1
|
Helmstetter N, Harrison K, Gregory J, Harrison J, Ballou E, Farrer RA. A near-complete telomere-to-telomere genome assembly for Batrachochytrium dendrobatidis GPL JEL423 reveals a larger CBM18 gene family and a smaller M36 metalloprotease gene family than previously recognized. G3 (BETHESDA, MD.) 2025; 15:jkae304. [PMID: 39709617 PMCID: PMC11797018 DOI: 10.1093/g3journal/jkae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Batrachochytrium dendrobatidis is responsible for mass extinctions and extirpations of amphibians, mainly driven by the Global Panzootic Lineage (BdGPL). BdGPL isolate JEL423 is a commonly used reference strain in studies exploring the evolution, epidemiology, and pathogenicity of chytrid pathogens. These studies have been hampered by the fragmented, erroneous, and incomplete B. dendrobatidis JEL423 genome assembly, which includes long stretches of ambiguous positions and poorly resolved telomeric regions. Here, we present and describe a substantially improved, near telomere-to-telomere genome assembly and gene annotation for B. dendrobatidis JEL423. Our new assembly is 24.5 Mb in length, ∼800 kb longer than the previously published assembly for this organism, comprising 18 nuclear scaffolds and 2 mitochondrial scaffolds and including an extra 839 kb of repetitive sequence. We discovered that the patterns of aneuploidy in B. dendrobatidis JEL423 have remained stable over approximately 5 years. We found that our updated assembly encodes fewer than half the number of M36 metalloprotease genes predicted in the previous assembly. In contrast, members of the crinkling and necrosis gene family were found in similar numbers to the previous assembly. We also identified a more extensive carbohydrate binding module 18 gene family than previously observed. We anticipate our findings, and the updated genome assembly will be a useful tool for further investigation of the genome evolution of the pathogenic chytrids.
Collapse
Affiliation(s)
- Nicolas Helmstetter
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | | | - Jack Gregory
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Jamie Harrison
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Elizabeth Ballou
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Rhys A Farrer
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
2
|
Tsukahara S, Bousios A, Perez-Roman E, Yamaguchi S, Leduque B, Nakano A, Naish M, Osakabe A, Toyoda A, Ito H, Edera A, Tominaga S, Juliarni, Kato K, Oda S, Inagaki S, Lorković Z, Nagaki K, Berger F, Kawabe A, Quadrana L, Henderson I, Kakutani T. Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis. Nature 2025; 637:744-748. [PMID: 39743586 PMCID: PMC11735389 DOI: 10.1038/s41586-024-08319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3-5. Despite the high impact of 'centrophilic' retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes.
Collapse
Affiliation(s)
- Sayuri Tsukahara
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | - Sota Yamaguchi
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Basile Leduque
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Aimi Nakano
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Akihisa Osakabe
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Alejandro Edera
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Sayaka Tominaga
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Juliarni
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Kae Kato
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Shoko Oda
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Zdravko Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Ian Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Liu P, Vigneau J, Craig RJ, Barrera-Redondo J, Avdievich E, Martinho C, Borg M, Haas FB, Liu C, Coelho SM. 3D chromatin maps of a brown alga reveal U/V sex chromosome spatial organization. Nat Commun 2024; 15:9590. [PMID: 39505852 PMCID: PMC11541908 DOI: 10.1038/s41467-024-53453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Nuclear three dimensional (3D) folding of chromatin structure has been linked to gene expression regulation and correct developmental programs, but little is known about the 3D architecture of sex chromosomes within the nucleus, and how that impacts their role in sex determination. Here, we determine the sex-specific 3D organization of the model brown alga Ectocarpus chromosomes at 2 kb resolution, by mapping long-range chromosomal interactions using Hi-C coupled with Oxford Nanopore long reads. We report that Ectocarpus interphase chromatin exhibits a non-Rabl conformation, with strong contacts among telomeres and among centromeres, which feature centromere-specific LTR retrotransposons. The Ectocarpus chromosomes do not contain large local interactive domains that resemble TADs described in animals, but their 3D genome organization is largely shaped by post-translational modifications of histone proteins. We show that the sex determining region (SDR) within the U and V chromosomes are insulated and span the centromeres and we link sex-specific chromatin dynamics and gene expression levels to the 3D chromatin structure of the U and V chromosomes. Finally, we uncover the unique conformation of a large genomic region on chromosome 6 harboring an endogenous viral element, providing insights regarding the impact of a latent giant dsDNA virus on the host genome's 3D chromosomal folding.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jeromine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Elena Avdievich
