1
|
Palo A, Patel SA, Shubhanjali S, Dixit M. Dynamic interplay of Sp1, YY1, and DUX4 in regulating FRG1 transcription with intricate balance. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167636. [PMID: 39708975 DOI: 10.1016/j.bbadis.2024.167636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Maintaining precise levels of FRG1 is vital. It's over-expression is tied to muscular dystrophy, while reduced levels are linked to tumorigenesis. Despite extensive efforts to characterize FRG1 expression and downstream molecular signaling, a comprehensive understanding of its regulation has remained elusive. This study focused on unravelling the cis -regulatory elements within the FRG1 gene and their interplay. Employing a dual luciferase reporter assay on fragments of the FRG1 promoter upstream of the transcription start site, we observed variations in FRG1 transcription induction. Our in-silico analysis unveiled binding sequences for Sp1 and DUX4 within FRG1 promoter region showing an enhanced luciferase signal. Conversely, we identified a YY1 binding sequence in the FRG1 promoter fragment showing decreased luciferase signal. Confirming these binding sites through site-directed mutagenesis, chromatin immunoprecipitation, and EMSA provided concrete evidence of Sp1, YY1, and DUX4's interaction within the FRG1 promoter. Additionally, interaction between Sp1, YY1, and DUX4 was elucidated using sequential chromatin immunoprecipitation (ChIP re-ChIP) and co-immunoprecipitation assays. Furthermore, alterations in the expression levels of Sp1, YY1, and DUX4 resulted in parallel changes in FRG1 gene expression. Notably, YY1 exhibited the ability to suppress SP1 or DUX4-mediated FRG1 transcription activation, while Sp1 and DUX4 together could counteract YY1-mediated transcription suppression. Our cell proliferation and colony formation assay underscored the tumorigenic properties of these three transcription factors through the modulation of FRG1 expression levels. The in vitro results were verified in vivo using mouse xenograft model. Leveraging RNA sequencing data from various tissues in the GTEx portal, we established a correlation between FRG1, Sp1, and YY1. In essence, this study revealed the vital cis-regulatory components residing in the FRG1 promoter. The combined influence of Sp1, YY1, and DUX4 plays a central role in controlling FRG1 expression.
Collapse
Affiliation(s)
- Ananya Palo
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saket A Patel
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - S Shubhanjali
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Manjusha Dixit
- National Institute of Science Education and Research, School of Biological Sciences, Bhubaneswar, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Saha K, Nielsen G, Nandani R, Zhang Y, Kong L, Ye P, An W. YY1 is a transcriptional activator of the mouse LINE-1 Tf subfamily. Nucleic Acids Res 2024; 52:12878-12894. [PMID: 39460630 PMCID: PMC11602158 DOI: 10.1093/nar/gkae949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element in human and mouse genomes. L1 transcription is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (5'UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence at the 5' end of the human L1 5'UTR and primarily dictates where transcription initiates. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in 5'UTR monomers and YY1 functions as a transcriptional activator for the mouse Tf subfamily. Activation of Tf transcription by YY1 during early embryogenesis is also supported by a reanalysis of published zygotic knockdown data. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between Tf monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation across the genome.
Collapse
Affiliation(s)
- Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Grace I Nielsen
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Raj Nandani
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Yizi Zhang
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Ping Ye
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, 1055 Campanile Ave, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Saha K, Nielsen GI, Nandani R, Kong L, Ye P, An W. YY1 is a transcriptional activator of mouse LINE-1 Tf subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573552. [PMID: 38260579 PMCID: PMC10802269 DOI: 10.1101/2024.01.03.573552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Long interspersed element type 1 (LINE-1, L1) is an active autonomous transposable element (TE) in the human genome. The first step of L1 replication is transcription, which is controlled by an internal RNA polymerase II promoter in the 5' untranslated region (UTR) of a full-length L1. It has been shown that transcription factor YY1 binds to a conserved sequence motif at the 5' end of the human L1 5'UTR and dictates where transcription initiates but not the level of transcription. Putative YY1-binding motifs have been predicted in the 5'UTRs of two distinct mouse L1 subfamilies, Tf and Gf. Using site-directed mutagenesis, in vitro binding, and gene knockdown assays, we experimentally tested the role of YY1 in mouse L1 transcription. Our results indicate that Tf, but not Gf subfamily, harbors functional YY1-binding sites in its 5'UTR monomers. In contrast to its role in human L1, YY1 functions as a transcriptional activator for the mouse Tf subfamily. Furthermore, YY1-binding motifs are solely responsible for the synergistic interaction between monomers, consistent with a model wherein distant monomers act as enhancers for mouse L1 transcription. The abundance of YY1-binding sites in Tf elements also raise important implications for gene regulation at the genomic level.
Collapse
Affiliation(s)
- Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Grace I. Nielsen
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Raj Nandani
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Lingqi Kong
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Ping Ye
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
4
|
Metzger DCH, Porter I, Mobley B, Sandkam BA, Fong LJM, Anderson AP, Mank JE. Transposon wave remodeled the epigenomic landscape in the rapid evolution of X-Chromosome dosage compensation. Genome Res 2023; 33:1917-1931. [PMID: 37989601 PMCID: PMC10760456 DOI: 10.1101/gr.278127.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
Sex chromosome dosage compensation is a model to understand the coordinated evolution of transcription; however, the advanced age of the sex chromosomes in model systems makes it difficult to study how the complex regulatory mechanisms underlying chromosome-wide dosage compensation can evolve. The sex chromosomes of Poecilia picta have undergone recent and rapid divergence, resulting in widespread gene loss on the male Y, coupled with complete X Chromosome dosage compensation, the first case reported in a fish. The recent de novo origin of dosage compensation presents a unique opportunity to understand the genetic and evolutionary basis of coordinated chromosomal gene regulation. By combining a new chromosome-level assembly of P. picta with whole-genome bisulfite sequencing and RNA-seq data, we determine that the YY1 transcription factor (YY1) DNA binding motif is associated with male-specific hypomethylated regions on the X, but not the autosomes. These YY1 motifs are the result of a recent and rapid repetitive element expansion on the P. picta X Chromosome, which is absent in closely related species that lack dosage compensation. Taken together, our results present compelling support that a disruptive wave of repetitive element insertions carrying YY1 motifs resulted in the remodeling of the X Chromosome epigenomic landscape and the rapid de novo origin of a dosage compensation system.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada;
| | - Imogen Porter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Brendan Mobley
- Biology Department, Reed College, Portland, Oregon 97202, USA
| | - Benjamin A Sandkam
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Lydia J M Fong
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | | | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
5
|
Bresnahan ST, Galbraith D, Ma R, Anton K, Rangel J, Grozinger CM. Beyond conflict: Kinship theory of intragenomic conflict predicts individual variation in altruistic behaviour. Mol Ecol 2023; 32:5823-5837. [PMID: 37746895 DOI: 10.1111/mec.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
Behavioural variation is essential for animals to adapt to different social and environmental conditions. The Kinship Theory of Intragenomic Conflict (KTIC) predicts that parent-specific alleles can support different behavioural strategies to maximize allele fitness. Previous studies, including in honey bees (Apis mellifera), supported predictions of the KTIC for parent-specific alleles to promote selfish behaviour. Here, we test the KTIC prediction that for altruism-promoting genes (i.e. those that promote behaviours that support the reproductive fitness of kin), the allele with the higher altruism optimum should be selected to be expressed while the other is silenced. In honey bee colonies, workers act altruistically when tending to the queen by performing a 'retinue' behaviour, distributing the queen's mandibular pheromone (QMP) throughout the hive. Workers exposed to QMP do not activate their ovaries, ensuring they care for the queen's brood instead of competing to lay unfertilized eggs. Due to the haplodiploid genetics of honey bees, the KTIC predicts that response to QMP is favoured by the maternal genome. We report evidence for parent-of-origin effects on the retinue response behaviour, ovarian development and gene expression in brains of worker honey bees exposed to QMP, consistent with the KTIC. Additionally, we show enrichment for genes with parent-of-origin expression bias within gene regulatory networks associated with variation in bees' response to QMP. Our study demonstrates that intragenomic conflict can shape diverse social behaviours and influence expression patterns of single genes as well as gene networks.
