex in Association with Clinical Outcomes of Hematopoietic Cell Transplantation: A Center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transplant 2018; 25:664-672. [PMID: 30537553 DOI: 10.1016/j.bbmt.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/06/2018] [Indexed: 01/08/2023]
Abstract
HLA haplotype mismatches have been associated with an elevated risk of acute graft-versus-host disease (aGVHD) in patients undergoing HLA-matched unrelated donor (URD) hematopoietic cell transplantation (HCT). The gamma block (GB) is located in the central MHC region between beta and delta blocks (encoding HLA-B and -C and HLA-DQ and -DR antigens, respectively) and contains numerous inflammatory and immune regulatory genes, including Bf, C2, and C4 genes. A single-center study showed that mismatches in SNPs c.2918+98G, c.3316C, and c.4385C in the GB block (C4 SNPs) were associated with higher risk of grade III-IV aGVHD. We investigated the association of GB SNP (GBS) mismatches with outcomes after 10/10 and 9/10 URD HCT (n = 714). The primary outcome was acute GVHD. Overall survival, disease-free survival, transplantation-related mortality, relapse, chronic GVHD, and engraftment were also analyzed. DNA samples were GBS genotyped by identifying 338 SNPs across 20 kb using the Illumina NGS platform. The overall 100-day incidence of aGVHD grade II-IV and II-IV were 41% and 17%, respectively. The overall incidence of matching at all GBSs tested and at the C4 SNPs were 23% and 81%, respectively. Neither being matched across all GB SNPs tested (versus mismatched) nor having a higher number of GBS mismatches was associated with transplantation outcomes. There was no association between C4 SNP mismatches and outcomes except for an unexpected significant association between having 2 C4 SNP mismatches and a higher hazard ratio (HR) for relapse (association seen in 15 patients only; HR, 3.38, 95% confidence interval, 1.75 to 6.53; P = .0003). These data do not support the hypothesis that mismatching at GB is associated with outcomes after HCT.
Collapse
Affiliation(s)
- Medhat Askar
- Baylor University Medical Center, Transplant Immunology, Dallas, Texas
| | - David Sayer
- Illumina, Conexio Genomics, Fremantle, Australia
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Haagenson
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota.
| | | | - Abeer Madbouly
- Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota
| | - Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital Essen, Essen, Germany
| | | | - Michael R Verneris
- Children's Hospital Colorado, University of Colorado School of Medicine, Pediatrics-Heme/Onc and Bone Marrow Transplantation, Aurora, Colorado
| | - Dawn Thomas
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Aiwen Zhang
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Ronald M Sobecks
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| | - Navneet S Majhail
- Cleveland Clinic Foundation, Cleveland, Hematology and Medical Oncology, Ohio
| |
Collapse
|
32
|
Williams GP, Schonhoff AM, Jurkuvenaite A, Thome AD, Standaert DG, Harms AS. Targeting of the class II transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson's disease. J Neuroinflammation 2018; 15:244. [PMID: 30165873 PMCID: PMC6117927 DOI: 10.1186/s12974-018-1286-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by intracellular alpha-synuclein (α-syn) inclusions, progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and activation of the innate and adaptive immune systems. Disruption of immune signaling between the central nervous system (CNS) and periphery, such as through targeting the chemokine receptor type 2 (CCR2) or the major histocompatibility complex II (MHCII), is neuroprotective in rodent models of PD, suggesting a key role for innate and adaptive immunity in disease progression. The purpose of this study was to investigate whether genetic knockout or RNA silencing of the class II transactivator (CIITA), a transcriptional co-activator required for MHCII induction, is effective in reducing the neuroinflammation and neurodegeneration observed in an α-syn mouse model of PD. METHODS In vitro, we utilized microglia cultures from WT or CIITA -/- mice treated with α-syn fibrils to investigate inflammatory iNOS expression and antigen processing via immunocytochemistry (ICC). In vivo, an adeno-associated virus (AAV) was used to overexpress α-syn in WT and CIITA -/- mice as a model for PD. Concurrently with AAV-mediated overexpression of α-syn, WT mice received CIITA-targeted shRNAs packaged in lentiviral constructs. Immunohistochemistry and flow cytometry were used to assess inflammation and peripheral cell infiltration at 4 weeks post transduction, and unbiased stereology was used 6 months post transduction to assess neurodegeneration. RESULTS Using ICC and DQ-ovalbumin, we show that CIITA -/- microglial cultures failed to upregulate iNOS and MHCII expression, and