1
|
Valenza G, Eisenberger D, Esse J, Held J, Lehner-Reindl V, Plaumann PL, Ziegler T, Knauer M, Bogdan C, Dudler P. High prevalence of the recently identified clonal lineage ST1299/CT3109 vanA among vancomycin-resistant Enterococcus faecium strains isolated from municipal wastewater. mSphere 2024; 9:e0039624. [PMID: 39189779 PMCID: PMC11423563 DOI: 10.1128/msphere.00396-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Previously, we demonstrated that the majority of vancomycin-resistant Enterococcus faecium (VREfm) strains from in-patients of the University Hospital Erlangen, Germany, belonged to only three clonal lineages, namely ST117/CT71 vanB and two novel ST1299 vanA lineages classified as CT3109 and CT1903. The goal of the current study was (i) to investigate whether VREfm is also detectable in wastewater of the city of Erlangen, (ii) to identify their molecular features, and (iii) to clarify whether VREfm could arise from the community of the city of Erlangen or can be (directly) connected to nosocomial infections in the hospital setting. From April to May 2023, a total of 244 VREfm strains from raw wastewater of the city of Erlangen were analyzed by core genome multilocus sequence typing (cgMLST). Moreover, 20 of them were further investigated for single nucleotide polymorphisms (SNPs). The molecular characterization of the wastewater VREfm strains revealed a high prevalence (27.9%) of the recently identified clonal lineage ST1299/CT3109 vanA, which is mainly characterized by the presence of the tetracycline-resistance determinant tet(M) and the virulence genes pilA and prpA. The SNPs analysis revealed the presence of two major clusters, namely cluster I (≤65 SNPs), which included well-known hospital-adapted vanB clonal lineages such as ST117/CT71 and ST80/CT1065 and cluster II (≤70 SNPs), which were mainly characterized by the lineage ST1299/CT3109 vanA. Based on the concomitant resistance to vancomycin and tetracycline, we propose that ST1299/CT3109 vanA primarily originated and spread outside of hospital settings.IMPORTANCEThis study provides a detailed genomic analysis of vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from municipal wastewater with a particular focus on clonal lineages, antimicrobial resistance, and the presence of virulence genes. The high wastewater prevalence of the recently identified clonal lineage ST1299/CT3109 vanA, which has been previously detected in hospitals, suggests an enormous potential for future spread in Germany.
Collapse
Affiliation(s)
- Giuseppe Valenza
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - David Eisenberger
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Jan Esse
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Held
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Verena Lehner-Reindl
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Peter-Louis Plaumann
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Tobias Ziegler
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Max Knauer
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profilzentrum Immunmedizin, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Dudler
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, Erlangen, Germany
| |
Collapse
|
2
|
Kavanagh NL, Kinnevey PM, Egan SA, McManus BA, O'Connell B, Brennan GI, Coleman DC. Protracted transmission and persistence of ST80 vancomycin-resistant Enterococcus faecium clonal complex types CT2933, CT2932 and CT1916 in a large Irish hospital: a 39-month whole-genome sequencing study. J Hosp Infect 2024; 151:11-20. [PMID: 38944282 DOI: 10.1016/j.jhin.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Vancomycin-resistant Enterococcus faecium (VREfm) are significant nosocomial pathogens. Sequence type (ST) 80 vanA-encoding VREfm predominate in Irish hospitals, but their transmission is poorly understood. AIMS To investigate transmission and persistence of predominant complex type (CT) VREfm in two wards of an Irish hospital (H1) using whole-genome sequencing, and their intra- and inter-hospital dissemination. METHODS Rectal screening (N = 330, September 2019 to December 2022) and environmental (N = 48, November 2022 to December 2022) E. faecium were investigated. Isolate relatedness was assessed by core-genome multi-locus sequence typing (cgMLST) and core-genome single nucleotide polymorphism (cgSNP) analysis. Likely transmission chains were identified using SeqTrack (https://graphsnp.fordelab.com/graphsnp) using cgSNP data and recovery location. Well-characterized E. faecium (N = 908) from seven Irish hospitals including H1 (June 2017 to July 2022) were also investigated. FINDINGS Conventional MLST assigned isolates to nine STs (ST80, 82%). cgMLST identified three predominant ST80 CTs (CT2933, CT2932 and CT1916) (55% of isolates) of related isolates (≤20 allelic differences). cgSNP analysis differentiated these CTs into multiple distinct closely related genomic clusters (≤10 cgSNPs). Parisimonious network construction identified 55 likely inter- and intra-ward transmissions with epidemiological support between patients ≤30 days involving 73 isolates (≤10 cgSNPs) from seven genomic clusters. Numerous other likely transmissions over longer time periods without evident epidemiological links were identified, suggesting persistence and unidentified reservoirs contribute to dissemination. The three CTs predominated among E. faecium (N = 1286) in seven hospitals, highlighting inter-hospital spread without known epidemiological links. CONCLUSION This study revealed the long-term intra- and inter-hospital dominance of three major CT ST80 VREfm lineages, widespread transmission and persistence, implicating unidentified reservoirs.
Collapse
Affiliation(s)
- N L Kavanagh
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - P M Kinnevey
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - S A Egan
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - B A McManus
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - B O'Connell
- Department of Clinical Microbiology, St James's Hospital, Dublin, Ireland; National MRSA Reference Laboratory, St James's Hospital, Dublin, Ireland
| | - G I Brennan
- Department of Clinical Microbiology, St James's Hospital, Dublin, Ireland; National MRSA Reference Laboratory, St James's Hospital, Dublin, Ireland
| | - D C Coleman
- Microbiology Research Unit, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Hourigan D, Stefanovic E, Hill C, Ross RP. Promiscuous, persistent and problematic: insights into current enterococcal genomics to guide therapeutic strategy. BMC Microbiol 2024; 24:103. [PMID: 38539119 PMCID: PMC10976773 DOI: 10.1186/s12866-024-03243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024] Open
Abstract
Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.
Collapse
Affiliation(s)
- David Hourigan
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - Ewelina Stefanovic
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, Biosciences Institute, Biosciences Research Institute, College Rd, University College, Cork, Ireland.
- School of Microbiology, University College Cork, College Rd, University College, Cork, Ireland.
- Teagasc Food Research Centre, Moorepark, Moorepark West, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
4
|
Velazquez-Meza ME, Galarde-López M, Cornejo-Juárez P, Carrillo-Quiroz BA, Velázquez-Acosta C, Bobadilla-del-Valle M, Ponce-de-León A, Alpuche-Aranda CM. Multidrug-Resistant Staphylococcus sp. and Enterococcus sp. in Municipal and Hospital Wastewater: A Longitudinal Study. Microorganisms 2024; 12:645. [PMID: 38674590 PMCID: PMC11051902 DOI: 10.3390/microorganisms12040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of the study was to detect multidrug-resistant Staphylococcus sp. and Enterococcus sp. isolates in municipal and hospital wastewater and to determine their elimination or persistence after wastewater treatment. Between August 2021 and September 2022, raw and treated wastewater samples were collected at two hospital and two community wastewater treatment plants (WWTPs). In each season of the year, two treated and two raw wastewater samples were collected in duplicate at each of the WWTPs studied. Screening and presumptive identification of staphylococci and enterococci was performed using chromoagars, and identification was performed with the Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS®). Antimicrobial susceptibility was performed using VITEK 2® automated system. There were 56 wastewater samples obtained during the study period. A total of 182 Staphylococcus sp. and 248 Enterococcus sp. were identified. The highest frequency of Staphylococcus sp. isolation was in spring and summer (n = 129, 70.8%), and for Enterococcus sp. it was in autumn and winter (n = 143, 57.7%). Sixteen isolates of Staphylococcus sp. and sixty-three of Enterococcus sp. persisted during WWTP treatments. Thirteen species of staphylococci and seven species of enterococci were identified. Thirty-one isolates of Staphylococcus sp. and ninety-four of Enterococcus sp. were multidrug-resistant. Resistance to vancomycin (1.1%), linezolid (2.7%), and daptomycin (8.2%/10.9%%), and a lower susceptibility to tigecycline (2.7%), was observed. This study evidences the presence of Staphylococcus sp. and Enterococcus sp. resistant to antibiotics of last choice of clinical treatment, in community and hospital wastewater and their ability to survive WWTP treatment systems.