Collapse
Affiliation(s)
- Sean T Bresnahan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
- Intercollege Graduate Degree Program in Molecular, Cellular, and Integrative Biosciences, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kate Anton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Juliana Rangel
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Qiu T, Ding Y, Qin J, Ren D, Xie M, Qian Q, Wang Y, Ma L, Jing A, Yang J, Ma S, Wang X, Wang W, Ji J, Li G. Epigenetic reactivation of PEG3 by EZH2 inhibitors suppresses renal clear cell carcinoma progress. Cell Signal 2023; 107:110662. [PMID: 37001595 DOI: 10.1016/j.cellsig.2023.110662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
PEG3 is a paternally imprinted gene located on chromosome 19q13.4 and one of the most common low-expression genes in human ovarian cancer. PEG3 plays an important role in p53-related cell death. However, whether PEG3 plays a role in renal clear cell carcinoma (ccRCC) remains unclear. Here, we found that PEG3 was epigenetic inactivated and played a tumor suppressor role in ccRCC. Overexpression of PEG3 inhibited ccRCC cell proliferation and colony formation, while removal of PEG3 significantly promoted cell proliferation in vitro and tumor formation in nude mice in vivo. EZH2-mediated H3K27me3 at the PEG3 promoter suppressed PEG3 expression. EZH2 specific inhibitors promote PEG3 transcriptional expression through the transition from H3K27me3 to H3K27ac at the PEG3 promoter region. Depletion of PEG3 inhibited the activation of the p53 signaling pathway, resulting in the resistance of ccRCC to EZH2 inhibitors treatment. Thus, our data show that EZH2-mediated epigenetic inactivation of PEG3 promotes the progress of ccRCC, and reactivation of PEG3 may be a promising strategy for ccRCC.
Collapse
Affiliation(s)
- Teng Qiu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingting Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dexu Ren
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengru Xie
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yasong Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ling Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiayan Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Weiling Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Guanchu Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, PR China
| |
Collapse
|
7
|
Kwiatkowska D, Mazur E, Reich A. YY1 Is a Key Player in Melanoma Immunotherapy/Targeted Treatment Resistance. Front Oncol 2022; 12:856963. [PMID: 35719931 PMCID: PMC9198644 DOI: 10.3389/fonc.2022.856963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Malignant melanoma, with its increasing incidence and high potential to form metastases, is one of the most aggressive types of skin malignancies responsible for a significant number of deaths worldwide. However, melanoma also demonstrates a high potential for induction of a specific adaptive anti-tumor immune response being one of the most immunogenic malignancies. Yin Yang 1 (YY1) transcription factor is essential to numerous cellular processes and the regulation of transcriptional and posttranslational modifications of various genes. It regulates programmed cell death 1 (PD1) and lymphocyte-activation gene 3 (LAG3) by binding to its promoters, as well as suppresses both Fas and TRAIL by negatively regulating DR5 transcription and expression and interaction with the silencer region of the Fas promoter, rendering cells resistant to apoptosis. Moreover, YY1 is considered a master regulator in various stages of embryogenesis, especially in neural crest stem cells (NCSCs) survival and proliferation as it acts as transcriptional repressor on cancer stem cells-related transcription factors. In addition, YY1 increases the metastatic potential of melanoma through negative regulation of microRNA-9 (miR-9) expression, acts as a cofactor of transcription factor EB (TFEB) and contributes to autophagy regulation, mainly due to increased transcription of genes related to autophagy and lysosome biogenesis. Therefore, focusing on the detailed biology and administration of therapies that directly target YY1 or crosstalk pathways in malignant melanoma could facilitate the development of new and more effective treatment strategies and improve patients’ outcomes.
Collapse
|
8
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
9
|
Sirt1 inhibits renal tubular cell epithelial-mesenchymal transition through YY1 deacetylation in diabetic nephropathy. Acta Pharmacol Sin 2021; 42:242-251. [PMID: 32555442 DOI: 10.1038/s41401-020-0450-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/25/2020] [Indexed: 01/17/2023] Open
Abstract
Silent information regulator 1 (Sirt1) is a deacetylase, which plays an important role in the occurrence and development of diabetic nephropathy (DN). Our previous study shows that Yin yang 1 (YY1), a widely expressed zinc finger DNA/RNA-binding transcription factor, is a novel regulator of renal fibrosis in diabetic nephropathy. Since the activity of YY1 is regulated via acetylation and deacetylation modification, this study aimed to explore whether Sirt1-induced deacetylation of YY1 mediated high glucose (HG)-induced renal tubular epithelial-mesenchymal transition (EMT) and renal fibrosis in vivo and in vitro. We first confirmed that Sirt1 expression level was significantly decreased in the kidney of db/db mice and in HG-treated HK-2 cells. Diabetes-induced Sirt1 reduction enhanced the level of YY1 acetylation and renal tubular EMT. Then, we manipulated Sirt1 expression in vivo and in vitro by injecting resveratrol (50 mg·kg-1·d-1. ip) to db/db mice for 2 weeks or application of SRT1720 (2.5 μM) in HG-treated HK-2 cells, we found that activation of Sirt1 reversed the renal tubular EMT and YY1 acetylation induced by HG condition. On the contrary, Sirt1 was knocked down in db/m mice or EX527 (1 μM) was added in HK-2 cells, we found that inhibition of Sirt1 exacerbated renal fibrosis in diabetic mice and enhanced level of YY1 acetylation in HK-2 cells. Furthermore, knockdown of YY1 inhibited the ameliorating effect of resveratrol on renal tubular EMT and renal fibrosis in db/db mice. In conclusion, this study demonstrates that Sirt1 plays an important role in renal tubular EMT of DN through mediating deacetylation of YY1.
Collapse
|
10
|
Zhang XC, Gu AP, Zheng CY, Li YB, Liang HF, Wang HJ, Tang XL, Bai XX, Cai J. YY1/LncRNA GAS5 complex aggravates cerebral ischemia/reperfusion injury through enhancing neuronal glycolysis. Neuropharmacology 2019; 158:107682. [DOI: 10.1016/j.neuropharm.2019.107682] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/29/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
|
11
|
Kraft F, Wesseler K, Begemann M, Kurth I, Elbracht M, Eggermann T. Novel familial distal imprinting centre 1 (11p15.5) deletion provides further insights in imprinting regulation. Clin Epigenetics 2019; 11:30. [PMID: 30770769 PMCID: PMC6377752 DOI: 10.1186/s13148-019-0629-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deletions of the imprinting centre 1 (IC1) in 11p15.5 are rare and their clinical significance is not only influenced by their parental origin but also by their exact genomic localization. In case the maternal IC1 allele is affected, the deletion is associated with the overgrowth disorder Beckwith-Wiedemann syndrome (BWS) and a gain of methylation (GOM) of the IC1. The consequences of deletions of the paternal IC1 allele depend on the localization and probably the binding sites of methylation-specific DNA-binding factors affected by the change. It has been suggested that distal deletions of the paternal allele are associated with a normal IC1 methylation and phenotype, whereas proximal alterations cause a loss of methylation (LOM) and Silver-Russell syndrome (SRS) features. RESULTS In a patient referred for molecular BWS testing and his family, a deletion within the IC1 was identified by MLPA. It was associated with a GOM, corresponding to the transmission of the alteration via the maternal germline. Accordingly, the deletion was also detectable in the maternal grandmother, but here the paternal chromosome 11p15.5 was affected and a IC1 LOM was observed. By nanopore sequencing, the localization of the deletion could be precisely determined. CONCLUSIONS We report for the first time both GOM and LOM of the IC1 in the same family, caused by transmission of a 2.2-kb deletion in 11p15.5. Nanopore sequencing allowed the precise characterization of the change by long-read sequencing and thereby provides further insights in the regulation of imprinting in the IC1.
Collapse
Affiliation(s)
- Florian Kraft
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Katharina Wesseler
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany.
| |
Collapse
|
12
|
Kim J. Evolution patterns of Peg3 and H19-ICR. Genomics 2018; 111:1713-1719. [PMID: 30503747 DOI: 10.1016/j.ygeno.2018.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/18/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
Mammalian imprinted domains are regulated through small genomic regions termed Imprinting Control Regions (ICRs). In the current study, the evolution patterns of the ICRs of Peg3 and H19-imprinted domains were analyzed using the genomic sequences derived from a large number of mammals. The results indicated that multiple YY1 and CTCF binding sites are localized within the Peg3 and H19-ICR in all the mammals tested. The numbers of YY1 and CTCF binding sites are variable among individual species, yet positively correlate with the presence of tandem repeats within the Peg3 and H19-ICRs. Thus, multiple YY1 and CTCF binding sites within the respective ICRs may have been maintained through tandem repeats/duplications. The unit lengths of tandem repeats are also non-random and locus-specific, 140 and 400 bp for the Peg3 and H19-ICRs. Overall, both Peg3 and H19-ICRs may have co-evolved with two unique features, multiple transcription factor binding sites and tandem repeats.
Collapse
Affiliation(s)
- Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Trans-allelic mutational effects at the Peg3 imprinted locus. PLoS One 2018; 13:e0206112. [PMID: 30335829 PMCID: PMC6193732 DOI: 10.1371/journal.pone.0206112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/05/2018] [Indexed: 11/19/2022] Open
Abstract
How one allele interacts with the other for the function of a gene is not well understood. In this study, we tested potential allelic interaction at the Peg3 imprinted locus with several mutant alleles targeting an Imprinting Control Region, the Peg3-DMR. According to the results, maternal deletion of the Peg3-DMR resulted in 2-fold up-regulation of two paternally expressed genes, Peg3 and Usp29. These trans-allelic mutational effects were observed consistently throughout various tissues with different developmental stages. These effects were also associated mainly with the genetic manipulation of the Peg3-DMR, but not with the other genomic changes within the Peg3 locus. The observed trans-allelic effects were unidirectional with the maternal influencing the paternal allele, but not with the opposite direction. Overall, the observed mutational effects suggest the presence of previously unrecognized trans-allelic regulation associated with the Peg3-DMR.
