1
|
He Q, Hu J, Huang H, Wu T, Li W, Ramakrishnan S, Pan Y, Chan KM, Zhang L, Yang M, Wang X, Chin YR. FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer. Epigenetics Chromatin 2024; 17:34. [PMID: 39523372 PMCID: PMC11552368 DOI: 10.1186/s13072-024-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.
Collapse
Affiliation(s)
- Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jianyang Hu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Hao Huang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Tan Wu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wenxiu Li
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Saravanan Ramakrishnan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yilin Pan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kui Ming Chan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Liang Zhang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Mengsu Yang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Y Rebecca Chin
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Lewis MW, King CM, Wisniewska K, Regner MJ, Coffey A, Kelly MR, Mendez-Giraldez R, Davis ES, Phanstiel DH, Franco HL. CRISPR Screening of Transcribed Super-Enhancers Identifies Drivers of Triple-Negative Breast Cancer Progression. Cancer Res 2024; 84:3684-3700. [PMID: 39186674 PMCID: PMC11534545 DOI: 10.1158/0008-5472.can-23-3995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein-coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their noncoding enhancer RNA (eRNA) transcripts. The functions of the top 30 eRNA-producing super-enhancers were systematically probed using high-throughput CRISPR-interference assays coupled to RNA sequencing that enabled unbiased detection of target genes genome-wide. Generation of high-resolution Hi-C chromatin interaction maps enabled annotation of the direct target genes for each super-enhancer, which highlighted their proclivity for genes that portend worse clinical outcomes in patients with TNBC. Illustrating the utility of this dataset, deletion of an identified super-enhancer controlling the nearby PODXL gene or specific degradation of its eRNAs led to profound inhibitory effects on target gene expression, cell proliferation, and migration. Furthermore, loss of this super-enhancer suppressed tumor growth and metastasis in TNBC mouse xenograft models. Single-cell RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses demonstrated the enhanced activity of this super-enhancer within the malignant cells of TNBC tumor specimens compared with nonmalignant cell types. Collectively, this work examines several fundamental questions about how regulatory information encoded into eRNA-producing super-enhancers drives gene expression networks that underlie the biology of TNBC. Significance: Integrative analysis of eRNA-producing super-enhancers defines molecular mechanisms controlling global patterns of gene expression that regulate clinical outcomes in breast cancer, highlighting the potential of enhancers as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Michael W. Lewis
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caitlin M. King
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kamila Wisniewska
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J. Regner
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alisha Coffey
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael R. Kelly
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Raul Mendez-Giraldez
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric S. Davis
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Douglas H. Phanstiel
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hector L. Franco
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- The Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935
| |
Collapse
|
3
|
Zhang Y, Gong L, Ding R, Chen W, Rong H, Li Y, Shameem F, Ali KA, Li L, Liao Q. eRNA-IDO: A One-stop Platform for Identification, Interactome Discovery, and Functional Annotation of Enhancer RNAs. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae059. [PMID: 39178387 PMCID: PMC11514848 DOI: 10.1093/gpbjnl/qzae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Growing evidence supports the transcription of enhancer RNAs (eRNAs) and their important roles in gene regulation. However, their interactions with other biomolecules and their corresponding functionality remain poorly understood. In an attempt to facilitate mechanistic research, this study presents eRNA-IDO, the first integrative computational platform for the identification, interactome discovery, and functional annotation of human eRNAs. eRNA-IDO comprises two modules: eRNA-ID and eRNA-Anno. Functionally, eRNA-ID can identify eRNAs from de novo assembled transcriptomes. eRNA-ID includes eight kinds of enhancer makers, enabling users to customize enhancer regions flexibly and conveniently. In addition, eRNA-Anno provides cell-/tissue-specific functional annotation for both new and known eRNAs by analyzing the eRNA interactome from prebuilt or user-defined networks between eRNAs and protein-coding genes. The prebuilt networks include the Genotype-Tissue Expression (GTEx)-based co-expression networks in normal tissues, The Cancer Genome Atlas (TCGA)-based co-expression networks in cancer tissues, and omics-based eRNA-centric regulatory networks. eRNA-IDO can facilitate research on the biogenesis and functions of eRNAs. The eRNA-IDO server is freely available at http://bioinfo.szbl.ac.cn/eRNA_IDO/.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
- Biomedical Big Data Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lihai Gong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Ruofan Ding
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Wenyan Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Hao Rong
- School of Clinical Medicine, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yanguo Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Fawziya Shameem
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | | | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Qi Liao
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Pan Y, Chiu TP, Zhou L, Chan P, Kuo TT, Battaglin F, Soni S, Jayachandran P, Li JJ, Lenz HJ, Mumenthaler SM, Rohs R, Torres ER, Kay SA. Targeting circadian transcriptional programs through a cis-regulatory mechanism in triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590360. [PMID: 38746115 PMCID: PMC11092448 DOI: 10.1101/2024.04.26.590360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Circadian clock genes are emerging targets in many types of cancer, but their mechanistic contributions to tumor progression are still largely unknown. This makes it challenging to stratify patient populations and develop corresponding treatments. In this work, we show that in breast cancer, the disrupted expression of circadian genes has the potential to serve as biomarkers. We also show that the master circadian transcription factors (TFs) BMAL1 and CLOCK are required for the proliferation of metastatic mesenchymal stem-like (mMSL) triple-negative breast cancer (TNBC) cells. Using currently available small molecule modulators, we found that a stabilizer of cryptochrome 2 (CRY2), the direct repressor of BMAL1 and CLOCK transcriptional activity, synergizes with inhibitors of proteasome, which is required for BMAL1 and CLOCK function, to repress a transcriptional program comprising circadian cycling genes in mMSL TNBC cells. Omics analyses on drug-treated cells implied that this repression of transcription is mediated by the transcription factor binding sites (TFBSs) features in the cis-regulatory elements (CRE) of clock-controlled genes. Through a massive parallel reporter assay, we defined a set of CRE features that are potentially repressed by the specific drug combination. The identification of cis -element enrichment might serve as a new concept of defining and targeting tumor types through the modulation of cis -regulatory programs, and ultimately provide a new paradigm of therapy design for cancer types with unclear drivers like TNBC.
Collapse
|
5
|
Park JW, Rhee JK. Integrative Analysis of ATAC-Seq and RNA-Seq through Machine Learning Identifies 10 Signature Genes for Breast Cancer Intrinsic Subtypes. BIOLOGY 2024; 13:799. [PMID: 39452108 PMCID: PMC11505269 DOI: 10.3390/biology13100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Breast cancer is a heterogeneous disease composed of various biologically distinct subtypes, each characterized by unique molecular features. Its formation and progression involve a complex, multistep process that includes the accumulation of numerous genetic and epigenetic alterations. Although integrating RNA-seq transcriptome data with ATAC-seq epigenetic information provides a more comprehensive understanding of gene regulation and its impact across different conditions, no classification model has yet been developed for breast cancer intrinsic subtypes based on such integrative analyses. In this study, we employed machine learning algorithms to predict intrinsic subtypes through the integrative analysis of ATAC-seq and RNA-seq data. We identified 10 signature genes (CDH3, ERBB2, TYMS, GREB1, OSR1, MYBL2, FAM83D, ESR1, FOXC1, and NAT1) using recursive feature elimination with cross-validation (RFECV) and a support vector machine (SVM) based on SHAP (SHapley Additive exPlanations) feature importance. Furthermore, we found that these genes were primarily associated with immune responses, hormone signaling, cancer progression, and cellular proliferation.
Collapse
Affiliation(s)
| | - Je-Keun Rhee
- Department of Bioinformatics & Life Science, Soongsil University, Seoul 06987, Republic of Korea;
| |
Collapse
|
6
|
Varambally S, Karthikeyan SK, Chandrashekar D, Sahai S, Shrestha S, Aneja R, Singh R, Kleer C, Kumar S, Qin Z, Nakshatri H, Manne U, Creighton C. MammOnc-DB, an integrative breast cancer data analysis platform for target discovery. RESEARCH SQUARE 2024:rs.3.rs-4926362. [PMID: 39399665 PMCID: PMC11469468 DOI: 10.21203/rs.3.rs-4926362/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Breast cancer (BCa) is one of the most common malignancies among women worldwide. It is a complex disease that is characterized by morphological and molecular heterogeneity. In the early stages of the disease, most BCa cases are treatable, particularly hormone receptor-positive and HER2-positive tumors. Unfortunately, triple-negative BCa and metastases to distant organs are largely untreatable with current medical interventions. Recent advances in sequencing and proteomic technologies have improved our understanding of the molecular changes that occur during breast cancer initiation and progression. In this era of precision medicine, researchers and clinicians aim to identify subclass-specific BCa biomarkers and develop new targets and drugs to guide treatment. Although vast amounts of omics data including single cell sequencing data, can be accessed through public repositories, there is a lack of user-friendly platforms that integrate information from multiple studies. Thus, to meet the need for a simple yet effective and integrative BCa tool for multi-omics data analysis and visualization, we developed a comprehensive BCa data analysis platform called MammOnc-DB (http://resource.path.uab.edu/MammOnc-Home.html), comprising data from more than 20,000 BCa samples. MammOnc-DB was developed to provide a unique resource for hypothesis generation and testing, as well as for the discovery of biomarkers and therapeutic targets. The platform also provides pre- and post-treatment data, which can help users identify treatment resistance markers and patient groups that may benefit from combination therapy.
Collapse
|
7
|
Kabeer F, Tran H, Andronescu M, Singh G, Lee H, Salehi S, Wang B, Biele J, Brimhall J, Gee D, Cerda V, O'Flanagan C, Algara T, Kono T, Beatty S, Zaikova E, Lai D, Lee E, Moore R, Mungall AJ, Williams MJ, Roth A, Campbell KR, Shah SP, Aparicio S. Single-cell decoding of drug induced transcriptomic reprogramming in triple negative breast cancers. Genome Biol 2024; 25:191. [PMID: 39026273 PMCID: PMC11256464 DOI: 10.1186/s13059-024-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The encoding of cell intrinsic drug resistance states in breast cancer reflects the contributions of genomic and non-genomic variations and requires accurate estimation of clonal fitness from co-measurement of transcriptomic and genomic data. Somatic copy number (CN) variation is the dominant mutational mechanism leading to transcriptional variation and notably contributes to platinum chemotherapy resistance cell states. Here, we deploy time series measurements of triple negative breast cancer (TNBC) single-cell transcriptomes, along with co-measured single-cell CN fitness, identifying genomic and transcriptomic mechanisms in drug-associated transcriptional cell states. RESULTS We present scRNA-seq data (53,641 filtered cells) from serial passaging TNBC patient-derived xenograft (PDX) experiments spanning 2.5 years, matched with genomic single-cell CN data from the same samples. Our findings reveal distinct clonal responses within TNBC tumors exposed to platinum. Clones with high drug fitness undergo clonal sweeps and show subtle transcriptional reversion, while those with weak fitness exhibit dynamic transcription upon drug withdrawal. Pathway analysis highlights convergence on epithelial-mesenchymal transition and cytokine signaling, associated with resistance. Furthermore, pseudotime analysis demonstrates hysteresis in transcriptional reversion, indicating generation of new intermediate transcriptional states upon platinum exposure. CONCLUSIONS Within a polyclonal tumor, clones with strong genotype-associated fitness under platinum remained fixed, minimizing transcriptional reversion upon drug withdrawal. Conversely, clones with weaker fitness display non-genomic transcriptional plasticity. This suggests CN-associated and CN-independent transcriptional states could both contribute to platinum resistance. The dominance of genomic or non-genomic mechanisms within polyclonal tumors has implications for drug sensitivity, restoration, and re-treatment strategies.