had decreased antigen processing in response to α-syn fibrils when compared to WT microglia. In vivo, global knock-out of CIITA as well as local knockdown using lentiviral shRNAs targeting CIITA attenuated MHCII expression, peripheral immune cell infiltration, and α-syn-induced neurodegeneration. CONCLUSION Our data provide evidence that CIITA is required for α-syn-induced MHCII induction and subsequent infiltration of peripheral immune cells in an α-syn mouse model of PD. Additionally, we demonstrate that CIITA in the CNS drives neuroinflammation and neurodegeneration. These data provide further support that the disruption or modulation of antigen processing and presentation via CIITA is a promising target for therapeutic development in preclinical animal models of PD.
Collapse
Affiliation(s)
- Gregory P Williams
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA
| | - Aubrey M Schonhoff
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA
| | - Asta Jurkuvenaite
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA
| | - Aaron D Thome
- Department of Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA
| | - Ashley S Harms
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham (UAB), 1719 6th Ave. South, CIRC 525, Birmingham, AL, 35294-0021, USA.
| |
Collapse
|
33
|
Guo J, Chen H, Yang P, Lee YT, Wu M, Przytycka TM, Kwoh CK, Zheng J. LDSplitDB: a database for studies of meiotic recombination hotspots in MHC using human genomic data. BMC Med Genomics 2018; 11:27. [PMID: 29697370 PMCID: PMC5918432 DOI: 10.1186/s12920-018-0351-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Meiotic recombination happens during the process of meiosis when chromosomes inherited from two parents exchange genetic materials to generate chromosomes in the gamete cells. The recombination events tend to occur in narrow genomic regions called recombination hotspots. Its dysregulation could lead to serious human diseases such as birth defects. Although the regulatory mechanism of recombination events is still unclear, DNA sequence polymorphisms have been found to play crucial roles in the regulation of recombination hotspots. Method To facilitate the studies of the underlying mechanism, we developed a database named LDSplitDB which provides an integrative and interactive data mining and visualization platform for the genome-wide association studies of recombination hotspots. It contains the pre-computed association maps of the major histocompatibility complex (MHC) region in the 1000 Genomes Project and the HapMap Phase III datasets, and a genome-scale study of the European population from the HapMap Phase II dataset. Besides the recombination profiles, related data of genes, SNPs and different types of epigenetic modifications, which could be associated with meiotic recombination, are provided for comprehensive analysis. To meet the computational requirement of the rapidly increasing population genomics data, we prepared a lookup table of 400 haplotypes for recombination rate estimation using the well-known LDhat algorithm which includes all possible two-locus haplotype configurations. Conclusion To the best of our knowledge, LDSplitDB is the first large-scale database for the association analysis of human recombination hotspots with DNA sequence polymorphisms. It provides valuable resources for the discovery of the mechanism of meiotic recombination hotspots. The information about MHC in this database could help understand the roles of recombination in human immune system. Database URL http://histone.scse.ntu.edu.sg/LDSplitDB
Collapse
Affiliation(s)
- Jing Guo
- School of Computer Science and Engineering, Nanyang Technological University, Nanyang Ave, Singapore, 639798, Singapore
| | - Hao Chen
- School of Computer Science and Engineering, Nanyang Technological University, Nanyang Ave, Singapore, 639798, Singapore
| | - Peng Yang
- School of Computer Science and Engineering, Nanyang Technological University, Nanyang Ave, Singapore, 639798, Singapore.,Institute for Infocomm Research, Agency for Science, Technology & Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Yew Ti Lee
- School of Computer Science and Engineering, Nanyang Technological University, Nanyang Ave, Singapore, 639798, Singapore
| | - Min Wu
- School of Computer Science and Engineering, Nanyang Technological University, Nanyang Ave, Singapore, 639798, Singapore.,Institute for Infocomm Research, Agency for Science, Technology & Research, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Teresa M Przytycka
- NCBI, NLM, National Institutes of Health, 8600 Rockville Pike, Bethesda, Maryland, 20894, USA
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Nanyang Ave, Singapore, 639798, Singapore
| | - Jie Zheng
- School of Computer Science and Engineering, Nanyang Technological University, Nanyang Ave, Singapore, 639798, Singapore. .,Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore, 138672, Singapore.