Collapse
|
14
|
Zhang XC, Liang HF, Luo XD, Wang HJ, Gu AP, Zheng CY, Su QZ, Cai J. YY1 promotes IL-6 expression in LPS-stimulated BV2 microglial cells by interacting with p65 to promote transcriptional activation of IL-6. Biochem Biophys Res Commun 2018; 502:269-275. [PMID: 29803672 DOI: 10.1016/j.bbrc.2018.05.159] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
Abstract
Neuroinflammation plays a critical role in the process of neurodegenerative disorders, during which microglia, the principal resident immune cells in the central nervous system, are activated and produce proinflammatory mediators. Yin-Yang 1 (YY1), a multi-functional transcription factor, is widely expressed in cells of the immune system and participate in various cellular processes. However, whether YY1 is involved in the process of neuroinflammation is still unknown. In the present study, we found that YY1 was progressively up-regulated in BV2 microglial cells stimulated with lipopolysaccharide (LPS), which was dependent on the transactivation function of nuclear factor kappa B (NF-κB). Furthermore, YY1 knockdown notably inhibited LPS-induced the activation of NF-κB signaling and interleukin-6 (IL-6) expression in BV-2 cells, but not mitogen-activated protein kinase (MAPK) signaling. Moreover, YY1 strengthened p65 binding to IL-6 promoter by interacting with p65 but decreased H3K27ac modification on IL-6 promoter, eventually increasing IL-6 transcription. Taken together, these results for the first time uncover the regulatory mechanism of YY1 on IL-6 expression during neuroinflammation responses and provide new lights into neuroinflammation.
Collapse
Affiliation(s)
- Xin-Chun Zhang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Hong-Feng Liang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Xiao-Dong Luo
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Hua-Jun Wang
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Ai-Ping Gu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, PR China
| | - Chun-Ye Zheng
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Qiao-Zhen Su
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Jun Cai
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
15
|
Unique XCI evolution in Tokudaia: initial XCI of the neo-X chromosome in Tokudaia muenninki and function loss of XIST in Tokudaia osimensis. Chromosoma 2017; 126:741-751. [PMID: 28766050 DOI: 10.1007/s00412-017-0639-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
X chromosome inactivation (XCI) is an essential mechanism to compensate gene dosage in mammals. Here, we show that XCI has evolved differently in two species of the genus Tokudaia. The Amami spiny rat, Tokudaia osimensis, has a single X chromosome in males and females (XO/XO). By contrast, the Okinawa spiny rat, Tokudaia muenninki, has XX/XY sex chromosomes like most mammals, although the X chromosome has acquired a neo-X region by fusion with an autosome. BAC clones containing the XIST gene, which produces the long non-coding RNA XIST required for XCI, were obtained by screening of T. osimensis and T. muenninki BAC libraries. Each clone was mapped to the homologous region of the X inactivation center in the X chromosome of the two species by BAC-FISH. XIST RNAs were expressed in T. muenninki females, whereas no expression was observed in T. osimensis. The sequence of the XIST RNA was compared with that of mouse, showing that the XIST gene is highly conserved in T. muenninki. XIST RNAs were localized to the ancestral X region (Xq), to the heterochromatic region (pericentromeric region), and partially to the neo-X region (Xp). The hybridization pattern correlated with LINE-1 accumulation in Xq but not in Xp. Dosage of genes located on the neo-X chromosome was not compensated, suggesting that the neo-X region is in an early state of XCI. By contrast, many mutations were observed in the XIST gene of T. osimensis, indicating its loss of function in the XO/XO species.
Collapse
|
16
|
He H, Ye A, Perera BPU, Kim J. YY1's role in the Peg3 imprinted domain. Sci Rep 2017; 7:6427. [PMID: 28743993 PMCID: PMC5526879 DOI: 10.1038/s41598-017-06817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/19/2017] [Indexed: 11/30/2022] Open
Abstract
The ICR (Imprinting Control Region) of the Peg3 (Paternally Expressed Gene 3) domain contains an unusual cluster of YY1 binding sites. In the current study, these YY1 binding sites were mutated to characterize the unknown roles in the mouse Peg3 domain. According to the results, paternal and maternal transmission of the mutant allele did not cause any major effect on the survival of the pups. In the mutants, the maternal-specific DNA methylation on the ICR was properly established and maintained, causing no major effect on the imprinting of the domain. In contrast, the paternal transmission resulted in changes in the expression levels of several genes: down-regulation of Peg3 and Usp29 and up-regulation of Zim1. These changes were more pronounced during the neonatal stage than during the adult stage. In the case of Peg3 and Zim1, the levels of the observed changes were also different between males and females, suggesting the different degrees of YY1 involvement between two sexes. Overall, the results indicated that YY1 is mainly involved in controlling the transcriptional levels, but not the DNA methylation, of the Peg3 domain.
Collapse
Affiliation(s)
- Hongzhi He
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - An Ye
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | | | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
17
|
Martinez AF, Abe Y, Hong S, Molyneux K, Yarnell D, Löhr H, Driever W, Acosta MT, Arcos-Burgos M, Muenke M. An Ultraconserved Brain-Specific Enhancer Within ADGRL3 (LPHN3) Underpins Attention-Deficit/Hyperactivity Disorder Susceptibility. Biol Psychiatry 2016; 80:943-954. [PMID: 27692237 PMCID: PMC5108697 DOI: 10.1016/j.biopsych.2016.06.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetic factors predispose individuals to attention-deficit/hyperactivity disorder (ADHD). Previous studies have reported linkage and association to ADHD of gene variants within ADGRL3. In this study, we functionally analyzed noncoding variants in this gene as likely pathological contributors. METHODS In silico, in vitro, and in vivo approaches were used to identify and characterize evolutionary conserved elements within the ADGRL3 linkage region (~207 Kb). Family-based genetic analyses of 838 individuals (372 affected and 466 unaffected patients) identified ADHD-associated single nucleotide polymorphisms harbored in some of these conserved elements. Luciferase assays and zebrafish green fluorescent protein transgenesis tested conserved elements for transcriptional enhancer activity. Electromobility shift assays were used to verify transcription factor-binding disruption by ADHD risk alleles. RESULTS An ultraconserved element was discovered (evolutionary conserved region 47) that functions as a transcriptional enhancer. A three-variant ADHD risk haplotype in evolutionary conserved region 47, formed by rs17226398, rs56038622, and rs2271338, reduced enhancer activity by 40% in neuroblastoma and astrocytoma cells (pBonferroni < .0001). This enhancer also drove green fluorescent protein expression in the zebrafish brain in a tissue-specific manner, sharing aspects of endogenous ADGRL3 expression. The rs2271338 risk allele disrupts binding of YY1 transcription factor, an important factor in the development and function of the central nervous system. Expression quantitative trait loci analysis of postmortem human brain tissues revealed an association between rs2271338 and reduced ADGRL3 expression in the thalamus. CONCLUSIONS These results uncover the first functional evidence of common noncoding variants with potential implications for the pathology of ADHD.
Collapse
|
18
|
A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals. Nat Commun 2016; 7:11101. [PMID: 27089393 PMCID: PMC4837449 DOI: 10.1038/ncomms11101] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 02/19/2016] [Indexed: 02/07/2023] Open
Abstract
Large-scale sequencing in the 1000 Genomes Project has revealed multitudes of single nucleotide variants (SNVs). Here, we provide insights into the functional effect of these variants using allele-specific behaviour. This can be assessed for an individual by mapping ChIP-seq and RNA-seq reads to a personal genome, and then measuring 'allelic imbalances' between the numbers of reads mapped to the paternal and maternal chromosomes. We annotate variants associated with allele-specific binding and expression in 382 individuals by uniformly processing 1,263 functional genomics data sets, developing approaches to reduce the heterogeneity between data sets due to overdispersion and mapping bias. Since many allelic variants are rare, aggregation across multiple individuals is necessary to identify broadly applicable 'allelic elements'. We also found SNVs for which we can anticipate allelic imbalance from the disruption of a binding motif. Our results serve as an allele-specific annotation for the 1000 Genomes variant catalogue and are distributed as an online resource (alleledb.gersteinlab.org).
