1
|
Haberman N, Digby H, Faraway R, Cheung R, Chakrabarti AM, Jobbins AM, Parr C, Yasuzawa K, Kasukawa T, Yip CW, Kato M, Takahashi H, Carninci P, Vernia S, Ule J, Sibley CR, Martinez-Sanchez A, Lenhard B. Widespread 3'UTR capped RNAs derive from G-rich regions in proximity to AGO2 binding sites. BMC Biol 2024; 22:254. [PMID: 39511645 PMCID: PMC11546257 DOI: 10.1186/s12915-024-02032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/02/2024] [Indexed: 11/15/2024] Open
Abstract
The 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells. By using a combination of AGO2 enhanced individual nucleotide resolution UV crosslinking and immunoprecipitation (eiCLIP) and CAGE following siRNA treatment, we find that these 3'UTR-derived RNAs likely originate from AGO2-binding sites, and most often occur at locations with G-rich motifs bound by the RNA-binding protein UPF1. High-resolution imaging and long-read sequencing analysis validate several 3'UTR-derived RNAs, showcase their variable abundance and show that they may not co-localise with the parental mRNAs. Taken together, we provide new insights into the origin and prevalence of 3'UTR-derived RNAs, show the utility of CAGE-seq for their genome-wide detection and provide a rich dataset for exploring new biology of a poorly understood new class of RNAs.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.
| | - Holly Digby
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rupert Faraway
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Anob M Chakrabarti
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Andrew M Jobbins
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Callum Parr
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kayoko Yasuzawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Chi Wai Yip
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaki Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hazuki Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Human Technopole, Milan, 20157, Italy
| | - Santiago Vernia
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, London, W12 0NN, UK
- Institute of Biomedicine of Valencia (CSIC), Valencia, 46012, Spain
| | - Jernej Ule
- UK Dementia Research Institute at King's College London, London, SE5 9RX, UK
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK.
| | - Boris Lenhard
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
2
|
Hörtenhuber M, Hytönen MK, Mukarram AK, Arumilli M, Araujo CL, Quintero I, Syrjä P, Airas N, Kaukonen M, Kyöstilä K, Niskanen J, Jokinen TS, Mottaghitalab F, Takan I, Salokorpi N, Raman A, Stevens I, Iivanainen A, Yoshihara M, Gusev O, Bannasch D, Sukura A, Schoenebeck JJ, Ezer S, Katayama S, Daub CO, Kere J, Lohi H. The DoGA consortium expression atlas of promoters and genes in 100 canine tissues. Nat Commun 2024; 15:9082. [PMID: 39433728 PMCID: PMC11494170 DOI: 10.1038/s41467-024-52798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
The dog, Canis lupus familiaris, is an important model for studying human diseases. Unlike many model organisms, the dog genome has a comparatively poor functional annotation, which hampers gene discovery for development, morphology, disease, and behavior. To fill this gap, we established a comprehensive tissue biobank for both the dog and wolf samples. The biobank consists of 5485 samples representing 132 tissues from 13 dogs, 12 dog embryos, and 24 wolves. In a subset of 100 tissues from nine dogs and 12 embryos, we characterized gene expression activity for each promoter, including alternative and novel, i.e., previously not annotated, promoter regions, using the 5' targeting RNA sequencing technology STRT2-seq. We identified over 100,000 promoter region candidates in the recent canine genome assembly, CanFam4, including over 45,000 highly reproducible sites with gene expression and respective tissue enrichment levels. We provide a promoter and gene expression atlas with interactive, open data resources, including a data coordination center and genome browser track hubs. We demonstrated the applicability of Dog Genome Annotation (DoGA) data and resources using multiple examples spanning canine embryonic development, morphology and behavior, and diseases across species.
Collapse
Affiliation(s)
| | - Marjo K Hytönen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | | | - Meharji Arumilli
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - César L Araujo
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Ileana Quintero
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Pernilla Syrjä
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Niina Airas
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Maria Kaukonen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Kaisa Kyöstilä
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Julia Niskanen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Tarja S Jokinen
- Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | | | - Işıl Takan
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Noora Salokorpi
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland
- Folkhälsan Research Center, 00290, Helsinki, Finland
| | - Amitha Raman
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Irene Stevens
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antti Iivanainen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Masahito Yoshihara
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
| | - Oleg Gusev
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 113-8421, Tokyo, Japan
| | - Danika Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, US
| | - Antti Sukura
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Jeffrey J Schoenebeck
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland
| | - Sini Ezer
- Folkhälsan Research Center, 00290, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Carsten O Daub
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| | - Juha Kere
- Department of Medicine, Huddinge, Karolinska Institutet, Huddinge, Sweden.
- Folkhälsan Research Center, 00290, Helsinki, Finland.
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland.
| | - Hannes Lohi
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland.
- Department of Medical and Clinical Genetics, University of Helsinki, 00014, Helsinki, Finland.
- Folkhälsan Research Center, 00290, Helsinki, Finland.
| |
Collapse
|
3
|
Wang B, Chougule K, Jiao Y, Olson A, Kumar V, Gladman N, Huang J, Llaca V, Fengler K, Wei X, Wang L, Wang X, Regulski M, Drenkow J, Gingeras T, Hayes C, Armstrong J, Huang Y, Xin Z, Ware D. High-quality chromosome scale genome assemblies of two important Sorghum inbred lines, Tx2783 and RTx436. NAR Genom Bioinform 2024; 6:lqae097. [PMID: 39131819 PMCID: PMC11310780 DOI: 10.1093/nargab/lqae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Sorghum bicolor (L.) Moench is a significant grass crop globally, known for its genetic diversity. High quality genome sequences are needed to capture the diversity. We constructed high-quality, chromosome-level genome assemblies for two vital sorghum inbred lines, Tx2783 and RTx436. Through advanced single-molecule techniques, long-read sequencing and optical maps, we improved average sequence continuity 19-fold and 11-fold higher compared to existing Btx623 v3.0 reference genome and obtained 19 and 18 scaffolds (N50 of 25.6 and 14.4) for Tx2783 and RTx436, respectively. Our gene annotation efforts resulted in 29 612 protein-coding genes for the Tx2783 genome and 29 265 protein-coding genes for the RTx436 genome. Comparative analyses with 26 plant genomes which included 18 sorghum genomes and 8 outgroup species identified around 31 210 protein-coding gene families, with about 13 956 specific to sorghum. Using representative models from gene trees across the 18 sorghum genomes, a total of 72 579 pan-genes were identified, with 14% core, 60% softcore and 26% shell genes. We identified 99 genes in Tx2783 and 107 genes in RTx436 that showed functional enrichment specifically in binding and metabolic processes, as revealed by the GO enrichment Pearson Chi-Square test. We detected 36 potential large inversions in the comparison between the BTx623 Bionano map and the BTx623 v3.1 reference sequence. Strikingly, these inversions were notably absent when comparing Tx2783 or RTx436 with the BTx623 Bionano map. These inversion were mostly in the pericentromeric region which is known to have low complexity regions and harder to assemble and suggests the presence of potential artifacts in the public BTx623 reference assembly. Furthermore, in comparison to Tx2783, RTx436 exhibited 324 883 additional Single Nucleotide Polymorphisms (SNPs) and 16 506 more Insertions/Deletions (INDELs) when using BTx623 as the reference genome. We also characterized approximately 348 nucleotide-binding leucine-rich repeat (NLR) disease resistance genes in the two genomes. These high-quality genomes serve as valuable resources for discovering agronomic traits and structural variation studies.
Collapse
Affiliation(s)
- Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Yinping Jiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409-2122, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Nicholas Gladman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- USDA ARS Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, NY, USA
| | - Jian Huang
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078-6028, USA
| | - Victor Llaca
- Corteva Agriscience™, 8325 NW 62nd Avenue, Johnston, IA 50131, USA
| | - Kevin Fengler
- Corteva Agriscience™, 8325 NW 62nd Avenue, Johnston, IA 50131, USA
| | - Xuehong Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xiaofei Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Jorg Drenkow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Chad Hayes
- U.S. Department of Agriculture-Agricultural Research Service, Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Lubbock, TX 79415, USA
| | - J Scott Armstrong
- Peanut and Small Grains Research Unit, 1301 N. Western Rd. Stillwater, OK 74075, USA
| | - Yinghua Huang
- USDA-ARS Plant Science Research Laboratory, 1301 N. Western Road, Stillwater, OK 74075-2714, USA
- Dept. of Plant Biology, Ecology, and Evolution, 301 Physical Sciences, Stillwater, OK 74078-3013, USA
| | - Zhanguo Xin
- U.S. Department of Agriculture-Agricultural Research Service, Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Lubbock, TX 79415, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- USDA ARS Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Alvarez Jerez P, Daida K, Grenn FP, Malik L, Miano-Burkhardt A, Makarious MB, Ding J, Gibbs JR, Moore A, Reed X, Nalls MA, Shah S, Mahmoud M, Sedlazeck FJ, Dolzhenko E, Park M, Iwaki H, Casey B, Ryten M, Blauwendraat C, Singleton AB, Billingsley KJ. Characterizing a complex CT-rich haplotype in intron 4 of SNCA using large-scale targeted amplicon long-read sequencing. NPJ Parkinsons Dis 2024; 10:136. [PMID: 39060285 PMCID: PMC11282088 DOI: 10.1038/s41531-024-00749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with a significant risk proportion driven by genetics. While much progress has been made, most of the heritability remains unknown. This is in-part because previous genetic studies have focused on the contribution of single nucleotide variants. More complex forms of variation, such as structural variants and tandem repeats, are already associated with several synucleinopathies. However, because more sophisticated sequencing methods are usually required to detect these regions, little is understood regarding their contribution to PD. One example is a polymorphic CT-rich region in intron 4 of the SNCA gene. This haplotype has been suggested to be associated with risk of Lewy Body (LB) pathology in Alzheimer's Disease and SNCA gene expression, but is yet to be investigated in PD. Here, we attempt to resolve this CT-rich haplotype and investigate its role in PD. We performed targeted PacBio HiFi sequencing of the region in 1375 PD cases and 959 controls. We replicate the previously reported associations and a novel association between two PD risk SNVs (rs356182 and rs5019538) and haplotype 4, the largest haplotype. Through quantitative trait locus analyzes we identify a significant haplotype 4 association with alternative CAGE transcriptional start site usage, not leading to significant differential SNCA gene expression in post-mortem frontal cortex brain tissue. Therefore, disease association in this locus might not be biologically driven by this CT-rich repeat region. Our data demonstrates the complexity of this SNCA region and highlights that further follow up functional studies are warranted.