| |
Collapse
|
34
|
Clark PM, Chitnis N, Shieh M, Kamoun M, Johnson FB, Monos D. Novel and Haplotype Specific MicroRNAs Encoded by the Major Histocompatibility Complex. Sci Rep 2018; 8:3832. [PMID: 29497078 PMCID: PMC5832780 DOI: 10.1038/s41598-018-19427-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/23/2017] [Indexed: 02/06/2023] Open
Abstract
The MHC is recognized for its importance in human health and disease. However, many disease-associated variants throughout the region remain of unknown significance, residing predominantly within non-coding regions of the MHC. The characterization of non-coding RNA transcripts throughout the MHC is thus central to understanding the genetic contribution of these variants. Therefore, we characterize novel miRNA transcripts throughout the MHC by performing deep RNA sequencing of two B lymphoblastoid cell lines with completely characterized MHC haplotypes. Our analysis identifies 89 novel miRNA transcripts, 48 of which undergo Dicer-dependent biogenesis and are loaded onto the Argonaute silencing complex. Several of the identified mature miRNA and pre-miRNA transcripts are unique to specific MHC haplotypes and overlap common SNPs. Furthermore, 43 of the 89 identified novel miRNA transcripts lie within linkage disequilibrium blocks that contain a disease-associated SNP. These disease associated SNPs are associated with 65 unique disease phenotypes, suggesting that these transcripts may play a role in the etiology of numerous diseases associated with the MHC. Additional in silico analysis reveals the potential for thousands of putative pre-miRNA encoding loci within the MHC that may be expressed by different cell types and at different developmental stages.
Collapse
Affiliation(s)
- P M Clark
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - N Chitnis
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Shieh
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - M Kamoun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - F B Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D Monos
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Varade J, Wang N, Lim CK, Zhang T, Zhang Y, Liu X, Piehl F, Matell R, Cao H, Xu X, Hammarström L. Novel genetic loci associated HLA-B*08:01 positive myasthenia gravis. J Autoimmun 2018; 88:43-49. [DOI: 10.1016/j.jaut.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023]
|
36
|
Carignano HA, Roldan DL, Beribe MJ, Raschia MA, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Poli MA, Miretti MM. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics 2018; 19:142. [PMID: 29439661 PMCID: PMC5812220 DOI: 10.1186/s12864-018-4523-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. RESULTS We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). CONCLUSIONS Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.