Collapse
|
19
|
Massah S, Beischlag TV, Prefontaine GG. Epigenetic events regulating monoallelic gene expression. Crit Rev Biochem Mol Biol 2015; 50:337-58. [PMID: 26155735 DOI: 10.3109/10409238.2015.1064350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammals, generally it is assumed that the genes inherited from each parent are expressed to similar levels. However, it is now apparent that in non-sex chromosomes, 6-10% of genes are selected for monoallelic expression. Monoallelic expression or allelic exclusion is established either in an imprinted (parent-of-origin) or a stochastic manner. The stochastic model explains random selection while the imprinted model describes parent-of-origin specific selection of alleles for expression. Allelic exclusion occurs during X chromosome inactivation, parent-of-origin expression of imprinted genes and stochastic monoallelic expression of cell surface molecules, clustered protocadherin (PCDH) genes. Mis-regulation or loss of allelic exclusion contributes to developmental diseases. Epigenetic mechanisms are fundamental players that determine this type of expression despite a homogenous genetic background. DNA methylation and histone modifications are two mediators of the epigenetic phenomena. The majority of DNA methylation is found on cytosines of the CpG dinucleotide in mammals. Several covalent modifications of histones change the electrostatic forces between DNA and histones modifying gene expression. Long-range chromatin interactions organize chromatin into transcriptionally permissive and prohibitive regions leading to simultaneous regulation of gene expression and repression. Non-coding RNAs (ncRNAs) are also players in regulating gene expression. Together, these epigenetic mechanisms fine-tune gene expression levels essential for normal development and survival. In this review, first we discuss what is known about monoallelic gene expression. Then, we focus on the molecular mechanisms that regulate expression of three monoallelically expressed gene classes: the X-linked genes, selected imprinted genes and PCDH genes.
Collapse
Affiliation(s)
- Shabnam Massah
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | - Timothy V Beischlag
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | | |
Collapse
|
20
|
Dixon-McDougall T, Brown C. The making of a Barr body: the mosaic of factors that eXIST on the mammalian inactive X chromosome. Biochem Cell Biol 2015; 94:56-70. [PMID: 26283003 DOI: 10.1139/bcb-2015-0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During X-chromosome inactivation (XCI), nearly an entire X chromosome is permanently silenced and converted into a Barr body, providing dosage compensation for eutherians between the sexes. XCI is facilitated by the upregulation of the long non-coding RNA gene, XIST, which coats its chromosome of origin, recruits heterochromatin factors, and silences gene expression. During XCI, at least two distinct types of heterochromatin are established, and in this review we discuss the enrichment of facultative heterochromatin marks such as H3K27me3, H2AK119ub, and macroH2A as well as pericentric heterochromatin marks such as HP1, H3K9me3, and H4K20me3. The extremely stable maintenance of silencing is a product of reinforcing interactions within and between these domains. This paper "Xplores" the current knowledge of the pathways involved in XCI, how the pathways interact, and the gaps in our understanding that need to be filled.
Collapse
Affiliation(s)
- Thomas Dixon-McDougall
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Carolyn Brown
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
21
|
Hepatitis B virus replication and sex-determining region Y box 4 production are tightly controlled by a novel positive feedback mechanism. Sci Rep 2015; 5:10066. [PMID: 25970172 PMCID: PMC4429541 DOI: 10.1038/srep10066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/27/2015] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major cause of liver diseases. However, the mechanisms underlying HBV infection and pathogenesis remain largely unknown. The sex-determining region Y box 4 (Sox4) is a transcriptional factor, which preferentially regulates the development of various organs, tissues, and cancers. But, the role of Sox4 in viral infection and pathogenesis has not been elucidated. Here, we demonstrated that Sox4 is up-regulated by HBV, and revealed the mechanism by which HBV regulates Sox4 expression. First, HBV stimulates Sox4 expression through transcriptional factor Yin Yang 1 (YY1), which binds to Sox4 promoter to activate Sox4 transcriptional activity. Second, miR-335, miR-129-2 and miR-203 inhibit Sox4 expression by targeting its mRNA 3’UTR, while HBV suppresses the microRNAs expression, resulting in up-regulating Sox4 post-transcriptionally. Third, Sox4 protein is degraded by proteasome, while HBV surface protein (HBsAg) prevents Sox4 from degradation by directly interacting with the protein, thereby enhancing Sox4 production post-translationlly. More interestingly, HBV-activated Sox4 in turn facilitates HBV replication by direct binding to the viral genome via its HMG box. Thus, this study revealed a novel positive feedback mechanism by which Sox4 production and HBV replication are tightly correlated.
Collapse
|
22
|
Perera BPU, Teruyama R, Kim J. Yy1 gene dosage effect and bi-allelic expression of Peg3. PLoS One 2015; 10:e0119493. [PMID: 25774914 PMCID: PMC4361396 DOI: 10.1371/journal.pone.0119493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/28/2015] [Indexed: 01/22/2023] Open
Abstract
In the current study, we tested the in vivo effects of Yy1 gene dosage on the Peg3 imprinted domain with various breeding schemes utilizing two sets of mutant alleles. The results indicated that a half dosage of Yy1 coincides with the up-regulation of Peg3 and Zim1, suggesting a repressor role of Yy1 in this imprinted domain. This repressor role of Yy1 is consistent with the observations derived from previous in vitro studies. The current study also provided an unexpected observation that the maternal allele of Peg3 is also normally expressed, and thus the expression of Peg3 is bi-allelic in the specific areas of the brain, including the choroid plexus, the PVN (Paraventricular Nucleus) and the SON (Supraoptic Nucleus) of the hypothalamus. The exact roles of the maternal allele of Peg3 in these cell types are currently unknown, but this new finding confirms the previous prediction that the maternal allele may be functional in specific cell types based on the lethality associated with the homozygotes for several mutant alleles of the Peg3 locus. Overall, these results confirm the repressor role of Yy1 in the Peg3 domain and also provide a new insight regarding the bi-allelic expression of Peg3 in mouse brain.
Collapse
Affiliation(s)
- Bambarendage P. U. Perera
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
| | - Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, United States of America
- * E-mail:
| |
Collapse
|
23
|
Kim H, Ekram MB, Bakshi A, Kim J. AEBP2 as a transcriptional activator and its role in cell migration. Genomics 2014; 105:108-15. [PMID: 25451679 DOI: 10.1016/j.ygeno.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/31/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
Aebp2 encodes an evolutionarily conserved zinc finger protein that has not been well studied so far, yet recent studies indicated that this gene is closely associated with the Polycomb Repressive Complex 2 (PRC2). Thus, the current study characterized the basic aspects of this gene, including alternative promoters and protein isoforms. According to the results, Aebp2 is controlled through three alternative promoters, deriving three different transcripts encoding the embryonic (32 kDa) and somatic (52 kDa) forms. Chromatin Immuno-Precipitation (ChIP) experiments revealed that AEBP2 binds to its own promoter as well as the promoters of Jarid2 and Snai2. While the embryonic form acts as a transcriptional repressor for Snai2, the somatic form functions as a transcriptional activator for Jarid2, Aebp2 and Snai2. Cell migration assays also demonstrated that the Aebp2 somatic form has an enhancing activity in cell migration. This is consistent with the functional association of Aebp2 with migratory neural crest cells. These results suggest that the two protein isoforms of AEBP2 may have opposite functions for the PcG target genes, and may play significant roles in cell migration during development.
Collapse
Affiliation(s)
- Hana Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Muhammad B Ekram
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Arundhati Bakshi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
24
|
He H, Kim J. Regulation and function of the peg3 imprinted domain. Genomics Inform 2014; 12:105-13. [PMID: 25317109 PMCID: PMC4196374 DOI: 10.5808/gi.2014.12.3.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 01/12/2023] Open
Abstract
A subset of mammalian genes differ functionally between two alleles due to genomic imprinting, and seven such genes (Peg3, Usp29, APeg3, Zfp264, Zim1, Zim2, Zim3) are localized within the 500-kb genomic interval of the human and mouse genomes, constituting the Peg3 imprinted domain. This Peg3 domain shares several features with the other imprinted domains, including an evolutionarily conserved domain structure, along with transcriptional co-regulation through shared cis regulatory elements, as well as functional roles in controlling fetal growth rates and maternal-caring behaviors. The Peg3 domain also displays some unique features, including YY1-mediated regulation of transcription and imprinting; conversion and adaptation of several protein-coding members as ncRNA genes during evolution; and its close connection to human cancers through the potential tumor suppressor functions of Peg3 and Usp29. In this review, we summarize and discuss these
features of the Peg3 domain.
Collapse
Affiliation(s)
- Hongzhi He
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
A prominent and conserved role for YY1 in Xist transcriptional activation. Nat Commun 2014; 5:4878. [PMID: 25209548 PMCID: PMC4172967 DOI: 10.1038/ncomms5878] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/01/2014] [Indexed: 01/21/2023] Open
Abstract
Accumulation of the non-coding RNA Xist on one X chromosome in female cells is a hallmark of X-chromosome inactivation in eutherians. Here, we uncovered an essential function for the ubiquitous autosomal transcription factor Yin-Yang 1 (YY1) in the transcriptional activation of Xist in both human and mouse. We show that loss of YY1 prevents Xist up-regulation during the initiation and maintenance of X-inactivation, and that YY1 binds directly the Xist 5′ region to trigger the activity of the Xist promoter. Binding of YY1 to the Xist 5′ region prior to X-chromosome inactivation competes with the Xist repressor REX1 while DNA methylation controls mono-allelic fixation of YY1 to Xist at the onset of X-chromosome inactivation. YY1 is thus the first autosomal activating factor involved in a fundamental and conserved pathway of Xist regulation that ensures the asymmetric transcriptional up-regulation of the master regulator of X-chromosome inactivation.