Collapse
Affiliation(s)
- Pilar Alvarez Jerez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Francis P Grenn
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Laksh Malik
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Abigail Miano-Burkhardt
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Mary B Makarious
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Anni Moore
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Xylena Reed
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Syed Shah
- DataTecnica LLC, Washington, DC, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Morgan Park
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hirotaka Iwaki
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
- DataTecnica LLC, Washington, DC, USA
| | - Bradford Casey
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Mina Ryten
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Uk Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA
| | - Kimberley J Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias, National Institute on Aging, Bethesda, MD, USA.
| |
Collapse
|
5
|
Shekhar R, O'Grady T, Keil N, Feswick A, Amador DM, Tibbetts S, Flemington E, Renne R. High-density resolution of the Kaposi's sarcoma associated herpesvirus transcriptome identifies novel transcript isoforms generated by long-range transcription and alternative splicing. Nucleic Acids Res 2024; 52:7720-7739. [PMID: 38922687 PMCID: PMC11260491 DOI: 10.1093/nar/gkae540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication. To address this challenge, we have developed a target enrichment method to increase the KSHV-specific reads for both short- and long-read sequencing platforms. Furthermore, we combined this approach with the Transcriptome Resolution through Integration of Multi-platform Data (TRIMD) pipeline developed previously to annotate transcript structures. TRIMD first builds a scaffold based on long-read sequencing and validates each transcript feature with supporting evidence from Illumina RNA-Seq and deepCAGE sequencing data. Our stringent innovative approach identified 994 unique KSHV transcripts, thus providing the first high-density KSHV lytic transcriptome. We describe a plethora of novel coding and non-coding KSHV transcript isoforms with alternative untranslated regions, splice junctions and open-reading frames, thus providing deeper insights on gene expression regulation of KSHV. Interestingly, as described for Epstein-Barr virus, we identified transcription start sites that augment long-range transcription and may increase the number of latency-associated genes potentially expressed in KS tumors.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Tina O'Grady
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Netanya Keil
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - April Feswick
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - David A Moraga Amador
- UF Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Oguchi A, Suzuki A, Komatsu S, Yoshitomi H, Bhagat S, Son R, Bonnal RJP, Kojima S, Koido M, Takeuchi K, Myouzen K, Inoue G, Hirai T, Sano H, Takegami Y, Kanemaru A, Yamaguchi I, Ishikawa Y, Tanaka N, Hirabayashi S, Konishi R, Sekito S, Inoue T, Kere J, Takeda S, Takaori-Kondo A, Endo I, Kawaoka S, Kawaji H, Ishigaki K, Ueno H, Hayashizaki Y, Pagani M, Carninci P, Yanagita M, Parrish N, Terao C, Yamamoto K, Murakawa Y. An atlas of transcribed enhancers across helper T cell diversity for decoding human diseases. Science 2024; 385:eadd8394. [PMID: 38963856 DOI: 10.1126/science.add8394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 05/01/2024] [Indexed: 07/06/2024]
Abstract
Transcribed enhancer maps can reveal nuclear interactions underpinning each cell type and connect specific cell types to diseases. Using a 5' single-cell RNA sequencing approach, we defined transcription start sites of enhancer RNAs and other classes of coding and noncoding RNAs in human CD4+ T cells, revealing cellular heterogeneity and differentiation trajectories. Integration of these datasets with single-cell chromatin profiles showed that active enhancers with bidirectional RNA transcription are highly cell type-specific and that disease heritability is strongly enriched in these enhancers. The resulting cell type-resolved multimodal atlas of bidirectionally transcribed enhancers, which we linked with promoters using fine-scale chromatin contact maps, enabled us to systematically interpret genetic variants associated with a range of immune-mediated diseases.
Collapse
Affiliation(s)
- Akiko Oguchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuichiro Komatsu
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Hiroyuki Yoshitomi
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shruti Bhagat
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Raku Son
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shohei Kojima
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuhiro Takeuchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Myouzen
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Gyo Inoue
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomoya Hirai
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiromi Sano
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | | | | | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nao Tanaka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shigeki Hirabayashi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Riyo Konishi
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sho Sekito
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shinpei Kawaoka
- Inter-Organ Communication Research Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Integrative Bioanalytics, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hideki Ueno
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihide Hayashizaki
- K.K. DNAFORM, Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Japan
| | - Massimiliano Pagani
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi, Milan, Italy
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Motoko Yanagita
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nicholas Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Wong EWP, Sahin M, Yang R, Lee U, Zhan YA, Misra R, Tomas F, Alomran N, Polyzos A, Lee CJ, Trieu T, Fundichely AM, Wiesner T, Rosowicz A, Cheng S, Liu C, Lallo M, Merghoub T, Hamard PJ, Koche R, Khurana E, Apostolou E, Zheng D, Chen Y, Leslie CS, Chi P. TAD hierarchy restricts poised LTR activation and loss of TAD hierarchy promotes LTR co-option in cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596845. [PMID: 38895201 PMCID: PMC11185511 DOI: 10.1101/2024.05.31.596845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Transposable elements (TEs) are abundant in the human genome, and they provide the sources for genetic and functional diversity. The regulation of TEs expression and their functional consequences in physiological conditions and cancer development remain to be fully elucidated. Previous studies suggested TEs are repressed by DNA methylation and chromatin modifications. The effect of 3D chromatin topology on TE regulation remains elusive. Here, by integrating transcriptome and 3D genome architecture studies, we showed that haploinsufficient loss of NIPBL selectively activates alternative promoters at the long terminal repeats (LTRs) of the TE subclasses. This activation occurs through the reorganization of topologically associating domain (TAD) hierarchical structures and recruitment of proximal enhancers. These observations indicate that TAD hierarchy restricts transcriptional activation of LTRs that already possess open chromatin features. In cancer, perturbation of the hierarchical chromatin topology can lead to co-option of LTRs as functional alternative promoters in a context-dependent manner and drive aberrant transcriptional activation of novel oncogenes and other divergent transcripts. These data uncovered a new layer of regulatory mechanism of TE expression beyond DNA and chromatin modification in human genome. They also posit the TAD hierarchy dysregulation as a novel mechanism for alternative promoter-mediated oncogene activation and transcriptional diversity in cancer, which may be exploited therapeutically.
Collapse
|
8
|
Cochran K, Yin M, Mantripragada A, Schreiber J, Marinov GK, Kundaje A. Dissecting the cis-regulatory syntax of transcription initiation with deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596138. [PMID: 38853896 PMCID: PMC11160661 DOI: 10.1101/2024.05.28.596138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Despite extensive characterization of mammalian Pol II transcription, the DNA sequence determinants of transcription initiation at a third of human promoters and most enhancers remain poorly understood. Hence, we trained and interpreted a neural network called ProCapNet that accurately models base-resolution initiation profiles from PRO-cap experiments using local DNA sequence. ProCapNet learns sequence motifs with distinct effects on initiation rates and TSS positioning and uncovers context-specific cryptic initiator elements intertwined within other TF motifs. ProCapNet annotates predictive motifs in nearly all actively transcribed regulatory elements across multiple cell-lines, revealing a shared cis-regulatory logic across promoters and enhancers mediated by a highly epistatic sequence syntax of cooperative and competitive motif interactions. ProCapNet models of RAMPAGE profiles measuring steady-state RNA abundance at TSSs distill initiation signals on par with models trained directly on PRO-cap profiles. ProCapNet learns a largely cell-type-agnostic cis-regulatory code of initiation complementing sequence drivers of cell-type-specific chromatin state critical for accurate prediction of cell-type-specific transcription initiation.
Collapse
Affiliation(s)
- Kelly Cochran
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | | | - Jacob Schreiber
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
9
|
Wang J, Agarwal V. How DNA encodes the start of transcription. Science 2024; 384:382-383. [PMID: 38662850 DOI: 10.1126/science.adp0869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A deep-learning model reveals the rules that define transcription initiation.
Collapse
Affiliation(s)
- Jun Wang
- mRNA Center of Excellence, Sanofi Pasteur, Inc., Waltham, MA, USA
| | - Vikram Agarwal
- mRNA Center of Excellence, Sanofi Pasteur, Inc., Waltham, MA, USA
| |
Collapse
|
10
|
Mitra A, Dasgupta A, Mitra D. Cellular HSF1 expression is induced during HIV-1 infection by activation of its promoter mediated through the cooperative interaction of HSF1 and viral Nef protein. Arch Biochem Biophys 2024; 754:109947. [PMID: 38417690 DOI: 10.1016/j.abb.2024.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The Human Immunodeficiency Virus-1 (HIV-1) tends to activate cellular promoters driving expression of pro-viral genes by complex host-virus interactions for productive infection. We have previously demonstrated that expression of such a positive host factor HSF1 (heat shock factor 1) is elevated during HIV-1 infection; however, the mechanism remains to be elucidated. In the present study, we therefore examined whether HSF1 promoter is induced during HIV-1 infection leading to up-regulation of hsf1 gene expression. We mapped the putative transcription start site (TSS) predicted by Eukaryotic promoter database and deletion constructs of the predicted promoter region were tested through luciferase assay to identify the active promoter. The 347 bp upstream to 153 bp downstream region around the putative TSS displayed the highest activity and both Sp1 (stimulating protein 1) and HSF1 itself were identified to be important for its basal activation. Activity of HSF1 promoter was further stimulated during HIV-1 infection in CD4+ T cells, where interestingly the HSF1-site itself seems to play a major role. In addition, HIV-1 protein Nef (negative factor) was also observed to be responsible for the virus-mediated induction of hsf1 gene expression. Chromatin-immunoprecipitation assays further demonstrate that Nef and HSF1 are co-recruited to the HSF1-binding site and cooperatively act on this promoter. The interplay between host HSF1 and viral Nef on HSF1 promoter eventually leads to increase in HSF1 expression during HIV-1 infection. Understanding the mechanism of HSF1 up-regulation during HIV-1 infection might contribute to future antiviral strategies as HSF1 is a positive regulator of virus replication.
Collapse
Affiliation(s)
- Alapani Mitra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| | - Anindita Dasgupta
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| | - Debashis Mitra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune - 411007, Maharashtra, India.
| |
Collapse
|
11
|
Prazsák I, Tombácz D, Fülöp Á, Torma G, Gulyás G, Dörmő Á, Kakuk B, McKenzie Spires L, Toth Z, Boldogkői Z. KSHV 3.0: a state-of-the-art annotation of the Kaposi's sarcoma-associated herpesvirus transcriptome using cross-platform sequencing. mSystems 2024; 9:e0100723. [PMID: 38206015 PMCID: PMC10878076 DOI: 10.1128/msystems.01007-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing data set of the lytic and latent KSHV transcriptome using native RNA and direct cDNA-sequencing methods. This was supplemented with Cap Analysis of Gene Expression sequencing based on a short-read platform. We also utilized data sets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding by integrating our data on the viral transcripts with translatomic information from other publications.IMPORTANCEDeciphering the viral transcriptome of Kaposi's sarcoma-associated herpesvirus is of great importance because we can gain insight into the molecular mechanism of viral replication and pathogenesis, which can help develop potential targets for antiviral interventions. Specifically, the identification of substantial transcriptional overlaps by this work suggests the existence of a genome-wide interference between transcriptional machineries. This finding indicates the presence of a novel regulatory layer, potentially controlling the expression of viral genes.