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Claudia Martinho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- School of Life Sciences, Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Heuberger M, Koo DH, Ahmed HI, Tiwari VK, Abrouk M, Poland J, Krattinger SG, Wicker T. Evolution of Einkorn wheat centromeres is driven by the mutualistic interplay of two LTR retrotransposons. Mob DNA 2024; 15:16. [PMID: 39103880 DOI: 10.1186/s13100-024-00326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Centromere function is highly conserved across eukaryotes, but the underlying centromeric DNA sequences vary dramatically between species. Centromeres often contain a high proportion of repetitive DNA, such as tandem repeats and/or transposable elements (TEs). Einkorn wheat centromeres lack tandem repeat arrays and are instead composed mostly of the two long terminal repeat (LTR) retrotransposon families RLG_Cereba and RLG_Quinta which specifically insert in centromeres. However, it is poorly understood how these two TE families relate to each other and if and how they contribute to centromere function and evolution. RESULTS Based on conservation of diagnostic motifs (LTRs, integrase and primer binding site and polypurine-tract), we propose that RLG_Cereba and RLG_Quinta are a pair of autonomous and non-autonomous partners, in which the autonomous RLG_Cereba contributes all the proteins required for transposition, while the non-autonomous RLG_Quinta contributes GAG protein. Phylogenetic analysis of predicted GAG proteins showed that the RLG_Cereba lineage was present for at least 100 million years in monocotyledon plants. In contrast, RLG_Quinta evolved from RLG_Cereba between 28 and 35 million years ago in the common ancestor of oat and wheat. Interestingly, the integrase of RLG_Cereba is fused to a so-called CR-domain, which is hypothesized to guide the integrase to the functional centromere. Indeed, ChIP-seq data and TE population analysis show only the youngest subfamilies of RLG_Cereba and RLG_Quinta are found in the active centromeres. Importantly, the LTRs of RLG_Quinta and RLG_Cereba are strongly associated with the presence of the centromere-specific CENH3 histone variant. We hypothesize that the LTRs of RLG_Cereba and RLG_Quinta contribute to wheat centromere integrity by phasing and/or placing CENH3 nucleosomes, thus favoring their persistence in the competitive centromere-niche. CONCLUSION Our data show that RLG_Cereba cross-mobilizes the non-autonomous RLG_Quinta retrotransposons. New copies of both families are specifically integrated into functional centromeres presumably through direct binding of the integrase CR domain to CENH3 histone variants. The LTRs of newly inserted RLG_Cereba and RLG_Quinta elements, in turn, recruit and/or phase new CENH3 deposition. This mutualistic interplay between the two TE families and the plant host dynamically maintains wheat centromeres.
Collapse
Affiliation(s)
- Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), Université Paul Sabatier, Toulouse, France
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20724, USA
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Xin H, Wang Y, Zhang W, Bao Y, Neumann P, Ning Y, Zhang T, Wu Y, Jiang N, Jiang J, Xi M. Celine, a long interspersed nuclear element retrotransposon, colonizes in the centromeres of poplar chromosomes. PLANT PHYSIOLOGY 2024; 195:2787-2798. [PMID: 38652695 PMCID: PMC11288735 DOI: 10.1093/plphys/kiae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements. Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.
Collapse
Affiliation(s)
- Haoyang Xin
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yiduo Wang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenli Zhang
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Bao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pavel Neumann
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice 37005, Czech Republic
| | - Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Centre for Modern Production Technology of Grain Crops/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yufeng Wu
- The State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding/Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Sarre LA, Kim IV, Ovchinnikov V, Olivetta M, Suga H, Dudin O, Sebé-Pedrós A, de Mendoza A. DNA methylation enables recurrent endogenization of giant viruses in an animal relative. SCIENCE ADVANCES 2024; 10:eado6406. [PMID: 38996012 PMCID: PMC11244446 DOI: 10.1126/sciadv.ado6406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.