Collapse
|
26
|
Chapman AG, Cotton AM, Kelsey AD, Brown CJ. Differentially methylated CpG island within human XIST mediates alternative P2 transcription and YY1 binding. BMC Genet 2014; 15:89. [PMID: 25200388 PMCID: PMC4363909 DOI: 10.1186/s12863-014-0089-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/18/2014] [Indexed: 11/30/2022] Open
Abstract
Background X-chromosome inactivation silences one X chromosome in females to achieve dosage compensation with the single X chromosome in males. While most genes are silenced on the inactive X chromosome, the gene for the long non-coding RNA XIST is silenced on the active X chromosome and expressed from the inactive X chromosome with which the XIST RNA associates, triggering silencing of the chromosome. In mouse, an alternative Xist promoter, P2 is also the site of YY1 binding, which has been shown to serve as a tether between the Xist RNA and the DNA of the chromosome. In humans there are many differences from the initial events of mouse Xist activation, including absence of a functional antisense regulator Tsix, and absence of strictly paternal inactivation in extraembryonic tissues, prompting us to examine regulatory regions for the human XIST gene. Results We demonstrate that the female-specific DNase hypersensitivity site within XIST is specific to the inactive X chromosome and correlates with transcription from an internal P2 promoter. P2 is located within a CpG island that is differentially methylated between males and females and overlaps conserved YY1 binding sites that are only bound on the inactive X chromosome where the sites are unmethylated. However, YY1 binding is insufficient to drive P2 expression or establish the DHS, which may require a development-specific factor. Furthermore, reduction of YY1 reduces XIST transcription in addition to causing delocalization of XIST. Conclusions The differentially methylated DNase hypersensitive site within XIST marks the location of an alternative promoter, P2, that generates a transcript of unknown function as it lacks the A repeats that are critical for silencing. In addition, this region binds YY1 on the unmethylated inactive X chromosome, and depletion of YY1 untethers the XIST RNA as well as decreasing transcription of XIST.
Collapse
Affiliation(s)
- Andrew G Chapman
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Allison M Cotton
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Angela D Kelsey
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Center, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
27
|
Schoorlemmer J, Pérez-Palacios R, Climent M, Guallar D, Muniesa P. Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency. Front Oncol 2014; 4:14. [PMID: 24567914 PMCID: PMC3915180 DOI: 10.3389/fonc.2014.00014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/21/2014] [Indexed: 11/17/2022] Open
Abstract
About half of the mammalian genome is occupied by DNA sequences that originate from transposable elements. Retrotransposons can modulate gene expression in different ways and, particularly retrotransposon-derived long terminal repeats, profoundly shape expression of both surrounding and distant genomic loci. This is especially important in pre-implantation development, during which extensive reprograming of the genome takes place and cells pass through totipotent and pluripotent states. At this stage, the main mechanism responsible for retrotransposon silencing, i.e., DNA methylation, is inoperative. A particular retrotransposon called muERV-L/MERVL is expressed during pre-implantation stages and contributes to the plasticity of mouse embryonic stem cells. This review will focus on the role of MERVL-derived sequences as controlling elements of gene expression specific for pre-implantation development, two-cell stage-specific gene expression, and stem cell pluripotency, the epigenetic mechanisms that control their expression, and the contributions of the pluripotency marker REX1 and the related Yin Yang 1 family of transcription factors to this regulation process.
Collapse
Affiliation(s)
- Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain ; ARAID Foundation , Zaragoza , Spain
| | - Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| | - Diana Guallar
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| |
Collapse
|
28
|
Schwalie PC, Ward MC, Cain CE, Faure AJ, Gilad Y, Odom DT, Flicek P. Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes. Genome Biol 2013; 14:R148. [PMID: 24380390 PMCID: PMC4056453 DOI: 10.1186/gb-2013-14-12-r148] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genomic binding of CTCF is highly conserved across mammals, but the mechanisms that underlie its stability are poorly understood. One transcription factor known to functionally interact with CTCF in the context of X-chromosome inactivation is the ubiquitously expressed YY1. Because combinatorial transcription factor binding can contribute to the evolutionary stabilization of regulatory regions, we tested whether YY1 and CTCF co-binding could in part account for conservation of CTCF binding. RESULTS Combined analysis of CTCF and YY1 binding in lymphoblastoid cell lines from seven primates, as well as in mouse and human livers, reveals extensive genome-wide co-localization specifically at evolutionarily stable CTCF-bound regions. CTCF-YY1 co-bound regions resemble regions bound by YY1 alone, as they enrich for active histone marks, RNA polymerase II and transcription factor binding. Although these highly conserved, transcriptionally active CTCF-YY1 co-bound regions are often promoter-proximal, gene-distal regions show similar molecular features. CONCLUSIONS Our results reveal that these two ubiquitously expressed, multi-functional zinc-finger proteins collaborate in functionally active regions to stabilize one another's genome-wide binding across primate evolution.
Collapse
Affiliation(s)
- Petra C Schwalie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Current address: Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Michelle C Ward
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Current address: Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Carolyn E Cain
- Current address: Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andre J Faure
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yoav Gilad
- Current address: Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK-Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
29
|
Thiaville MM, Kim H, Frey WD, Kim J. Identification of an evolutionarily conserved cis-regulatory element controlling the Peg3 imprinted domain. PLoS One 2013; 8:e75417. [PMID: 24040411 PMCID: PMC3769284 DOI: 10.1371/journal.pone.0075417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
The mammalian Peg3 domain harbors more than 20 evolutionarily conserved regions (ECRs) that are spread over the 250-kb genomic interval. The majority of these ECRs are marked with two histone modifications, H3K4me1 and H3K27ac, suggesting potential roles as distant regulatory elements for the transcription of the nearby imprinted genes. In the current study, the chromatin conformation capture (3C) method was utilized to detect potential interactions of these ECRs with the imprinted genes. According to the results, one region, ECR18, located 200-kb upstream of Peg3 interacts with the two promoter regions of Peg3 and Zim2. The observed interaction is most prominent in brain, but was also detected in testis. Histone modification and DNA methylation on ECR18 show no allele bias, implying that this region is likely functional on both alleles. In vitro assays also reveal ECR18 as a potential enhancer or repressor for the promoter of Peg3. Overall, these results indicate that the promoters of several imprinted genes in the Peg3 domain interact with one evolutionarily conserved region, ECR18, and further suggest that ECR18 may play key roles in the transcription and imprinting control of the Peg3 domain as a distant regulatory element.
Collapse
Affiliation(s)
- Michelle M. Thiaville
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Hana Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Wesley D. Frey
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
30
|
Sado T, Brockdorff N. Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110325. [PMID: 23166390 DOI: 10.1098/rstb.2011.0325] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In female mammals, one of the two X chromosomes becomes genetically silenced to compensate for dosage imbalance of X-linked genes between XX females and XY males. X chromosome inactivation (X-inactivation) is a classical model for epigenetic gene regulation in mammals and has been studied for half a century. In the last two decades, efforts have been focused on the X inactive-specific transcript (Xist) locus, discovered to be the master regulator of X-inactivation. The Xist gene produces a non-coding RNA that functions as the primary switch for X-inactivation, coating the X chromosome from which it is transcribed in cis. Significant progress has been made towards understanding how Xist is regulated at the onset of X-inactivation, but our understanding of the molecular basis of silencing mediated by Xist RNA has progressed more slowly. A picture has, however, begun to emerge, and new tools and resources hold out the promise of further advances to come. Here, we provide an overview of the current state of our knowledge, what is known about Xist RNA and how it may trigger chromosome silencing.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
31
|
Regulatory elements associated with paternally-expressed genes in the imprinted murine Angelman/Prader-Willi syndrome domain. PLoS One 2013; 8:e52390. [PMID: 23390487 PMCID: PMC3563663 DOI: 10.1371/journal.pone.0052390] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 11/13/2012] [Indexed: 11/19/2022] Open
Abstract
The Angelman/Prader-Willi syndrome (AS/PWS) domain contains at least 8 imprinted genes regulated by a bipartite imprinting center (IC) associated with the SNRPN gene. One component of the IC, the PWS-IC, governs the paternal epigenotype and expression of paternal genes. The mechanisms by which imprinting and expression of paternal genes within the AS/PWS domain – such as MKRN3 and NDN – are regulated by the PWS-IC are unclear. The syntenic region in the mouse is organized and imprinted similarly to the human domain with the murine PWS-IC defined by a 6 kb interval within the Snrpn locus that includes the promoter. To identify regulatory elements that may mediate PWS-IC function, we mapped the location and allele-specificity of DNase I hypersensitive (DH) sites within the PWS-IC in brain cells, then identified transcription factor binding sites within a subset of these DH sites. Six major paternal-specific DH sites were detected in the Snrpn gene, five of which map within the 6 kb PWS-IC. We postulate these five DH sites represent functional components of the murine PWS-IC. Analysis of transcription factor binding within multiple DH sites detected nuclear respiratory factors (NRF's) and YY1 specifically on the paternal allele. NRF's and YY1 were also detected in the paternal promoter region of the murine Mrkn3 and Ndn genes. These results suggest that NRF's and YY1 may facilitate PWS-IC function and coordinately regulate expression of paternal genes. The presence of NRF's also suggests a link between transcriptional regulation within the AS/PWS domain and regulation of respiration. 3C analyses indicated Mkrn3 lies in close proximity to the PWS-IC on the paternal chromosome, evidence that the PWS-IC functions by allele-specific interaction with its distal target genes. This could occur by allele-specific co-localization of the PWS-IC and its target genes to transcription factories containing NRF's and YY1.