Collapse
Affiliation(s)
- Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Miguel Galarde-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Patricia Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Berta Alicia Carrillo-Quiroz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Consuelo Velázquez-Acosta
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Miriam Bobadilla-del-Valle
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-León
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Celia Mercedes Alpuche-Aranda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| |
Collapse
|
5
|
Coll F, Gouliouris T, Blane B, Yeats CA, Raven KE, Ludden C, Khokhar FA, Wilson HJ, Roberts LW, Harrison EM, Horner CS, Le TH, Nguyen TH, Nguyen VT, Brown NM, Holmes MA, Parkhill J, Estee Török M, Peacock SJ. Antibiotic resistance determination using Enterococcus faecium whole-genome sequences: a diagnostic accuracy study using genotypic and phenotypic data. THE LANCET. MICROBE 2024; 5:e151-e163. [PMID: 38219758 DOI: 10.1016/s2666-5247(23)00297-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND DNA sequencing could become an alternative to in vitro antibiotic susceptibility testing (AST) methods for determining antibiotic resistance by detecting genetic determinants associated with decreased antibiotic susceptibility. Here, we aimed to assess and improve the accuracy of antibiotic resistance determination from Enterococcus faecium genomes for diagnosis and surveillance purposes. METHODS In this retrospective diagnostic accuracy study, we first conducted a literature search in PubMed on Jan 14, 2021, to compile a catalogue of genes and mutations predictive of antibiotic resistance in E faecium. We then evaluated the diagnostic accuracy of this database to determine susceptibility to 12 different, clinically relevant antibiotics using a diverse population of 4382 E faecium isolates with available whole-genome sequences and in vitro culture-based AST phenotypes. Isolates were obtained from various sources in 11 countries worldwide between 2000 and 2018. We included isolates tested with broth microdilution, Vitek 2, and disc diffusion, and antibiotics with at least 50 susceptible and 50 resistant isolates. Phenotypic resistance was derived from raw minimum inhibitory concentrations and measured inhibition diameters, and harmonised primarily using the breakpoints set by the European Committee on Antimicrobial Susceptibility Testing. A bioinformatics pipeline was developed to process raw sequencing reads, identify antibiotic resistance genetic determinants, and report genotypic resistance. We used our curated database, as well as ResFinder, AMRFinderPlus, and LRE-Finder, to assess the accuracy of genotypic predictions against phenotypic resistance. FINDINGS We curated a catalogue of 228 genetic markers involved in resistance to 12 antibiotics in E faecium. Very accurate genotypic predictions were obtained for ampicillin (sensitivity 99·7% [95% CI 99·5-99·9] and specificity 97·9% [95·8-99·0]), ciprofloxacin (98·0% [96·4-98·9] and 98·8% [95·9-99·7]), vancomycin (98·8% [98·3-99·2] and 98·8% [98·0-99·3]), and linezolid resistance (after re-testing false negatives: 100·0% [90·8-100·0] and 98·3% [97·8-98·7]). High sensitivity was obtained for tetracycline (99·5% [99·1-99·7]), teicoplanin (98·9% [98·4-99·3]), and high-level resistance to aminoglycosides (97·7% [96·6-98·4] for streptomycin and 96·8% [95·8-97·5] for gentamicin), although at lower specificity (60-90%). Sensitivity was expectedly low for daptomycin (73·6% [65·1-80·6]) and tigecycline (38·3% [27·1-51·0]), for which the genetic basis of resistance is not fully characterised. Compared with other antibiotic resistance databases and bioinformatic tools, our curated database was similarly accurate at detecting resistance to ciprofloxacin and linezolid and high-level resistance to streptomycin and gentamicin, but had better sensitivity for detecting resistance to ampicillin, tigecycline, daptomycin, and quinupristin-dalfopristin, and better specificity for ampicillin, vancomycin, teicoplanin, and tetracycline resistance. In a validation dataset of 382 isolates, similar or improved diagnostic accuracies were also achieved. INTERPRETATION To our knowledge, this work represents the largest published evaluation to date of the accuracy of antibiotic susceptibility predictions from E faecium genomes. The results and resources will facilitate the adoption of whole-genome sequencing as a tool for the diagnosis and surveillance of antimicrobial resistance in E faecium. A complete characterisation of the genetic basis of resistance to last-line antibiotics, and the mechanisms mediating antibiotic resistance silencing, are needed to close the remaining sensitivity and specificity gaps in genotypic predictions. FUNDING Wellcome Trust, UK Department of Health, British Society for Antimicrobial Chemotherapy, Academy of Medical Sciences and the Health Foundation, Medical Research Council Newton Fund, Vietnamese Ministry of Science and Technology, and European Society of Clinical Microbiology and Infectious Disease.
Collapse
Affiliation(s)
- Francesc Coll
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
| | - Theodore Gouliouris
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Corin A Yeats
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathy E Raven
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Fahad A Khokhar
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Hayley J Wilson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Leah W Roberts
- Department of Medicine, University of Cambridge, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Ewan M Harrison
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Thi Hoi Le
- National Hospital for Tropical Diseases, Hanoi, Viet Nam; Hanoi Medical University, Hanoi, Viet Nam
| | - Thi Hoa Nguyen
- National Hospital for Tropical Diseases, Hanoi, Viet Nam; Department of Microbiology and National Tuberculosis Reference Laboratory, National Lung Hospital, Hanoi, Viet Nam
| | - Vu Trung Nguyen
- National Hospital for Tropical Diseases, Hanoi, Viet Nam; Hanoi Medical University, Hanoi, Viet Nam
| | - Nicholas M Brown
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; British Society for Antimicrobial Chemotherapy, Birmingham, UK; UK Health Security Agency, Cambridge, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Mili Estee Török
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sharon J Peacock
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Gholipour S, Shamsizadeh Z, Halabowski D, Gwenzi W, Nikaeen M. Combating antibiotic resistance using wastewater surveillance: Significance, applications, challenges, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168056. [PMID: 37914125 DOI: 10.1016/j.scitotenv.2023.168056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
The global increase of antibiotic resistance (AR) and resistant infections call for effective surveillance methods for understanding and mitigating (re)-emerging public health risks. Wastewater surveillance (WS) of antibiotic resistance is an emerging, but currently under-utilized decision-support tool in public health systems. Recent years have witnessed an increase in evidence linking antibiotic resistance in wastewaters to that of the community. To date, very few comprehensive reviews exist on the application of WS to understand AR and resistant infections in population. Current and emerging AR detection methods, and their merits and limitations are discussed. Wastewater surveillance has several merits relative to individual testing, including; (1) low per capita testing cost, (2) high spatial coverage, (3) low requirement for diagnostic equipment, and (4) detection of health threats ahead of real outbreaks. The applications of WS as an early warning system and decision support tool to understand and mitigate AR are discussed. Wastewater surveillance could be a tool of choice in low-income settings lacking resources and diagnostic facilities for individual testing. To demonstrate the utility of WS, empirical evidence from field case studies is presented. However, constraints still exist, including; (1) lack of standardized protocols, (2) the clinical utility and sensitivity of WS-based data, (3) uncertainties in relating WS data to pathogenic and virulent bacteria, and (4) whether or not AR in stools and ultimately wastewater represent the complete human resistome. Finally, further prospects are presented, include knowledge gaps on; (1) development of low-cost biosensors for AR, (2) development of WS protocols (sampling, processing, interpretation), (3) further pilot scale studies to understand the opportunities and limits of WS, and (4) development of computer-based analytical tools to facilitate rapid data collection, visualization and interpretation. Therefore, the present paper discusses the principles, opportunities, and constraints of wastewater surveillance applications to understand AR and safeguard public health.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Shamsizadeh
- Department of Environmental Health Engineering, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Universität Kassel, Fachbereich Ökologische Agrarwissenschaften Fachgebiet Grünlandwissenschaft und Nachwachsende Rohstoffe, Steinstr. 19, 37249 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
7
|
Geissler M, Schröttner P, Oertel R, Dumke R. Enterococci, Van Gene-Carrying Enterococci, and Vancomycin Concentrations in the Influent of a Wastewater Treatment Plant in Southeast Germany. Microorganisms 2024; 12:149. [PMID: 38257976 PMCID: PMC10819932 DOI: 10.3390/microorganisms12010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vancomycin-resistant (VR) Enterococcus spp. can be detected in high concentrations in wastewaters and pose a risk to public health. During a one-year study (September 2022-August 2023), 24 h composite raw wastewater samples (n = 192) of a municipal wastewater treatment plant were investigated for cultivable enterococci. After growth on Slanetz-Bartley agar (SBA), a mean concentration of 29,736 ± 9919 cfu/mL was calculated. Using MALDI-TOF MS to characterize randomly picked colonies (n = 576), the most common species were found to be Enterococcus faecium (72.6%), E. hirae (13.7%), and E. faecalis (8.0%). Parallel incubation of wastewater samples on SBA and VRESelect agar resulted in a mean rate of VR enterococci of 2.0 ± 1.5%. All the tested strains grown on the VRESelect agar (n = 172) were E. faecium and carried the vanA (54.6%) or vanB gene (45.4%) with limited sequence differences. In susceptibility experiments, these isolates showed a high-level resistance to vancomycin (>256 µg/mL). Concentration of vancomycin was determined in 93.7% of 112 wastewater samples (mean: 123.1 ± 64.0 ng/L) and varied between below 100 ng/L (the detection limit) and 246.6 ng/L. A correlation between the concentration of vancomycin and the rate of VR strains among the total enterococci could not be found. The combination of incubation of samples on SBA and a commercial vancomycin-containing agar applied in clinical microbiology with a multiplex PCR for detection of van genes is an easy-to-use tool to quantify and characterize VR Enterococcus spp. in water samples.