Collapse
Affiliation(s)
- Luke A. Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Iana V. Kim
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Vladimir Ovchinnikov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Marine Olivetta
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Hiroshi Suga
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Omaya Dudin
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arnau Sebé-Pedrós
- CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- ICREA, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Liu P, Panda K, Edwards SA, Swanson R, Yi H, Pandesha P, Hung YH, Klaas G, Ye X, Collins MV, Renken KN, Gilbertson LA, Veena V, Hancock CN, Slotkin RK. Transposase-assisted target-site integration for efficient plant genome engineering. Nature 2024; 631:593-600. [PMID: 38926583 PMCID: PMC11254759 DOI: 10.1038/s41586-024-07613-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The current technologies to place new DNA into specific locations in plant genomes are low frequency and error-prone, and this inefficiency hampers genome-editing approaches to develop improved crops1,2. Often considered to be genome 'parasites', transposable elements (TEs) evolved to insert their DNA seamlessly into genomes3-5. Eukaryotic TEs select their site of insertion based on preferences for chromatin contexts, which differ for each TE type6-9. Here we developed a genome engineering tool that controls the TE insertion site and cargo delivered, taking advantage of the natural ability of the TE to precisely excise and insert into the genome. Inspired by CRISPR-associated transposases that target transposition in a programmable manner in bacteria10-12, we fused the rice Pong transposase protein to the Cas9 or Cas12a programmable nucleases. We demonstrated sequence-specific targeted insertion (guided by the CRISPR gRNA) of enhancer elements, an open reading frame and a gene expression cassette into the genome of the model plant Arabidopsis. We then translated this system into soybean-a major global crop in need of targeted insertion technology. We have engineered a TE 'parasite' into a usable and accessible toolkit that enables the sequence-specific targeting of custom DNA into plant genomes.
Collapse
Affiliation(s)
- Peng Liu
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Kaushik Panda
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Seth A Edwards
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Ryan Swanson
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Hochul Yi
- Plant Transformation Facility, Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Pratheek Pandesha
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University, St Louis, MO, USA
| | - Yu-Hung Hung
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Gerald Klaas
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Xudong Ye
- Bayer Crop Science, St Louis, MO, USA
| | | | | | | | - Veena Veena
- Plant Transformation Facility, Donald Danforth Plant Science Center, St Louis, MO, USA
| | | | - R Keith Slotkin
- Donald Danforth Plant Science Center, St Louis, MO, USA.
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
8
|
Gluck-Thaler E, Vogan A. Systematic identification of cargo-mobilizing genetic elements reveals new dimensions of eukaryotic diversity. Nucleic Acids Res 2024; 52:5496-5513. [PMID: 38686785 PMCID: PMC11162782 DOI: 10.1093/nar/gkae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Cargo-mobilizing mobile elements (CMEs) are genetic entities that faithfully transpose diverse protein coding sequences. Although common in bacteria, we know little about eukaryotic CMEs because no appropriate tools exist for their annotation. For example, Starships are giant fungal CMEs whose functions are largely unknown because they require time-intensive manual curation. To address this knowledge gap, we developed starfish, a computational workflow for high-throughput eukaryotic CME annotation. We applied starfish to 2 899 genomes of 1 649 fungal species and found that starfish recovers known Starships with 95% combined precision and recall while expanding the number of annotated elements ten-fold. Extant Starship diversity is partitioned into 11 families that differ in their enrichment patterns across fungal classes. Starship cargo changes rapidly such that elements from the same family differ substantially in their functional repertoires, which are predicted to contribute to diverse biological processes such as metabolism. Many elements have convergently evolved to insert into 5S rDNA and AT-rich sequence while others integrate into random locations, revealing both specialist and generalist strategies for persistence. Our work establishes a framework for advancing mobile element biology and provides the means to investigate an emerging dimension of eukaryotic genetic diversity, that of genomes within genomes.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Neuchâtel 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, Madison, WI 53706, USA
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
9
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
10
|