Collapse
|
32
|
Huang L, Jolly LA, Willis-Owen S, Gardner A, Kumar R, Douglas E, Shoubridge C, Wieczorek D, Tzschach A, Cohen M, Hackett A, Field M, Froyen G, Hu H, Haas SA, Ropers HH, Kalscheuer VM, Corbett MA, Gecz J. A noncoding, regulatory mutation implicates HCFC1 in nonsyndromic intellectual disability. Am J Hum Genet 2012; 91:694-702. [PMID: 23000143 DOI: 10.1016/j.ajhg.2012.08.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/26/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
The discovery of mutations causing human disease has so far been biased toward protein-coding regions. Having excluded all annotated coding regions, we performed targeted massively parallel resequencing of the nonrepetitive genomic linkage interval at Xq28 of family MRX3. We identified in the binding site of transcription factor YY1 a regulatory mutation that leads to overexpression of the chromatin-associated transcriptional regulator HCFC1. When tested on embryonic murine neural stem cells and embryonic hippocampal neurons, HCFC1 overexpression led to a significant increase of the production of astrocytes and a considerable reduction in neurite growth. Two other nonsynonymous, potentially deleterious changes have been identified by X-exome sequencing in individuals with intellectual disability, implicating HCFC1 in normal brain function.
Collapse
Affiliation(s)
- Lingli Huang
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wickramaarachchi WDN, Wan Q, Lee Y, Lim BS, De Zoysa M, Oh MJ, Jung SJ, Kim HC, Whang I, Lee J. Genomic characterization and expression analysis of complement component 9 in rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2012; 33:707-717. [PMID: 22796422 DOI: 10.1016/j.fsi.2012.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/29/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
The complement component 9 (C9) is a single-chain glycoprotein that mediates formation of the membrane attack complex (MAC) on the surface of target cells. Full-length C9 sequence was identified from a cDNA library of rock bream (Oplegnathus fasciatus), and its genomic sequence was obtained by screening and sequencing of a bacterial artificial chromosome (BAC) genomic DNA library of rock bream. The rock bream complement component 9 (Rb-C9) gene contains 11 exons and 10 introns and is composed of a 1782 bp complete open reading frame (ORF) that encodes a polypeptide of 593 amino acids. Sequence analysis revealed that the Rb-C9 protein contains two thrombospondin type-1domains, a low-density lipoprotein receptor domain class A, a membrane attack complex & perforin (MACPF) domain, and an epidermal growth factor (EGF)-like domain. Important putative transcription factor binding sites, including those for NF-κB, SP-1, C/EBP, AP-1 and OCT-1, were found in the 5' flanking region. Phylogenetic analysis revealed a close proximity of Rb-C9 with the orthologues in puffer fish, and Japanese flounder. Quantitative real-time RT-PCR analysis confirmed that Rb-C9 was constitutively expressed in all the examined tissues isolated from healthy rock bream, with highest expression occurring in liver. Pathogen challenge, including Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide endotoxin and rock bream iridovirus led to up-regulation of Rb-C9 in liver but no change in peripheral blood cells. The observed response to bacterial and viral challenges and high degree of evolutionary relationship to respective orthologues, confirmed that Rb-C9 is an important immune gene, likely involved in the complement system lytic pathway of rock bream.
Collapse
|
34
|
Neguembor MV, Gabellini D. In junk we trust: repetitive DNA, epigenetics and facioscapulohumeral muscular dystrophy. Epigenomics 2012; 2:271-87. [PMID: 22121874 DOI: 10.2217/epi.10.8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant myopathy with a peculiar etiology. Unlike most genetic disorders, FSHD is not caused by mutations in a protein-coding gene. Instead, it is associated with contraction of the D4Z4 macrosatellite repeat array located at 4q35. Interestingly, D4Z4 deletion is not sufficient per se to cause FSHD. Moreover, the disease severity, its rate of progression and the distribution of muscle weakness display great variability even among close family relatives. Hence, additional genetic and epigenetic events appear to be required for FSHD pathogenesis. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, exhibit alterations in the disease locus causing deregulation of 4q35 gene expression, ultimately leading to FSHD.
Collapse
Affiliation(s)
- Maria V Neguembor
- International PhD Program in Cellular & Molecular Biology, Vita-Salute San Raffaele University, Milan, Italy
| | | |
Collapse
|
35
|
Thiaville MM, Kim J. Oncogenic potential of yin yang 1 mediated through control of imprinted genes. Crit Rev Oncog 2012; 16:199-209. [PMID: 22248054 DOI: 10.1615/critrevoncog.v16.i3-4.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The transcription factor Yin Yang (YY) 1 is one of the most evolutionarily well-conserved DNA binding proteins that is ubiquitously expressed among different tissue types. YY1 functions as a critical regulator for a diverse set of genes, making its role in the cancerous environment elusive. Recent studies have demonstrated that clusters of YY1 binding sites are overrepresented in imprinted gene loci. These clustered binding sites may function as a molecular rheostat with respect to YY1 protein levels. YY1 levels were documented to be altered in various tumor tissues in conjunction with the transcriptional levels of the imprinted genes it regulates. This review highlights the unexplored mechanism through which fluctuations in YY1 protein levels alter the transcriptional status of imprinted genes containing clustered YY1 binding sites, which potentially could affect cancer development and/or progression.
Collapse
Affiliation(s)
- Michelle M Thiaville
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
36
|
Kim J, Ekram MB, Kim H, Faisal M, Frey WD, Huang JM, Tran K, Kim MM, Yu S. Imprinting control region (ICR) of the Peg3 domain. Hum Mol Genet 2012; 21:2677-87. [PMID: 22394678 DOI: 10.1093/hmg/dds092] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The imprinting and transcription of the 500 kb genomic region surrounding the mouse Peg3 is predicted to be regulated by the Peg3-differentially methylated region (DMR). In the current study, this prediction was tested using a mutant mouse line lacking this potential imprinting control region (ICR). At the organismal level, paternal and maternal transmission of this knockout (KO) allele caused either reduced or increased growth rates in the mouse, respectively. In terms of the imprinting control, the paternal transmission of the KO allele resulted in bi-allelic expression of the normally maternally expressed Zim2, whereas the maternal transmission switched the transcriptionally dominant allele for Zfp264 (paternal to maternal). However, the allele-specific DNA methylation patterns of the DMRs of Peg3, Zim2 and Zim3 were not affected in the mice that inherited the KO allele either paternally or maternally. In terms of the transcriptional control, the paternal transmission caused a dramatic down-regulation in Peg3 expression, but overall up-regulation in the other nearby imprinted genes. Taken together, deletion of the Peg3-DMR caused global changes in the imprinting and transcription of the Peg3 domain, confirming that the Peg3-DMR is an ICR for this imprinted domain.
Collapse
Affiliation(s)
- Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 2012; 119:4034-46. [PMID: 22327224 DOI: 10.1182/blood-2011-08-371344] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications regulate developmental genes involved in stem cell identity and lineage choice. NFI-A is a posttranscriptional microRNA-223 (miR-223) target directing human hematopoietic progenitor lineage decision: NFI-A induction or silencing boosts erythropoiesis or granulopoiesis, respectively. Here we show that NFI-A promoter silencing, which allows granulopoiesis, is guaranteed by epigenetic events, including the resolution of opposing chromatin "bivalent domains," hypermethylation, recruitment of polycomb (PcG)-RNAi complexes, and miR-223 promoter targeting activity. During granulopoiesis, miR-223 localizes inside the nucleus and targets the NFI-A promoter region containing PcGs binding sites and miR-223 complementary DNA sequences, evolutionarily conserved in mammalians. Remarkably, both the integrity of the PcGs-RNAi complex and DNA sequences matching the seed region of miR-223 are required to induce NFI-A transcriptional silencing. Moreover, ectopic miR-223 expression in human myeloid progenitors causes heterochromatic repression of NFI-A gene and channels granulopoiesis, whereas its stable knockdown produces the opposite effects. Our findings indicate that, besides the regulation of translation of mRNA targets, endogenous miRs can affect gene expression at the transcriptional level, functioning in a critical interface between chromatin remodeling complexes and the genome to direct fate lineage determination of hematopoietic progenitors.