Collapse
Affiliation(s)
- István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Maeng JH, Jang HJ, Du AY, Tzeng SC, Wang T. Using long-read CAGE sequencing to profile cryptic-promoter-derived transcripts and their contribution to the immunopeptidome. Genome Res 2023; 33:2143-2155. [PMID: 38065624 PMCID: PMC10760525 DOI: 10.1101/gr.277061.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/13/2023] [Indexed: 01/04/2024]
Abstract
Recent studies have shown that the noncoding genome can produce unannotated proteins as antigens that induce immune response. One major source of this activity is the aberrant epigenetic reactivation of transposable elements (TEs). In tumors, TEs often provide cryptic or alternate promoters, which can generate transcripts that encode tumor-specific unannotated proteins. Thus, TE-derived transcripts (TE transcripts) have the potential to produce tumor-specific, but recurrent, antigens shared among many tumors. Identification of TE-derived tumor antigens holds the promise to improve cancer immunotherapy approaches; however, current genomics and computational tools are not optimized for their detection. Here we combined CAGE technology with full-length long-read transcriptome sequencing (long-read CAGE, or LRCAGE) and developed a suite of computational tools to significantly improve immunopeptidome detection by incorporating TE and other tumor transcripts into the proteome database. By applying our methods to human lung cancer cell line H1299 data, we show that long-read technology significantly improves mapping of promoters with low mappability scores and that LRCAGE guarantees accurate construction of uncharacterized 5' transcript structure. Augmenting a reference proteome database with newly characterized transcripts enabled us to detect noncanonical antigens from HLA-pulldown LC-MS/MS data. Lastly, we show that epigenetic treatment increased the number of noncanonical antigens, particularly those encoded by TE transcripts, which might expand the pool of targetable antigens for cancers with low mutational burden.
Collapse
Affiliation(s)
- Ju Heon Maeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - H Josh Jang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Alan Y Du
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Shin-Cheng Tzeng
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
13
|
Horste EL, Fansler MM, Cai T, Chen X, Mitschka S, Zhen G, Lee FCY, Ule J, Mayr C. Subcytoplasmic location of translation controls protein output. Mol Cell 2023; 83:4509-4523.e11. [PMID: 38134885 PMCID: PMC11146010 DOI: 10.1016/j.molcel.2023.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
The cytoplasm is highly compartmentalized, but the extent and consequences of subcytoplasmic mRNA localization in non-polarized cells are largely unknown. We determined mRNA enrichment in TIS granules (TGs) and the rough endoplasmic reticulum (ER) through particle sorting and isolated cytosolic mRNAs by digitonin extraction. When focusing on genes that encode non-membrane proteins, we observed that 52% have transcripts enriched in specific compartments. Compartment enrichment correlates with a combinatorial code based on mRNA length, exon length, and 3' UTR-bound RNA-binding proteins. Compartment-biased mRNAs differ in the functional classes of their encoded proteins: TG-enriched mRNAs encode low-abundance proteins with strong enrichment of transcription factors, whereas ER-enriched mRNAs encode large and highly expressed proteins. Compartment localization is an important determinant of mRNA and protein abundance, which is supported by reporter experiments showing that redirecting cytosolic mRNAs to the ER increases their protein expression. In summary, the cytoplasm is functionally compartmentalized by local translation environments.
Collapse
Affiliation(s)
- Ellen L Horste
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA; Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mervin M Fansler
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY 10021, USA
| | - Ting Cai
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Xiuzhen Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Sibylle Mitschka
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Gang Zhen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Flora C Y Lee
- UK Dementia Research Institute, King's College London, London SE5 9NU, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jernej Ule
- UK Dementia Research Institute, King's College London, London SE5 9NU, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christine Mayr
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA; Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill-Cornell Graduate College, New York, NY 10021, USA.
| |
Collapse
|
14
|
Reimão-Pinto MM, Castillo-Hair SM, Seelig G, Schier AF. The regulatory landscape of 5' UTRs in translational control during zebrafish embryogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568470. [PMID: 38045294 PMCID: PMC10690280 DOI: 10.1101/2023.11.23.568470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The 5' UTRs of mRNAs are critical for translation regulation, but their in vivo regulatory features are poorly characterized. Here, we report the regulatory landscape of 5' UTRs during early zebrafish embryogenesis using a massively parallel reporter assay of 18,154 sequences coupled to polysome profiling. We found that the 5' UTR is sufficient to confer temporal dynamics to translation initiation, and identified 86 motifs enriched in 5' UTRs with distinct ribosome recruitment capabilities. A quantitative deep learning model, DaniO5P, revealed a combined role for 5' UTR length, translation initiation site context, upstream AUGs and sequence motifs on in vivo ribosome recruitment. DaniO5P predicts the activities of 5' UTR isoforms and indicates that modulating 5' UTR length and motif grammar contributes to translation initiation dynamics. This study provides a first quantitative model of 5' UTR-based translation regulation in early vertebrate development and lays the foundation for identifying the underlying molecular effectors.
Collapse
Affiliation(s)
| | - Sebastian M Castillo-Hair
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Alex F Schier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Yang Q, Wang T, Cao J, Wang HL, Tan S, Zhang Y, Park S, Park H, Woo HR, Li X, Xia X, Guo H, Li Z. Histone variant HTB4 delays leaf senescence by epigenetic control of Ib bHLH transcription factor-mediated iron homeostasis. THE NEW PHYTOLOGIST 2023; 240:694-709. [PMID: 37265004 DOI: 10.1111/nph.19008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
Leaf senescence is an orderly process regulated by multiple internal factors and diverse environmental stresses including nutrient deficiency. Histone variants are involved in regulating plant growth and development. However, their functions and underlying regulatory mechanisms in leaf senescence remain largely unclear. Here, we found that H2B histone variant HTB4 functions as a negative regulator of leaf senescence. Loss of function of HTB4 led to early leaf senescence phenotypes that were rescued by functional complementation. RNA-seq analysis revealed that several Ib subgroup basic helix-loop-helix (bHLH) transcription factors (TFs) involved in iron (Fe) homeostasis, including bHLH038, bHLH039, bHLH100, and bHLH101, were suppressed in the htb4 mutant, thereby compromising the expressions of FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER (IRT1), two important components of the Fe uptake machinery. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that HTB4 could bind to the promoter regions of Ib bHLH TFs and enhance their expression by promoting the enrichment of the active mark H3K4me3 near their transcriptional start sites. Moreover, overexpression of Ib bHLH TFs or IRT1 suppressed the premature senescence phenotype of the htb4 mutant. Our work established a signaling pathway, HTB4-bHLH TFs-FRO2/IRT1-Fe homeostasis, which regulates the onset and progression of leaf senescence.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Xiaojuan Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
16
|
Prazsák I, Tombácz D, Fülöp Á, Torma G, Gulyás G, Dörmő Á, Kakuk B, Spires LM, Toth Z, Boldogkői Z. KSHV 3.0: A State-of-the-Art Annotation of the Kaposi's Sarcoma-Associated Herpesvirus Transcriptome Using Cross-Platform Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558842. [PMID: 37790386 PMCID: PMC10542539 DOI: 10.1101/2023.09.21.558842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing dataset of the lytic and latent KSHV transcriptome using native RNA and direct cDNA sequencing methods. This was supplemented with CAGE sequencing based on a short-read platform. We also utilized datasets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding, by integrating our data on the viral transcripts with translatomic information from other publications.
Collapse
Affiliation(s)
- István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
17
|
Nicastro G, Abis G, Klein P, Esteban-Serna S, Gallagher C, Chaves-Arquero B, Cai Y, Figueiredo AM, Martin SR, Patani R, Taylor IA, Ramos A. Direct m6A recognition by IMP1 underlays an alternative model of target selection for non-canonical methyl-readers. Nucleic Acids Res 2023; 51:8774-8786. [PMID: 37377445 PMCID: PMC10484666 DOI: 10.1093/nar/gkad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
m6A methylation provides an essential layer of regulation in organismal development, and is aberrant in a range of cancers and neuro-pathologies. The information encoded by m6A methylation is integrated into existing RNA regulatory networks by RNA binding proteins that recognise methylated sites, the m6A readers. m6A readers include a well-characterised class of dedicated proteins, the YTH proteins, as well as a broader group of multi-functional regulators where recognition of m6A is only partially understood. Molecular insight in this recognition is essential to build a mechanistic understanding of global m6A regulation. In this study, we show that the reader IMP1 recognises the m6A using a dedicated hydrophobic platform that assembles on the methyl moiety, creating a stable high-affinity interaction. This recognition is conserved across evolution and independent from the underlying sequence context but is layered upon the strong sequence specificity of IMP1 for GGAC RNA. This leads us to propose a concept for m6A regulation where methylation plays a context-dependent role in the recognition of selected IMP1 targets that is dependent on the cellular concentration of available IMP1, differing from that observed for the YTH proteins.
Collapse
Affiliation(s)
- Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Pierre Klein
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sofia Esteban-Serna
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Christopher Gallagher
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Belen Chaves-Arquero
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Yuyang Cai
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Stephen R Martin
- Structural Biology Technology Platform, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andres Ramos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
18
|
Ye X, He C, Yang Y, Sun YH, Xiong S, Chan KC, Si Y, Xiao S, Zhao X, Lin H, Mei Y, Yao Y, Ye G, Wu F, Fang Q. Comprehensive isoform-level analysis reveals the contribution of alternative isoforms to venom evolution and repertoire diversity. Genome Res 2023; 33:1554-1567. [PMID: 37798117 PMCID: PMC10620052 DOI: 10.1101/gr.277707.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023]
Abstract
Animal venom systems have emerged as valuable models for investigating how novel polygenic phenotypes may arise from gene evolution by varying molecular mechanisms. However, a significant portion of venom genes produce alternative mRNA isoforms that have not been extensively characterized, hindering a comprehensive understanding of venom biology. In this study, we present a full-length isoform-level profiling workflow integrating multiple RNA sequencing technologies, allowing us to reconstruct a high-resolution transcriptome landscape of venom genes in the parasitoid wasp Pteromalus puparum Our findings demonstrate that more than half of the venom genes generate multiple isoforms within the venom gland. Through mass spectrometry analysis, we confirm that alternative splicing contributes to the diversity of venom proteins, acting as a mechanism for expanding the venom repertoire. Notably, we identified seven venom genes that exhibit distinct isoform usages between the venom gland and other tissues. Furthermore, evolutionary analyses of venom serpin3 and orcokinin further reveal that the co-option of an ancient isoform and a newly evolved isoform, respectively, contributes to venom recruitment, providing valuable insights into the genetic mechanisms driving venom evolution in parasitoid wasps. Overall, our study presents a comprehensive investigation of venom genes at the isoform level, significantly advancing our understanding of alternative isoforms in venom diversity and evolution and setting the stage for further in-depth research on venoms.