Collapse
Affiliation(s)
- Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
| | - Percy Schröttner
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.G.)
| |
Collapse
|
8
|
Shan X, Liu C, Song L, Huan H, Chen H. Risk characteristics of resistome coalescence in irrigated soils and effect of natural storage of irrigation materials on risk mitigation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122575. [PMID: 37742860 DOI: 10.1016/j.envpol.2023.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
Irrigation and fertilization are the routinely agricultural practices but also cause resistome coalescence, by which the entire microbiomes from irrigation materials invade soil microbial community, to transfer antibiotic resistance genes (ARGs) in the coalesced soils. Although studies have reported the effect of irrigation or fertilization on the prevalence and spread of ARGs in soils, risk characteristics of resistome coalescence in irrigation system remain to be demonstrated and few has shown whether natural storage of irrigation materials will reduce resistance risks. To fill the gaps, two microscopic experiments were conducted for deeply exploring resistance risks in the soils irrigated with wastewater and manure fertilizer from a perspective of community coalescence by metagenomic analysis, and to reveal the effect of natural storage of irrigation materials on the reduction of resistance risks in the coalesced soils. Results showed irrigation and coalescence significantly increased the abundance and diversity of ARGs in the soils, and introduced some emerging resistance genes into the coalesced community, including mcr-type, tetX, qacB, and an array of genes conferring resistance to carbapenem. Procrustes analysis demonstrated microbial community was significantly correlated with the ARGs in coalesced soils, and variance partitioning analysis quantified its dominant role on shaping resistome profile in the environment. Besides ARGs, abundant and diverse mobile genetic elements (MGEs) were also identified in the coalesced soils and co-existed on the ARG-carrying contigs, implying potential transfer risk of ARGs in the irrigation system. Further, the analysis of metagenome-assembled genomes (MAGs) confirmed the risk by recovering 358 ARGs-carrying MAGs and identifying the resistant bacteria that co-carried multiple ARGs and MGEs. As expected, the natural storage of irrigation water and manure fertilizer reduced about 27%-54% of ARGs, MGEs and virulence factors in the coalesced soils, thus caused the soils to move towards lower resistance risks to a certain extent.
Collapse
Affiliation(s)
- Xin Shan
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Chang Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Liuting Song
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Huan Huan
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
9
|
Jannati E, Khademi F, Manouchehrifar M, Maleki D, Amirmozaffari N, Sadat Nikbin V, Arzanlou M. Antibiotic resistance and virulence potentials of E. faecalis and E. faecium in hospital wastewater: a case study in Ardabil, Iran. JOURNAL OF WATER AND HEALTH 2023; 21:1277-1290. [PMID: 37756195 PMCID: wh_2023_147 DOI: 10.2166/wh.2023.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Hospital wastewater can contaminate the environment with antibiotic-resistant and virulent bacteria. We analyzed wastewater samples from four hospitals in Ardabil province, Iran for Enterococcus faecium and Enterococcus faecalis using culture and molecular methods. We also performed antimicrobial susceptibility testing and polymerase chain reaction testing for resistance and virulence genes. Out of 141 enterococci isolates, 68.8% were E. faecium and 23.4% were E. faecalis. Ciprofloxacin and rifampicin showed the highest level of resistance against E. faecalis and E. faecium isolates at 65%. High-level gentamicin resistance (HLGR), high-level streptomycin resistance (HLSR), ampicillin, and vancomycin resistance were observed in 25, 5, 10, and 5.15% of E. faecium, and 15, 6, 15, and 3.03% of E. faecalis isolates, respectively. The ant(6')-Ia and ant(3')-Ia genes that were responsible for streptomycin resistance were observed in HLSR isolates and aph(3')-IIIa and aac(6') Ie-aph(2″)-Ia genes accounting for gentamicin resistance were detected in HLGR isolates. vanA was the predominant gene detected in vancomycin-resistant isolates. The majority of isolates were positive for gelE, asa1, esp, cylA, and hyl virulence genes. We found that drug-resistant and virulent E. faecalis and E. faecium isolates were prevalent in hospital wastewater. Proper treatment strategies are required to prevent their dissemination into the environment.
Collapse
Affiliation(s)
- Elham Jannati
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Microbiology, School of Sciences, Islamic Azad University, Ardabil Branch, Ardabil, Iran E-mail: ;
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Dadras Maleki
- Microbiology Laboratory, Imam Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nour Amirmozaffari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Arzanlou
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
10
|
Farias BO, Montenegro KS, Nascimento APA, Magaldi M, Gonçalves-Brito AS, Flores C, Moreira TC, Neves FPG, Bianco K, Clementino MM. First Report of a Wastewater Treatment-Adapted Enterococcus faecalis ST21 Harboring vanA Gene in Brazil. Curr Microbiol 2023; 80:313. [PMID: 37542533 DOI: 10.1007/s00284-023-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
Enterococcus faecalis has emerged as an important opportunistic pathogen due to its increasing resistance to antimicrobials, mainly to vancomycin, which leads substantial cases of therapeutic failures. Wastewater treatment plants (WWTP), in turn, are considered hotpots in the spread of antimicrobial resistance according to One Health perspective. In this study, we present the first report of a vancomycin-resistant E. faecalis strain recovered from treated effluent in Brazil. For this purpose, the whole-genome sequencing (WGS) was carried out aiming to elucidate its molecular mechanisms of antimicrobial resistance and its phylogenetic relationships amongst strains from other sources and countries. According to Multilocus Sequence Typing (MLST) analysis this strain belongs to ST21. The WGS pointed the presence of vanA operon, multiple antibiotic resistance and virulence genes, and a significant pathogenic potential for humans. The phylogenomic analysis of E. faecalis 6805 was performed with ST21 representatives from the PubMLST database, including the E. faecalis IE81 strain from clinical sample in Brazil, which had its genome sequenced in this study. Our results demonstrated a strain showing resistance to vancomycin in treated effluent. To the best of our knowledge, this is an unprecedented report of vanA-carrying E. faecalis ST21. Furthermore, it is the first description of a vanA-harboring strain of this species from environmental sample in Brazil. Our data highlight the role of WWTP in the spread of AMR, since these environments are favorable for the selection of multidrug-resistant pathogens and the treated effluents, carrying antibiotic resistance genes, are directed to receiving water bodies.
Collapse
Affiliation(s)
- Beatriz O Farias
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
| | - Kaylanne S Montenegro
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ana Paula A Nascimento
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa S Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
| | - Claudia Flores
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Thais C Moreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Felipe P G Neves
- Departamento de Microbiologia E Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N. São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil.
- COVID-19 Monitoring Network in Wastewater, São Paulo, Brazil.
| | - Maysa M Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
- COVID-19 Monitoring Network in Wastewater, São Paulo, Brazil
| |
Collapse
|
11
|
Monteiro Marques J, Coelho M, Santana AR, Pinto D, Semedo-Lemsaddek T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics (Basel) 2023; 12:1140. [PMID: 37508236 PMCID: PMC10376465 DOI: 10.3390/antibiotics12071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus spp. are commensals of the gastrointestinal tracts of humans and animals and colonize a variety of niches such as water, soil, and food. Over the last three decades, enterococci have evolved as opportunistic pathogens, being considered ESKAPE pathogens responsible for hospital-associated infections. Enterococci's ubiquitous nature, excellent adaptative capacity, and ability to acquire virulence and resistance genes make them excellent sentinel proxies for assessing the presence/spread of pathogenic and virulent clones and hazardous determinants across settings of the human-animal-environment triad, allowing for a more comprehensive analysis of the One Health continuum. This review provides an overview of enterococcal fitness and pathogenic traits; the most common clonal complexes identified in clinical, veterinary, food, and environmental sources; as well as the dissemination of pathogenic genomic traits (virulome, resistome, and mobilome) found in high-risk clones worldwide, across the One Health continuum.
Collapse
Affiliation(s)
- Joana Monteiro Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Coelho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andressa Rodrigues Santana
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniel Pinto
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
12
|
Davis BC, Keenum I, Calarco J, Liguori K, Milligan E, Pruden A, Harwood VJ. Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: A critical review of trends across studies. WATER RESEARCH X 2022; 17:100161. [PMID: 36466738 PMCID: PMC9712764 DOI: 10.1016/j.wroa.2022.100161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance is a major 21st century One Health (humans, animals, environment) challenge whose spread limits options to treat bacterial infections. There is growing interest in monitoring water environments, including surface water and wastewater, which have been identified as key recipients, pathways, and sources of antibiotic resistant bacteria (ARB). Aquatic environments also facilitate the transmission and amplification of ARB. Enterococcus spp. often carry clinically-important antibiotic resistance genes and are of interest as environmental monitoring targets. Enterococcus spp. are Gram-positive bacteria that are typically of fecal origin; however, they are also found in relevant environmental niches, with various species and strains that are opportunistic human pathogens. Although the value of environmental monitoring of antibiotic-resistant Enterococcus has been recognized by both national and international organizations, lack of procedural standardization has hindered generation of comparable data needed to implement integrated surveillance programs. Here we provide a comprehensive methodological review to assess the techniques used for the culturing and characterization of antibiotic-resistant Enterococcus across water matrices for the purpose of environmental monitoring. We analyzed 117 peer-reviewed articles from 33 countries across six continents. The goal of this review is to provide a critical analysis of (i) the various methods applied globally for isolation, confirmation, and speciation of Enterococcus isolates, (ii) the different methods for profiling antibiotic resistance among enterococci, and (iii) the current prevalence of resistance to clinically-relevant antibiotics among Enterococcus spp. isolated from various environments. Finally, we provide advice regarding a path forward for standardizing culturing of Enterococcus spp. for the purpose of antibiotic resistance monitoring in wastewater and wastewater-influenced waters within a global surveillance framework.