Collapse
Affiliation(s)
- Farhia Kabeer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Hoa Tran
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Mirela Andronescu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Gurdeep Singh
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Hakwoo Lee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Sohrab Salehi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Beixi Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Justina Biele
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Jazmine Brimhall
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - David Gee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Viviana Cerda
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Ciara O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Teresa Algara
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Takako Kono
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Sean Beatty
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Elena Zaikova
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Daniel Lai
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Eric Lee
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Roth
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kieran R Campbell
- Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Sim N, Carter JM, Deka K, Tan BKT, Sim Y, Tan SM, Li Y. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer. Nat Commun 2024; 15:5638. [PMID: 38965263 PMCID: PMC11224303 DOI: 10.1038/s41467-024-50071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
9
|
Regner MJ, Garcia-Recio S, Thennavan A, Wisniewska K, Mendez-Giraldez R, Felsheim B, Spanheimer PM, Parker JS, Perou CM, Franco HL. Defining the Regulatory Logic of Breast Cancer Using Single-Cell Epigenetic and Transcriptome Profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598858. [PMID: 38948758 PMCID: PMC11212881 DOI: 10.1101/2024.06.13.598858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Annotation of the cis-regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.e. regulatory elements) and gene expression in malignant cells versus normal mammary epithelial cells. These data unveil regulatory elements with that switch from silencers of gene expression in normal cells to enhancers of gene expression in cancer cells, leading to the upregulation of clinically relevant oncogenes. To translate the utility of this dataset into tractable models, we generated matched scATAC-seq and scRNA-seq profiles for breast cancer cell lines, revealing, for each subtype, a conserved oncogenic gene expression program between in vitro and in vivo cells. Together, this work highlights the importance of non-coding regulatory mechanisms that underlie oncogenic processes and the ability of single-cell multi-omics to define the regulatory logic of BC cells at single-cell resolution.
Collapse
Affiliation(s)
- Matthew J. Regner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Susana Garcia-Recio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Kamila Wisniewska
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Raul Mendez-Giraldez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brooke Felsheim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Philip M. Spanheimer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S. Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Charles M. Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hector L. Franco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Division of Clinical and Translational Cancer Research, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR 00935
| |
Collapse
|
10
|
Serra-Bardenys G, Blanco E, Escudero-Iriarte C, Serra-Camprubí Q, Querol J, Pascual-Reguant L, Morancho B, Escorihuela M, Tissera NS, Sabé A, Martín L, Segura-Bayona S, Verde G, Aiese Cigliano R, Millanes-Romero A, Jerónimo C, Cebrià-Costa JP, Nuciforo P, Simonetti S, Viaplana C, Dienstmann R, Oliveira M, Peg V, Stracker TH, Arribas J, Canals F, Villanueva J, Di Croce L, García de Herreros A, Tian TV, Peiró S. LOXL2-mediated chromatin compaction is required to maintain the oncogenic properties of triple-negative breast cancer cells. FEBS J 2024; 291:2423-2448. [PMID: 38451841 DOI: 10.1111/febs.17112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Oxidation of histone H3 at lysine 4 (H3K4ox) is catalyzed by lysyl oxidase homolog 2 (LOXL2). This histone modification is enriched in heterochromatin in triple-negative breast cancer (TNBC) cells and has been linked to the maintenance of compacted chromatin. However, the molecular mechanism underlying this maintenance is still unknown. Here, we show that LOXL2 interacts with RuvB-Like 1 (RUVBL1), RuvB-Like 2 (RUVBL2), Actin-like protein 6A (ACTL6A), and DNA methyltransferase 1associated protein 1 (DMAP1), a complex involved in the incorporation of the histone variant H2A.Z. Our experiments indicate that this interaction and the active form of RUVBL2 are required to maintain LOXL2-dependent chromatin compaction. Genome-wide experiments showed that H2A.Z, RUVBL2, and H3K4ox colocalize in heterochromatin regions. In the absence of LOXL2 or RUVBL2, global levels of the heterochromatin histone mark H3K9me3 were strongly reduced, and the ATAC-seq signal in the H3K9me3 regions was increased. Finally, we observed that the interplay between these series of events is required to maintain H3K4ox-enriched heterochromatin regions, which in turn is key for maintaining the oncogenic properties of the TNBC cell line tested (MDA-MB-231).
Collapse
Affiliation(s)
- Gemma Serra-Bardenys
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Institut Bonanova FP Sanitaria, Consorci Mar Parc de Salut de Barcelona, Spain
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | - Jessica Querol
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura Pascual-Reguant
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
| | | | | | | | - Anna Sabé
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Luna Martín
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Gaetano Verde
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Alba Millanes-Romero
- Institute for Research in Biomedicine (IRB Barcelona) and Barcelona Institute of Science and Technology, Spain
| | - Celia Jerónimo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institut de Recherches Cliniques de Montréal, Canada
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Mafalda Oliveira
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Vicente Peg
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Travis H Stracker
- Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Joaquín Arribas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Tian V Tian
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sandra Peiró
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
11
|
Zhang S, Kim EJ, Huang J, Liu P, Donahue K, Wang Q, Wang Y, Mcilwain S, Xie L, Chen X, Li L, Xu W. NEAT1 repression by MED12 creates chemosensitivity in p53 wild-type breast cancer cells. FEBS J 2024; 291:1909-1924. [PMID: 38380720 PMCID: PMC11068489 DOI: 10.1111/febs.17097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Breast cancer is often treated with chemotherapy. However, the development of chemoresistance results in treatment failure. Long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to contribute to chemoresistance in breast cancer cells. In studying the transcriptional regulation of NEAT1 using multi-omics approaches, we showed that NEAT1 is up-regulated by 5-fluorouracil in breast cancer cells with wild-type cellular tumor antigen p53 but not in mutant-p53-expressing breast cancer cells. The regulation of NEAT1 involves mediator complex subunit 12 (MED12)-mediated repression of histone acetylation marks at the promoter region of NEAT1. Knockdown of MED12 but not coactivator-associated arginine methyltransferase 1 (CARM1) induced histone acetylation at the NEAT1 promoter, leading to elevated NEAT1 mRNAs, resulting in a chemoresistant phenotype. The MED12-dependent regulation of NEAT1 differs between wild-type and mutant p53-expressing cells. MED12 depletion led to increased expression of NEAT1 in a wild-type p53 cell line, but decreased expression in a mutant p53 cell line. Chemoresistance caused by MED12 depletion can be partially rescued by NEAT1 knockdown in p53 wild-type cells. Collectively, our study reveals a novel mechanism of chemoresistance dependent on MED12 transcriptional regulation of NEAT1 in p53 wild-type breast cancer cells.
Collapse
Affiliation(s)
- Shengjie Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
- Present Address: Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Eui-Jun Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of Biostatistics and Medical Informatics, Carbone Cancer Center, University of Wisconsin, Madison, WI 53706, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qinchuan Wang
- Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, China
| | - Yidan Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean Mcilwain
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Zhang J, Miao N, Lao L, Deng W, Wang J, Zhu X, Huang Y, Lin H, Zeng W, Zhang W, Tan L, Yuan X, Zeng X, Zhu J, Chen X, Song E, Yang L, Nie Y, Huang D. Activation of Bivalent Gene POU4F1 Promotes and Maintains Basal-like Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307660. [PMID: 38491910 PMCID: PMC11132042 DOI: 10.1002/advs.202307660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive molecular subtype of breast cancer with worse prognosis and fewer treatment options. The underlying mechanisms upon BLBC transcriptional dysregulation and its upstream transcription factors (TFs) remain unclear. Here, among the hyperactive candidate TFs of BLBC identified by bioinformatic analysis, POU4F1 is uniquely upregulated in BLBC and is associated with poor prognosis. POU4F1 is necessary for the tumor growth and malignant phenotypes of BLBC through regulating G1/S transition by direct binding at the promoter of CDK2 and CCND1. More importantly, POU4F1 maintains BLBC identity by repressing ERα expression through CDK2-mediated EZH2 phosphorylation and subsequent H3K27me3 modification in ESR1 promoter. Knocking out POU4F1 in BLBC cells reactivates functional ERα expression, rendering BLBC sensitive to tamoxifen treatment. In-depth epigenetic analysis reveals that the subtype-specific re-configuration and activation of the bivalent chromatin in the POU4F1 promoter contributes to its unique expression in BLBC, which is maintained by DNA demethylase TET1. Together, these results reveal a subtype-specific epigenetically activated TF with critical role in promoting and maintaining BLBC, suggesting that POU4F1 is a potential therapeutic target for BLBC.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Nanyan Miao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of Plastic SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wen Deng
- Center for BiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Yongsheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Cellular & Molecular Diagnostics CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wenfeng Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Luyuan Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xin Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Jingkun Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Linbin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
13
|
Jakobsen ST, Jensen RAM, Madsen MS, Ravnsborg T, Vaagenso CS, Siersbæk MS, Einarsson H, Andersson R, Jensen ON, Siersbæk R. MYC activity at enhancers drives prognostic transcriptional programs through an epigenetic switch. Nat Genet 2024; 56:663-674. [PMID: 38454021 DOI: 10.1038/s41588-024-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
The transcription factor MYC is overexpressed in most cancers, where it drives multiple hallmarks of cancer progression. MYC is known to promote oncogenic transcription by binding to active promoters. In addition, MYC has also been shown to invade distal enhancers when expressed at oncogenic levels, but this enhancer binding has been proposed to have low gene-regulatory potential. Here, we demonstrate that MYC directly regulates enhancer activity to promote cancer type-specific gene programs predictive of poor patient prognosis. MYC induces transcription of enhancer RNA through recruitment of RNA polymerase II (RNAPII), rather than regulating RNAPII pause-release, as is the case at promoters. This process is mediated by MYC-induced H3K9 demethylation and acetylation by GCN5, leading to enhancer-specific BRD4 recruitment through its bromodomains, which facilitates RNAPII recruitment. We propose that MYC drives prognostic cancer type-specific gene programs through induction of an enhancer-specific epigenetic switch, which can be targeted by BET and GCN5 inhibitors.
Collapse
Affiliation(s)
- Simon T Jakobsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rikke A M Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Maria S Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Majken S Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hjorleifur Einarsson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robin Andersson
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rasmus Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
14
|
Jiang Y, Ye Y, Zhang X, Yu Y, Huang L, Bao X, Xu X. Identification and characterization of CHD4-associated eRNA as a novel modulator of fetal hemoglobin levels in β-thalassemia. Biochem Biophys Res Commun 2024; 701:149555. [PMID: 38325179 DOI: 10.1016/j.bbrc.2024.149555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of β-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2β2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six β-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.