Collapse
Affiliation(s)
- Hugo A. Carignano
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Dana L. Roldan
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - María J. Beribe
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino, B2700 Pergamino, Argentina
| | - María A. Raschia
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Ariel Amadio
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan P. Nani
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
| | - Gerónimo Gutierrez
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Irene Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Mario A. Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Marcos M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical (GIGA - IBS), Universidad Nacional de Misiones, N3300 Posadas, Argentina
| |
Collapse
|
37
|
Abstract
The control of gene regulation within the major histocompatibility complex (MHC) remains poorly understood, despite several expression quantitative trait loci (eQTL) studies revealing an association of MHC gene expression with independent tag-single nucleotide polymorphisms (SNPs). MHC haplotype variation may exert a greater effect on gene expression phenotype than specific single variants. To explore the effect of MHC haplotype sequence diversity on gene expression phenotypes across the MHC, we examined the MHC transcriptomic landscape at haplotype-specific resolution for three prominent MHC haplotypes (A2-B46-DR9, A33-B58-DR3, and A1-B8-DR3) derived from MHC-homozygous B-lymphoblastoid cell lines (B-LCLs). We demonstrate that MHC-wide gene expression patterns are dictated by underlying haplotypes, and identify 36 differentially expressed genes. By mapping these haplotype sequence variations to known eQTL, we provide evidence that unique allelic combinations of eQTL, embedded within haplotypes, are correlated with the level of expression of 17 genes. Interestingly, the influence of haplotype sequence on gene expression is not homogenous across the MHC. We show that haplotype sequence polymorphisms within or proximate to HLA-A, HLA-C, C4A, and HLA-DRB regions exert haplotype-specific gene regulatory effects, whereas the expression of genes in other parts of the MHC region are not affected by the haplotype sequence. Overall, we demonstrate that MHC haplotype sequence diversity can impact phenotypic outcome via the alteration of transcriptional variability, indicating that a haplotype-based approach is fundamental for the assessment of trait associations in the MHC.
Collapse
|
38
|
Rojo-Medina J, Bello-López JM. HLA frequency in candidates to transplant without compatible cord blood at the National Center of Blood Transfusion (Mexico). Transfus Apher Sci 2017; 56:571-575. [PMID: 28774824 DOI: 10.1016/j.transci.2017.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/17/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Umbilical Cord Blood Units (UCBU) for transplantation, are a therapeutic possibility for patients with a wide range of oncohaematological diseases and other immunologic disorders. The search of compatible donors for bone marrow transplantation is increasingly difficult for patients of mixed ethnicity. The aim of this work was determine the HLA frequency of candidates for transplantation without compatible UCBU at the National Center of from Blood Transfusion (NCBT) - Mexico. MATERIAL AND METHODS A retrospective analysis of candidates to transplant without compatible UCBU was performed in the archives from 2003 to 2016 at the NCBT. HLA class I and II genotyping of candidates was performed by medium resolution methods: Sequence Specific Primer and/or Specific Sequence Oligonucleotide. HLA frequencies were obtained by including individuals without any particular bias to a phenotype and strict statistical and genetic analysis of populations were done. The database in www.allelefrequencies.net was used in order to identify the ethnic origin of the most frequent alleles. RESULTS Three hundred and sixty-four candidates without compatible UCBU for transplantation were identified. The most frequent haplotype HLA I and II were: HLA-A*02/02, 02/24, 24/24, 02/68, 01/24 and 24/68; HLA-B*39/39, 35/51, 44/44, 44/40, 35/40 and 35/35; HLA-DRB1*04/04, 13/07, 04/13, 13/13 and 03/11. The ethnic origins of the analyzed data were represented in most cases by Amerindians, Caucasics, Orientals, Asians, Arabs and Africans. CONCLUSION This work shows the existence of a broad genetic diversity of candidates for transplantation with UCBU, making it difficult to find compatible units considering donors only from the capital.