Collapse
Affiliation(s)
- Benjamin C. Davis
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Ishi Keenum
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Jeannette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| | - Krista Liguori
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Erin Milligan
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida
| |
Collapse
|
13
|
Furukawa T, Mekata T, Amarasiri M, Sei K. Concentration and reduction efficiency of vancomycin-resistant heterotrophic bacteria and vanA and vanB genes in each wastewater treatment unit processes. J Glob Antimicrob Resist 2022; 30:340-347. [PMID: 35830952 DOI: 10.1016/j.jgar.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES This study elucidated the distribution and fate of vancomycin (VCM)-resistant heterotrophic bacteria (HTB) and resistance genes, vanA and vanB, during each treatment unit process of a wastewater treatment plant (WWTP). METHODS Several bacterial counts as well as copy numbers of vanA and vanB genes were determined in each wastewater and sludge. In addition, HTB strains isolated from wastewater and sludge were analyzed for VCM susceptibility. Then, the fate and reduction ratios of each bacterial counts, copy numbers of vanA and vanB genes, and the existence ratio of VCM-resistant HTB strains in the wastewater treatment unit process were evaluated. RESULTS VCM-resistant HTB were detected in all wastewater and sludge samples, and their existence ratio decreased along the treatment (92.9% in influent wastewater to 39.4% in chlorinated water). Notably, most of the HTB isolated from the influent wastewater were resistant to 8.0 µg/mL of VCM, strongly suggesting that a significant amount of ARB is flowing into the WWTP from urban areas through the sewerage system. The vanA and vanB genes were also detected in all wastewater and sludge, with high copy numbers (102-104 copies/mL) even in chlorinated water samples. CONCLUSIONS The results revealed that residual VCM-resistant HTB, and resistance genes, which could not be completely removed, were ubiquitously released into the aquatic environment. Furthermore, a high existence ratio of VCM-resistant HTB and high copy numbers of resistance genes were also detected in the sludge, indicating that they are constantly circulating in the wastewater treatment system via the returned sludge.
Collapse
Affiliation(s)
- Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami, 252-0373, Japan.
| | - Tohru Mekata
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan.
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami, 252-0373, Japan.
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara-Minami, 252-0373, Japan.
| |
Collapse
|
14
|
Yu D, Ryu K, Zhi S, Otto SJG, Neumann NF. Naturalized Escherichia coli in Wastewater and the Co-evolution of Bacterial Resistance to Water Treatment and Antibiotics. Front Microbiol 2022; 13:810312. [PMID: 35707173 PMCID: PMC9189398 DOI: 10.3389/fmicb.2022.810312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/09/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance represents one of the most pressing concerns facing public health today. While the current antibiotic resistance crisis has been driven primarily by the anthropogenic overuse of antibiotics in human and animal health, recent efforts have revealed several important environmental dimensions underlying this public health issue. Antibiotic resistant (AR) microbes, AR genes, and antibiotics have all been found widespread in natural environments, reflecting the ancient origins of this phenomenon. In addition, modern societal advancements in sanitation engineering (i.e., sewage treatment) have also contributed to the dissemination of resistance, and concerningly, may also be promoting the evolution of resistance to water treatment. This is reflected in the recent characterization of naturalized wastewater strains of Escherichia coli-strains that appear to be adapted to live in wastewater (and meat packing plants). These strains carry a plethora of stress-resistance genes against common treatment processes, such as chlorination, heat, UV light, and advanced oxidation, mechanisms which potentially facilitate their survival during sewage treatment. These strains also carry an abundance of common antibiotic resistance genes, and evidence suggests that resistance to some antibiotics is linked to resistance to treatment (e.g., tetracycline resistance and chlorine resistance). As such, these naturalized E. coli populations may be co-evolving resistance against both antibiotics and water treatment. Recently, extraintestinal pathogenic strains of E. coli (ExPEC) have also been shown to exhibit phenotypic resistance to water treatment, seemingly associated with the presence of various shared genetic elements with naturalized wastewater E. coli. Consequently, some pathogenic microbes may also be evolving resistance to the two most important public health interventions for controlling infectious disease in modern society-antibiotic therapy and water treatment.
Collapse
Affiliation(s)
- Daniel Yu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Kanghee Ryu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| | - Shuai Zhi
- School of Medicine, Ningbo University, Ningbo, China
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Simon J. G. Otto
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
- Human-Environment-Animal Transdisciplinary Antimicrobial Resistance Research Group, School of Public Health, University of Alberta, Edmonton, AB, Canada
- Healthy Environments, Centre for Health Communities, School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Norman F. Neumann
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Antimicrobial Resistance – One Health Consortium, Calgary, AB, Canada
| |
Collapse
|
15
|
Chau KK, Barker L, Budgell EP, Vihta KD, Sims N, Kasprzyk-Hordern B, Harriss E, Crook DW, Read DS, Walker AS, Stoesser N. Systematic review of wastewater surveillance of antimicrobial resistance in human populations. ENVIRONMENT INTERNATIONAL 2022; 162:107171. [PMID: 35290866 PMCID: PMC8960996 DOI: 10.1016/j.envint.2022.107171] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 05/05/2023]
Abstract
OBJECTIVES We systematically reviewed studies using wastewater for AMR surveillance in human populations, to determine: (i) evidence of concordance between wastewater-human AMR prevalence estimates, and (ii) methodological approaches which optimised identifying such an association, and which could be recommended as standard. We used Lin's concordance correlation coefficient (CCC) to quantify concordance between AMR prevalence estimates in wastewater and human compartments (where CCC = 1 reflects perfect concordance), and logistic regression to identify study features (e.g. sampling methods) associated with high agreement studies (defined as >70% of within-study wastewater-human AMR prevalence comparisons within ±10%). RESULTS Of 8,867 records and 441 full-text methods reviewed, 33 studies were included. AMR prevalence data was extractable from 24 studies conducting phenotypic-only (n = 7), genotypic-only (n = 1) or combined (n = 16) AMR detection. Overall concordance of wastewater-human AMR prevalence estimates was reasonably high for both phenotypic (CCC = 0.85 [95% CI 0.8-0.89]) and genotypic approaches (CCC = 0.88 (95% CI 0.84-0.9)) despite diverse study designs, bacterial species investigated and phenotypic/genotypic targets. No significant relationships between methodological approaches and high agreement studies were identified using logistic regression; however, this was limited by inconsistent reporting of study features, significant heterogeneity in approaches and limited sample size. Based on a secondary, descriptive synthesis, studies conducting composite sampling of wastewater influent, longitudinal sampling >12 months, and time-/location-matched sampling of wastewater and human compartments generally had higher agreement. CONCLUSION Wastewater-based surveillance of AMR appears promising, with high overall concordance between wastewater and human AMR prevalence estimates in studies irrespective of heterogenous approaches. However, our review suggests future work would benefit from: time-/location-matched sampling of wastewater and human populations, composite sampling of influent, and sampling >12 months for longitudinal studies. Further research and clear and consistent reporting of study methods is required to identify optimal practice.
Collapse
Affiliation(s)
- K K Chau
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - L Barker
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - E P Budgell
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - K D Vihta
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - N Sims
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom.
| | - B Kasprzyk-Hordern
- Department of Chemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom.
| | - E Harriss
- Bodleian Healthcare Libraries, University of Oxford, Oxford OX3 9DU, United Kingdom.
| | - D W Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - D S Read
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, United Kingdom.
| | - A S Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; NIHR Oxford Biomedical Research Centre, Oxford OX4 2PG, United Kingdom.
| | - N Stoesser
- Nuffield Department of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom; Department of Microbiology/Infectious Diseases, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
16
|
Freitas AR, Tedim AP, Almeida-Santos AC, Duarte B, Elghaieb H, Abbassi MS, Hassen A, Novais C, Peixe L. High-Resolution Genotyping Unveils Identical Ampicillin-Resistant Enterococcus faecium Strains in Different Sources and Countries: A One Health Approach. Microorganisms 2022; 10:microorganisms10030632. [PMID: 35336207 PMCID: PMC8948916 DOI: 10.3390/microorganisms10030632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant (MDR) Enterococcus faecium (Efm) infections continue to increase worldwide, although epidemiological studies remain scarce in lower middle-income countries. We aimed to explore which strains circulate in E. faecium causing human infections in Tunisian healthcare institutions in order to compare them with strains from non-human sources of the same country and finally to position them within the global E. faecium epidemiology by genomic analysis. Antibiotic susceptibility testing was performed and transfer of vancomycin-vanA and ampicillin-pbp5 resistance was performed by conjugation. WGS-Illumina was performed on Tunisian strains, and these genomes were compared with Efm genomes from other regions present in the GenBank/NCBI database (n = 10,701 Efm genomes available May 2021). A comparison of phenotypes with those predicted by the recent ResFinder 4.1-CGE webtool unveiled a concordance of 88%, with discordant cases being discussed. cgMLST revealed three clusters [ST18/CT222 (n = 13), ST17/CT948 strains (n = 6), and ST203/CT184 (n = 3)], including isolates from clinical, healthy-human, retail meat, and/or environmental sources in different countries over large time spans (10–12 years). Isolates within each cluster showed similar antibiotic resistance, bacteriocin, and virulence genetic patterns. pbp5-AmpR was transferred by VanA-AmpR-ST80 (clinical) and AmpR-ST17-Efm (bovine meat). Identical chromosomal pbp5-platforms carrying metabolic/virulence genes were identified between ST17/ST18 strains of clinical, farm animal, and retail meat sources. The overall results emphasize the role of high-resolution genotyping as provided by WGS in depicting the dispersal of MDR-Efm strains carrying relevant adaptive traits across different hosts/regions and the need of a One Health task force to curtail their spread.