Collapse
Affiliation(s)
- Yida Jiang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Yanping Yu
- Department of Pediatric, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Liping Huang
- Department of Pediatric, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Xiuqin Bao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Lusby R, Zhang Z, Mahesh A, Tiwari VK. Decoding gene regulatory circuitry underlying TNBC chemoresistance reveals biomarkers for therapy response and therapeutic targets. NPJ Precis Oncol 2024; 8:64. [PMID: 38472332 DOI: 10.1038/s41698-024-00529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell subpopulations intricately associated with chemoresistance and the signature genes defining these populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and associated transcription factor networks across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and improve the treatment of patients with a high risk of developing resistance.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK.
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
16
|
Cao T, Huang M, Huang X, Tang T. Research and experimental verification on the mechanisms of cellular senescence in triple-negative breast cancer. PeerJ 2024; 12:e16935. [PMID: 38435998 PMCID: PMC10909353 DOI: 10.7717/peerj.16935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Background Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high heterogeneity, poor prognosis, and a low 10-year survival rate of less than 50%. Although cellular senescence displays extensive effects on cancer, the comprehensions of cellular senescence-related characteristics in TNBC patients remains obscure. Method Single-cell RNA sequencing (scRNA-seq) data were analyzed by Seurat package. Scores for cellular senescence-related pathways were computed by single-sample gene set enrichment analysis (ssGSEA). Subsequently, unsupervised consensus clustering was performed for molecular cluster identification. Immune scores of patients in The Cancer Genome Atlas (TCGA) dataset and associated immune cell scores were calculated using Estimation of STromal and Immune cells in MAlignantTumours using Expression data (ESTIMATE) and Microenvironment Cell Populations-counter (MCP-counter), Tumor Immune Estimation Resource (TIMER) and Estimating the Proportion of Immune and Cancer cells (EPIC) methods, respectively. Immunotherapy scores were assessed using TIDE. Furthermore, feature genes were identified by univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses; these were used to construct a risk model. Additionally, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and transwell assay were conducted for in vitro validation of hub genes. Result TNBC was classified into three subtypes based on cellular senescence-related pathways as clusters 1, 2, and 3. Specifically, cluster 1 showed the best prognosis, followed by cluster 2 and cluster 3. The levels of gene expression in cluster 2 were the lowest, whereas these were the highest in cluster 3. Moreover, clusters 1 and 3 showed a high degree of immune infiltration. TIDE scores were higher for cluster 3, suggesting that immune escape was more likely in patients with the cluster 3 subtype who were less likely to benefit from immunotherapy. Next, the TNBC risk model was constructed and validated. RT-qPCR revealed that prognostic risk genes (MMP28, ACP5 and KRT6A) were up-regulated while protective genes (CT83) were down-regulated in TNBC cell lines, validating the results of the bioinformatics analysis. Meanwhile, cellular experiments revealed that ACP5 could promote the migration and invasion abilities in two TNBC cell lines. Finally, we evaluated the validity of prognostic models for assessing TME characteristics and TNBC chemotherapy response. Conclusion In conclusion, these findings help to assess the efficacy of targeted therapies in patients with different molecular subtypes, have practical applications for subtype-specific treatment of TNBC patients, and provide information on prognostic factors, as well as guidance for the revelation of the molecular mechanisms by which senescence-associated genes influence TNBC progression.
Collapse
Affiliation(s)
- Tengfei Cao
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengjie Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyue Huang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tian Tang
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Leuzzi G, Vasciaveo A, Taglialatela A, Chen X, Firestone TM, Hickman AR, Mao W, Thakar T, Vaitsiankova A, Huang JW, Cuella-Martin R, Hayward SB, Kesner JS, Ghasemzadeh A, Nambiar TS, Ho P, Rialdi A, Hebrard M, Li Y, Gao J, Gopinath S, Adeleke OA, Venters BJ, Drake CG, Baer R, Izar B, Guccione E, Keogh MC, Guerois R, Sun L, Lu C, Califano A, Ciccia A. SMARCAL1 is a dual regulator of innate immune signaling and PD-L1 expression that promotes tumor immune evasion. Cell 2024; 187:861-881.e32. [PMID: 38301646 PMCID: PMC10980358 DOI: 10.1016/j.cell.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 07/23/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Genomic instability can trigger cancer-intrinsic innate immune responses that promote tumor rejection. However, cancer cells often evade these responses by overexpressing immune checkpoint regulators, such as PD-L1. Here, we identify the SNF2-family DNA translocase SMARCAL1 as a factor that favors tumor immune evasion by a dual mechanism involving both the suppression of innate immune signaling and the induction of PD-L1-mediated immune checkpoint responses. Mechanistically, SMARCAL1 limits endogenous DNA damage, thereby suppressing cGAS-STING-dependent signaling during cancer cell growth. Simultaneously, it cooperates with the AP-1 family member JUN to maintain chromatin accessibility at a PD-L1 transcriptional regulatory element, thereby promoting PD-L1 expression in cancer cells. SMARCAL1 loss hinders the ability of tumor cells to induce PD-L1 in response to genomic instability, enhances anti-tumor immune responses and sensitizes tumors to immune checkpoint blockade in a mouse melanoma model. Collectively, these studies uncover SMARCAL1 as a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Vasciaveo
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Angelo Taglialatela
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Wendy Mao
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tanay Thakar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alina Vaitsiankova
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jen-Wei Huang
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Raquel Cuella-Martin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jordan S Kesner
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ali Ghasemzadeh
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Patricia Ho
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander Rialdi
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Yinglu Li
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jinmei Gao
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | | | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard Baer
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin Izar
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Qu X, Lin Z, Jayawickramarajah J, Alsager JS, Schmidt E, Nephew KP, Fang F, Balasubramanian S, Shan B. G-quadruplex is critical to epigenetic activation of the lncRNA HOTAIR in cancer cells. iScience 2023; 26:108559. [PMID: 38144452 PMCID: PMC10746524 DOI: 10.1016/j.isci.2023.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
The cancer-promoting lncRNA HOTAIR has multiple isoforms. Which isoform of HOTAIR accounts for its expression and functions in cancer is unknown. Unlike HOTAIR's canonical intergenic isoform NR_003716 (HOTAIR-C), the novel isoform NR_047517 (HOTAIR-N) forms an overlapping antisense transcription locus with HOXC11. We identified HOTAIR-N as the dominant isoform that regulates the gene expression programs and networks for cell proliferation, survival, and death in cancer cells. The CpG island in the HOTAIR-N promoter was marked with epigenetic markers for active transcription. We identified a G-quadruplex (G4) motif rich region in the HOTAIR-N CpG island. Our findings indicate that G4s in HOTAIR-N CpG island is critical for expression of HOTAIR-N in cancer cells. Disruption of G4 may represent a novel therapeutic approach for cancer. The transcriptomes regulated by HOTAIR-N and Bloom in cancer cells as provided herein are important resources for the exploration of lncRNA, DNA helicases, and G4 in cancer.
Collapse
Affiliation(s)
- Xiaohan Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhen Lin
- Deparmtent of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - John S. Alsager
- Department of Biomedical Sciences, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Emily Schmidt
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Kenneth P. Nephew
- Medical Sciences, Cell and Molecular Cancer Biology Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Fang Fang
- Medical Sciences, Cell and Molecular Cancer Biology Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Bin Shan
- Department of Biomedical Sciences, Elson S Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
19
|
Owen DM, Kwon M, Huang X, Nagari A, Nandu T, Kraus WL. Genome-wide identification of transcriptional enhancers during human placental development and association with function, differentiation, and disease†. Biol Reprod 2023; 109:965-981. [PMID: 37694817 PMCID: PMC10724456 DOI: 10.1093/biolre/ioad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/07/2023] [Accepted: 09/09/2023] [Indexed: 09/12/2023] Open
Abstract
The placenta is a dynamic organ that must perform a remarkable variety of functions during its relatively short existence in order to support a developing fetus. These functions include nutrient delivery, gas exchange, waste removal, hormone production, and immune barrier protection. Proper placenta development and function are critical for healthy pregnancy outcomes, but the underlying genomic regulatory events that control this process remain largely unknown. We hypothesized that mapping sites of transcriptional enhancer activity and associated changes in gene expression across gestation in human placenta tissue would identify genomic loci and predicted transcription factor activity related to critical placenta functions. We used a suite of genomic assays [i.e., RNA-sequencing (RNA-seq), Precision run-on-sequencing (PRO-seq), and Chromatin immunoprecipitation-sequencing (ChIP-seq)] and computational pipelines to identify a set of >20 000 enhancers that are active at various time points in gestation. Changes in the activity of these enhancers correlate with changes in gene expression. In addition, some of these enhancers encode risk for adverse pregnancy outcomes. We further show that integrating enhancer activity, transcription factor motif analysis, and transcription factor expression can identify distinct sets of transcription factors predicted to be more active either in early pregnancy or at term. Knockdown of selected identified transcription factors in a trophoblast stem cell culture model altered the expression of key placental marker genes. These observations provide a framework for future mechanistic studies of individual enhancer-transcription factor-target gene interactions and have the potential to inform genetic risk prediction for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- David M Owen
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of General Obstetrics and Gynecology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minjung Kwon
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
20
|
Wang Y, Armendariz D, Wang L, Zhao H, Xie S, Hon GC. Enhancer regulatory networks globally connect non-coding breast cancer loci to cancer genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567880. [PMID: 38045327 PMCID: PMC10690208 DOI: 10.1101/2023.11.20.567880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genetic studies have associated thousands of enhancers with breast cancer. However, the vast majority have not been functionally characterized. Thus, it remains unclear how variant-associated enhancers contribute to cancer. Here, we perform single-cell CRISPRi screens of 3,512 regulatory elements associated with breast cancer to measure the impact of these regions on transcriptional phenotypes. Analysis of >500,000 single-cell transcriptomes in two breast cancer cell lines shows that perturbation of variant-associated enhancers disrupts breast cancer gene programs. We observe variant-associated enhancers that directly or indirectly regulate the expression of cancer genes. We also find one-to-multiple and multiple-to-one network motifs where enhancers indirectly regulate cancer genes. Notably, multiple variant-associated enhancers indirectly regulate TP53. Comparative studies illustrate sub-type specific functions between enhancers in ER+ and ER- cells. Finally, we developed the pySpade package to facilitate analysis of single-cell enhancer screens. Overall, we demonstrate that enhancers form regulatory networks that link cancer genes in the genome, providing a more comprehensive understanding of the contribution of enhancers to breast cancer development.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | | | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Huan Zhao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Current address: Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
21
|
Ntini E, Budach S, Vang Ørom UA, Marsico A. Genome-wide measurement of RNA dissociation from chromatin classifies transcripts by their dynamics and reveals rapid dissociation of enhancer lncRNAs. Cell Syst 2023; 14:906-922.e6. [PMID: 37857083 DOI: 10.1016/j.cels.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis. Although enriched in the cell chromatin fraction, to what degree this defines their regulatory potential remains unclear. Furthermore, the factors underlying lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chromatin dissociation and its impact on enhancer activity and target gene expression, remain to be resolved. Here, we developed chrTT-seq, which combines the pulse-chase metabolic labeling of nascent RNA with chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their transcription on chromatin to release and allows the quantification of dissociation dynamics. By incorporating genomic, transcriptomic, and epigenetic metrics, as well as RNA-binding protein propensities, in machine learning models, we identify features that define transcript groups of different chromatin dissociation dynamics. Notably, lncRNAs transcribed from enhancers display reduced chromatin retention, suggesting that, in addition to splicing, their chromatin dissociation may shape enhancer activity.