Collapse
|
38
|
YY1 negatively regulates mouse myelin proteolipid protein (Plp1) gene expression in oligodendroglial cells. ASN Neuro 2011; 3:AN20110021. [PMID: 21973168 PMCID: PMC3207217 DOI: 10.1042/an20110021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
YY1 (Yin and Yang 1) is a multifunctional, ubiquitously expressed, zinc finger protein that can act as a transcriptional activator, repressor, or initiator element binding protein. Previous studies have shown that YY1 modulates the activity of reporter genes driven by the myelin PLP (proteolipid protein) (PLP1/Plp1) promoter. However, it is known that Plp1 intron 1 DNA contains regulatory elements that are required for the dramatic increase in gene activity, coincident with the active myelination period of CNS (central nervous system) development. The intron in mouse contains multiple prospective YY1 target sites including one within a positive regulatory module called the ASE (anti-silencer/enhancer) element. Results presented here demonstrate that YY1 has a negative effect on the activity of a Plp1-lacZ fusion gene [PLP(+)Z] in an immature oligodendroglial cell line (Oli-neu) that is mediated through sequences present in Plp1 intron 1 DNA. Yet YY1 does not bind to its alleged site in the ASE (even though the protein is capable of recognizing a target site in the promoter), indicating that the down-regulation of PLP(+)Z activity by YY1 in Oli-neu cells does not occur through a direct interaction of YY1 with the ASE sequence. Previous studies with Yy1 conditional knockout mice have demonstrated that YY1 is essential for the differentiation of oligodendrocyte progenitors. Nevertheless, the current study suggests that YY1 functions as a repressor (not an activator) of Plp1 gene expression in immature oligodendrocytes. Perhaps YY1 functions to keep the levels of PLP in check in immature cells before vast quantities of the protein are needed in mature myelinating oligodendrocytes.
Collapse
|
39
|
Murrell A. Setting up and maintaining differential insulators and boundaries for genomic imprinting. Biochem Cell Biol 2011; 89:469-78. [PMID: 21936680 DOI: 10.1139/o11-043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is becoming increasingly clear that gene expression is strongly regulated by the surrounding chromatin and nuclear environment. Gene regulatory elements can influence expression over long distances and the genome needs mechanisms whereby transcription can be contained. Our current understanding of the mechanisms whereby insulator/boundary elements organise the genome into active and silent domains is based on chromatin looping models that separate genes and regulatory elements. Imprinted genes have parent-of-origin specific chromatin conformation that seems to be maintained in somatic tissues and reprogrammed in the germline. This review focuses on the proteins found to be present at insulator/boundary sequences at imprinted genes and examines the experimental evidence at the IGF2-H19 locus for a model in which CTCF or other proteins determine primary looping scaffolds that are maintained in most cell lineages and speculates how these loops may enable dynamic secondary associations that can activate or silence genes.
Collapse
|
40
|
Jeon Y, Lee JT. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 2011; 146:119-33. [PMID: 21729784 DOI: 10.1016/j.cell.2011.06.026] [Citation(s) in RCA: 401] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/27/2011] [Accepted: 06/14/2011] [Indexed: 12/16/2022]
Abstract
The long noncoding Xist RNA inactivates one X chromosome in the female mammal. Current models posit that Xist induces silencing as it spreads along X and recruits Polycomb complexes. However, the mechanisms for Xist loading and spreading are currently unknown. Here, we define the nucleation center for Xist RNA and show that YY1 docks Xist particles onto the X chromosome. YY1 is a "bivalent" protein, capable of binding both RNA and DNA through different sequence motifs. Xist's exclusive attachment to the inactive X is determined by an epigenetically regulated trio of YY1 sites as well as allelic origin. Specific YY1-to-RNA and YY1-to-DNA contacts are required to load Xist particles onto X. YY1 interacts with Xist RNA through Repeat C. We propose that YY1 acts as adaptor between regulatory RNA and chromatin targets.
Collapse
Affiliation(s)
- Yesu Jeon
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
41
|
Garcia-Tuñon I, Guallar D, Alonso-Martin S, Benito AA, Benítez-Lázaro A, Pérez-Palacios R, Muniesa P, Climent M, Sánchez M, Vidal M, Schoorlemmer J. Association of Rex-1 to target genes supports its interaction with Polycomb function. Stem Cell Res 2011; 7:1-16. [PMID: 21530438 DOI: 10.1016/j.scr.2011.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/21/2011] [Accepted: 02/23/2011] [Indexed: 12/31/2022] Open
Abstract
Rex-1/Zfp42 displays a remarkably restricted pattern of expression in preimplantation embryos, primary spermatocytes, and undifferentiated mouse embryonic stem (ES) cells and is frequently used as a marker gene for pluripotent stem cells. To understand the role of Rex-1 in selfrenewal and pluripotency, we used Rex-1 association as a measure to identify potential target genes, and carried out chromatin-immunoprecipitation assays in combination with gene specific primers to identify genomic targets Rex-1 associates with. We find association of Rex-1 to several genes described previously as bivalently marked regulators of differentiation and development, whose repression in mouse embryonic stem (ES) cells is Polycomb Group-mediated, and controlled directly by Ring1A/B. To substantiate the hypothesis that Rex-1 contributes to gene regulation by PcG, we demonstrate interactions of Rex-1 and YY2 (a close relative of YY1) with Ring1 proteins and the PcG-associated proteins RYBP and YAF2, in line with interactions reported previously for YY1. We also demonstrate the presence of Rex-1 protein in both trophectoderm and Inner Cell Mass of the mouse blastocyst and in both ES and in trophectoderm stem (TS) cells. In TS cells, we were unable to demonstrate association of Rex-1 to the genes it associates with in ES cells, suggesting that association may be cell-type specific. Rex-1 might fine-tune pluripotency in ES cells by modulating Polycomb-mediated gene regulation.
Collapse
Affiliation(s)
- I Garcia-Tuñon
- Regenerative Medicine Programme, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Zaragoza, Avda. Gómez Laguna, 25, Pl. 11, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim JD, Kim H, Ekram MB, Yu S, Faulk C, Kim J. Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Hum Mol Genet 2011; 20:1353-62. [PMID: 21233130 DOI: 10.1093/hmg/ddr017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zfp42/Rex1 (reduced expression gene 1) is a well-known stem-cell marker that has been duplicated from YY1 in the eutherian lineage. In the current study, we characterized the in vivo roles of Rex1 using a mutant mouse line disrupting its transcription. In contrast to the ubiquitous expression of YY1, Rex1 is expressed only during spermatogenesis and early embryogenesis and also in a very limited area of the placenta. Yet, the gene dosage of Rex1 is very critical for the survival of the late-stage embryos and neonates. This delayed phenotypic consequence suggests potential roles for Rex1 in establishing and maintaining unknown epigenetic modifications. Consistently, Rex1-null blastocysts display hypermethylation in the differentially methylated regions (DMRs) of Peg3 and Gnas imprinted domains, which are known to contain YY1 binding sites. Further analyses confirmed in vivo binding of Rex1 only to the unmethylated allele of these two regions. Thus, Rex1 may function as a protector for these DMRs against DNA methylation. Overall, the functional connection of Rex1 to genomic imprinting represents another case where newly made genes have co-evolved with lineage-specific phenomena.
Collapse
Affiliation(s)
- Jeong Do Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
43
|
Atchison M, Basu A, Zaprazna K, Papasani M. Mechanisms of Yin Yang 1 in oncogenesis: the importance of indirect effects. Crit Rev Oncog 2011; 16:143-61. [PMID: 22248052 PMCID: PMC3417111 DOI: 10.1615/critrevoncog.v16.i3-4.20] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Yin Yang 1 (YY1) is a ubiquitously expressed transcription factor that performs numerous functions including transcriptional regulation, cell growth control, apoptosis, large-scale chromosomal dynamics, and X-chromosome inactivation. YY1 clearly is able to control cell functions, including proliferation, by acting as a transcription factor either to activate or repress specific genes. Based on its ability to regulate cell growth control genes, it has been argued that YY1 can function as an oncogene that initiates oncogenesis. Although this is an attractive hypothesis, no reports indicate that YY1 can acutely transform cells in culture or form tumors within animals when overexpressed. Thus, it remains unclear whether YY1 is a "classic" oncogene. However, YY1 controls many diverse cell functions, and these functions may provide clues to its role in oncogenesis. We propose that in many cases YY1 may function in oncogenesis and disease progression through "indirect" effects by virtue of its role in either recruiting Polycomb group proteins to DNA, regulating mutator protein accumulation, controlling large-scale chromosomal dynamics or genomic integrity. Disruption of these functions may causally initiate cancer or may contribute to disease progression. Targeting YY1 functions provides possible avenues for clinical intervention.