Collapse
Affiliation(s)
- Ana R. Freitas
- Laboratory of Microbiology, UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (B.D.); (C.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- Correspondence: or (A.R.F.); (L.P.); Tel.: +351-220-428-580 (L.P.)
| | - Ana P. Tedim
- Grupo de Investigación Biomédica en Sepsis-BioSepsis, Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), 47012 Valladollid, Spain;
| | - Ana C. Almeida-Santos
- Laboratory of Microbiology, UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (B.D.); (C.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Bárbara Duarte
- Laboratory of Microbiology, UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (B.D.); (C.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Houyem Elghaieb
- Tunisian Institute of Veterinary Research, University of Tunis El Manar, Tunis 1006, Tunisia; (H.E.); (M.S.A.)
| | - Mohamed S. Abbassi
- Tunisian Institute of Veterinary Research, University of Tunis El Manar, Tunis 1006, Tunisia; (H.E.); (M.S.A.)
| | - Abdennaceur Hassen
- Laboratory of Treatment and Valorisation of Wastewater, Centre of Research and Water Technologies (CERTE), Technopark of Borj-Cédria, Soliman 8020, Tunisia;
| | - Carla Novais
- Laboratory of Microbiology, UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (B.D.); (C.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luísa Peixe
- Laboratory of Microbiology, UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal or (A.C.A.-S.); (B.D.); (C.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: or (A.R.F.); (L.P.); Tel.: +351-220-428-580 (L.P.)
| |
Collapse
|
17
|
Alduhaidhawi AHM, AlHuchaimi SN, Al- Mayah TA, Al-Ouqaili MTS, Alkafaas SS, Muthupandian S, Saki M. Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater. Infect Drug Resist 2022; 15:1143-1154. [PMID: 35340673 PMCID: PMC8942119 DOI: 10.2147/idr.s358248] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose This study aimed to evaluate the presence of CRISPR-Cas system genes and their possible association with antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium species isolated from hospital wastewater (HWW) samples of several hospitals. Methods HWW samples (200 mL) were collected from wastewater discharged from different hospitals from October 2020 to March 2021. The isolation and identification of enterococci species were performed by standard bacteriology tests and polymerase chain reaction (PCR). Antibiotic resistance was determined using the disc diffusion. The presence of various CRISPR-Cas systems was investigated by PCR. The association of the occurrence of CRISPR-Cas systems with antibiotic resistance was analyzed with appropriate statistical tests. Results In total, 85 different enterococci species were isolated and identified using phenotypic methods. The results of PCR confirmed the prevalence of 50 (58.8%) E. faecalis and 35 (41.2%) E. faecium, respectively. In total, 54 (63.5%) of 85 isolates showed the presence of CRISPR-Cas loci. The incidence of CRISPR-Cas was more common in E. faecalis. CRISPR1, CRISPR2, and CRISPR3 were present in 35 (41.2%), 47 (55.3%), and 30 (35.3%) enterococci isolates, respectively. The CRISPR-Cas positive isolates showed significant lower resistance rates against vancomycin, ampicillin, chloramphenicol, erythromycin, rifampin, teicoplanin, tetracycline, imipenem, tigecycline, and trimethoprim-sulfamethoxazole in comparison with CRISPR-Cas negative isolates. The results showed that the presence of CRISPR-Cas genes was lower in multidrug-resistant (MDR) isolates (53.1%, n = 26/49) compared to the non-MDR enterococci isolates (77.8%, n = 28/36) (P = 0.023). Conclusion This study revealed the higher prevalence of E. faecalis than E. faecium in HWWs. Also, the lack of CRISPR-Cas genes was associated with more antibiotic resistance rates and multidrug resistance in E. faecalis and E. faecium isolates with HWW origin.
Collapse
Affiliation(s)
| | | | | | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Al-Anbar Governorate, Iraq
| | - Samar Sami Alkafaas
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Saravanan Muthupandian
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, 1871, Ethiopia
- Department of Pharmacology, AMR and Nanomedicine Laboratory, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 60007, India
- Correspondence: Saravanan Muthupandian, Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences, Mekelle University, Mekelle, 1871, Ethiopia, Tel +919443077097, Email
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Morteza Saki, Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Tel +989364221187, Email
| |
Collapse
|
18
|
Farias BOD, Bianco K, Nascimento APA, Gonçalves de Brito AS, Moreira TC, Clementino MM. Genomic Analysis of Multidrug-Resistant Enterococcus faecium Harboring vanA Gene from Wastewater Treatment Plants. Microb Drug Resist 2022; 28:444-452. [PMID: 35172112 DOI: 10.1089/mdr.2021.0254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence of vancomycin-resistant Enterococcus faecium (Efm) harboring vanA gene and multidrug-resistant determinants is a relevant public health concern. It is an opportunistic pathogen responsible for nosocomial infections widely distributed in the environment, including wastewater treatment plants (WWTPs). Our study addresses a genomic investigation of vanA-carrying Efm from WWTPs in Brazil. Samples from five WWTPs supplied with sewage from different sources were evaluated. Here we present whole-genome sequencing of eight vanA-Efm isolates performed on Illumina MiSeq platform. All these isolates presented multidrug-resistant profile, and five strains were from treated wastewater. Multiple antimicrobial resistance genes (ARGs) were found, such as aph(3')-IIIa, ant(6')-Ia, erm(B), and msrC, some of them being allocated in plasmids. The virulence profile was predominantly constituted by efaAfm and acm genes and all isolates, except for one, were predicted as human pathogens. Multilocus sequence typing analysis revealed a new allele and five different STs, three previously described (ST32, ST168, and ST253) and two novel ones (ST1893 and ST1894). Six strains belonged to CC17, often associated with hospital outbreaks. As far as our knowledge, no genomic studies of vanA-Efm recovered from WWTPs revealed isolates belonging to CC17 in Brazil. Therefore, our findings point to the environmental spread of Efm carrying multiple ARGs.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Kayo Bianco
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Alves Nascimento
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Thais Costa Moreira
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maysa Mandetta Clementino
- Fundação Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde-Avenida Brasil, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
19
|
Che Y, Xu X, Yang Y, Břinda K, Hanage W, Yang C, Zhang T. High-resolution genomic surveillance elucidates a multilayered hierarchical transfer of resistance between WWTP- and human/animal-associated bacteria. MICROBIOME 2022; 10:16. [PMID: 35078531 PMCID: PMC8790882 DOI: 10.1186/s40168-021-01192-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/05/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Our interconnected world and the ability of bacteria to quickly swap antibiotic resistance genes (ARGs) make it particularly important to establish the epidemiological links of multidrug resistance (MDR) transfer between wastewater treatment plant (WWTP)- and human/animal-associated bacteria, under the One Health framework. However, evidence of ARGs exchange and potential factors that contribute to this transfer remain limited. RESULTS Here, by combining culture-based population genomics and genetic comparisons with publicly available datasets, we reconstructed the complete genomes of 82 multidrug-resistant isolates from WWTPs and found that most WWTP-associated isolates were genetically distinct from their closest human/animal-associated relatives currently available in the public database. Even in the minority of lineages that were closely related, WWTP-associated isolates were characterized by quite different plasmid compositions. We identified a high diversity of circular plasmids (264 in total, of which 141 were potentially novel), which served as the main source of resistance, and showed potential horizontal transfer of ARG-bearing plasmids between WWTP- and humans/animal-associated bacteria. Notably, the potentially transferred ARGs and virulence factors (VFs) with different genetic backgrounds were closely associated with flanking insertion sequences (ISs), suggesting the importance of synergy between plasmids and ISs in mediating a multilayered hierarchical transfer of MDR and potentiating the emergence of MDR-hypervirulent clones. CONCLUSION Our findings advance the current efforts to establish potential epidemiological links of MDR transmission between WWTP- and human/animal-associated bacteria. Plasmids play an important role in mediating the transfer of ARGs and the IS-associated ARGs that are carried by conjugative plasmids should be prioritized to tackle the spread of resistance. Video Abstract.