Abraham LN, Oggenfuss U, Croll D. Population-level transposable element expression dynamics influence trait evolution in a fungal crop pathogen. mBio 2024; 15:e0284023. [PMID: 38349152 PMCID: PMC10936205 DOI: 10.1128/mbio.02840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid adaptive evolution of microbes is driven by strong selection pressure acting on genetic variation. How adaptive genetic variation is generated within species and how such variation influences phenotypic trait expression is often not well understood though. We focused on the recent activity of transposable elements (TEs) using deep population genomics and transcriptomics analyses of a fungal plant pathogen with a highly active content of TEs in the genome. Zymoseptoria tritici causes one of the most damaging diseases on wheat, with recent adaptation to the host and environment being facilitated by TE-associated mutations. We obtained genomic and RNA-sequencing data from 146 isolates collected from a single wheat field. We established a genome-wide map of TE insertion polymorphisms in the population by analyzing recent TE insertions among individuals. We quantified the locus-specific transcription of individual TE copies and found considerable population variation at individual TE loci in the population. About 20% of all TE copies show transcription in the genome suggesting that genomic defenses such as repressive epigenetic marks and repeat-induced polymorphisms are at least partially ineffective at preventing the proliferation of TEs in the genome. A quarter of recent TE insertions are associated with expression variation of neighboring genes providing broad potential to influence trait expression. We indeed found that TE insertions are likely responsible for variation in virulence on the host and potentially diverse components of secondary metabolite production. Our large-scale transcriptomics study emphasizes how TE-derived polymorphisms segregate even in individual microbial populations and can broadly underpin trait variation in pathogens.IMPORTANCEPathogens can rapidly adapt to new hosts, antimicrobials, or changes in the environment. Adaptation arises often from mutations in the genome; however, how such variation is generated remains poorly understood. We investigated the most dynamic regions of the genome of Zymoseptoria tritici, a major fungal pathogen of wheat. We focused on the transcription of transposable elements. A large proportion of the transposable elements not only show signatures of potential activity but are also variable within a single population of the pathogen. We find that this variation in activity is likely influencing many important traits of the pathogen. Hence, our work provides insights into how a microbial species can adapt over the shortest time periods based on the activity of transposable elements.
Collapse
Affiliation(s)
- Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
11
|
Garcia S, Kovarik A, Maiwald S, Mann L, Schmidt N, Pascual-Díaz JP, Vitales D, Weber B, Heitkam T. The Dynamic Interplay Between Ribosomal DNA and Transposable Elements: A Perspective From Genomics and Cytogenetics. Mol Biol Evol 2024; 41:msae025. [PMID: 38306580 PMCID: PMC10946416 DOI: 10.1093/molbev/msae025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Although both are salient features of genomes, at first glance ribosomal DNAs and transposable elements are genetic elements with not much in common: whereas ribosomal DNAs are mainly viewed as housekeeping genes that uphold all prime genome functions, transposable elements are generally portrayed as selfish and disruptive. These opposing characteristics are also mirrored in other attributes: organization in tandem (ribosomal DNAs) versus organization in a dispersed manner (transposable elements); evolution in a concerted manner (ribosomal DNAs) versus evolution by diversification (transposable elements); and activity that prolongs genomic stability (ribosomal DNAs) versus activity that shortens it (transposable elements). Re-visiting relevant instances in which ribosomal DNA-transposable element interactions have been reported, we note that both repeat types share at least four structural and functional hallmarks: (1) they are repetitive DNAs that shape genomes in evolutionary timescales, (2) they exchange structural motifs and can enter co-evolution processes, (3) they are tightly controlled genomic stress sensors playing key roles in senescence/aging, and (4) they share common epigenetic marks such as DNA methylation and histone modification. Here, we give an overview of the structural, functional, and evolutionary characteristics of both ribosomal DNAs and transposable elements, discuss their roles and interactions, and highlight trends and future directions as we move forward in understanding ribosomal DNA-transposable element associations.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | - Sophie Maiwald
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Ludwig Mann
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Nicola Schmidt
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | | | - Daniel Vitales
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, 08038 Barcelona, Catalonia, Spain
- Laboratori de Botànica–Unitat Associada CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Beatrice Weber
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Technische Universität Dresden, D-01069 Dresden, Germany
- Institute of Biology, NAWI Graz, Karl-Franzens-Universität, A-8010 Graz, Austria
| |
Collapse
|
12
|
Oggenfuss U, Badet T, Croll D. A systematic screen for co-option of transposable elements across the fungal kingdom. Mob DNA 2024; 15:2. [PMID: 38245743 PMCID: PMC10799480 DOI: 10.1186/s13100-024-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