Collapse
Affiliation(s)
- Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Chun He
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu H Sun
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kevin C Chan
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China
| | - Yuxuan Si
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianxin Zhao
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiwei Lin
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Mei
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yufeng Yao
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wu
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai 201203, China;
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
19
|
Salavati M, Clark R, Becker D, Kühn C, Plastow G, Dupont S, Moreira GCM, Charlier C, Clark EL. Improving the annotation of the cattle genome by annotating transcription start sites in a diverse set of tissues and populations using Cap Analysis Gene Expression sequencing. G3 (BETHESDA, MD.) 2023; 13:jkad108. [PMID: 37216666 PMCID: PMC10411599 DOI: 10.1093/g3journal/jkad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 02/27/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
Understanding the genomic control of tissue-specific gene expression and regulation can help to inform the application of genomic technologies in farm animal breeding programs. The fine mapping of promoters [transcription start sites (TSS)] and enhancers (divergent amplifying segments of the genome local to TSS) in different populations of cattle across a wide diversity of tissues provides information to locate and understand the genomic drivers of breed- and tissue-specific characteristics. To this aim, we used Cap Analysis Gene Expression (CAGE) sequencing, of 24 different tissues from 3 populations of cattle, to define TSS and their coexpressed short-range enhancers (<1 kb) in the ARS-UCD1.2_Btau5.0.1Y reference genome (1000bulls run9) and analyzed tissue and population specificity of expressed promoters. We identified 51,295 TSS and 2,328 TSS-Enhancer regions shared across the 3 populations (dairy, beef-dairy cross, and Canadian Kinsella composite cattle from 2 individuals, 1 of each sex, per population). Cross-species comparative analysis of CAGE data from 7 other species, including sheep, revealed a set of TSS and TSS-Enhancers that were specific to cattle. The CAGE data set will be combined with other transcriptomic information for the same tissues to create a new high-resolution map of transcript diversity across tissues and populations in cattle for the BovReg project. Here we provide the CAGE data set and annotation tracks for TSS and TSS-Enhancers in the cattle genome. This new annotation information will improve our understanding of the drivers of gene expression and regulation in cattle and help to inform the application of genomic technologies in breeding programs.
Collapse
Affiliation(s)
- Mazdak Salavati
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, Genetics Core, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Doreen Becker
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christa Kühn
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
- Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock 18059, Germany
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton T6G 2H1, Canada
| | - Sébastien Dupont
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | - Carole Charlier
- Unit of Animal Genomics, GIGA Institute, University of Liège, Liège 4000, Belgium
- Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
| | | |
Collapse
|
20
|
West C, Capitanchik C, Cheshire C, Luscombe NM, Chakrabarti A, Ule J. nf-core/clipseq - a robust Nextflow pipeline for comprehensive CLIP data analysis. Wellcome Open Res 2023; 8:286. [PMID: 37829674 PMCID: PMC10565428 DOI: 10.12688/wellcomeopenres.19453.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 10/14/2023] Open
Abstract
Crosslinking and immunoprecipitation (CLIP) technologies have become a central component of the molecular biologists' toolkit to study protein-RNA interactions and thus to uncover core principles of RNA biology. There has been a proliferation of CLIP-based experimental protocols, as well as computational tools, especially for peak-calling. Consequently, there is an urgent need for a well-documented bioinformatic pipeline that enshrines the principles of robustness, reproducibility, scalability, portability and flexibility while embracing the diversity of experimental and computational CLIP tools. To address this, we present nf-core/clipseq - a robust Nextflow pipeline for quality control and analysis of CLIP sequencing data. It is part of the international nf-core community effort to develop and curate a best-practice, gold-standard set of pipelines for data analysis. The standards enabled by Nextflow and nf-core, including workflow management, version control, continuous integration and containerisation ensure that these key needs are met. Furthermore, multiple tools are implemented ( e.g. for peak-calling), alongside visualisation of quality control metrics to empower the user to make their own informed decisions based on their data. nf-core/clipseq remains under active development, with plans to incorporate newly released tools to ensure that pipeline remains up-to-date and relevant for the community. Engagement with users and developers is encouraged through the nf-core GitHub repository and Slack channel to promote collaboration. It is available at https://nf-co.re/clipseq.
Collapse
Affiliation(s)
| | - Charlotte Capitanchik
- The Francis Crick Institute, London, England, UK
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Nicholas M. Luscombe
- The Francis Crick Institute, London, England, UK
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | | | - Jernej Ule
- The Francis Crick Institute, London, England, UK
- UK Dementia Research Institute at King's College London, London, UK
| |
Collapse
|
21
|
Li Y, Huang Z, Zhang Z, Wang Q, Li F, Wang S, Ji X, Shu S, Fang X, Jiang L. FIPRESCI: droplet microfluidics based combinatorial indexing for massive-scale 5'-end single-cell RNA sequencing. Genome Biol 2023; 24:70. [PMID: 37024957 PMCID: PMC10078054 DOI: 10.1186/s13059-023-02893-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Single-cell RNA sequencing methods focusing on the 5'-end of transcripts can reveal promoter and enhancer activity and efficiently profile immune receptor repertoire. However, ultra-high-throughput 5'-end single-cell RNA sequencing methods have not been described. We introduce FIPRESCI, 5'-end single-cell combinatorial indexing RNA-Seq, enabling massive sample multiplexing and increasing the throughput of the droplet microfluidics system by over tenfold. We demonstrate FIPRESCI enables the generation of approximately 100,000 single-cell transcriptomes from E10.5 whole mouse embryos in a single-channel experiment, and simultaneous identification of subpopulation differences and T cell receptor signatures of peripheral blood T cells from 12 cancer patients.
Collapse
Affiliation(s)
- Yun Li
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Huang
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaojun Zhang
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qifei Wang
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengxian Li
- The Blood Transfusion Department, First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Shufang Wang
- The Blood Transfusion Department, First Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China
| | - Xin Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Shaokun Shu
- Peking University International Cancer Institute & Peking University Cancer Hospital & Institute, Beijing, 100191, China
| | - Xiangdong Fang
- China National Center for Bioinformation, Beijing, 100101, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Lan Jiang
- China National Center for Bioinformation, Beijing, 100101, China.
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
- College of Future Technology College, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Moeckel C, Zaravinos A, Georgakopoulos-Soares I. Strand Asymmetries Across Genomic Processes. Comput Struct Biotechnol J 2023; 21:2036-2047. [PMID: 36968020 PMCID: PMC10030826 DOI: 10.1016/j.csbj.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Across biological systems, a number of genomic processes, including transcription, replication, DNA repair, and transcription factor binding, display intrinsic directionalities. These directionalities are reflected in the asymmetric distribution of nucleotides, motifs, genes, transposon integration sites, and other functional elements across the two complementary strands. Strand asymmetries, including GC skews and mutational biases, have shaped the nucleotide composition of diverse organisms. The investigation of strand asymmetries often serves as a method to understand underlying biological mechanisms, including protein binding preferences, transcription factor interactions, retrotransposition, DNA damage and repair preferences, transcription-replication collisions, and mutagenesis mechanisms. Research into this subject also enables the identification of functional genomic sites, such as replication origins and transcription start sites. Improvements in our ability to detect and quantify DNA strand asymmetries will provide insights into diverse functionalities of the genome, the contribution of different mutational mechanisms in germline and somatic mutagenesis, and our knowledge of genome instability and evolution, which all have significant clinical implications in human disease, including cancer. In this review, we describe key developments that have been made across the field of genomic strand asymmetries, as well as the discovery of associated mechanisms.
Collapse
Affiliation(s)
- Camille Moeckel
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Corresponding author at: Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus.
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Corresponding author.
| |
Collapse
|
23
|
Akcan TS, Vilov S, Heinig M. Predictive model of transcriptional elongation control identifies trans regulatory factors from chromatin signatures. Nucleic Acids Res 2023; 51:1608-1624. [PMID: 36727445 PMCID: PMC9976927 DOI: 10.1093/nar/gkac1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Promoter-proximal Polymerase II (Pol II) pausing is a key rate-limiting step for gene expression. DNA and RNA-binding trans-acting factors regulating the extent of pausing have been identified. However, we lack a quantitative model of how interactions of these factors determine pausing, therefore the relative importance of implicated factors is unknown. Moreover, previously unknown regulators might exist. Here we address this gap with a machine learning model that accurately predicts the extent of promoter-proximal Pol II pausing from large-scale genome and transcriptome binding maps and gene annotation and sequence composition features. We demonstrate high accuracy and generalizability of the model by validation on an independent cell line which reveals the model's cell line agnostic character. Model interpretation in light of prior knowledge about molecular functions of regulatory factors confirms the interconnection of pausing with other RNA processing steps. Harnessing underlying feature contributions, we assess the relative importance of each factor, quantify their predictive effects and systematically identify previously unknown regulators of pausing. We additionally identify 16 previously unknown 7SK ncRNA interacting RNA-binding proteins predictive of pausing. Our work provides a framework to further our understanding of the regulation of the critical early steps in transcriptional elongation.
Collapse
Affiliation(s)
- Toray S Akcan
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Sergey Vilov
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| |
Collapse
|
24
|
Yamada S, Miyata H, Isono M, Hori K, Yanagawa J, Murai A, Minowa T, Mizue Y, Sasaki K, Murata K, Tokita S, Nakatsugawa M, Iwabuchi S, Hashimoto S, Kubo T, Kanaseki T, Tsukahara T, Abe T, Shinohara N, Hirohashi Y, Torigoe T. Cisplatin resistance driver claspin is a target for immunotherapy in urothelial carcinoma. Cancer Immunol Immunother 2023:10.1007/s00262-023-03388-5. [PMID: 36795123 DOI: 10.1007/s00262-023-03388-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
Bladder cancer is a major and fatal urological disease. Cisplatin is a key drug for the treatment of bladder cancer, especially in muscle-invasive cases. In most cases of bladder cancer, cisplatin is effective; however, resistance to cisplatin has a significant negative impact on prognosis. Thus, a treatment strategy for cisplatin-resistant bladder cancer is essential to improve the prognosis. In this study, we established a cisplatin-resistant (CR) bladder cancer cell line using an urothelial carcinoma cell lines (UM-UC-3 and J82). We screened for potential targets in CR cells and found that claspin (CLSPN) was overexpressed. CLSPN mRNA knockdown revealed that CLSPN had a role in cisplatin resistance in CR cells. In our previous study, we identified human leukocyte antigen (HLA)-A*02:01-restricted CLSPN peptide by HLA ligandome analysis. Thus, we generated a CLSPN peptide-specific cytotoxic T lymphocyte clone that recognized CR cells at a higher level than wild-type UM-UC-3 cells. These findings indicate that CLSPN is a driver of cisplatin resistance and CLSPN peptide-specific immunotherapy may be effective for cisplatin-resistant cases.