Collapse
Affiliation(s)
- You Che
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA USA
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Karel Břinda
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA USA
- Department of Biomedical Informatics, Harvard Medical School, MA Boston, USA
| | - William Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA USA
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, 300071 Tianjin, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| |
Collapse
|
20
|
Haenni M, Dagot C, Chesneau O, Bibbal D, Labanowski J, Vialette M, Bouchard D, Martin-Laurent F, Calsat L, Nazaret S, Petit F, Pourcher AM, Togola A, Bachelot M, Topp E, Hocquet D. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. ENVIRONMENT INTERNATIONAL 2022; 159:107047. [PMID: 34923370 DOI: 10.1016/j.envint.2021.107047] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is a major global public health concern, shared by a large number of human and animal health actors. Within the framework of a One Health approach, actions should be implemented in the environmental realm, as well as the human and animal realms. The Government of France commissioned a report to provide policy and decision makers with an evidential basis for recommending or taking future actions to mitigate AMR in the environment. We first examined the mechanisms that underlie the emergence and persistence of antimicrobial resistance in the environment. This report drew up an inventory of the contamination of aquatic and terrestrial environments by AMR and antibiotics, anticipating that the findings will be representative of some other high-income countries. Effluents of wastewater treatment plants were identified as the major source of contamination on French territory, with spreading of organic waste products as a more diffuse and incidental contamination of aquatic environments. A limitation of this review is the heterogeneity of available data in space and time, as well as the lack of data for certain sources. Comparing the French Measured Environmental Concentrations (MECs) with predicted no effect concentrations (PNECs), fluoroquinolones and trimethoprim were identified as representing high and medium risk of favoring the selection of resistant bacteria in treated wastewater and in the most contaminated rivers. All other antibiotic molecules analyzed (erythromycin, clarithromycin, azithromycin, tetracycline) were at low risk of resistance selection in those environments. However, the heterogeneity of the data available impairs their full exploitation. Consequently, we listed indicators to survey AMR and antibiotics in the environment and recommended the harmonization of sampling strategies and endpoints for analyses. Finally, the objectives and methods used for the present work could comprise a useful example for how national authorities of countries sharing common socio-geographic characteristics with France could seek to better understand and define the environmental dimension of AMR in their particular settings.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES (French Agency for Food, Environmental and Occupational Health & Safety) - Université de Lyon, Lyon, France
| | - Christophe Dagot
- Université of Limoges, RESINFIT, UMR INSERM 1092, CHU, F-87000 Limoges, France
| | - Olivier Chesneau
- Collection de l'Institut Pasteur (CIP), Microbiology Department, Institut Pasteur, Paris, France
| | - Delphine Bibbal
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Jérôme Labanowski
- Université de Poitiers, UMR CNRS 7285 IC2MP, ENSI Poitiers, Poitiers, France
| | | | - Damien Bouchard
- National Agency for Veterinary Medicinal Products, ANSES, Fougères, France
| | | | - Louisiane Calsat
- Risk Assessment Department (DER), ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Sylvie Nazaret
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Fabienne Petit
- UNIROUEN, UNICAEN, CNRS, M2C, Normandie Université Rouen, France; Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris F-75005, France
| | | | | | - Morgane Bachelot
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Edward Topp
- Agriculture and Agri-Food Canada, and University of Western Ontario, London, ON, Canada
| | - Didier Hocquet
- UMR Chronoenvironnement CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France; Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.
| |
Collapse
|
21
|
Saingam P, Di DYW, Yan T. Diversity and health risk potentials of the Enterococcus population in tropical coastal water impacted by Hurricane Lane. JOURNAL OF WATER AND HEALTH 2021; 19:990-1001. [PMID: 34874905 DOI: 10.2166/wh.2021.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hurricane-caused stormwater runoffs transport diverse terrestrial pollutants, adversely impact microbiological water quality, and introduce fecal and other pathogens to coastal water environments. This study investigated the genotypic diversity, phylogenetic composition, antibiotic resistance patterns, and virulence gene repertoire of the Enterococcus population in the Hilo Bay coastal water after the immediate impact of Hurricane Lane. DNA fingerprinting of Enterococcus isolates exhibited large genotypic diversity, while 16S rRNA gene sequencing identified four major species, including E. faecalis (34.7%), E. faecium (22.4%), E. hirae (22.4%), and E. durans (18.4%). Four common enterococcal virulence genes (cylA, esp, asa1, and gelE) were detected in the Enterococcus population, with significant portions of E. durans (33.3%), E. faecalis (41.2%), E. faecium (36.4%), and E. hirae (27.3%) isolates possessing two or more virulence genes. Considerable antibiotic resistance to rifampin, erythromycin, tetracycline, and nitrofurantoin was detected in the Enterococcus population, with one E. durans isolate showing vancomycin resistance. The results indicate considerable health implications associated with Enterococcus spp. in the hurricane-impacted tropical coastal water, illustrating the needs for more comprehensive understanding of the microbiological risks associated with storm-impacted coastal water.
Collapse
Affiliation(s)
- Prakit Saingam
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail:
| | - Doris Y W Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail:
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA E-mail:
| |
Collapse
|
22
|
Cattoir V. The multifaceted lifestyle of enterococci: genetic diversity, ecology and risks for public health. Curr Opin Microbiol 2021; 65:73-80. [PMID: 34768106 DOI: 10.1016/j.mib.2021.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
Enterococci are long-standing members of the gastrointestinal tract of humans and many animals and they are also ubiquitously distributed in natural environments. Classically as harmless bacteria, two main species (namely Enterococcus faecalis and Enterococcus faecium) have become a leading cause of human infections, especially in hospital settings, with the worldwide spread of multidrug-resistant isolates, especially vancomycin-resistant enterococci. In this review, it will be summarized what is known about genetic diversity and ecology of enterococci with a focus on E. faecalis and E. faecium from human and non-human habitats and related risks for public health.
Collapse
Affiliation(s)
- Vincent Cattoir
- Service de Bactériologie-Hygiène Hospitalière, CHU de Rennes, Rennes, France; CNR de la Résistance aux Antibiotiques (Laboratoire Associé 'Entérocoques'), Rennes, France; Unité Inserm U1230, Université de Rennes 1, Rennes, France.
| |
Collapse
|
23
|
Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Curr Opin Microbiol 2021; 64:117-124. [PMID: 34700125 DOI: 10.1016/j.mib.2021.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 02/02/2023]
Abstract
There is evidence that human activity causes pollution that contributes to an enhanced selection of bacterial pathogens in the environment. In this review, we consider how environmental pollution can favour the selection of bacterial pathogens in the environment. We specifically discuss pollutants released into the environment by human activities (mainly human waste) that are associated with the selection for genetic features in environmental bacterial populations that lead to the emergence of bacterial pathogens. Finally, we also identify key pollutants that are associated with antibiotic resistance and discuss possibilities of how to prevent their release into the environment.
Collapse
|
24
|
Perry MR, Lepper HC, McNally L, Wee BA, Munk P, Warr A, Moore B, Kalima P, Philip C, de Roda Husman AM, Aarestrup FM, Woolhouse MEJ, van Bunnik BAD. Secrets of the Hospital Underbelly: Patterns of Abundance of Antimicrobial Resistance Genes in Hospital Wastewater Vary by Specific Antimicrobial and Bacterial Family. Front Microbiol 2021; 12:703560. [PMID: 34566912 PMCID: PMC8461093 DOI: 10.3389/fmicb.2021.703560] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Hospital wastewater is a major source of antimicrobial resistance (AMR) outflow into the environment. This study uses metagenomics to study how hospital clinical activity impacts antimicrobial resistance genes (ARGs) abundances in hospital wastewater. Methods: Sewage was collected over a 24-h period from multiple wastewater collection points (CPs) representing different specialties within a tertiary hospital site and simultaneously from community sewage works. High throughput shotgun sequencing was performed using Illumina HiSeq4000. ARG abundances were correlated to hospital antimicrobial usage (AMU), data on clinical activity and resistance prevalence in clinical isolates. Results: Microbiota and ARG composition varied between CPs and overall ARG abundance was higher in hospital wastewater than in community influent. ARG and microbiota compositions were correlated (Procrustes analysis, p=0.014). Total antimicrobial usage was not associated with higher ARG abundance in wastewater. However, there was a small positive association between resistance genes and antimicrobial usage matched to ARG phenotype (IRR 1.11, CI 1.06-1.16, p<0.001). Furthermore, analyzing carbapenem and vancomycin resistance separately indicated that counts of ARGs to these antimicrobials were positively associated with their increased usage [carbapenem rate ratio (RR) 1.91, 95% CI 1.01-3.72, p=0.07, and vancomycin RR 10.25, CI 2.32-49.10, p<0.01]. Overall, ARG abundance within hospital wastewater did not reflect resistance patterns in clinical isolates from concurrent hospital inpatients. However, for clinical isolates of the family Enterococcaceae and Staphylococcaceae, there was a positive relationship with wastewater ARG abundance [odds ratio (OR) 1.62, CI 1.33-2.00, p<0.001, and OR 1.65, CI 1.21-2.30, p=0.006 respectively]. Conclusion: We found that the relationship between hospital wastewater ARGs and antimicrobial usage or clinical isolate resistance varies by specific antimicrobial and bacterial family studied. One explanation, we consider is that relationships observed from multiple departments within a single hospital site will be detectable only for ARGs against parenteral antimicrobials uniquely used in the hospital setting. Our work highlights that using metagenomics to identify the full range of ARGs in hospital wastewater is a useful surveillance tool to monitor hospital ARG carriage and outflow and guide environmental policy on AMR.