Collapse
Affiliation(s)
- Michael Atchison
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
44
|
Wilkins JF, Úbeda F. Diseases associated with genomic imprinting. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:401-45. [PMID: 21507360 DOI: 10.1016/b978-0-12-387685-0.00013-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genomic imprinting is the phenomenon where the expression of a locus differs between the maternally and paternally inherited alleles. Typically, this manifests as transcriptional silencing of one of the alleles, although many genes are imprinted in a tissue- or isoform-specific manner. Diseases associated with imprinted genes include various cancers, disorders of growth and metabolism, and disorders in neurodevelopment, cognition, and behavior, including certain major psychiatric disorders. In many cases, the disease phenotypes associated with dysfunction at particular imprinted loci can be understood in terms of the evolutionary processes responsible for the origin of imprinting. Imprinted gene expression represents the outcome of an intragenomic evolutionary conflict, where natural selection favors different expression strategies for maternally and paternally inherited alleles. This conflict is reasonably well understood in the context of the early growth effects of imprinted genes, where paternally inherited alleles are selected to place a greater demand on maternal resources than are maternally inherited alleles. Less well understood are the origins of imprinted gene expression in the brain, and their effects on cognition and behavior. This chapter reviews the genetic diseases that are associated with imprinted genes, framed in terms of the evolutionary pressures acting on gene expression at those loci. We begin by reviewing the phenomenon and evolutionary origins of genomic imprinting. We then discuss diseases that are associated with genetic or epigenetic defects at particular imprinted loci, many of which are associated with abnormalities in growth and/or feeding behaviors that can be understood in terms of the asymmetric pressures of natural selection on maternally and paternally inherited alleles. We next described the evidence for imprinted gene effects on adult cognition and behavior, and the possible role of imprinted genes in the etiology of certain major psychiatric disorders. Finally, we conclude with a discussion of how imprinting, and the evolutionary-genetic conflicts that underlie it, may enhance both the frequency and morbidity of certain types of diseases.
Collapse
|
45
|
Hutter B, Bieg M, Helms V, Paulsen M. Imprinted genes show unique patterns of sequence conservation. BMC Genomics 2010; 11:649. [PMID: 21092170 PMCID: PMC3091771 DOI: 10.1186/1471-2164-11-649] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 11/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic imprinting is an evolutionary conserved mechanism of epigenetic gene regulation in placental mammals that results in silencing of one of the parental alleles. In order to decipher interactions between allele-specific DNA methylation of imprinted genes and evolutionary conservation, we performed a genome-wide comparative investigation of genomic sequences and highly conserved elements of imprinted genes in human and mouse. RESULTS Evolutionarily conserved elements in imprinted regions differ from those associated with autosomal genes in various ways. Whereas for maternally expressed genes strong divergence of protein-encoding sequences is most prominent, paternally expressed genes exhibit substantial conservation of coding and noncoding sequences. Conserved elements in imprinted regions are marked by enrichment of CpG dinucleotides and low (TpG+CpA)/(2·CpG) ratios indicate reduced CpG deamination. Interestingly, paternally and maternally expressed genes can be distinguished by differences in G+C and CpG contents that might be associated with unusual epigenetic features. Especially noncoding conserved elements of paternally expressed genes are exceptionally G+C and CpG rich. In addition, we confirmed a frequent occurrence of intronic CpG islands and observed a decelerated degeneration of ancient LINE-1 repeats. We also found a moderate enrichment of YY1 and CTCF binding sites in imprinted regions and identified several short sequence motifs in highly conserved elements that might act as additional regulatory elements. CONCLUSIONS We discovered several novel conserved DNA features that might be related to allele-specific DNA methylation. Our results hint at reduced CpG deamination rates in imprinted regions, which affects mostly noncoding conserved elements of paternally expressed genes. Pronounced differences between maternally and paternally expressed genes imply specific modes of evolution as a result of differences in epigenetic features and a special response to selective pressure. In addition, our data support the potential role of intronic CpG islands as epigenetic key regulatory elements and suggest that evolutionary conserved LINE-1 elements fulfill regulatory functions in imprinted regions.
Collapse
Affiliation(s)
- Barbara Hutter
- Lehrstuhl für Computational Biology, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
- Theoretische Bioinformatik (B080), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Matthias Bieg
- Lehrstuhl für Computational Biology, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
| | - Volkhard Helms
- Lehrstuhl für Computational Biology, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
| | - Martina Paulsen
- Lehrstuhl für Genetik/Epigenetik, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
| |
Collapse
|
46
|
Ma P, Lin S, Bartolomei MS, Schultz RM. Metastasis tumor antigen 2 (MTA2) is involved in proper imprinted expression of H19 and Peg3 during mouse preimplantation development. Biol Reprod 2010; 83:1027-35. [PMID: 20720167 DOI: 10.1095/biolreprod.110.086397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The epigenetic mechanisms involved in establishing and maintaining genomic imprinting are steadily being unmasked. The nucleosome remodeling and histone deacetylation (NuRD) complex is implicated in regulating DNA methylation and expression of the maternally expressed H19 gene in preimplantation mouse embryos. To dissect further the function of the NuRD complex in genomic imprinting, we employed an RNA interference (RNAi) strategy to deplete the NuRD complex component Metastasis Tumor Antigen 2 (MTA2). We found that Mta2 is the only zygotically expressed Mta gene prior to the blastocyst stage, and that RNAi-mediated knockdown of Mta2 transcript leads to biallelic H19 expression and loss of DNA methylation in the differentially methylated region in blastocysts. In addition, biallelic expression of the paternally expressed Peg3 gene, but not Snrpn, is also observed in blastocysts following Mta2 knockdown. Loss of MTA2 protein does not result in a decrease in abundance of other NuRD components, including methyl-binding-CpG-binding domain protein 3 (MBD3), histone deacetylases 1 and 2 (HDACs 1 and 2), and chromodomain helicase DNA-binding protein 4 (CHD4). Taken together, our results support a role for MTA2 within the NuRD complex in genomic imprinting.
Collapse
Affiliation(s)
- Pengpeng Ma
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | |
Collapse
|
47
|
Navarro P, Avner P. An embryonic story: Analysis of the gene regulative network controlling Xist expression in mouse embryonic stem cells. Bioessays 2010; 32:581-8. [DOI: 10.1002/bies.201000019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
YY1's DNA-binding motifs in mammalian olfactory receptor genes. BMC Genomics 2009; 10:576. [PMID: 19958529 PMCID: PMC2791781 DOI: 10.1186/1471-2164-10-576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 12/03/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND YY1 is an epigenetic regulator for a large number of mammalian genes. While performing genome-wide YY1 binding motif searches, we discovered that the olfactory receptor (OLFR) genes have an unusual cluster of YY1 binding sites within their coding regions. The statistical significance of this observation was further analyzed. RESULTS About 45% of the olfactory genes in the mouse have a range of 4-8 YY1 binding sites within their respective 1 kb coding regions. Statistical analyses indicate that this enrichment of YY1 motifs has likely been driven by unknown selection pressures at the DNA level, but not serendipitously by some peptides enriched within the OLFR genes. Similar patterns are also detected in the OLFR genes of all mammals analyzed, but not in the OLFR genes of the fish lineage, suggesting a mammal-specific phenomenon. CONCLUSION YY1, or YY1-related transcription factors, may help regulate olfactory receptor genes. Furthermore, the protein-coding regions of vertebrate genes can contain cis-regulatory elements for transcription factor binding as well as codons.
Collapse
|
49
|
|
50
|
Rizkallah R, Hurt MM. Regulation of the transcription factor YY1 in mitosis through phosphorylation of its DNA-binding domain. Mol Biol Cell 2009; 20:4766-76. [PMID: 19793915 DOI: 10.1091/mbc.e09-04-0264] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Yin-Yang 1 (YY1) is a ubiquitously expressed zinc finger transcription factor. It regulates a vast array of genes playing critical roles in development, differentiation, and cell cycle. Very little is known about the mechanisms that regulate the functions of YY1. It has long been proposed that YY1 is a phosphoprotein; however, a direct link between phosphorylation and the function of YY1 has never been proven. Investigation of the localization of YY1 during mitosis shows that it is distributed to the cytoplasm during prophase and remains excluded from DNA until early telophase. Immunostaining studies show that YY1 is distributed equally between daughter cells and rapidly associates with decondensing chromosomes in telophase, suggesting a role for YY1 in early marking of active and repressed genes. The exclusion of YY1 from DNA in prometaphase HeLa cells correlated with an increase in the phosphorylation of YY1 and loss of DNA-binding activity that can be reversed by dephosphorylation. We have mapped three phosphorylation sites on YY1 during mitosis and show that phosphorylation of two of these sites can abolish the DNA-binding activity of YY1. These results demonstrate a novel mechanism for the inactivation of YY1 through phosphorylation of its DNA-binding domain.
Collapse
Affiliation(s)
- Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|