Collapse
Affiliation(s)
- Shuhei Yamada
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan
| | - Haruka Miyata
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan
| | - Makoto Isono
- Department of Urology, Abiko Toho Hospital, Abiko, 270-1166, Japan
| | - Kanta Hori
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.,Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan
| | - Junko Yanagawa
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Aiko Murai
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Tomoyuki Minowa
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.,Departments of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, 060-8556, Japan
| | - Yuka Mizue
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Kenta Sasaki
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.,Department of Dermatology, Asahikawa Medical University School of Medicine, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kenji Murata
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Serina Tokita
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, 193-0998, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama, 641-8509, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama, 641-8509, Japan
| | - Terufumi Kubo
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takayuki Kanaseki
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Tomohide Tsukahara
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashige Abe
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8648, Japan
| | - Yoshihiko Hirohashi
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Toshihiko Torigoe
- Departments of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
| |
Collapse
|
25
|
Najnin RA, Al Mahmud MR, Rahman MM, Takeda S, Sasanuma H, Tanaka H, Murakawa Y, Shimizu N, Akter S, Takagi M, Sunada T, Akamatsu S, He G, Itou J, Toi M, Miyaji M, Tsutsui KM, Keeney S, Yamada S. ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen. Cell Rep 2023; 42:111909. [PMID: 36640339 PMCID: PMC10023214 DOI: 10.1016/j.celrep.2022.111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
ATM gene mutation carriers are predisposed to estrogen-receptor-positive breast cancer (BC). ATM prevents BC oncogenesis by activating p53 in every cell; however, much remains unknown about tissue-specific oncogenesis after ATM loss. Here, we report that ATM controls the early transcriptional response to estrogens. This response depends on topoisomerase II (TOP2), which generates TOP2-DNA double-strand break (DSB) complexes and rejoins the breaks. When TOP2-mediated ligation fails, ATM facilitates DSB repair. After estrogen exposure, TOP2-dependent DSBs arise at the c-MYC enhancer in human BC cells, and their defective repair changes the activation profile of enhancers and induces the overexpression of many genes, including the c-MYC oncogene. CRISPR/Cas9 cleavage at the enhancer also causes c-MYC overexpression, indicating that this DSB causes c-MYC overexpression. Estrogen treatment induced c-Myc protein overexpression in mammary epithelial cells of ATM-deficient mice. In conclusion, ATM suppresses the c-Myc-driven proliferative effects of estrogens, possibly explaining such tissue-specific oncogenesis.
Collapse
Affiliation(s)
- Rifat Ara Najnin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Rasel Al Mahmud
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Shunichi Takeda
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; IFOM-the FIRC Institute of Molecular Oncology, Milan, Italy; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Naoto Shimizu
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Salma Akter
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takuro Sunada
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shougoin Kawahara-cho, Kyoto 606-8507, Japan
| | - Gang He
- Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Junji Itou
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masakazu Toi
- Breast Cancer Unit, Kyoto University Hospital, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mary Miyaji
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kimiko M Tsutsui
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
26
|
Class II LitR serves as an effector of "short" LOV-type blue-light photoreceptor in Pseudomonas mendocina. Sci Rep 2022; 12:21765. [PMID: 36526696 PMCID: PMC9758184 DOI: 10.1038/s41598-022-26254-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
PmlR2, a class II LitR/CarH family transcriptional regulator, and PmSB-LOV, a "short" LOV-type blue light photoreceptor, are adjacently encoded in Pseudomonas mendocina NBRC 14162. An effector protein for the "short" LOV-type photoreceptor in Pseudomonas has not yet been identified. Here, we show that PmlR2 is an effector protein of PmSB-LOV. Transcriptional analyses revealed that the expression of genes located near pmlR2 and its homolog gene, pmlR1, was induced in response to illumination. In vitro DNA-protein binding analyses showed that recombinant PmlR2 directly binds to the promoter region of light-inducible genes. Furthermore PmSB-LOV exhibited a typical LOV-type light-induced spectral change. Gel-filtration chromatography demonstrated that the illuminated PmSB-LOV was directly associated with PmlR2, whereas non-illuminated proteins did not interact. The inhibition of PmlR2 function following PmSB-LOV binding was verified by surface plasmon resonance: the DNA-binding ability of PmlR2 was specifically inhibited in the presence of blue light-illuminated-PmSB-LOV. An In vitro transcription assay showed a dose-dependent reduction in PmlR2 repressor activity in the presence of illuminated PmSB-LOV. Overall, evidence suggests that the DNA-binding activity of PmlR2 is inhibited by its direct association with blue light-activated PmSB-LOV, enabling transcription of light-inducible promoters by RNA polymerase.
Collapse
|
27
|
Grigoriadis D, Perdikopanis N, Georgakilas GK, Hatzigeorgiou AG. DeepTSS: multi-branch convolutional neural network for transcription start site identification from CAGE data. BMC Bioinformatics 2022; 23:395. [PMID: 36510136 PMCID: PMC9743497 DOI: 10.1186/s12859-022-04945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The widespread usage of Cap Analysis of Gene Expression (CAGE) has led to numerous breakthroughs in understanding the transcription mechanisms. Recent evidence in the literature, however, suggests that CAGE suffers from transcriptional and technical noise. Regardless of the sample quality, there is a significant number of CAGE peaks that are not associated with transcription initiation events. This type of signal is typically attributed to technical noise and more frequently to random five-prime capping or transcription bioproducts. Thus, the need for computational methods emerges, that can accurately increase the signal-to-noise ratio in CAGE data, resulting in error-free transcription start site (TSS) annotation and quantification of regulatory region usage. In this study, we present DeepTSS, a novel computational method for processing CAGE samples, that combines genomic signal processing (GSP), structural DNA features, evolutionary conservation evidence and raw DNA sequence with Deep Learning (DL) to provide single-nucleotide TSS predictions with unprecedented levels of performance. RESULTS To evaluate DeepTSS, we utilized experimental data, protein-coding gene annotations and computationally-derived genome segmentations by chromatin states. DeepTSS was found to outperform existing algorithms on all benchmarks, achieving 98% precision and 96% sensitivity (accuracy 95.4%) on the protein-coding gene strategy, with 96.66% of its positive predictions overlapping active chromatin, 98.27% and 92.04% co-localized with at least one transcription factor and H3K4me3 peak. CONCLUSIONS CAGE is a key protocol in deciphering the language of transcription, however, as every experimental protocol, it suffers from biological and technical noise that can severely affect downstream analyses. DeepTSS is a novel DL-based method for effectively removing noisy CAGE signal. In contrast to existing software, DeepTSS does not require feature selection since the embedded convolutional layers can readily identify patterns and only utilize the important ones for the classification task. This study highlights the key role that DL can play in Molecular Biology, by removing the inherent flaws of experimental protocols, that form the backbone of contemporary research. Here, we show how DeepTSS can unleash the full potential of an already popular and mature method such as CAGE, and push the boundaries of coding and non-coding gene expression regulator research even further.
Collapse
Affiliation(s)
- Dimitris Grigoriadis
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| | - Nikos Perdikopanis
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.5216.00000 0001 2155 0800Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece ,grid.410558.d0000 0001 0035 6670Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece
| | - Georgios K. Georgakilas
- grid.410558.d0000 0001 0035 6670Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece ,ommAI Technologies, Tallinn, Estonia
| | - Artemis G. Hatzigeorgiou
- grid.418497.7Hellenic Pasteur Institute, 11521 Athens, Greece ,grid.410558.d0000 0001 0035 6670Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece
| |
Collapse
|
28
|
van den Elzen AMG, Watson MJ, Thoreen CC. mRNA 5' terminal sequences drive 200-fold differences in expression through effects on synthesis, translation and decay. PLoS Genet 2022; 18:e1010532. [PMID: 36441824 PMCID: PMC9731452 DOI: 10.1371/journal.pgen.1010532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
mRNA regulatory sequences control gene expression at multiple levels including translation initiation and mRNA decay. The 5' terminal sequences of mRNAs have unique regulatory potential because of their proximity to key post-transcriptional regulators. Here we have systematically probed the function of 5' terminal sequences in gene expression in human cells. Using a library of reporter mRNAs initiating with all possible 7-mer sequences at their 5' ends, we find an unexpected impact on transcription that underlies 200-fold differences in mRNA expression. Library sequences that promote high levels of transcription mirrored those found in native mRNAs and define two basic classes with similarities to classic Initiator (Inr) and TCT core promoter motifs. By comparing transcription, translation and decay rates, we identify sequences that are optimized for both efficient transcription and growth-regulated translation and stability, including variants of terminal oligopyrimidine (TOP) motifs. We further show that 5' sequences of endogenous mRNAs are enriched for multi-functional TCT/TOP hybrid sequences. Together, our results reveal how 5' sequences define two general classes of mRNAs with distinct growth-responsive profiles of expression across synthesis, translation and decay.
Collapse
Affiliation(s)
- Antonia M. G. van den Elzen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Maegan J. Watson
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Carson C. Thoreen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
29
|
Einarsson H, Salvatore M, Vaagensø C, Alcaraz N, Bornholdt J, Rennie S, Andersson R. Promoter sequence and architecture determine expression variability and confer robustness to genetic variants. eLife 2022; 11:e80943. [PMID: 36377861 PMCID: PMC9844987 DOI: 10.7554/elife.80943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Genetic and environmental exposures cause variability in gene expression. Although most genes are affected in a population, their effect sizes vary greatly, indicating the existence of regulatory mechanisms that could amplify or attenuate expression variability. Here, we investigate the relationship between the sequence and transcription start site architectures of promoters and their expression variability across human individuals. We find that expression variability can be largely explained by a promoter's DNA sequence and its binding sites for specific transcription factors. We show that promoter expression variability reflects the biological process of a gene, demonstrating a selective trade-off between stability for metabolic genes and plasticity for responsive genes and those involved in signaling. Promoters with a rigid transcription start site architecture are more prone to have variable expression and to be associated with genetic variants with large effect sizes, while a flexible usage of transcription start sites within a promoter attenuates expression variability and limits genotypic effects. Our work provides insights into the variable nature of responsive genes and reveals a novel mechanism for supplying transcriptional and mutational robustness to essential genes through multiple transcription start site regions within a promoter.