Collapse
Affiliation(s)
- Evgenia Ntini
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Institute of Molecular Biology and Biotechnology, IMBB-FORTH, 70013 Heraklio, Greece.
| | - Stefan Budach
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany
| | - Ulf A Vang Ørom
- Aarhus University, Department of Molecular Biology and Genetics, 8000 Aarhus, Denmark
| | - Annalisa Marsico
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Freie Universität Berlin, 14195 Berlin, Germany; Computational Health Center, Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
22
|
de Langen P, Hammal F, Guéret E, Mouren JC, Spinelli L, Ballester B. Characterizing intergenic transcription at RNA polymerase II binding sites in normal and cancer tissues. CELL GENOMICS 2023; 3:100411. [PMID: 37868033 PMCID: PMC10589727 DOI: 10.1016/j.xgen.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
Intergenic transcription in normal and cancerous tissues is pervasive but incompletely understood. To investigate this, we constructed an atlas of over 180,000 consensus RNA polymerase II (RNAPII)-bound intergenic regions from 900 RNAPII chromatin immunoprecipitation sequencing (ChIP-seq) experiments in normal and cancer samples. Through unsupervised analysis, we identified 51 RNAPII consensus clusters, many of which mapped to specific biotypes and revealed tissue-specific regulatory signatures. We developed a meta-clustering methodology to integrate our RNAPII atlas with active transcription across 28,797 RNA sequencing (RNA-seq) samples from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Encyclopedia of DNA Elements (ENCODE). This analysis revealed strong tissue- and disease-specific interconnections between RNAPII occupancy and transcriptional activity. We demonstrate that intergenic transcription at RNAPII-bound regions is a novel per-cancer and pan-cancer biomarker. This biomarker displays genomic and clinically relevant characteristics, distinguishing cancer subtypes and linking to overall survival. Our results demonstrate the effectiveness of coherent data integration to uncover intergenic transcriptional activity in normal and cancer tissues.
Collapse
Affiliation(s)
| | | | - Elise Guéret
- Aix Marseille Univ, INSERM, TAGC, Marseille, France
| | | | | | | |
Collapse
|
23
|
Zhu W, Huang H, Ming W, Zhang R, Gu Y, Bai Y, Liu X, Liu H, Liu Y, Gu W, Sun X. Delineating highly transcribed noncoding elements landscape in breast cancer. Comput Struct Biotechnol J 2023; 21:4432-4445. [PMID: 37731598 PMCID: PMC10507584 DOI: 10.1016/j.csbj.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
Highly transcribed noncoding elements (HTNEs) are critical noncoding elements with high levels of transcriptional capacity in particular cohorts involved in multiple cellular biological processes. Investigation of HTNEs with persistent aberrant expression in abnormal tissues could be of benefit in exploring their roles in disease occurrence and progression. Breast cancer is a highly heterogeneous disease for which early screening and prognosis are exceedingly crucial. In this study, we developed a HTNE identification framework to systematically investigate HTNE landscapes in breast cancer patients and identified over ten thousand HTNEs. The robustness and rationality of our framework were demonstrated via public datasets. We revealed that HTNEs had significant chromatin characteristics of enhancers and long noncoding RNAs (lncRNAs) and were significantly enriched with RNA-binding proteins as well as targeted by miRNAs. Further, HTNE-associated genes were significantly overexpressed and exhibited strong correlations with breast cancer. Ultimately, we explored the subtype-specific transcriptional processes associated with HTNEs and uncovered the HTNE signatures that could classify breast cancer subtypes based on the properties of hormone receptors. Our results highlight that the identified HTNEs as well as their associated genes play crucial roles in breast cancer progression and correlate with subtype-specific transcriptional processes of breast cancer.
Collapse
Affiliation(s)
- Wenyong Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenlong Ming
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yu Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongde Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanjun Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Wang X, Kutschat AP, Aggrey-Fynn J, Hamdan FH, Graham RP, Wixom AQ, Souto Y, Ladigan-Badura S, Yonkus JA, Abdelrahman AM, Alva-Ruiz R, Gaedcke J, Ströbel P, Kosinsky RL, Wegwitz F, Hermann P, Truty MJ, Siveke JT, Hahn SA, Hessmann E, Johnsen SA, Najafova Z. Identification of a ΔNp63-Dependent Basal-Like A Subtype-Specific Transcribed Enhancer Program (B-STEP) in Aggressive Pancreatic Ductal Adenocarcinoma. Mol Cancer Res 2023; 21:881-891. [PMID: 37279184 PMCID: PMC10542885 DOI: 10.1158/1541-7786.mcr-22-0916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/13/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
A major hurdle to the application of precision oncology in pancreatic cancer is the lack of molecular stratification approaches and targeted therapy for defined molecular subtypes. In this work, we sought to gain further insight and identify molecular and epigenetic signatures of the Basal-like A pancreatic ductal adenocarcinoma (PDAC) subgroup that can be applied to clinical samples for patient stratification and/or therapy monitoring. We generated and integrated global gene expression and epigenome mapping data from patient-derived xenograft models to identify subtype-specific enhancer regions that were validated in patient-derived samples. In addition, complementary nascent transcription and chromatin topology (HiChIP) analyses revealed a Basal-like A subtype-specific transcribed enhancer program in PDAC characterized by enhancer RNA (eRNA) production that is associated with more frequent chromatin interactions and subtype-specific gene activation. Importantly, we successfully confirmed the validity of eRNA detection as a possible histologic approach for PDAC patient stratification by performing RNA-ISH analyses for subtype-specific eRNAs on pathologic tissue samples. Thus, this study provides proof-of-concept that subtype-specific epigenetic changes relevant for PDAC progression can be detected at a single-cell level in complex, heterogeneous, primary tumor material. IMPLICATIONS Subtype-specific enhancer activity analysis via detection of eRNAs on a single-cell level in patient material can be used as a potential tool for treatment stratification.
Collapse
Affiliation(s)
- Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Ana P. Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Joana Aggrey-Fynn
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Feda H. Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Alexander Q. Wixom
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yara Souto
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | | | - Jennifer A. Yonkus
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
| | - Amro M. Abdelrahman
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075 Göttingen, Germany
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Robyn Laura Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mark J. Truty
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jens T. Siveke
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK), Partner site University Hospital Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan A. Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, Bochum, Germany
| | - Elisabeth Hessmann
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075 Göttingen, Germany
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Zeynab Najafova
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
- Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| |
Collapse
|
25
|
Bejjani F, Evanno E, Mahfoud S, Tolza C, Zibara K, Piechaczyk M, Jariel-Encontre I. Multiple Fra-1-bound enhancers showing different molecular and functional features can cooperate to repress gene transcription. Cell Biosci 2023; 13:129. [PMID: 37464380 DOI: 10.1186/s13578-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND How transcription factors (TFs) down-regulate gene expression remains ill-understood, especially when they bind to multiple enhancers contacting the same gene promoter. In particular, it is not known whether they exert similar or significantly different molecular effects at these enhancers. RESULTS To address this issue, we used a particularly well-suited study model consisting of the down-regulation of the TGFB2 gene by the TF Fra-1 in Fra-1-overexpressing cancer cells, as Fra-1 binds to multiple enhancers interacting with the TGFB2 promoter. We show that Fra-1 does not repress TGFB2 transcription via reducing RNA Pol II recruitment at the gene promoter but by decreasing the formation of its transcription-initiating form. This is associated with complex long-range chromatin interactions implicating multiple molecularly and functionally heterogeneous Fra-1-bound transcriptional enhancers distal to the TGFB2 transcriptional start site. In particular, the latter display differential requirements upon the presence and the activity of the lysine acetyltransferase p300/CBP. Furthermore, the final transcriptional output of the TGFB2 gene seems to depend on a balance between the positive and negative effects of Fra-1 at these enhancers. CONCLUSION Our work unveils complex molecular mechanisms underlying the repressive actions of Fra-1 on TGFB2 gene expression. This has consequences for our general understanding of the functioning of the ubiquitous transcriptional complex AP-1, of which Fra-1 is the most documented component for prooncogenic activities. In addition, it raises the general question of the heterogeneity of the molecular functions of TFs binding to different enhancers regulating the same gene.
Collapse
Affiliation(s)
- Fabienne Bejjani
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
| | | | - Samantha Mahfoud
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
| | - Claire Tolza
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Kazem Zibara
- DSST, ER045, PRASE, Lebanese University, Beirut, Lebanon
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | | | - Isabelle Jariel-Encontre
- IGMM, Univ Montpellier, CNRS, Montpellier, France.
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, ICM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
26
|
Liu S, Zhou J, Ye X, Chen D, Chen W, Lin Y, Chen Z, Chen B, Shang J. A novel lncRNA SNHG29 regulates EP300- related histone acetylation modification and inhibits FLT3-ITD AML development. Leukemia 2023; 37:1421-1434. [PMID: 37157016 DOI: 10.1038/s41375-023-01923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Internal tandem duplication (ITD) mutations within the FMS-like tyrosine kinase-3 (FLT3) occur in up to 25% of acute myeloid leukemia (AML) patients and indicate a very poor prognosis. The role of long noncoding RNAs (lncRNAs) in FLT3-ITD AML progression remains unexplored. We identified a novel lncRNA, SNHG29, whose expression is specifically regulated by the FLT3-STAT5 signaling pathway and is abnormally down-regulated in FLT3-ITD AML cell lines. SNHG29 functions as a tumor suppressor, significantly inhibiting FLT3-ITD AML cell proliferation and decreasing sensitivity to cytarabine in vitro and in vivo models. Mechanistically, we demonstrated that SNHG29's molecular mechanism is EP300-binding dependent and identified the EP300-interacting region of SNHG29. SNHG29 modulates genome-wide EP300 genomic binding, affecting EP300-mediated histone modification and consequently influencing the expression of varies downstream AML-associated genes. Our study uncovers a novel molecular mechanism for SNHG29 in mediating FLT3-ITD AML biological behaviors through epigenetic modification, suggesting that SNHG29 could be a potential therapeutic target for FLT3-ITD AML.