Collapse
Affiliation(s)
- Julieta Rojo-Medina
- Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Zacatenco, Gustavo A. Madero, 07360 México City, Mexico
| | - Juan Manuel Bello-López
- Centro Nacional de la Transfusión Sanguínea, Av. Othón de Mendizábal 195, Zacatenco, Gustavo A. Madero, 07360 México City, Mexico; Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Zacatenco, Gustavo A. Madero, 07360 México City, Mexico.
| |
Collapse
|
39
|
Jash B, Müller J. Application of a Metal-Mediated Base Pair to the Detection of Medicinally Relevant Single Nucleotide Polymorphisms. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Biswarup Jash
- Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstr. 28/30 48149 Münster Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie and NRW Graduate School of Chemistry; Westfälische Wilhelms-Universität Münster; Corrensstr. 28/30 48149 Münster Germany
| |
Collapse
|
40
|
Carignano HA, Beribe MJ, Caffaro ME, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Miretti MM, Poli MA. BOLA-DRB3gene polymorphisms influence bovine leukaemia virus infection levels in Holstein and Holstein × Jersey crossbreed dairy cattle. Anim Genet 2017; 48:420-430. [DOI: 10.1111/age.12566] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Affiliation(s)
- H. A. Carignano
- Instituto de Genética; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - M. J. Beribe
- Estación Experimental Agropecuaria Pergamino - INTA; Pergamino B2700 Argentina
| | - M. E. Caffaro
- Instituto de Genética; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - A. Amadio
- Estación Experimental Agropecuaria Rafaela - INTA; Rafaela S2300 Santa Fe Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Ciudad Autónoma de Buenos Aires C1033AAJ Argentina
| | - J. P. Nani
- Estación Experimental Agropecuaria Rafaela - INTA; Rafaela S2300 Santa Fe Argentina
| | - G. Gutierrez
- Instituto de Virología; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - I. Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Ciudad Autónoma de Buenos Aires C1033AAJ Argentina
- Instituto de Virología; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - K. Trono
- Instituto de Virología; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| | - M. M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Ciudad Autónoma de Buenos Aires C1033AAJ Argentina
- Grupo de Investigación en Genética Aplicada; Instituto de Biología Subtropical (GIGA - IBS); Universidad Nacional de Misiones; Posadas N3300 Argentina
| | - M. A. Poli
- Instituto de Genética; Centro de Investigaciones en Ciencias Veterinarias y Agronómicas - INTA; Hurlingham B1686 Argentina
| |
Collapse
|
41
|
Chitnis N, Clark PM, Kamoun M, Stolle C, Brad Johnson F, Monos DS. An Expanded Role for HLA Genes: HLA-B Encodes a microRNA that Regulates IgA and Other Immune Response Transcripts. Front Immunol 2017; 8:583. [PMID: 28579988 PMCID: PMC5437213 DOI: 10.3389/fimmu.2017.00583] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
We describe a novel functional role for the HLA-B locus mediated by its intron-encoded microRNA (miRNA), miR-6891-5p. We show that in vitro inhibition of miR-6891-5p impacts the expression of nearly 200 transcripts within the B-lymphoblastoid cell line (B-LCL) COX, affecting a large number of metabolic pathways, including various immune response networks. The top affected transcripts following miR-6891-5p inhibition are those encoding the heavy chain of IgA. We identified a conserved miR-6891-5p target site on the 3′UTR of both immunoglobulin heavy chain alpha 1 and 2 (IGHA1 and IGHA2) transcripts and demonstrated that this miRNA modulates the expression of IGHA1 and IGHA2. B-LCLs from IgA-deficient patients expressed significantly elevated levels of miR-6891-5p when compared with unaffected family members. Upon inhibition of miR-6891-5p, IgA mRNA expression levels were increased, and IgA secretion was restored in the B-LCL of an IgA-deficient patient. These findings indicate that miR-6891-5p regulates IGHA1 and IGHA2 gene expression at the posttranscriptional level and suggest that increase in miR-6891-5p levels may contribute to the etiology of selective IgA deficiency.