Collapse
Affiliation(s)
| | - Marco Salvatore
- Department of Biology, University of CopenhagenCopenhagenDenmark
| | | | - Nicolas Alcaraz
- Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Jette Bornholdt
- Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Sarah Rennie
- Department of Biology, University of CopenhagenCopenhagenDenmark
| | - Robin Andersson
- Department of Biology, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
30
|
Moody J, Kouno T, Chang JC, Ando Y, Carninci P, Shin JW, Hon CC. SCAFE: a software suite for analysis of transcribed cis-regulatory elements in single cells. Bioinformatics 2022; 38:5126-5128. [PMID: 36173306 PMCID: PMC9665856 DOI: 10.1093/bioinformatics/btac644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Cell type-specific activities of cis-regulatory elements (CRE) are central to understanding gene regulation and disease predisposition. Single-cell RNA 5'end sequencing (sc-end5-seq) captures the transcription start sites (TSS) which can be used as a proxy to measure the activity of transcribed CREs (tCREs). However, a substantial fraction of TSS identified from sc-end5-seq data may not be genuine due to various artifacts, hindering the use of sc-end5-seq for de novo discovery of tCREs. RESULTS We developed SCAFE-Single-Cell Analysis of Five-prime Ends-a software suite that processes sc-end5-seq data to de novo identify TSS clusters based on multiple logistic regression. It annotates tCREs based on the identified TSS clusters and generates a tCRE-by-cell count matrix for downstream analyses. The software suite consists of a set of flexible tools that could either be run independently or as pre-configured workflows. AVAILABILITY AND IMPLEMENTATION SCAFE is implemented in Perl and R. The source code and documentation are freely available for download under the MIT License from https://github.com/chung-lab/SCAFE. Docker images are available from https://hub.docker.com/r/cchon/scafe. The submitted software version and test data are archived at https://doi.org/10.5281/zenodo.7023163 and https://doi.org/10.5281/zenodo.7024060, respectively. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Jen-Chien Chang
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Yoshinari Ando
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan,Human Technopole, Milan 20157, Italy
| | - Jay W Shin
- To whom correspondence should be addressed. or
| | | |
Collapse
|
31
|
de Hoon M, Bonetti A, Plessy C, Ando Y, Hon CC, Ishizu Y, Itoh M, Kato S, Lin D, Maekawa S, Murata M, Nishiyori H, Shin JW, Stolte J, Suzuki AM, Tagami M, Takahashi H, Thongjuea S, Forrest ARR, Hayashizaki Y, Kere J, Carninci P. Deep sequencing of short capped RNAs reveals novel families of noncoding RNAs. Genome Res 2022; 32:1727-1735. [PMID: 35961773 PMCID: PMC9528987 DOI: 10.1101/gr.276647.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022]
Abstract
In eukaryotes, capped RNAs include long transcripts such as messenger RNAs and long noncoding RNAs, as well as shorter transcripts such as spliceosomal RNAs, small nucleolar RNAs, and enhancer RNAs. Long capped transcripts can be profiled using cap analysis gene expression (CAGE) sequencing and other methods. Here, we describe a sequencing library preparation protocol for short capped RNAs, apply it to a differentiation time course of the human cell line THP-1, and systematically compare the landscape of short capped RNAs to that of long capped RNAs. Transcription initiation peaks associated with genes in the sense direction have a strong preference to produce either long or short capped RNAs, with one out of six peaks detected in the short capped RNA libraries only. Gene-associated short capped RNAs have highly specific 3' ends, typically overlapping splice sites. Enhancers also preferentially generate either short or long capped RNAs, with 10% of enhancers observed in the short capped RNA libraries only. Enhancers producing either short or long capped RNAs show enrichment for GWAS-associated disease SNPs. We conclude that deep sequencing of short capped RNAs reveals new families of noncoding RNAs and elucidates the diversity of transcripts generated at known and novel promoters and enhancers.
Collapse
Affiliation(s)
- Michiel de Hoon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Alessandro Bonetti
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Charles Plessy
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinari Ando
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Chung-Chau Hon
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yuri Ishizu
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Masayoshi Itoh
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
| | - Sachi Kato
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Dongyan Lin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Mila, Montreal, Quebec H2S 3H1, Canada
| | - Sho Maekawa
- RIKEN Omics Science Center (OSC), Yokohama, Kanagawa 230-0045, Japan
| | - Mitsuyoshi Murata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hiromi Nishiyori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Jens Stolte
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Ana Maria Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michihira Tagami
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hazuki Takahashi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Supat Thongjuea
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Alistair R R Forrest
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia 6009, Australia
| | - Yoshihide Hayashizaki
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama 351-0198, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Kanagawa 230-0045, Japan
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14157, Sweden
- Stem Cells and Metabolism Research Program, University of Helsinki and Folkhälsan Research Center, Helsinki 00290, Finland
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
- Human Technopole, Milan 20157, Italy
| |
Collapse
|
32
|
Sugimoto Y, Ratcliffe PJ. Isoform-resolved mRNA profiling of ribosome load defines interplay of HIF and mTOR dysregulation in kidney cancer. Nat Struct Mol Biol 2022; 29:871-880. [PMID: 36097292 PMCID: PMC9507966 DOI: 10.1038/s41594-022-00819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
Hypoxia inducible factor (HIF) and mammalian target of rapamycin (mTOR) pathways orchestrate responses to oxygen and nutrient availability. These pathways are frequently dysregulated in cancer, but their interplay is poorly understood, in part because of difficulties in simultaneous measurement of global and mRNA-specific translation. Here, we describe a workflow for measurement of ribosome load of mRNAs resolved by their transcription start sites (TSSs). Its application to kidney cancer cells reveals extensive translational reprogramming by mTOR, strongly affecting many metabolic enzymes and pathways. By contrast, global effects of HIF on translation are limited, and we do not observe reported translational activation by HIF2A. In contrast, HIF-dependent alterations in TSS usage are associated with robust changes in translational efficiency in a subset of genes. Analyses of the interplay of HIF and mTOR reveal that specific classes of HIF1A and HIF2A transcriptional target gene manifest different sensitivity to mTOR, in a manner that supports combined use of HIF2A and mTOR inhibitors in treatment of kidney cancer.
Collapse
Affiliation(s)
| | - Peter J Ratcliffe
- The Francis Crick Institute, London, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Carter JA, Strömich L, Peacey M, Chapin SR, Velten L, Steinmetz LM, Brors B, Pinto S, Meyer HV. Transcriptomic diversity in human medullary thymic epithelial cells. Nat Commun 2022; 13:4296. [PMID: 35918316 PMCID: PMC9345899 DOI: 10.1038/s41467-022-31750-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The induction of central T cell tolerance in the thymus depends on the presentation of peripheral self-epitopes by medullary thymic epithelial cells (mTECs). This promiscuous gene expression (pGE) drives mTEC transcriptomic diversity, with non-canonical transcript initiation, alternative splicing, and expression of endogenous retroelements (EREs) representing important but incompletely understood contributors. Here we map the expression of genome-wide transcripts in immature and mature human mTECs using high-throughput 5' cap and RNA sequencing. Both mTEC populations show high splicing entropy, potentially driven by the expression of peripheral splicing factors. During mTEC maturation, rates of global transcript mis-initiation increase and EREs enriched in long terminal repeat retrotransposons are up-regulated, the latter often found in proximity to differentially expressed genes. As a resource, we provide an interactive public interface for exploring mTEC transcriptomic diversity. Our findings therefore help construct a map of transcriptomic diversity in the healthy human thymus and may ultimately facilitate the identification of those epitopes which contribute to autoimmunity and immune recognition of tumor antigens.
Collapse
Affiliation(s)
- Jason A. Carter
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA ,grid.36425.360000 0001 2216 9681Medical Scientist Training Program, Stony Brook University, Stony Brook, NY USA ,grid.34477.330000000122986657Department of Surgery, University of Washington, Seattle, WA USA
| | - Léonie Strömich
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany ,grid.7445.20000 0001 2113 8111Present Address: Imperial College London, London, UK
| | - Matthew Peacey
- grid.225279.90000 0004 0387 3667School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Sarah R. Chapin
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| | - Lars Velten
- grid.473715.30000 0004 6475 7299Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain ,grid.5612.00000 0001 2172 2676Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lars M. Steinmetz
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany ,grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA USA ,grid.168010.e0000000419368956Stanford Genome Technology Center, Palo Alto, CA USA
| | - Benedikt Brors
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany
| | - Sheena Pinto
- grid.7497.d0000 0004 0492 0584German Cancer Research Center, Heidelberg, Germany
| | - Hannah V. Meyer
- grid.225279.90000 0004 0387 3667Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY USA
| |
Collapse
|
34
|
Arguello AE, Li A, Sun X, Eggert TW, Mairhofer E, Kleiner RE. Reactivity-dependent profiling of RNA 5-methylcytidine dioxygenases. Nat Commun 2022; 13:4176. [PMID: 35853884 PMCID: PMC9296451 DOI: 10.1038/s41467-022-31876-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 07/05/2022] [Indexed: 01/10/2023] Open
Abstract
Epitranscriptomic RNA modifications can regulate fundamental biological processes, but we lack approaches to map modification sites and probe writer enzymes. Here we present a chemoproteomic strategy to characterize RNA 5-methylcytidine (m5C) dioxygenase enzymes in their native context based upon metabolic labeling and activity-based crosslinking with 5-ethynylcytidine (5-EC). We profile m5C dioxygenases in human cells including ALKBH1 and TET2 and show that ALKBH1 is the major hm5C- and f5C-forming enzyme in RNA. Further, we map ALKBH1 modification sites transcriptome-wide using 5-EC-iCLIP and ARP-based sequencing to identify ALKBH1-dependent m5C oxidation in a variety of tRNAs and mRNAs and analyze ALKBH1 substrate specificity in vitro. We also apply targeted pyridine borane-mediated sequencing to measure f5C sites on select tRNA. Finally, we show that f5C at the wobble position of tRNA-Leu-CAA plays a role in decoding Leu codons under stress. Our work provides powerful chemical approaches for studying RNA m5C dioxygenases and mapping oxidative m5C modifications and reveals the existence of novel epitranscriptomic pathways for regulating RNA function. Kleiner and co-workers profile RNA 5-methylcytidine (m5C) dioxygenase enzymes using an activity-based metabolic probing strategy. They reveal ALKBH1 as the major 5-formylcytidine (f5C) writer and characterize modification sites across mRNA and tRNA.
Collapse
Affiliation(s)
- A Emilia Arguello
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Xuemeng Sun
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Tanner W Eggert
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | | | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
35
|
Sequence-based evaluation of promoter context for prediction of transcription start sites in Arabidopsis and rice. Sci Rep 2022; 12:6976. [PMID: 35484393 PMCID: PMC9050755 DOI: 10.1038/s41598-022-11169-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Genes are transcribed from transcription start sites (TSSs), and their position in a genome is strictly controlled to avoid mis-expression of undesired regions. In this study, we designed and developed a methodology for the evaluation of promoter context, which detects proximal promoter regions from − 200 to − 60 bp relative to a TSS, in Arabidopsis and rice genomes. The method positively evaluates spacer sequences and Regulatory Element Groups, but not core promoter elements like TATA boxes, and is able to predict the position of a TSS within a width of 200 bp. An important feature of the evaluation/prediction method is its independence of the core promoter elements, which was demonstrated by successful prediction of all the TATA, GA, and coreless types of promoters without notable differences in the accuracy of prediction. The positive relationship identified between the evaluation scores and gene expression levels suggests that this method is useful for the evaluation of promoter maturity.
Collapse
|
36
|
A comparison of experimental assays and analytical methods for genome-wide identification of active enhancers. Nat Biotechnol 2022; 40:1056-1065. [PMID: 35177836 PMCID: PMC9288987 DOI: 10.1038/s41587-022-01211-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/06/2022] [Indexed: 01/15/2023]
Abstract
Mounting evidence supports the idea that transcriptional patterns serve as more specific identifiers of active enhancers than histone marks; however, the optimal strategy to identify active enhancers both experimentally and computationally has not been determined. Here, we compared 13 genome-wide RNA sequencing assays in K562 cells and showed that the nuclear run-on followed by cap-selection assay (GRO/PRO-cap) has advantages in eRNA detection and active enhancer identification. We also introduced a tool, Peak Identifier for Nascent Transcript Starts (PINTS), to identify active promoters and enhancers genome-wide and pinpoint the precise location of the 5′ transcription start sites. Finally, we compiled a comprehensive enhancer candidate compendium based on the detected eRNA TSSs available in 120 cell and tissue types that can be accessed at https://pints.yulab.org. With the knowledge of the best available assays and pipelines, this large-scale annotation of candidate enhancers will pave the way for selection and characterization of their functions in a time- and labor-efficient manner in the future.