Collapse
Affiliation(s)
- Shan Liu
- Department of Hematology-Oncology, Fujian Children's Hospital; College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Jie Zhou
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xiangling Ye
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Danni Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Weimin Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Yaobin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Zhizhong Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Biyun Chen
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jin Shang
- Shengli Clinical Medical College of Fujian Medical University; Department of Hematology, Fujian Provincial Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
27
|
Bobbitt JR, Seachrist DD, Keri RA. Chromatin Organization and Transcriptional Programming of Breast Cancer Cell Identity. Endocrinology 2023; 164:bqad100. [PMID: 37394919 PMCID: PMC10370366 DOI: 10.1210/endocr/bqad100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023]
Abstract
The advent of sequencing technologies for assessing chromosome conformations has provided a wealth of information on the organization of the 3-dimensional genome and its role in cancer progression. It is now known that changes in chromatin folding and accessibility can promote aberrant activation or repression of transcriptional programs that can drive tumorigenesis and progression in diverse cancers. This includes breast cancer, which comprises several distinct subtypes defined by their unique transcriptomes that dictate treatment response and patient outcomes. Of these, basal-like breast cancer is an aggressive subtype controlled by a pluripotency-enforcing transcriptome. Meanwhile, the more differentiated luminal subtype of breast cancer is driven by an estrogen receptor-dominated transcriptome that underlies its responsiveness to antihormone therapies and conveys improved patient outcomes. Despite the clear differences in molecular signatures, the genesis of each subtype from normal mammary epithelial cells remains unclear. Recent technical advances have revealed key distinctions in chromatin folding and organization between subtypes that could underlie their transcriptomic and, hence, phenotypic differences. These studies also suggest that proteins controlling particular chromatin states may be useful targets for treating aggressive disease. In this review, we explore the current state of understanding of chromatin architecture in breast cancer subtypes and its potential role in defining their phenotypic characteristics.
Collapse
Affiliation(s)
- Jessica R Bobbitt
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Mohammed Ismail W, Mazzone A, Ghiraldini FG, Kaur J, Bains M, Munankarmy A, Bagwell MS, Safgren SL, Moore-Weiss J, Buciuc M, Shimp L, Leach KA, Duarte LF, Nagi CS, Carcamo S, Chung CY, Hasson D, Dadgar N, Zhong J, Lee JH, Couch FJ, Revzin A, Ordog T, Bernstein E, Gaspar-Maia A. MacroH2A histone variants modulate enhancer activity to repress oncogenic programs and cellular reprogramming. Commun Biol 2023; 6:215. [PMID: 36823213 PMCID: PMC9950461 DOI: 10.1038/s42003-023-04571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Considerable efforts have been made to characterize active enhancer elements, which can be annotated by accessible chromatin and H3 lysine 27 acetylation (H3K27ac). However, apart from poised enhancers that are observed in early stages of development and putative silencers, the functional significance of cis-regulatory elements lacking H3K27ac is poorly understood. Here we show that macroH2A histone variants mark a subset of enhancers in normal and cancer cells, which we coined 'macro-Bound Enhancers', that modulate enhancer activity. We find macroH2A variants localized at enhancer elements that are devoid of H3K27ac in a cell type-specific manner, indicating a role for macroH2A at inactive enhancers to maintain cell identity. In following, reactivation of macro-bound enhancers is associated with oncogenic programs in breast cancer and their repressive role is correlated with the activity of macroH2A2 as a negative regulator of BRD4 chromatin occupancy. Finally, through single cell epigenomic profiling of normal mammary stem cells derived from mice, we show that macroH2A deficiency facilitates increased activity of transcription factors associated with stem cell activity.
Collapse
Affiliation(s)
- Wazim Mohammed Ismail
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Amelia Mazzone
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jagneet Kaur
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Manvir Bains
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Amik Munankarmy
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Monique S Bagwell
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Stephanie L Safgren
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - John Moore-Weiss
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Marina Buciuc
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Lynzie Shimp
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Kelsey A Leach
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Luis F Duarte
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chandandeep S Nagi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Saul Carcamo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chi-Yeh Chung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Neda Dadgar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jian Zhong
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Fergus J Couch
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandre Gaspar-Maia
- Division of Experimental Pathology, Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Epigenomics program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
29
|
Peng P, Qiang X, Li G, Li L, Ni S, Yu Q, Sourd L, Marangoni E, Hu C, Wang D, Wu D, Wu F. Tinengotinib (TT-00420), a Novel Spectrum-Selective Small-Molecule Kinase Inhibitor, Is Highly Active Against Triple-Negative Breast Cancer. Mol Cancer Ther 2023; 22:205-214. [PMID: 36223547 PMCID: PMC9890131 DOI: 10.1158/1535-7163.mct-22-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/24/2022] [Accepted: 10/07/2022] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous cancer lacking actionable targets. Using a phenotypic screen of TNBC cells, we discovered a novel multiple kinase inhibitor tinengotinib (TT-00420) that strongly inhibited Aurora A/B, FGFR1/2/3, VEGFRs, JAK1/2, and CSF1R in biochemical assays. Exposure to tinengotinib specifically inhibited proliferation across all subtypes of TNBC in vitro and in vivo, while leaving luminal breast cancer cells intact. Incubation of HCC1806 with tinengotinib led to dose-dependent downregulation of genes essential for TNBC cell growth and proliferation. Studies revealed that the potential mechanism of action of tinengotinib involved, predominantly, inhibition of Aurora A or B kinase activity, while inhibition of other pathways contributed to suppression of potency and activity. In vitro treatment of TNBC cell lines or in vivo administration in a syngeneic model with tinengotinib resulted in up-regulation of CXCL10 and 11 or diminished tumor-associated macrophage (TAM) infiltration. Tinengotinib represents a novel combinatorial inhibitory mechanism to treat TNBC. The phase I trial of tinengotinib was completed (ClinicalTrials.gov identifier: NCT03654547).
Collapse
Affiliation(s)
- Peng Peng
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Xiaoyan Qiang
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Guoyu Li
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Lin Li
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Shumao Ni
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Qi Yu
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Laura Sourd
- Translational Research Department, Institute Curie, PSL Research University, Paris, France
| | - Elisabetta Marangoni
- Translational Research Department, Institute Curie, PSL Research University, Paris, France
| | - Chao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di Wu
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| | - Frank Wu
- Department of Medicinal Chemistry, Pharmacology, Project Management, Drug Metabolism and Pharmacokinetics, TransThera Sciences (Nanjing), Inc., Nanjing, Jiangsu, P.R. China
| |
Collapse
|
30
|
Liang X, Fu Z, Tang L, Zheng M, Chen D, Liu A, Shi L, Yang L, Shao C, Dong X. PLAGL1 is associated with prognosis and cell proliferation in pancreatic adenocarcinoma. BMC Gastroenterol 2023; 23:2. [PMID: 36600208 PMCID: PMC9811725 DOI: 10.1186/s12876-022-02609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Emerging evidence has shown the crucial roles of pleomorphic adenoma gene (PLAG) family genes in multiple cancers. However, their functions and mechanisms in pancreatic adenocarcinoma (PAAD) remain poorly understood. METHODS We analyzed the expression levels of PLAG family genes in both The Cancer Genome Atlas (TCGA) database and a Gene Expression Omnibus (GEO) database, and confirmed the results in our three independent cohorts of 382 PAAD tissues and 362 adjacent nontumor pancreatic tissues. Integrated analyses were carried out to explore the function, mechanism and prognostic value of the selected PLAG family gene in PAAD patients. RESULTS By analyzing the TCGA and GEO databases, PLAGL1 was identified to be downregulated in PAAD tissues, and its decreasing levels of both mRNA and protein were verified in our three independent PAAD cohorts. PLAGL1 expression was inversely correlated with clinicopathological factors including the Ki67+ cell rate and pathologic stage. Further GSEA of the TCGA-PAAD cohort demonstrated that multiple signaling pathways implicated in cell proliferation were enriched in the lower PLAGL1 expressing PAAD group. Moreover, we demonstrated that PLAGL1 expression was obviously negatively associated with patients' overall survival outcome in both the TCGA-PAAD cohort and our verification cohorts. Additionally, through MTS and BrdU assays, we further demonstrated in vitro that PLAGL1 had the impact of preventing the proliferation of pancreatic cancer cells. CONCLUSIONS Our present study suggested that downregulated PLAGL1 might act as a biomarker in predicts poor prognosis and one of important factors in increasing cell proliferation in PAAD. This study provides us with a novel prognostic marker and therapeutic strategy for PAAD, which deserves further study.
Collapse
Affiliation(s)
- Xing Liang
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province China ,grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Fengyang Road 415, Shanghai, 200003 China
| | - Zhiping Fu
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Fengyang Road 415, Shanghai, 200003 China
| | - Liang Tang
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Fengyang Road 415, Shanghai, 200003 China
| | - Minghui Zheng
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Fengyang Road 415, Shanghai, 200003 China
| | - Danlei Chen
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Fengyang Road 415, Shanghai, 200003 China
| | - Anan Liu
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Fengyang Road 415, Shanghai, 200003 China
| | - Ligang Shi
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Fengyang Road 415, Shanghai, 200003 China
| | - Linhua Yang
- grid.16821.3c0000 0004 0368 8293Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Chenghao Shao
- grid.73113.370000 0004 0369 1660Department of Pancreatic-Biliary Surgery, Second Affiliated Hospital of Naval Medical University, Fengyang Road 415, Shanghai, 200003 China
| | - Xiaoqiang Dong
- grid.429222.d0000 0004 1798 0228Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province China
| |
Collapse
|
31
|
Xu Z, Lee DS, Chandran S, Le VT, Bump R, Yasis J, Dallarda S, Marcotte S, Clock B, Haghani N, Cho CY, Akdemir K, Tyndale S, Futreal PA, McVicker G, Wahl GM, Dixon JR. Structural variants drive context-dependent oncogene activation in cancer. Nature 2022; 612:564-572. [PMID: 36477537 PMCID: PMC9810360 DOI: 10.1038/s41586-022-05504-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.