Collapse
Affiliation(s)
- Nilesh Chitnis
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter M Clark
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malek Kamoun
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Catherine Stolle
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitri S Monos
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Petersdorf EW. Role of major histocompatibility complex variation in graft-versus-host disease after hematopoietic cell transplantation. F1000Res 2017; 6:617. [PMID: 28529723 PMCID: PMC5419254 DOI: 10.12688/f1000research.10990.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Graft-versus-host disease (GVHD) remains a significant potentially life-threatening complication of allogeneic hematopoietic cell transplantation (HCT). Since the discovery of the human leukocyte antigen (HLA) system over 50 years ago, significant advances have clarified the nature of HLA variation between transplant recipients and donors as a chief etiology of GVHD. New information on coding and non-coding gene variation and GVHD risk provides clinicians with options to consider selected mismatched donors when matched donors are not available. These advances have increased the availability of unrelated donors for patients in need of a transplant and have lowered the overall morbidity and mortality of HCT.
Collapse
|
43
|
Norman PJ, Norberg SJ, Guethlein LA, Nemat-Gorgani N, Royce T, Wroblewski EE, Dunn T, Mann T, Alicata C, Hollenbach JA, Chang W, Shults Won M, Gunderson KL, Abi-Rached L, Ronaghi M, Parham P. Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA class I and II. Genome Res 2017; 27:813-823. [PMID: 28360230 PMCID: PMC5411776 DOI: 10.1101/gr.213538.116] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/10/2017] [Indexed: 12/26/2022]
Abstract
The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B. It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome.
Collapse
Affiliation(s)
- Paul J Norman
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Thomas Royce
- Illumina Incorporated, San Diego, California 92122, USA
| | - Emily E Wroblewski
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tamsen Dunn
- Illumina Incorporated, San Diego, California 92122, USA
| | - Tobias Mann
- Illumina Incorporated, San Diego, California 92122, USA
| | - Claudia Alicata
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jill A Hollenbach
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, California 94158, USA
| | - Weihua Chang
- Illumina Incorporated, San Diego, California 92122, USA
| | | | | | - Laurent Abi-Rached
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
44
|
Neville MJ, Lee W, Humburg P, Wong D, Barnardo M, Karpe F, Knight JC. High resolution HLA haplotyping by imputation for a British population bioresource. Hum Immunol 2017; 78:242-251. [PMID: 28111166 PMCID: PMC5367449 DOI: 10.1016/j.humimm.2017.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/03/2016] [Accepted: 01/17/2017] [Indexed: 12/02/2022]
Abstract
This study aimed to establish the occurrence and frequency of HLA alleles and haplotypes for a healthy British Caucasian population bioresource from Oxfordshire. We present the results of imputation from HLA SNP genotyping data using SNP2HLA for 5553 individuals from Oxford Biobank, defining one- and two-field alleles together with amino acid polymorphisms. We show that this achieves a high level of accuracy with validation using sequence-specific primer amplification PCR. We define six- and eight-locus HLA haplotypes for this population by Bayesian methods implemented using PHASE. We determine patterns of linkage disequilibrium and recombination for these individuals involving classical HLA loci and show how analysis within a haplotype block structure may be more tractable for imputed data. Our findings contribute to knowledge of HLA diversity in healthy populations and further validate future large-scale use of HLA imputation as an informative approach in population bioresources.