Collapse
|
37
|
Mimura N, Nagamatsu T, Morita K, Taguchi A, Toya T, Kumasawa K, Iriyama T, Kawana K, Inoue N, Fujii T, Osuga Y. Suppression of human trophoblast syncytialization by human cytomegalovirus infection. Placenta 2021; 117:200-208. [PMID: 34933151 DOI: 10.1016/j.placenta.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Placental dysfunction triggers fetal growth restriction in congenital human cytomegalovirus (HCMV) infection. Studies suggest that HCMV infection interferes with the differentiation of human trophoblasts. However, the underlying mechanisms have not been clarified. This study investigated the impact of HCMV infection on gene transcriptomes in cytotrophoblasts (CTBs) associated with placental dysfunction. METHODS CTBs were isolated from human term placentas, and spontaneous syncytialization was observed in vitro. The transcriptome profiles were compared between CTB groups with and without HCMV infection by cap analysis gene expression sequencing. The effect of HCMV infection on trophoblast differentiation was evaluated by examining cell fusion status using immunocytochemical staining for desmoplakin and assessing the production of cell differentiation markers, including hCG, PlGF, and soluble Flt-1, using ELISA. RESULTS The expression of the genes categorized in the signaling pathways related to the cell cycle was significantly enhanced in CTBs with HCMV infection compared with uninfected CTBs. HCMV infection hindered the alteration of the gene expression profile associated with syncytialization. This suppressive effect under HCMV infection was concurrent with the reduction in hCG and PlGF secretion. Immunostaining for desmoplakin revealed that HCMV infection reduced the cell fusion of cultured CTBs. These findings imply that HCMV infection has a negative impact on syncytialization, which is indispensable for the maintenance of villous function. DISCUSSION HCMV infection interferes with gene expression profiles and functional differentiation of trophoblasts. Suppression of syncytialization may be a survival strategy for HCMV to expand infection and could be associated with placental dysfunction.
Collapse
Affiliation(s)
- Nobuko Mimura
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan.
| | - Kazuki Morita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Keiichi Kumasawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Nihon University, Japan
| | - Naoki Inoue
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Japan
| |
Collapse
|
38
|
Lu Z, Berry K, Hu Z, Zhan Y, Ahn TH, Lin Z. TSSr: an R package for comprehensive analyses of TSS sequencing data. NAR Genom Bioinform 2021; 3:lqab108. [PMID: 34805991 PMCID: PMC8598296 DOI: 10.1093/nargab/lqab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription initiation is regulated in a highly organized fashion to ensure proper cellular functions. Accurate identification of transcription start sites (TSSs) and quantitative characterization of transcription initiation activities are fundamental steps for studies of regulated transcriptions and core promoter structures. Several high-throughput techniques have been developed to sequence the very 5'end of RNA transcripts (TSS sequencing) on the genome scale. Bioinformatics tools are essential for processing, analysis, and visualization of TSS sequencing data. Here, we present TSSr, an R package that provides rich functions for mapping TSS and characterizations of structures and activities of core promoters based on all types of TSS sequencing data. Specifically, TSSr implements several newly developed algorithms for accurately identifying TSSs from mapped sequencing reads and inference of core promoters, which are a prerequisite for subsequent functional analyses of TSS data. Furthermore, TSSr also enables users to export various types of TSS data that can be visualized by genome browser for inspection of promoter activities in association with other genomic features, and to generate publication-ready TSS graphs. These user-friendly features could greatly facilitate studies of transcription initiation based on TSS sequencing data. The source code and detailed documentations of TSSr can be freely accessed at https://github.com/Linlab-slu/TSSr.
Collapse
Affiliation(s)
- Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Keenan Berry
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Zhenbin Hu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Yu Zhan
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Tae-Hyuk Ahn
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| |
Collapse
|
39
|
Dai W, Li A, Yu NJ, Nguyen T, Leach RW, Wühr M, Kleiner RE. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat Chem Biol 2021; 17:1178-1187. [PMID: 34556860 PMCID: PMC8551019 DOI: 10.1038/s41589-021-00874-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
Epitranscriptomic RNA modifications can regulate RNA activity; however, there remains a major gap in our understanding of the RNA chemistry present in biological systems. Here we develop RNA-mediated activity-based protein profiling (RNABPP), a chemoproteomic strategy that relies on metabolic RNA labeling, mRNA interactome capture and quantitative proteomics, to investigate RNA-modifying enzymes in human cells. RNABPP with 5-fluoropyrimidines allowed us to profile 5-methylcytidine (m5C) and 5-methyluridine (m5U) methyltransferases. Further, we uncover a new mechanism-based crosslink between 5-fluorouridine (5-FUrd)-modified RNA and the dihydrouridine synthase (DUS) homolog DUS3L. We investigate the mechanism of crosslinking and use quantitative nucleoside liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and 5-FUrd-based crosslinking and immunoprecipitation (CLIP) sequencing to map DUS3L-dependent dihydrouridine (DHU) modifications across the transcriptome. Finally, we show that DUS3L-knockout (KO) cells have compromised protein translation rates and impaired cellular proliferation. Taken together, our work provides a general approach for profiling RNA-modifying enzyme activity in living cells and reveals new pathways for epitranscriptomic RNA regulation.
Collapse
Affiliation(s)
- Wei Dai
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Nathan J. Yu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Thao Nguyen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Robert W. Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,
| |
Collapse
|
40
|
Abstract
Transcription start site (TSS) selection influences transcript stability and translation as well as protein sequence. Alternative TSS usage is pervasive in organismal development, is a major contributor to transcript isoform diversity in humans, and is frequently observed in human diseases including cancer. In this review, we discuss the breadth of techniques that have been used to globally profile TSSs and the resulting insights into gene regulation, as well as future prospects in this area of inquiry.
Collapse
Affiliation(s)
| | - Gabriel E. Zentner
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
Hallegger M, Chakrabarti AM, Lee FCY, Lee BL, Amalietti AG, Odeh HM, Copley KE, Rubien JD, Portz B, Kuret K, Huppertz I, Rau F, Patani R, Fawzi NL, Shorter J, Luscombe NM, Ule J. TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 2021; 184:4680-4696.e22. [PMID: 34380047 PMCID: PMC8445024 DOI: 10.1016/j.cell.2021.07.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/12/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022]
Abstract
Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.
Collapse
Affiliation(s)
- Martina Hallegger
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | - Anob M Chakrabarti
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Genetics, Evolution and Environment, UCL Genetics Institute, Gower Street, London WC1E 6BT, UK
| | - Flora C Y Lee
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bo Lim Lee
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aram G Amalietti
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Hana M Odeh
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katie E Copley
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack D Rubien
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bede Portz
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klara Kuret
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Ina Huppertz
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Frédérique Rau
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Genetics, Evolution and Environment, UCL Genetics Institute, Gower Street, London WC1E 6BT, UK; Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Jernej Ule
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK; National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia.
| |
Collapse
|
42
|
GRIK2 is a target for bladder cancer stem-like cell-targeting immunotherapy. Cancer Immunol Immunother 2021; 71:795-806. [PMID: 34405274 DOI: 10.1007/s00262-021-03025-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Recent studies have revealed that treatment-resistant cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be targeted by cytotoxic T lymphocytes (CTLs). CTLs recognize antigenic peptides derived from tumor-associated antigens; thus, the identification of tumor-associated antigens expressed by CSCs/CICs is essential. Human leucocyte antigen (HLA) ligandome analysis using mass spectrometry enables the analysis of naturally expressed antigenic peptides; however, HLA ligandome analysis requires a large number of cells and is challenging for CSCs/CICs. In this study, we established a novel bladder CSC/CIC model from a bladder cancer cell line (UM-UC-3 cells) using an ALDEFLUOR assay. CSCs/CICs were isolated as aldehyde dehydrogenase (ALDH)-high cells and several ALDHhigh clone cells were established. ALDHhigh clone cells were enriched with CSCs/CICs by sphere formation and tumorigenicity in immunodeficient mice. HLA ligandome analysis and cap analysis of gene expression using ALDHhigh clone cells revealed a distinctive antigenic peptide repertoire in bladder CSCs/CICs, and we found that a glutamate receptor, ionotropic, kainite 2 (GRIK2)-derived antigenic peptide (LMYDAVHVV) was specifically expressed by CSCs/CICs. A GRIK2 peptide-specific CTL clone recognized GRIK2-overexpressing UM-UC-3 cells and ALDHhigh clone cells, indicating that GRIK2 peptide can be a novel target for bladder CSC/CIC-targeting immunotherapy.
Collapse
|
43
|
Dreos R, Sloutskin A, Malachi N, Ideses D, Bucher P, Juven-Gershon T. Computational identification and experimental characterization of preferred downstream positions in human core promoters. PLoS Comput Biol 2021; 17:e1009256. [PMID: 34383743 PMCID: PMC8384218 DOI: 10.1371/journal.pcbi.1009256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 08/24/2021] [Accepted: 07/07/2021] [Indexed: 12/02/2022] Open
Abstract
Metazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters. Transcription of genes by the RNA polymerase II enzyme initiates at a genomic region termed the core promoter. The core promoter is a regulatory region that may contain diverse short DNA sequence motifs/elements that confer specific properties to it. Interestingly, core promoter motifs can be located both upstream and downstream of the transcription start site. Variable compositions of core promoter elements were identified. The initiator (Inr) motif and the downstream core promoter element (DPE) is a combination of elements that has been identified and extensively characterized in fruit flies. Although a few Inr+DPE -containing human promoters were identified, the presence of transcriptionally important downstream core promoter positions within human promoters has been a matter of controversy in the literature. Here, using a newly-designed motif discovery strategy, we discovered preferred downstream positions in human promoters that resemble fruit fly DPE. Clustering of the corresponding sequence motifs in eight additional species indicated that such promoters could be common to multicellular non-plant organisms. Importantly, functional characterization of the newly discovered preferred downstream positions supports the existence of Inr+DPE-containing promoters in human genes.