Collapse
Affiliation(s)
- Zhichao Xu
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA,These authors contributed equally
| | - Dong-Sung Lee
- Department of Life Sciences, University of Seoul, Seoul, South Korea,These authors contributed equally
| | - Sahaana Chandran
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Victoria T. Le
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Rosalind Bump
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Jean Yasis
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Sofia Dallarda
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Samantha Marcotte
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Benjamin Clock
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Nicholas Haghani
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Chae Yun Cho
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Kadir Akdemir
- Department of Genomic Medicine; UT MD Anderson Cancer Center; Houston, TX, 77030; USA
| | - Selene Tyndale
- Integrative Biology Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - P. Andrew Futreal
- Department of Genomic Medicine; UT MD Anderson Cancer Center; Houston, TX, 77030; USA
| | - Graham McVicker
- Integrative Biology Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Geoffrey M. Wahl
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA
| | - Jesse R. Dixon
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla, CA, 92037; USA,Correspondence:
| |
Collapse
|
32
|
Kim DS, Camacho CV, Setlem R, Kim K, Malladi S, Hou TY, Nandu T, Gadad SS, Kraus WL. Functional Characterization of lncRNA152 as an Angiogenesis-Inhibiting Tumor Suppressor in Triple-Negative Breast Cancers. Mol Cancer Res 2022; 20:1623-1635. [PMID: 35997635 PMCID: PMC9633386 DOI: 10.1158/1541-7786.mcr-22-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/04/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs have been implicated in many of the hallmarks of cancer. Herein, we found that the expression of lncRNA152 (lnc152; a.k.a. DRAIC), which we annotated previously, is highly upregulated in luminal breast cancer (LBC) and downregulated in triple-negative breast cancer (TNBC). Knockdown of lnc152 promotes cell migration and invasion in LBC cell lines. In contrast, ectopic expression of lnc152 inhibits growth, migration, invasion, and angiogenesis in TNBC cell lines. In mice, lnc152 inhibited the growth of TNBC cell xenografts, as well as metastasis of TNBC cells in an intracardiac injection model. Transcriptome analysis of the xenografts indicated that lnc152 downregulates genes controlling angiogenesis. Using pull down assays followed by LC/MS-MS, we identified RBM47, a known tumor suppressor in breast cancer, as a lnc152-interacting protein. The effects of lnc152 in TNBC cells are mediated, in part, by regulating the expression of RBM47. Collectively, our results demonstrate that lnc152 is an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC. IMPLICATIONS This study identifies lncRNA152 as an angiogenesis-inhibiting tumor suppressor that attenuates the aggressive cancer-related phenotypes found in TNBC by upregulating the expression of the tumor suppressor RBM47. As such, lncRNA152 may serve as a biomarker to track aggressiveness of breast cancer, as well as therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Dae-Seok Kim
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Current address: Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- These authors contributed equally to this work
| | - Cristel V. Camacho
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- These authors contributed equally to this work
| | - Rohit Setlem
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kangsan Kim
- Department of Pathology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Srinivas Malladi
- Department of Pathology, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Tim Y. Hou
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shrikanth S. Gadad
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX 79905, USA
| | - W. Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
33
|
Zheng M, Lin Y, Wang W, Zhao Y, Bao X. Application of nucleoside or nucleotide analogues in RNA dynamics and RNA-binding protein analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1722. [PMID: 35218164 DOI: 10.1002/wrna.1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cellular RNAs undergo dynamic changes during RNA biological processes, which are tightly orchestrated by RNA-binding proteins (RBPs). Yet, the investigation of RNA dynamics is hurdled by highly abundant steady-state RNAs, which make the signals of dynamic RNAs less detectable. Notably, the exert of nucleoside or nucleotide analogue-based RNA technologies has provided a remarkable platform for RNA dynamics research, revealing diverse unnoticed features in RNA metabolism. In this review, we focus on the application of two types of analogue-based RNA sequencing, antigen-/antibody- and click chemistry-based methodologies, and summarize the RNA dynamics features revealed. Moreover, we discuss emerging single-cell newly transcribed RNA sequencing methodologies based on nucleoside analogue labeling, which provides novel insights into RNA dynamics regulation at single-cell resolution. On the other hand, we also emphasize the identification of RBPs that interact with polyA, non-polyA RNAs, or newly transcribed RNAs and also their associated RNA-binding domains at genomewide level through ultraviolet crosslinking and mass spectrometry in different contexts. We anticipated that further modification and development of these analogue-based RNA and RBP capture technologies will aid in obtaining an unprecedented understanding of RNA biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Meifeng Zheng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Lin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangming Science City, Shenzhen, China
| | - Wei Wang
- Center for Biosafety, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xichen Bao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
34
|
Panahi-Moghadam S, Hassani S, Farivar S, Vakhshiteh F. Emerging Role of Enhancer RNAs as Potential Diagnostic and Prognostic Biomarkers in Cancer. Noncoding RNA 2022; 8:ncrna8050066. [PMID: 36287118 PMCID: PMC9607539 DOI: 10.3390/ncrna8050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Enhancers are distal cis-acting elements that are commonly recognized to regulate gene expression via cooperation with promoters. Along with regulating gene expression, enhancers can be transcribed and generate a class of non-coding RNAs called enhancer RNAs (eRNAs). The current discovery of abundant tissue-specific transcription of enhancers in various diseases such as cancers raises questions about the potential role of eRNAs in disease diagnosis and therapy. This review aimed to demonstrate the current understanding of eRNAs in cancer research with a focus on the potential roles of eRNAs as prognostic and diagnostic biomarkers in cancers.
Collapse
Affiliation(s)
- Somayeh Panahi-Moghadam
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran 1417614411, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
- Correspondence:
| |
Collapse
|
35
|
Hernández-Oliveras A, Zarain-Herzberg Á. Expression and associated epigenetic mechanisms of the Ca 2+-signaling genes in breast cancer subtypes and epithelial-to-mesenchymal transition. J Cell Commun Signal 2022; 16:461-474. [PMID: 34762262 PMCID: PMC9411462 DOI: 10.1007/s12079-021-00655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Breast cancer-associated deaths are related mainly to specific molecular subtypes and the presence of metastasis. The Epithelial-to-Mesenchymal Transition (EMT) and Ca2+ signaling pathways are involved in breast cancer metastasis, and they are regulated in part by epigenetic mechanisms. Moreover, activation of EMT modulates Ca2+ concentration and in turn, Ca2+ signaling regulates the expression of EMT markers. Also, activation of Ca2+ signaling genes with epigenetic inhibitors reverts the EMT. Thus, Ca2+ signaling might have an important role in breast cancer metastasis and EMT, particularly through the epigenetic regulation of genes involved in its signaling. However, little is known due to that an estimate of 1670 genes participate in the Ca2+ signaling and only a few genes have been studied. Here, we aimed to explore the expression of all genes involved in Ca2+ signaling in all breast cancer subtypes and EMT, and whether modulation of epigenetic mechanisms is related to their expression. Several genes of the Ca2+ signaling are altered in all breast cancer subtypes, being the cadherins and voltage channels the most frequent altered genes. Also, DNA methylation and histone posttranslational modifications showed a good correlation with their altered expression. The expression of the cadherins and voltage channels is also modulated during breast EMT, and ATAC-seq results suggest that chromatin rearrangement at their promoter is involved. In conclusion, the expression of the genes involved in Ca2+ signaling is altered in all breast cancer subtypes and during EMT, and epigenetic mechanisms are an attractive target to regulate their expression.
Collapse
Affiliation(s)
- Andrés Hernández-Oliveras
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México.
| |
Collapse
|
36
|
Kelly MR, Wisniewska K, Regner MJ, Lewis MW, Perreault AA, Davis ES, Phanstiel DH, Parker JS, Franco HL. A multi-omic dissection of super-enhancer driven oncogenic gene expression programs in ovarian cancer. Nat Commun 2022; 13:4247. [PMID: 35869079 PMCID: PMC9307778 DOI: 10.1038/s41467-022-31919-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/08/2022] [Indexed: 01/14/2023] Open
Abstract
The human genome contains regulatory elements, such as enhancers, that are often rewired by cancer cells for the activation of genes that promote tumorigenesis and resistance to therapy. This is especially true for cancers that have little or no known driver mutations within protein coding genes, such as ovarian cancer. Herein, we utilize an integrated set of genomic and epigenomic datasets to identify clinically relevant super-enhancers that are preferentially amplified in ovarian cancer patients. We systematically probe the top 86 super-enhancers, using CRISPR-interference and CRISPR-deletion assays coupled to RNA-sequencing, to nominate two salient super-enhancers that drive proliferation and migration of cancer cells. Utilizing Hi-C, we construct chromatin interaction maps that enable the annotation of direct target genes for these super-enhancers and confirm their activity specifically within the cancer cell compartment of human tumors using single-cell genomics data. Together, our multi-omic approach examines a number of fundamental questions about how regulatory information encoded into super-enhancers drives gene expression networks that underlie the biology of ovarian cancer.
Collapse
Affiliation(s)
- Michael R Kelly
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kamila Wisniewska
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J Regner
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael W Lewis
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea A Perreault
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric S Davis
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Douglas H Phanstiel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joel S Parker
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hector L Franco
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
37
|
Hardeman AA, Han YJ, Grushko TA, Mueller J, Gomez MJ, Zheng Y, Olopade OI. Subtype-specific expression of MELK is partly due to copy number alterations in breast cancer. PLoS One 2022; 17:e0268693. [PMID: 35749404 PMCID: PMC9231703 DOI: 10.1371/journal.pone.0268693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Maternal embryonic leucine-zipper kinase (MELK) regulates cell cycle progression and is highly expressed in many cancers. The molecular mechanism of MELK dysregulation has not been determined in aggressive forms of breast cancer, such as triple negative breast cancer (TNBC). To evaluate molecular markers of MELK aberrations in aggressive breast cancer, we assessed MELK gene amplification and expression in breast tumors. MELK mRNA expression is highly up-regulated in basal-like breast cancer (BLBC), the major molecular subtype of TNBC, compared to luminal or other subtypes of breast tumors. MELK copy number (CN) gains are significantly associated with BLBC, whereas no significant association of CpG site methylation or histone modifications with breast cancer subtypes was observed. Accordingly, the CN gains appear to contribute to an increase in MELK expression, with a significant correlation between mRNA expression and CN in breast tumors and cell lines. Furthermore, immunohistochemistry (IHC) assays revealed that both nuclear and cytoplasmic staining scores of MELK were significantly higher in invasive ductal carcinoma (IDC) tumors compared to ductal carcinoma in situ (DCIS) and normal breast tissues. Our data showed that upregulation of MELK in BLBC may be in part driven by CN gains, rather than epigenetic modifications, indicating a potential for overexpression and CN gains of MELK to be developed as a diagnostic and prognostic marker to identify patients who have more aggressive breast cancer.
Collapse
Affiliation(s)
- Ashley A. Hardeman
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Yoo Jane Han
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- * E-mail: (OIO); (YJH)
| | - Tatyana A. Grushko
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- Abbott Molecular Inc, Des Plaines, IL, United States of America
| | - Jeffrey Mueller
- Department of Pathology, University of Chicago, Chicago, IL, United States of America
| | - Maria J. Gomez
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Yonglan Zheng
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Olufunmilayo I. Olopade
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- * E-mail: (OIO); (YJH)
| |
Collapse
|
38
|
Lewis MW, Wisniewska K, King CM, Li S, Coffey A, Kelly MR, Regner MJ, Franco HL. Enhancer RNA Transcription Is Essential for a Novel CSF1 Enhancer in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:1852. [PMID: 35406623 PMCID: PMC8997997 DOI: 10.3390/cancers14071852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022] Open
Abstract
Enhancers are critical regulatory elements in the genome that help orchestrate spatiotemporal patterns of gene expression during development and normal physiology. In cancer, enhancers are often rewired by various genetic and epigenetic mechanisms for the activation of oncogenes that lead to initiation and progression. A key feature of active enhancers is the production of non-coding RNA molecules called enhancer RNAs, whose functions remain unknown but can be used to specify active enhancers de novo. Using a combination of eRNA transcription and chromatin modifications, we have identified a novel enhancer located 30 kb upstream of Colony Stimulating Factor 1 (CSF1). Notably, CSF1 is implicated in the progression of breast cancer, is overexpressed in triple-negative breast cancer (TNBC) cell lines, and its enhancer is primarily active in TNBC patient tumors. Genomic deletion of the enhancer (via CRISPR/Cas9) enabled us to validate this regulatory element as a bona fide enhancer of CSF1 and subsequent cell-based assays revealed profound effects on cancer cell proliferation, colony formation, and migration. Epigenetic silencing of the enhancer via CRISPR-interference assays (dCas9-KRAB) coupled to RNA-sequencing, enabled unbiased identification of additional target genes, such as RSAD2, that are predictive of clinical outcome. Additionally, we repurposed the RNA-guided RNA-targeting CRISPR-Cas13 machinery to specifically degrade the eRNAs transcripts produced at this enhancer to determine the consequences on CSF1 mRNA expression, suggesting a post-transcriptional role for these non-coding transcripts. Finally, we test our eRNA-dependent model of CSF1 enhancer function and demonstrate that our results are extensible to other forms of cancer. Collectively, this work describes a novel enhancer that is active in the TNBC subtype, which is associated with cellular growth, and requires eRNA transcripts for proper enhancer function. These results demonstrate the significant impact of enhancers in cancer biology and highlight their potential as tractable targets for therapeutic intervention.