Collapse
Affiliation(s)
- Meghan R. Perry
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- NHS Lothian Infection Service, Edinburgh Clinical Infection Research Group, Edinburgh, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah C. Lepper
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Luke McNally
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan A. Wee
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Amanda Warr
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara Moore
- NHS Lothian Infection Service, Edinburgh Clinical Infection Research Group, Edinburgh, United Kingdom
| | - Pota Kalima
- NHS Lothian Infection Service, Edinburgh Clinical Infection Research Group, Edinburgh, United Kingdom
| | - Carol Philip
- NHS Lothian Infection Service, Edinburgh Clinical Infection Research Group, Edinburgh, United Kingdom
| | | | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | |
Collapse
|
25
|
Top J, Baan J, Bisschop A, Arredondo-Alonso S, van Schaik W, Willems RJL. Functional characterization of a gene cluster responsible for inositol catabolism associated with hospital-adapted isolates of Enterococcus faecium. MICROBIOLOGY-SGM 2021; 167. [PMID: 34491894 DOI: 10.1099/mic.0.001085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterococcus faecium is a nosocomial, multidrug-resistant pathogen. Whole genome sequence studies revealed that hospital-associated E. faecium isolates are clustered in a separate clade A1. Here, we investigated the distribution, integration site and function of a putative iol gene cluster that encodes for myo-inositol (MI) catabolism. This iol gene cluster was found as part of an ~20 kbp genetic element (iol element), integrated in ICEEfm1 close to its integrase gene in E. faecium isolate E1679. Among 1644 E. faecium isolates, ICEEfm1 was found in 789/1227 (64.3 %) clade A1 and 3/417 (0.7 %) non-clade A1 isolates. The iol element was present at a similar integration site in 180/792 (22.7 %) ICEEfm1-containing isolates. Examination of the phylogenetic tree revealed genetically closely related isolates that differed in presence/absence of ICEEfm1 and/or iol element, suggesting either independent acquisition or loss of both elements. E. faecium iol gene cluster containing isolates E1679 and E1504 were able to grow in minimal medium with only myo-inositol as carbon source, while the iolD-deficient mutant in E1504 (E1504∆iolD) lost this ability and an iol gene cluster negative recipient strain gained this ability after acquisition of ICEEfm1 by conjugation from donor strain E1679. Gene expression profiling revealed that the iol gene cluster is only expressed in the absence of other carbon sources. In an intestinal colonization mouse model the colonization ability of E1504∆iolD mutant was not affected relative to the wild-type E1504 strain. In conclusion, we describe and functionally characterise a gene cluster involved in MI catabolism that is associated with the ICEEfm1 island in hospital-associated E. faecium isolates. We were unable to show that this gene cluster provides a competitive advantage during gut colonisation in a mouse model. Therefore, to what extent this gene cluster contributes to the spread and ecological specialisation of ICEEfm1-carrying hospital-associated isolates remains to be investigated.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jery Baan
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adinda Bisschop
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Arredondo-Alonso
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Rogers LA, Strong K, Cork SC, McAllister TA, Liljebjelke K, Zaheer R, Checkley SL. The Role of Whole Genome Sequencing in the Surveillance of Antimicrobial Resistant Enterococcus spp.: A Scoping Review. Front Public Health 2021; 9:599285. [PMID: 34178909 PMCID: PMC8222819 DOI: 10.3389/fpubh.2021.599285] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Enterococcus spp. have arisen as important nosocomial pathogens and are ubiquitous in the gastrointestinal tracts of animals and the environment. They carry many intrinsic and acquired antimicrobial resistance genes. Because of this, surveillance of Enterococcus spp. has become important with whole genome sequencing emerging as the preferred method for the characterization of enterococci. A scoping review was designed to determine how the use of whole genome sequencing in the surveillance of Enterococcus spp. adds to our knowledge of antimicrobial resistance in Enterococcus spp. Scoping review design was guided by the PRISMA extension and checklist and JBI Reviewer's Guide for scoping reviews. A total of 72 articles were included in the review. Of the 72 articles included, 48.6% did not state an association with a surveillance program and 87.5% of articles identified Enterococcus faecium. The majority of articles included isolates from human clinical or screening samples. Significant findings from the articles included novel sequence types, the increasing prevalence of vancomycin-resistant enterococci in hospitals, and the importance of surveillance or screening for enterococci. The ability of enterococci to adapt and persist within a wide range of environments was also a key finding. These studies emphasize the importance of ongoing surveillance of enterococci from a One Health perspective. More studies are needed to compare the whole genome sequences of human enterococcal isolates to those from food animals, food products, the environment, and companion animals.
Collapse
Affiliation(s)
- Lindsay A Rogers
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kayla Strong
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan C Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Karen Liljebjelke
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Sylvia L Checkley
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Freitas AR, Pereira AP, Novais C, Peixe L. Multidrug-resistant high-risk Enterococcus faecium clones: can we really define them? Int J Antimicrob Agents 2020; 57:106227. [PMID: 33207280 DOI: 10.1016/j.ijantimicag.2020.106227] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 10/26/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Enterococcus faecium is a significant opportunistic human pathogen with a broad host range, including humans, farm animals, pets and wildlife. Specialised subpopulations have globally evolved towards a powerful and convergent adaption to the healthcare environment by acquiring a cocktail of key antimicrobial resistance and virulence genes, enabling them to thrive in the disturbed microbiota of hospitalised patients. These populations can also be found in different community reservoirs, but the relevance of their dispersal in non-human hosts is greatly unknown and is here discussed. This review provides a brief historical overview of what we have been considering E. faecium high-risk clones worldwide alongside the advances in strain typing technologies that have revolutionised our understanding of the genetic evolution of this species over the last three decades.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Ana P Pereira
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
28
|
Tümmler B. Molecular epidemiology in current times. Environ Microbiol 2020; 22:4909-4918. [PMID: 32945108 DOI: 10.1111/1462-2920.15238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023]
Abstract
Motivated to find options for prevention or intervention, molecular epidemiology aims to identify the host and microbial factors that determine the transmission, manifestation and progression of infectious disease. The genotyping of cultivatable bacterial strains is performed by either anonymous fingerprinting techniques or sequence-based exploration of variable genomic sites. Multilocus sequence typing of housekeeping genes and allele profiling of the core genome have become standard techniques of bacterial strain typing that may be supplemented by whole genome sequencing to explore all single nucleotide variants and/or the composition of the accessory genome. Next, novel protocols to investigate host and microbiome based upon smart third generation sequencing technologies are being developed for an effective surveillance, rapid diagnosis and real-time tracking of infectious diseases.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Clinical Research Group, Clinic for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Current status of pan-genome analysis for pathogenic bacteria. Curr Opin Biotechnol 2020; 63:54-62. [DOI: 10.1016/j.copbio.2019.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
|
30
|
Buelow E, Rico A, Gaschet M, Lourenço J, Kennedy SP, Wiest L, Ploy MC, Dagot C. Hospital discharges in urban sanitation systems: Long-term monitoring of wastewater resistome and microbiota in relationship to their eco-exposome. WATER RESEARCH X 2020; 7:100045. [PMID: 32072151 PMCID: PMC7013138 DOI: 10.1016/j.wroa.2020.100045] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/03/2020] [Accepted: 01/26/2020] [Indexed: 05/05/2023]
Abstract
Wastewaters (WW) are important sources for the dissemination of antimicrobial resistance (AMR) into the environment. Hospital WW (HWW) contain higher loads of micro-pollutants and AMR markers than urban WW (UWW). Little is known about the long-term dynamics of H and U WW and the impact of their joined treatment on the general burden of AMR. Here, we characterized the resistome, microbiota and eco-exposome signature of 126 H and U WW samples treated separately for three years, and then mixed, over one year. Multi-variate analysis and machine learning revealed a robust signature for each WW with no significant variation over time before mixing, and once mixed, both WW closely resembled Urban signatures. We demonstrated a significant impact of pharmaceuticals and surfactants on the resistome and microbiota of H and U WW. Our results present considerable targets for AMR related risk assessment of WW.
Collapse
Affiliation(s)
- Elena Buelow
- University Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France
- Corresponding author. UMR Inserm 1092, Agents Anti-Microbiens, CBRS, 1 rue du Pr Bernard Descottes, 87000, Limoges, France.
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Margaux Gaschet
- University Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, UK
| | - Sean P. Kennedy
- Biomics Pole, CITECH, Institut Pasteur, Paris, 75015, France
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100, Villeurbanne, France
| | - Marie-Cecile Ploy
- University Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France
| | - Christophe Dagot
- University Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000, Limoges, France
| |
Collapse
|
31
|
Chen H, Li Y, Sun W, Song L, Zuo R, Teng Y. Characterization and source identification of antibiotic resistance genes in the sediments of an interconnected river-lake system. ENVIRONMENT INTERNATIONAL 2020; 137:105538. [PMID: 32028174 DOI: 10.1016/j.envint.2020.105538] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance has been a global public health concern. The river-lake systems are one of the tightly connected terrestrial ecosystems and, appear to be reservoirs of antibiotic resistant genes (ARGs) and dispersal routes of resistant pathogens because they are easily impacted by human activities. Currently, systematic knowledge on the prevalence, transfer risk and source of ARGs in river-lake systems is largely lacking. In this study, we focused on the high-throughput profiling and source-sink relationship disentangling of ARGs in the sediments of an interconnected river-lake system (Fuhe River and its receiving Lake Baiyang in northern China). To this end, 40 surface sediments were collected for metagenomic shotgun sequencing. The profile and co-occurrence of ARGs in the sediments of the river-lake system were comprehensively characterized, as well as the mobile genetic elements (MGEs) carrying ARGs and their potential resistome dissemination risk. CrAssphage, a recently-discovered bacteriophage, was used to track human fecal pollution on the prevalence of ARGs. Meanwhile, a novel fast expectation-maximization microbial source tracking (FEAST) method was combined with linear discriminant analysis effect size method (LEfSe) for quantitatively apportioning the contribution of river sediment to the presence of ARGs in the receiving lake. Results showed abundant and diverse ARGs (24 types consisting of 510 subtypes) were detected in the sediments of the river-lake system, including some emerging ARGs such as mcr-1, tetX and carbapenemases types. Network analysis suggested non-random co-occurrence patterns of ARGs within the same type and among different types. Importantly, a number of MGE-carrying contigs were identified with jointly containing one or more ARGs, resulting in higher resistome risk potential in Lake Baiyang than many worldwide lakes. Source tracking indicated the prevalence of ARGs in the sediments of the river-lake system might be largely explained by the extent of human fecal contamination, and apportionment estimates the load transport from Fuhe River contributed more than 80% of ARGs to the receiving Lake Baiyang.