Collapse
Affiliation(s)
- Matt J Neville
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Oxford OX3 7LJ, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Wanseon Lee
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Peter Humburg
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Daniel Wong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Martin Barnardo
- Transplant Immunology and Immunogenetics Laboratory, Oxford Transplant Centre, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Old Road, Oxford OX3 7LJ, UK; Oxford NIHR Biomedical Research Centre, Churchill Hospital, Oxford, UK
| | - Julian C Knight
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
45
|
Abstract
A haplotype is a string of nucleotides or alleles at nearby loci on one chromosome, usually inherited as a unit. Within the major histocompatibility complex (MHC) region on human chromosome 6p, independent population studies of multiple families have identified conserved extended haplotypes (CEHs) that segregate as long stretches (≥1 megabase) of essentially identical DNA sequence at relatively high (≥0.5 %) population frequency ("genetic fixity"). CEHs were first identified through segregation analysis in the early 1980s. In European Caucasian populations, the most frequent 30 CEHs account for at least one-third of all MHC haplotypes. These CEHs provide all of the known individual MHC susceptibility and protective genetic markers within those populations for several complex genetic diseases. Haplotypes are rigorously determined directly by sequencing single chromosomes or by Mendelian segregation analysis using families with informative genotypes. Four parental haplotypes are assigned unambiguously using genotypes from the two parents and from two of their haploidentical (to each other) children. However, the most common current technique to phase haplotypes is probabilistic statistical imputation, using unrelated subjects. Such probabilistic techniques have failed to detect CEHs and are thus of questionable value in identifying long-range haplotype structure and, consequently, genetic structure-function relationships. Finally, with haplotypes rigorously defined, association studies can determine frequencies of alleles among unrelated patient haplotypes vs. those among only unaffected family members (i.e., control alleles/haplotypes). Such studies reduce, as much as possible, the confounding effects of population stratification common to all genetic studies.
Collapse
Affiliation(s)
- Chester A Alper
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, CLS_03, 3 Blackfan Circle, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Charles E Larsen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, CLS_03, 3 Blackfan Circle, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| |
Collapse
|
46
|
Tian S, Yan H, Neuhauser C, Slager SL. An analytical workflow for accurate variant discovery in highly divergent regions. BMC Genomics 2016; 17:703. [PMID: 27590916 PMCID: PMC5010666 DOI: 10.1186/s12864-016-3045-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Background Current variant discovery methods often start with the mapping of short reads to a reference genome; yet, their performance deteriorates in genomic regions where the reads are highly divergent from the reference sequence. This is particularly problematic for the human leukocyte antigen (HLA) region on chromosome 6p21.3. This region is associated with over 100 diseases, but variant calling is hindered by the extreme divergence across different haplotypes. Results We simulated reads from chromosome 6 exonic regions over a wide range of sequence divergence and coverage depth. We systematically assessed combinations between five mappers and five callers for their performance on simulated data and exome-seq data from NA12878, a well-studied individual in which multiple public call sets have been generated. Among those combinations, the number of known SNPs differed by about 5 % in the non-HLA regions of chromosome 6 but over 20 % in the HLA region. Notably, GSNAP mapping combined with GATK UnifiedGenotyper calling identified about 20 % more known SNPs than most existing methods without a noticeable loss of specificity, with 100 % sensitivity in three highly polymorphic HLA genes examined. Much larger differences were observed among these combinations in INDEL calling from both non-HLA and HLA regions. We obtained similar results with our internal exome-seq data from a cohort of chronic lymphocytic leukemia patients. Conclusions We have established a workflow enabling variant detection, with high sensitivity and specificity, over the full spectrum of divergence seen in the human genome. Comparing to public call sets from NA12878 has highlighted the overall superiority of GATK UnifiedGenotyper, followed by GATK HaplotypeCaller and SAMtools, in SNP calling, and of GATK HaplotypeCaller and Platypus in INDEL calling, particularly in regions of high sequence divergence such as the HLA region. GSNAP and Novoalign are the ideal mappers in combination with the above callers. We expect that the proposed workflow should be applicable to variant discovery in other highly divergent regions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3045-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Claudia Neuhauser
- Informatics Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Susan L Slager
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
47
|
Marsh SGE. Nomenclature for factors of the HLA system, update March 2016. HLA 2016; 88:70-3. [PMID: 27562625 DOI: 10.1111/tan.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Steven G E Marsh
- Anthony Nolan Research Institute, Royal Free Hospital, London, NW3 2QG, UK
| | | |
Collapse
|
48
|
|
49
|
Shiina T, Blancher A, Inoko H, Kulski JK. Comparative genomics of the human, macaque and mouse major histocompatibility complex. Immunology 2016; 150:127-138. [PMID: 27395034 DOI: 10.1111/imm.12624] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022] Open
Abstract
The MHC is a highly polymorphic genomic region that encodes the transplantation and immune regulatory molecules. It receives special attention for genetic investigation because of its important role in the regulation of innate and adaptive immune responses and its strong association with numerous infectious and/or autoimmune diseases. The MHC locus was first discovered in the mouse and for the past 50 years it has been studied most intensively in both mice and humans. However, in recent years the macaque species have emerged as some of the more important and advanced experimental animal models for biomedical research into MHC with important human immunodeficiency virus/simian immunodeficiency virus and transplantation studies undertaken in association with precise MHC genotyping and haplotyping methods using Sanger sequencing and next-generation sequencing. Here, in this special issue on 'Macaque Immunology' we provide a short review of the genomic similarities and differences among the human, macaque and mouse MHC class I and class II regions, with an emphasis on the association of the macaque class I region with MHC polymorphism, haplotype structure and function.