Collapse
Affiliation(s)
- Michael W. Lewis
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.W.L.); (K.W.); (C.M.K.); (S.L.); (A.C.); (M.R.K.); (M.J.R.)
| | - Kamila Wisniewska
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.W.L.); (K.W.); (C.M.K.); (S.L.); (A.C.); (M.R.K.); (M.J.R.)
| | - Caitlin M. King
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.W.L.); (K.W.); (C.M.K.); (S.L.); (A.C.); (M.R.K.); (M.J.R.)
| | - Shen Li
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.W.L.); (K.W.); (C.M.K.); (S.L.); (A.C.); (M.R.K.); (M.J.R.)
| | - Alisha Coffey
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.W.L.); (K.W.); (C.M.K.); (S.L.); (A.C.); (M.R.K.); (M.J.R.)
| | - Michael R. Kelly
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.W.L.); (K.W.); (C.M.K.); (S.L.); (A.C.); (M.R.K.); (M.J.R.)
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J. Regner
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.W.L.); (K.W.); (C.M.K.); (S.L.); (A.C.); (M.R.K.); (M.J.R.)
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hector L. Franco
- The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.W.L.); (K.W.); (C.M.K.); (S.L.); (A.C.); (M.R.K.); (M.J.R.)
- Bioinformatics and Computational Biology Graduate Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- The Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
39
|
Recoules L, Heurteau A, Raynal F, Karasu N, Moutahir F, Bejjani F, Jariel-Encontre I, Cuvier O, Sexton T, Lavigne AC, Bystricky K. The histone variant macroH2A1.1 regulates RNA Polymerase II paused genes within defined chromatin interaction landscapes. J Cell Sci 2022; 135:275002. [PMID: 35362516 PMCID: PMC9016624 DOI: 10.1242/jcs.259456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
The histone variant macroH2A1.1 plays a role in cancer development and metastasis. To determine the underlying molecular mechanisms, we mapped the genome-wide localization of endogenous macroH2A1.1 in the human breast cancer cell line MDA-MB-231. We demonstrate that macroH2A1.1 specifically binds to active promoters and enhancers in addition to facultative heterochromatin. Selective knock down of macroH2A1.1 deregulates the expression of hundreds of highly active genes. Depending on the chromatin landscape, macroH2A1.1 acts through two distinct molecular mechanisms. The first mitigates excessive transcription by binding over domains including the promoter and the gene body. The second stimulates expression of RNA polymerase II (Pol II)-paused genes, including genes regulating mammary tumor cell migration. In contrast to the first mechanism, macroH2A1.1 specifically associates with the transcription start site of Pol II-paused genes. These processes occur in a predefined local 3D genome landscape, but do not require rewiring of enhancer-promoter contacts. We thus propose that macroH2A1.1 serves as a transcriptional modulator with a potential role in assisting the conversion of promoter-locked Pol II into a productive, elongating Pol II. Summary: Histone variant macroH2A1.1 binding to the TSS of genes dependent on Pol II pausing stimulates transcription by promoting Pol II release in a human triple-negative breast cancer cell model.
Collapse
Affiliation(s)
- Ludmila Recoules
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Alexandre Heurteau
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Flavien Raynal
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Nezih Karasu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); CNRS, UMR7104; INSERM U1258; University of Strasbourg; Illkirch, France
| | - Fatima Moutahir
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Fabienne Bejjani
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, F-34293 3# Equipe Labellisée Ligue Nationale contre le Cancer, France
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, F-34293 3# Equipe Labellisée Ligue Nationale contre le Cancer, France
| | - Olivier Cuvier
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Thomas Sexton
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); CNRS, UMR7104; INSERM U1258; University of Strasbourg; Illkirch, France
| | - Anne-Claire Lavigne
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Kerstin Bystricky
- Molecular, Cellular and Developmental biology unit (MCD), UMR5077, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France.,Institut Universitaire de France (IUF), France
| |
Collapse
|
40
|
Functional annotation of breast cancer risk loci: current progress and future directions. Br J Cancer 2022; 126:981-993. [PMID: 34741135 PMCID: PMC8980003 DOI: 10.1038/s41416-021-01612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022] Open
Abstract
Genome-wide association studies coupled with large-scale replication and fine-scale mapping studies have identified more than 150 genomic regions that are associated with breast cancer risk. Here, we review efforts to translate these findings into a greater understanding of disease mechanism. Our review comes in the context of a recently published fine-scale mapping analysis of these regions, which reported 352 independent signals and a total of 13,367 credible causal variants. The vast majority of credible causal variants map to noncoding DNA, implicating regulation of gene expression as the mechanism by which functional variants influence risk. Accordingly, we review methods for defining candidate-regulatory sequences, methods for identifying putative target genes and methods for linking candidate-regulatory sequences to putative target genes. We provide a summary of available data resources and identify gaps in these resources. We conclude that while much work has been done, there is still much to do. There are, however, grounds for optimism; combining statistical data from fine-scale mapping with functional data that are more representative of the normal "at risk" breast, generated using new technologies, should lead to a greater understanding of the mechanisms that influence an individual woman's risk of breast cancer.
Collapse
|
41
|
Ankill J, Aure MR, Bjørklund S, Langberg S, Kristensen VN, Vitelli V, Tekpli X, Fleischer T. Epigenetic alterations at distal enhancers are linked to proliferation in human breast cancer. NAR Cancer 2022; 4:zcac008. [PMID: 35350772 PMCID: PMC8947789 DOI: 10.1093/narcan/zcac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Aberrant DNA methylation is an early event in breast carcinogenesis and plays a critical role in regulating gene expression. Here, we perform genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis through the integration of DNA methylation and gene expression to identify disease-driving pathways under epigenetic control. By grouping the emQTLs using biclustering we identify associations representing important biological processes associated with breast cancer pathogenesis including regulation of proliferation and tumor-infiltrating fibroblasts. We report genome-wide loss of enhancer methylation at binding sites of proliferation-driving transcription factors including CEBP-β, FOSL1, and FOSL2 with concomitant high expression of proliferation-related genes in aggressive breast tumors as we confirm with scRNA-seq. The identified emQTL-CpGs and genes were found connected through chromatin loops, indicating that proliferation in breast tumors is under epigenetic regulation by DNA methylation. Interestingly, the associations between enhancer methylation and proliferation-related gene expression were also observed within known subtypes of breast cancer, suggesting a common role of epigenetic regulation of proliferation. Taken together, we show that proliferation in breast cancer is linked to loss of methylation at specific enhancers and transcription factor binding and gene activation through chromatin looping.
Collapse
Affiliation(s)
- Jørgen Ankill
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Miriam Ragle Aure
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sunniva Bjørklund
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Vessela N Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Valeria Vitelli
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
42
|
Casalino L, Talotta F, Cimmino A, Verde P. The Fra-1/AP-1 Oncoprotein: From the "Undruggable" Transcription Factor to Therapeutic Targeting. Cancers (Basel) 2022; 14:cancers14061480. [PMID: 35326630 PMCID: PMC8946526 DOI: 10.3390/cancers14061480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
The genetic and epigenetic changes affecting transcription factors, coactivators, and chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability, points to transcription factors as ideal therapeutic targets. However, given the unavailability of catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are generally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1 is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1 protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at selectively killing the Fra-1-overexpressing neoplastic cells.
Collapse
Affiliation(s)
- Laura Casalino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| | | | - Amelia Cimmino
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
| | - Pasquale Verde
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, Consiglio Nazionale dele Ricerche (CNR), 80131 Naples, Italy;
- Correspondence: (L.C.); (P.V.)
| |
Collapse
|
43
|
Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, Netto GJ, Qin ZS, Kumar S, Manne U, Creighton CJ, Varambally S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia 2022; 25:18-27. [PMID: 35078134 PMCID: PMC8788199 DOI: 10.1016/j.neo.2022.01.001] [Citation(s) in RCA: 917] [Impact Index Per Article: 458.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
Cancer genomic, transcriptomic, and proteomic profiling has generated extensive data that necessitate the development of tools for its analysis and dissemination. We developed UALCAN to provide a portal for easy exploring, analyzing, and visualizing these data, allowing users to integrate the data to better understand the gene, proteins, and pathways perturbed in cancer and make discoveries. UALCAN web portal enables analyzing and delivering cancer transcriptome, proteomics, and patient survival data to the cancer research community. With data obtained from The Cancer Genome Atlas (TCGA) project, UALCAN has enabled users to evaluate protein-coding gene expression and its impact on patient survival across 33 types of cancers. The web portal has been used extensively since its release and received immense popularity, underlined by its usage from cancer researchers in more than 100 countries. The present manuscript highlights the task we have undertaken and updates that we have made to UALCAN since its release in 2017. Extensive user feedback motivated us to expand the resource by including data on a) microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and promoter DNA methylation from TCGA and b) mass spectrometry-based proteomics from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). UALCAN provides easy access to pre-computed, tumor subgroup-based gene/protein expression, promoter DNA methylation status, and Kaplan-Meier survival analyses. It also provides new visualization features to comprehend and integrate observations and aids in generating hypotheses for testing. UALCAN is accessible at http://ualcan.path.uab.edu
Collapse
Affiliation(s)
| | | | - Praveen Kumar Korla
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Henalben Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahmedur Rahman Shovon
- Department of Computer science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Sidharth Kumar
- Department of Computer science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Wang Y, Xie S, Armendariz D, Hon GC. Computational identification of clonal cells in single-cell CRISPR screens. BMC Genomics 2022; 23:135. [PMID: 35168568 PMCID: PMC8845350 DOI: 10.1186/s12864-022-08359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Single-cell CRISPR screens are powerful tools to understand genome function by linking genetic perturbations to transcriptome-wide phenotypes. However, since few cells can be affordably sequenced in these screens, biased sampling of cells could affect data interpretation. One potential source of biased sampling is clonal cell expansion. RESULTS Here, we identify clonal cells in single cell screens using multiplexed sgRNAs as barcodes. We find that the cells in each clone share transcriptional similarities and bear segmental copy number changes. These analyses suggest that clones are genetically distinct. Finally, we show that the transcriptional similarities of clonally expanded cells contribute to false positives in single-cell CRISPR screens. CONCLUSIONS Experimental conditions that reduce clonal expansion or computational filtering of clonal cells will improve the reliability of single-cell CRISPR screens.