Collapse
Affiliation(s)
- René Dreos
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Nati Malachi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Philipp Bucher
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
- * E-mail: (PB); (TJG)
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail: (PB); (TJG)
| |
Collapse
|
44
|
Yang Y, Paul A, Bach TN, Huang ZJ, Zhang MQ. Single-cell alternative polyadenylation analysis delineates GABAergic neuron types. BMC Biol 2021; 19:144. [PMID: 34301239 PMCID: PMC8299648 DOI: 10.1186/s12915-021-01076-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Background Alternative polyadenylation (APA) is emerging as an important mechanism in the post-transcriptional regulation of gene expression across eukaryotic species. Recent studies have shown that APA plays key roles in biological processes, such as cell proliferation and differentiation. Single-cell RNA-seq technologies are widely used in gene expression heterogeneity studies; however, systematic studies of APA at the single-cell level are still lacking. Results Here, we described a novel computational framework, SAPAS, that utilizes 3′-tag-based scRNA-seq data to identify novel poly(A) sites and quantify APA at the single-cell level. Applying SAPAS to the scRNA-seq data of phenotype characterized GABAergic interneurons, we identified cell type-specific APA events for different GABAergic neuron types. Genes with cell type-specific APA events are enriched for synaptic architecture and communications. In further, we observed a strong enrichment of heritability for several psychiatric disorders and brain traits in altered 3′ UTRs and coding sequences of cell type-specific APA events. Finally, by exploring the modalities of APA, we discovered that the bimodal APA pattern of Pak3 could classify chandelier cells into different subpopulations that are from different laminar positions. Conclusions We established a method to characterize APA at the single-cell level. When applied to a scRNA-seq dataset of GABAergic interneurons, the single-cell APA analysis not only identified cell type-specific APA events but also revealed that the modality of APA could classify cell subpopulations. Thus, SAPAS will expand our understanding of cellular heterogeneity. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01076-3.
Collapse
Affiliation(s)
- Yang Yang
- Present Address: Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Anirban Paul
- Cold Spring Harbor Laboratory, Harbor, Cold Spring, NY, 11724, USA.,Deparment of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Thao Nguyen Bach
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Harbor, Cold Spring, NY, 11724, USA.,Deparment of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
45
|
Grencewicz DJ, Romigh T, Thacker S, Abbas A, Jaini R, Luse D, Eng C. Redefining the PTEN promoter: Identification of novel upstream transcription start regions. Hum Mol Genet 2021; 30:2135-2148. [PMID: 34218272 DOI: 10.1093/hmg/ddab175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
Germline mutation of PTEN is causally observed in Cowden syndrome (CS) and is one of the most common, penetrant risk genes for autism spectrum disorder (ASD). However, the majority of individuals who present with CS-like clinical features are PTEN-mutation negative. Reassessment of PTEN promoter regulation may help explain abnormal PTEN dosage, as only the minimal promoter and coding regions are currently included in diagnostic PTEN mutation analysis. Therefore, we reanalyzed the architecture of the PTEN promoter using next-generation sequencing datasets. Specifically, run-on sequencing assays identified two additional transcription start regions (TSRs) at -2053 and - 1906 basepairs from the canonical start of PTEN, thus extending the PTEN 5'UTR and redefining the PTEN promoter. We show that these novel upstream TSRs are active in cancer cell lines, human cancer, and normal tissue. Further, these TSRs can produce novel PTEN transcripts due to the introduction of new splice donors at -2041, -1826, and - 1355, which may allow for splicing out of the PTEN 5'UTR or the first and second exon in upstream-initiated transcripts. Combining ENCODE ChIP-seq and pertinent literature, we also compile and analyze all transcription factors (TFs) binding at the redefined PTEN locus. Enrichment analyses suggest that TFs bind specifically to the upstream TSRs may be implicated in inflammatory processes. Together, these data redefine the architecture of the PTEN promoter, an important step toward a comprehensive model of PTEN transcription regulation, a basis for future investigations into the new promoters' role in disease pathogenesis.
Collapse
Affiliation(s)
- Dennis J Grencewicz
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Todd Romigh
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Stetson Thacker
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Developmental Therapeutics Program, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Donal Luse
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.,Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.,Center for Personalized Genetic Healthcare, Cleveland Clinic Community Care and Population Health, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
46
|
Varshney A, Kyono Y, Elangovan VR, Wang C, Erdos MR, Narisu N, Albanus RD, Orchard P, Stitzel ML, Collins FS, Kitzman JO, Parker SCJ. A Transcription Start Site Map in Human Pancreatic Islets Reveals Functional Regulatory Signatures. Diabetes 2021; 70:1581-1591. [PMID: 33849996 PMCID: PMC8336006 DOI: 10.2337/db20-1087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Identifying the tissue-specific molecular signatures of active regulatory elements is critical to understand gene regulatory mechanisms. Here, we identify transcription start sites (TSS) using cap analysis of gene expression (CAGE) across 57 human pancreatic islet samples. We identify 9,954 reproducible CAGE tag clusters (TCs), ∼20% of which are islet specific and occur mostly distal to known gene TSS. We integrated islet CAGE data with histone modification and chromatin accessibility profiles to identify epigenomic signatures of transcription initiation. Using a massively parallel reporter assay, we validated the transcriptional enhancer activity for 2,279 of 3,378 (∼68%) tested islet CAGE elements (5% false discovery rate). TCs within accessible enhancers show higher enrichment to overlap type 2 diabetes genome-wide association study (GWAS) signals than existing islet annotations, which emphasizes the utility of mapping CAGE profiles in disease-relevant tissue. This work provides a high-resolution map of transcriptional initiation in human pancreatic islets with utility for dissecting active enhancers at GWAS loci.
Collapse
Affiliation(s)
- Arushi Varshney
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Yasuhiro Kyono
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | - Collin Wang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Michael R Erdos
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Narisu Narisu
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | | | - Peter Orchard
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
| | | | - Francis S Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Jacob O Kitzman
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| | - Stephen C J Parker
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
47
|
Mileti E, Kwok KHM, Andersson DP, Mathelier A, Raman A, Bäckdahl J, Jalkanen J, Massier L, Thorell A, Gao H, Arner P, Mejhert N, Daub CO, Rydén M. Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State. Diabetes 2021; 70:1486-1497. [PMID: 33863803 DOI: 10.2337/db21-0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022]
Abstract
Selective hepatic insulin resistance is a feature of obesity and type 2 diabetes. Whether similar mechanisms operate in white adipose tissue (WAT) of those with obesity and to what extent these are normalized by weight loss are unknown. We determined insulin sensitivity by hyperinsulinemic euglycemic clamp and insulin response in subcutaneous WAT by RNA sequencing in 23 women with obesity before and 2 years after bariatric surgery. To control for effects of surgery, women postsurgery were matched to never-obese women. Multidimensional analyses of 138 samples allowed us to classify the effects of insulin into three distinct expression responses: a common set was present in all three groups and included genes encoding several lipid/cholesterol biosynthesis enzymes; a set of obesity-attenuated genes linked to tissue remodeling and protein translation was selectively regulated in the two nonobese states; and several postobesity-enriched genes encoding proteins involved in, for example, one-carbon metabolism were only responsive to insulin in the women who had lost weight. Altogether, human WAT displays a selective insulin response in the obese state, where most genes are normalized by weight loss. This comprehensive atlas provides insights into the transcriptional effects of insulin in WAT and may identify targets to improve insulin action.
Collapse
Affiliation(s)
- Enrichetta Mileti
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kelvin H M Kwok
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Daniel P Andersson
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Jesper Bäckdahl
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jutta Jalkanen
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Surgery, Ersta Hospital, Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. WWOX Loses the Ability to Regulate Oncogenic AP-2γ and Synergizes with Tumor Suppressor AP-2α in High-Grade Bladder Cancer. Cancers (Basel) 2021; 13:cancers13122957. [PMID: 34204827 PMCID: PMC8231628 DOI: 10.3390/cancers13122957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
The cytogenic locus of the WWOX gene overlaps with the second most active fragile site, FRA16D, which is present at a higher frequency in bladder cancer (BLCA) patients with smoking habit, a known risk factor of this tumor. Recently, we demonstrated the relevance of the role of WWOX in grade 2 BLCA in collaboration with two AP-2 transcription factors whose molecular actions supported or opposed pro-cancerous events, suggesting a distinct character. As further research is needed on higher grades, the aim of the present study was to examine WWOX-AP-2 functionality in grade 3 and 4 BLCA using equivalent in vitro methodology with additional transcriptome profiling of cellular variants. WWOX and AP-2α demonstrated similar anti-cancer functionality in most biological processes with subtle differences in MMP-2/9 regulation; this contradicted that of AP-2γ, whose actions potentiated cancer progression. Simultaneous overexpression of WWOX and AP-2α/AP-2γ revealed that single discrepancies appear in WWOX-AP-2α collaboration but only at the highest BLCA grade; WWOX-AP-2α collaboration was considered anti-cancer. However, WWOX only appeared to have residual activity against oncogenic AP-2γ in grade 3 and 4: variants with either AP-2γ overexpression alone or combined WWOX and AP-2γ overexpression demonstrated similar pro-tumoral behavior. Transcriptome profiling with further gene ontology certified biological processes investigated in vitro and indicated groups of genes consisting of AP-2 targets and molecules worth investigation as biomarkers. In conclusion, tumor suppressor synergism between WWOX and AP-2α is unimpaired in high-grade BLCA compared to intermediate grade, yet the ability of WWOX to guide oncogenic AP-2γ is almost completely lost.
Collapse
|
49
|
Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nat Commun 2021; 12:3297. [PMID: 34078885 PMCID: PMC8172540 DOI: 10.1038/s41467-021-23143-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism.
Collapse
|
50
|
Baralle M, Romano M. Characterization of the human TARDBP gene promoter. Sci Rep 2021; 11:10438. [PMID: 34002018 PMCID: PMC8129075 DOI: 10.1038/s41598-021-89973-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
The expression of TDP-43, the main component of neuronal intracellular inclusions across a broad spectrum of ALS and FTD disorders, is developmentally regulated and studies in vivo have shown that TDP-43 overexpression can be toxic, even before observation of pathological aggregates. Starting from these observations, the regulation of its expression at transcriptional level might represent a further key element for the pathogenesis of neurodegenerative diseases. Therefore, we have characterized the human TARDBP promoter, in order to study the transcriptional mechanisms of expression. Mapping of cis-acting elements by luciferase assays in different cell outlined that the activity of the promoter seems to be higher in SH-SY5Y, Neuro2A, and HeLa than in HEK293. In addition, we tested effects of two SNPs found in the promoter region of ALS patients and observed no significant effect on transcription levels in all tested cell lines. Lastly, while TDP-43 overexpression did not affect significantly the activity of its promoter (suggesting that TDP-43 does not influence its own transcription), the presence of the 5'UTR sequence and of intron-1 splicing seem to impact positively on TDP-43 expression without affecting transcript stability. In conclusion, we have identified the region spanning nucleotides 451-230 upstream from the transcription start site as the minimal region with a significant transcription activity. These results lay an important foundation for exploring the regulation of the TARDBP gene transcription by exogenous and endogenous stimuli and the implication of transcriptional mechanisms in the pathogenesis of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Marco Baralle
- grid.425196.d0000 0004 1759 4810International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano, Trieste, Italy
| | - Maurizio Romano
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Via A. Valerio 28, 34127 Trieste, Italy
| |
Collapse
|