Collapse
Affiliation(s)
- Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Yuezhao Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Wenchao Sun
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Liuting Song
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
32
|
Fouz N, Pangesti KNA, Yasir M, Al-Malki AL, Azhar EI, Hill-Cawthorne GA, Abd El Ghany M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop Med Infect Dis 2020; 5:tropicalmed5010033. [PMID: 32106595 PMCID: PMC7157536 DOI: 10.3390/tropicalmed5010033] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance (AMR) is the major issue posing a serious global health threat. Low- and middle-income countries are likely to be the most affected, both in terms of impact on public health and economic burden. Recent studies highlighted the role of resistance networks on the transmission of AMR organisms, with this network being driven by complex interactions between clinical (e.g., human health, animal husbandry and veterinary medicine) and other components, including environmental factors (e.g., persistence of AMR in wastewater). Many studies have highlighted the role of wastewater as a significant environmental reservoir of AMR as it represents an ideal environment for AMR bacteria (ARB) and antimicrobial resistant genes (ARGs) to persist. Although the treatment process can help in removing or reducing the ARB load, it has limited impact on ARGs. ARGs are not degradable; therefore, they can be spread among microbial communities in the environment through horizontal gene transfer, which is the main resistance mechanism in most Gram-negative bacteria. Here we analysed the recent literature to highlight the contribution of wastewater to the emergence, persistence and transmission of AMR under different settings, particularly those associated with mass gathering events (e.g., Hajj and Kumbh Mela).
Collapse
Affiliation(s)
- Nour Fouz
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia;
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Krisna N. A. Pangesti
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Y.); (E.I.A.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman L. Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Y.); (E.I.A.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Grant A. Hill-Cawthorne
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| | - Moataz Abd El Ghany
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia;
- The Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW 2145, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Correspondence: or
| |
Collapse
|
33
|
Yin X, Deng Y, Ma L, Wang Y, Chan LYL, Zhang T. Exploration of the antibiotic resistome in a wastewater treatment plant by a nine-year longitudinal metagenomic study. ENVIRONMENT INTERNATIONAL 2019; 133:105270. [PMID: 31683155 DOI: 10.1016/j.envint.2019.105270] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
The spread of antibiotic resistance genes (ARGs) is a growing global problem. Activated sludge (AS) in wastewater treatment plants (WWTPs) has been proposed as a hotspot for ARGs. However, few studies have been conducted to uncover the temporal dynamics of the resistome of AS in WWTPs by long-term longitudinal sampling. In this study, we quantified ARGs and identified their host microbiome in a Hong Kong WWTP in 97 monthly AS samples spanning 9 years. Throughout this analysis, we demonstrated that both the abundance and structures of the resistome changed significantly every two to three years, implying that there was a successive selection of resistomes in the AS system over the study period. The detection of genes of antibiotic-resistant pathogens that are emerging major threats to public health in the AS samples, including mcr, CRE (carbapenem-resistant Enterobacteriaceae) and MRSA (methicillin-resistant Staphylococcus aureus)-related genes, highlight the role of WWTPs as reservoirs of ARGs. In addition, the core resistome (abundant and persistent genes) in AS were found to overlap with those in other ecosystems such as urban sewage, livestock feces, and fishpond sediments, revealing the broad dissemination of ARGs in WWTPs and other environments. Annual variation of resistomes were explained via structural equation modeling (SEM), which deciphered the structural linkages of determining factors such as the operational parameters, microbial community composition and horizontal gene transfer (HGT). Specifically, potentially relevant antibiotic resistance bacteria (ARBs) were explored and discussed based on assembly-based analyses and network correlations. Moreover, consistent with the clear relationship between resistomes and mobile genetic elements (MGEs), it was found that there was a relatively high potential for gene exchange in AS in comparison with soil genomes, which could be explained by the engineering features of WWTPs. Based on these findings, longitudinal monitoring of WWTPs is warranted for risk assessment to reveal emerging ARGs, resistome evolution, correlations with ARBs, and the potential for spread in downstream environments and concomitant exposure risks for humans.
Collapse
Affiliation(s)
- Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Liping Ma
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China; Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Lilian Y L Chan
- High Performance Computing Team, Information Technology Services, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China; International Center for Antibiotic Resistance in the Environment, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
34
|
Singer AC, Xu Q, Keller VDJ. Translating antibiotic prescribing into antibiotic resistance in the environment: A hazard characterisation case study. PLoS One 2019; 14:e0221568. [PMID: 31483803 PMCID: PMC6726141 DOI: 10.1371/journal.pone.0221568] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/11/2019] [Indexed: 01/06/2023] Open
Abstract
The environment receives antibiotics through a combination of direct application (e.g., aquaculture and fruit production), as well as indirect release through pharmaceutical manufacturing, sewage and animal manure. Antibiotic concentrations in many sewage-impacted rivers are thought to be sufficient to select for antibiotic resistance genes. Yet, because antibiotics are nearly always found associated with antibiotic-resistant faecal bacteria in wastewater, it is difficult to distinguish the selective role of effluent antibiotics within a 'sea' of gut-derived resistance genes. Here we examine the potential for macrolide and fluoroquinolone prescribing in England to select for resistance in the River Thames catchment, England. We show that 64% and 74% of the length of the modelled catchment is chronically exposed to putative resistance-selecting concentrations (PNEC) of macrolides and fluoroquinolones, respectively. Under current macrolide usage, 115 km of the modelled River Thames catchment (8% of total length) exceeds the PNEC by 5-fold. Similarly, under current fluoroquinolone usage, 223 km of the modelled River Thames catchment (16% of total length) exceeds the PNEC by 5-fold. Our results reveal that if reduced prescribing was the sole mitigating measure, that macrolide and fluoroquinolone prescribing would need to decline by 77% and 85%, respectively, to limit resistance selection in the catchment. Significant reductions in antibiotic prescribing are feasible, but innovation in sewage-treatment will be necessary for achieving substantially-reduced antibiotic loads and inactivation of DNA-pollution from resistant bacteria. Greater confidence is needed in current risk-based targets for antibiotics, particularly in mixtures, to better inform environmental risk assessments and mitigation.
Collapse
Affiliation(s)
- Andrew C. Singer
- NERC Centre for Ecology & Hydrology, Benson Lane, Wallingford, United Kingdom
| | - Qiuying Xu
- NERC Centre for Ecology & Hydrology, Benson Lane, Wallingford, United Kingdom
- Environmental Diagnosis and Management, Royal Holloway University of London, Egham, United Kingdom
| | | |
Collapse
|
35
|
Whittaker A, Lohm D, Lemoh C, Cheng AC, Davis M. Investigating Understandings of Antibiotics and Antimicrobial Resistance in Diverse Ethnic Communities in Australia: Findings from a Qualitative Study. Antibiotics (Basel) 2019; 8:antibiotics8030135. [PMID: 31480708 PMCID: PMC6783953 DOI: 10.3390/antibiotics8030135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022] Open
Abstract
This paper explores the understandings of antibiotics and antimicrobial resistance (AMR) among ethnically diverse informants in Melbourne, Australia. A total of 31 face-to-face semi-structured qualitative interviews were conducted with a sample of ethnic in-patients who were admitted with an acquired antimicrobial infection in a public hospital (n = 7); five hospital interpreters; and ethnic members of the general community (n = 19) as part of a broader study of lay understandings of AMR. Thematic analysis revealed there was poor understanding of AMR, even among informants being treated for AMR infections. Causes of the increasing incidence of AMR were attributed to: weather fluctuations and climate change; a lack of environmental cleanliness; and the arrival of new migrant groups. Asian informants emphasized the need for humoral balance. Antibiotics were viewed as ‘strong’ medicines that could potentially disrupt this balance and weaken the body. Travel back to countries of origin sometimes involved the use of medical services and informants noted that some community members imported antibiotics from overseas. Most used the internet and social media to source health information. There is a lack of information in their own languages. More attention needs to be given to migrant communities who are vulnerable to the development, transmission and infection with resistant bacteria to inform future interventions.
Collapse
Affiliation(s)
- Andrea Whittaker
- School of Social Sciences, Monash University, Melbourne 3800, Australia.
| | - Davina Lohm
- School of Social Sciences, Monash University, Melbourne 3800, Australia
| | - Chris Lemoh
- School of Clinical Sciences, Monash University, Melbourne 3800, Australia
- Monash Infectious Diseases, Melbourne 3168, Australia
| | - Allen C Cheng
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3800, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne 3181, Australia
| | - Mark Davis
- School of Social Sciences, Monash University, Melbourne 3800, Australia
| |
Collapse
|