Collapse
Affiliation(s)
- Yihan Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shiqi Xie
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel Armendariz
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Bioinformatics, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
45
|
Palacio M, Taatjes DJ. Merging Established Mechanisms with New Insights: Condensates, Hubs, and the Regulation of RNA Polymerase II Transcription. J Mol Biol 2022; 434:167216. [PMID: 34474085 PMCID: PMC8748285 DOI: 10.1016/j.jmb.2021.167216] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/17/2023]
Abstract
The regulation of RNA polymerase II (pol II) transcription requires a complex and context-specific array of proteins and protein complexes, as well as nucleic acids and metabolites. Every major physiological process requires coordinated transcription of specific sets of genes at the appropriate time, and a breakdown in this regulation is a hallmark of human disease. A proliferation of recent studies has revealed that many general transcription components, including sequence-specific, DNA-binding transcription factors, Mediator, and pol II itself, are capable of liquid-liquid phase separation, to form condensates that partition these factors away from the bulk aqueous phase. These findings hold great promise for next-level understanding of pol II transcription; however, many mechanistic aspects align with more conventional models, and whether phase separation per se regulates pol II activity in cells remains controversial. In this review, we describe the conventional and condensate-dependent models, and why their similarities and differences are important. We also compare and contrast these models in the context of genome organization and pol II transcription (initiation, elongation, and termination), and highlight the central role of RNA in these processes. Finally, we discuss mutations that disrupt normal partitioning of transcription factors, and how this may contribute to disease.
Collapse
Affiliation(s)
- Megan Palacio
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Dylan J. Taatjes
- Dept. of Biochemistry, University of Colorado, Boulder, CO, USA,corresponding author;
| |
Collapse
|
46
|
Lineage-specific silencing of PSAT1 induces serine auxotrophy and sensitivity to dietary serine starvation in luminal breast tumors. Cell Rep 2022; 38:110278. [PMID: 35045283 PMCID: PMC8845302 DOI: 10.1016/j.celrep.2021.110278] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/16/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
A major challenge of targeting metabolism for cancer therapy is pathway redundancy, in which multiple sources of critical nutrients can limit the effectiveness of some metabolism-targeted therapies. Here, we analyze lineage-dependent gene expression in human breast tumors to identify differences in metabolic gene expression that may limit pathway redundancy and create therapeutic vulnerabilities. We find that the serine synthesis pathway gene PSAT1 is the most depleted metabolic gene in luminal breast tumors relative to basal tumors. Low PSAT1 prevents de novo serine biosynthesis and sensitizes luminal breast cancer cells to serine and glycine starvation in vitro and in vivo. This PSAT1 expression disparity preexists in the putative cells of origin of basal and luminal tumors and is due to luminal-specific hypermethylation of the PSAT1 gene. Our data demonstrate that luminal breast tumors are auxotrophic for serine and may be uniquely sensitive to therapies targeting serine availability. Many cancer types can synthesize serine de novo, which limits the effectiveness of dietary serine starvation. Choi et al. demonstrate that luminal breast tumors are auxotrophic for serine due to lineage-specific hypermethylation of the PSAT1 gene. This serine auxotrophy may be a targetable vulnerability of luminal breast tumors.
Collapse
|
47
|
Hu J, Lai Y, Huang H, Ramakrishnan S, Pan Y, Ma VWS, Cheuk W, So GYK, He Q, Geoffrey Lau C, Zhang L, Cho WCS, Chan KM, Wang X, Rebecca Chin Y. TCOF1 upregulation in triple-negative breast cancer promotes stemness and tumour growth and correlates with poor prognosis. Br J Cancer 2022; 126:57-71. [PMID: 34718356 PMCID: PMC8727631 DOI: 10.1038/s41416-021-01596-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor prognosis. By performing multiomic profiling, we recently uncovered super-enhancer heterogeneity between breast cancer subtypes. Our data also revealed TCOF1 as a putative TNBC-specific super-enhancer-regulated gene. TCOF1 plays a critical role in craniofacial development but its function in cancer remains unclear. METHODS Overall survival and multivariant Cox regression analyses were conducted using the METABRIC data set. The effect of TCOF1 knockout on TNBC growth and stemness was evaluated by in vitro and in vivo assays. RNA-seq and rescue experiments were performed to explore the underlying mechanisms. RESULTS TCOF1 is frequently upregulated in TNBC and its elevated expression correlates with shorter overall survival. TCOF1 depletion significantly inhibits the growth and stemness of basal-like TNBC, but not of mesenchymal-like cells, highlighting the distinct molecular dependency in different TNBC subgroups. RNA-seq uncovers several stem cell molecules regulated by TCOF1. We further demonstrate that KIT is a downstream effector of TCOF1 in mediating TNBC stemness. TCOF1 expression in TNBC is regulated by the predicted super-enhancer. CONCLUSIONS TCOF1 depletion potently attenuates the growth and stemness of basal-like TNBC. Expression of TCOF1 may serve as a TNBC prognostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Jianyang Hu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Yuni Lai
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Hao Huang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Saravanan Ramakrishnan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Yilin Pan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Victor W S Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Grace Y K So
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Liang Zhang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Kui Ming Chan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xin Wang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Y Rebecca Chin
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
48
|
Recurrent Superenhancer of the Oncogene POU5F1B in Colorectal Cancers. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5405060. [PMID: 34934770 PMCID: PMC8684575 DOI: 10.1155/2021/5405060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Superenhancer usages in single cancer form such as colorectal cancer (CRC) may provide novel efficient targeting candidates. It is unclear whether CRC contains recurrent superenhancers that confer a predisposition to malignancy. We investigated the superenhancer profile of CRC cell line HCT116 and compared it to that of a healthy sigmoid colon. We found that HCT116 had lost most of the normal colon superenhancer activities but gained a new set of tumor-favoring superenhancers that facilitate tumor proliferation, growth signalling, and hypoxia resistance. Inhibiting the superenhancers by JQ-1 treatment had significantly decreased the colony formation capability of HCT116. Then, by comparing the superenhancer genes and robust CRC upregulated genes, we identified a superenhancer associated with a common CRC upregulated oncogene, POU5f1B. POU5f1B overexpression is related to the worse outcome in CRCs. Via performing ChIP-PCR in 35 clinical samples and investigating CRC anti-H3K27ac ChiP-seq public dataset consisting of 36 samples, we further identified that the superenhancer of oncogene POU5F1B is recurrently activated in CRCs, taking 62 and 72 per cent, respectively. Moreover, JQ-1 treatment successfully inhibited the POU5F1B expression in 5 out of 6 POU5F1B superenhancer-positive samples. Therefore, we concluded that the superenhancer activation of POU5F1B contributes partially to its high expression in CRCs, in addition to the well-known gene amplification aetiology.
Collapse
|
49
|
Carrera S, O'Donnell A, Li Y, Nowicki-Osuch K, Yang SH, Baker SM, Spiller D, Sharrocks AD. Complexities in the role of acetylation dynamics in modifying inducible gene activation parameters. Nucleic Acids Res 2021; 49:12744-12756. [PMID: 34850951 PMCID: PMC8682737 DOI: 10.1093/nar/gkab1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022] Open
Abstract
High levels of histone acetylation are associated with the regulatory elements of active genes, suggesting a link between acetylation and gene activation. We revisited this model, in the context of EGF-inducible gene expression and found that rather than a simple unifying model, there are two broad classes of genes; one in which high lysine acetylation activity is required for efficient gene activation, and a second group where the opposite occurs and high acetylation activity is inhibitory. We examined the latter class in more detail using EGR2 as a model gene and found that lysine acetylation levels are critical for several activation parameters, including the timing of expression onset, and overall amplitudes of the transcriptional response. In contrast, DUSP1 responds in the canonical manner and its transcriptional activity is promoted by acetylation. Single cell approaches demonstrate heterogenous activation kinetics of a given gene in response to EGF stimulation. Acetylation levels modify these heterogenous patterns and influence both allele activation frequencies and overall expression profile parameters. Our data therefore point to a complex interplay between acetylation equilibria and target gene induction where acetylation level thresholds are an important determinant of transcriptional induction dynamics that are sensed in a gene-specific manner.
Collapse
Affiliation(s)
- Samantha Carrera
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Amanda O'Donnell
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Yaoyong Li
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karol Nowicki-Osuch
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Shen-Hsi Yang
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
50
|
Munne PM, Martikainen L, Räty I, Bertula K, Nonappa, Ruuska J, Ala-Hongisto H, Peura A, Hollmann B, Euro L, Yavuz K, Patrikainen L, Salmela M, Pokki J, Kivento M, Väänänen J, Suomi T, Nevalaita L, Mutka M, Kovanen P, Leidenius M, Meretoja T, Hukkinen K, Monni O, Pouwels J, Sahu B, Mattson J, Joensuu H, Heikkilä P, Elo LL, Metcalfe C, Junttila MR, Ikkala O, Klefström J. Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer. Nat Commun 2021; 12:6967. [PMID: 34845227 PMCID: PMC8630031 DOI: 10.1038/s41467-021-27220-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is now globally the most frequent cancer and leading cause of women's death. Two thirds of breast cancers express the luminal estrogen receptor-positive (ERα + ) phenotype that is initially responsive to antihormonal therapies, but drug resistance emerges. A major barrier to the understanding of the ERα-pathway biology and therapeutic discoveries is the restricted repertoire of luminal ERα + breast cancer models. The ERα + phenotype is not stable in cultured cells for reasons not fully understood. We examine 400 patient-derived breast epithelial and breast cancer explant cultures (PDECs) grown in various three-dimensional matrix scaffolds, finding that ERα is primarily regulated by the matrix stiffness. Matrix stiffness upregulates the ERα signaling via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation. The finding that the matrix stiffness is a central cue to the ERα phenotype reveals a mechanobiological component in breast tissue hormonal signaling and enables the development of novel therapeutic interventions. Subject terms: ER-positive (ER + ), breast cancer, ex vivo model, preclinical model, PDEC, stiffness, p38 SAPK.
Collapse
Affiliation(s)
- Pauliina M Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Lahja Martikainen
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
| | - Iiris Räty
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Kia Bertula
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
| | - Nonappa
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Janika Ruuska
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Hanna Ala-Hongisto
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Aino Peura
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Babette Hollmann
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Lilya Euro
- Research Program of Stem Cells and Metabolism, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Kerim Yavuz
- Applied Tumor Genomics Research Program, Enhancer Biology Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Linda Patrikainen
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Maria Salmela
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Mikko Kivento
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Liina Nevalaita
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Minna Mutka
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Panu Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Marjut Leidenius
- Breast Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Tuomo Meretoja
- Breast Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Katja Hukkinen
- Department of Mammography, Helsinki University Central Hospital, Helsinki, Finland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Research Program, Enhancer Biology Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Mattson
- Department of Oncology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Ciara Metcalfe
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Olli Ikkala
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|