Collapse
Affiliation(s)
- Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Antoine Blancher
- Laboratoire d'Immunogénétique moléculaire (LIMT, EA 3034), Laboratoire d'immunologie, Faculté de Médecine Purpan, Université Toulouse 3, CHU de Toulouse, Toulouse, France
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jerzy K Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
50
|
Dapprich J, Ferriola D, Mackiewicz K, Clark PM, Rappaport E, D’Arcy M, Sasson A, Gai X, Schug J, Kaestner KH, Monos D. The next generation of target capture technologies - large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity. BMC Genomics 2016; 17:486. [PMID: 27393338 PMCID: PMC4938946 DOI: 10.1186/s12864-016-2836-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 06/15/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The ability to capture and sequence large contiguous DNA fragments represents a significant advancement towards the comprehensive characterization of complex genomic regions. While emerging sequencing platforms are capable of producing several kilobases-long reads, the fragment sizes generated by current DNA target enrichment technologies remain a limiting factor, producing DNA fragments generally shorter than 1 kbp. The DNA enrichment methodology described herein, Region-Specific Extraction (RSE), produces DNA segments in excess of 20 kbp in length. Coupling this enrichment method to appropriate sequencing platforms will significantly enhance the ability to generate complete and accurate sequence characterization of any genomic region without the need for reference-based assembly. RESULTS RSE is a long-range DNA target capture methodology that relies on the specific hybridization of short (20-25 base) oligonucleotide primers to selected sequence motifs within the DNA target region. These capture primers are then enzymatically extended on the 3'-end, incorporating biotinylated nucleotides into the DNA. Streptavidin-coated beads are subsequently used to pull-down the original, long DNA template molecules via the newly synthesized, biotinylated DNA that is bound to them. We demonstrate the accuracy, simplicity and utility of the RSE method by capturing and sequencing a 4 Mbp stretch of the major histocompatibility complex (MHC). Our results show an average depth of coverage of 164X for the entire MHC. This depth of coverage contributes significantly to a 99.94 % total coverage of the targeted region and to an accuracy that is over 99.99 %. CONCLUSIONS RSE represents a cost-effective target enrichment method capable of producing sequencing templates in excess of 20 kbp in length. The utility of our method has been proven to generate superior coverage across the MHC as compared to other commercially available methodologies, with the added advantage of producing longer sequencing templates amenable to DNA sequencing on recently developed platforms. Although our demonstration of the method does not utilize these DNA sequencing platforms directly, our results indicate that the capture of long DNA fragments produce superior coverage of the targeted region.
Collapse
Affiliation(s)
| | - Deborah Ferriola
- />Generation Biotech, Lawrenceville, NJ 08648 USA
- />Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kate Mackiewicz
- />Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Peter M. Clark
- />Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Eric Rappaport
- />Nucleic Acids & Protein Core Facility, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Monica D’Arcy
- />The Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Ariella Sasson
- />The Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Xiaowu Gai
- />The Center for Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Jonathan Schug
- />Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Klaus H. Kaestner
- />Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dimitri Monos
- />Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- />The Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|