How novel protein functions are acquired is a central question in molecular biology. Key paths to novelty include gene duplications, recombination or horizontal acquisition. Transposable elements (TEs) are increasingly recognized as a major source of novel domain-encoding sequences. However, the impact of TE coding sequences on the evolution of the proteome remains understudied. Here, we analyzed 1237 genomes spanning the phylogenetic breadth of the fungal kingdom. We scanned proteomes for evidence of co-occurrence of TE-derived domains along with other conventional protein functional domains. We detected more than 13,000 predicted proteins containing potentially TE-derived domain, of which 825 were identified in more than five genomes, indicating that many host-TE fusions may have persisted over long evolutionary time scales. We used the phylogenetic context to identify the origin and retention of individual TE-derived domains. The most common TE-derived domains are helicases derived from Academ, Kolobok or Helitron. We found putative TE co-options at a higher rate in genomes of the Saccharomycotina, providing an unexpected source of protein novelty in these generally TE depleted genomes. We investigated in detail a candidate host-TE fusion with a heterochromatic transcriptional silencing function that may play a role in TE and gene regulation in ascomycetes. The affected gene underwent multiple full or partial losses within the phylum. Overall, our work establishes a kingdom-wide view of putative host-TE fusions and facilitates systematic investigations of candidate fusion proteins.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Department of Microbiology and Immunology, University of Minnesota, Medical School, Minneapolis, Minnesota, United States of America
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
13
|
Kirov I. Toward Transgene-Free Transposon-Mediated Biological Mutagenesis for Plant Breeding. Int J Mol Sci 2023; 24:17054. [PMID: 38069377 PMCID: PMC10706983 DOI: 10.3390/ijms242317054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Genetic diversity is a key factor for plant breeding. The birth of novel genic and genomic variants is also crucial for plant adaptation in nature. Therefore, the genomes of almost all living organisms possess natural mutagenic mechanisms. Transposable elements (TEs) are a major mutagenic force driving genetic diversity in wild plants and modern crops. The relatively rare TE transposition activity during the thousand-year crop domestication process has led to the phenotypic diversity of many cultivated species. The utilization of TE mutagenesis by artificial and transient acceleration of their activity in a controlled mode is an attractive foundation for a novel type of mutagenesis called TE-mediated biological mutagenesis. Here, I focus on TEs as mutagenic sources for plant breeding and discuss existing and emerging transgene-free approaches for TE activation in plants. Furthermore, I also review the non-randomness of TE insertions in a plant genome and the molecular and epigenetic factors involved in shaping TE insertion preferences. Additionally, I discuss the molecular mechanisms that prevent TE transpositions in germline plant cells (e.g., meiocytes, pollen, egg and embryo cells, and shoot apical meristem), thereby reducing the chances of TE insertion inheritance. Knowledge of these mechanisms can expand the TE activation toolbox using novel gene targeting approaches. Finally, the challenges and future perspectives of plant populations with induced novel TE insertions (iTE plant collections) are discussed.
Collapse
Affiliation(s)
- Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
14
|
Lawlor MA, Ellison CE. Evolutionary dynamics between transposable elements and their host genomes: mechanisms of suppression and escape. Curr Opin Genet Dev 2023; 82:102092. [PMID: 37517354 PMCID: PMC10530431 DOI: 10.1016/j.gde.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 08/01/2023]
Abstract
Transposable elements (TEs) are ubiquitous among eukaryotic species. Their evolutionary persistence is likely due to a combination of tolerogenic, evasive/antagonistic, and cooperative interactions with their host genomes. Here, we focus on metazoan species and review recent advances related to the harmful effects of TE insertions, including how epigenetic effects and TE-derived RNAs can damage host cells. We discuss new findings related to host pathways that silence TEs, such as the piRNA pathway and the APOBEC3 and Kruppel-associated box zinc finger gene families. Finally, we summarize novel strategies used by TEs to evade host silencing, including the Y chromosome as a permissive niche for TE mobilization and TE counterdefense strategies to block host silencing factors.
Collapse
|
15
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
16
|
Vassilieff H, Geering ADW, Choisne N, Teycheney PY, Maumus F. Endogenous Caulimovirids: Fossils, Zombies, and Living in Plant Genomes. Biomolecules 2023; 13:1069. [PMID: 37509105 PMCID: PMC10377300 DOI: 10.3390/biom13071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The Caulimoviridae is a family of double-stranded DNA viruses that infect plants. The genomes of most vascular plants contain endogenous caulimovirids (ECVs), a class of repetitive DNA elements that is abundant in some plant genomes, resulting from the integration of viral DNA in the chromosomes of germline cells during episodes of infection that have sometimes occurred millions of years ago. In this review, we reflect on 25 years of research on ECVs that has shown that members of the Caulimoviridae have occupied an unprecedented range of ecological niches over time and shed light on their diversity and macroevolution. We highlight gaps in knowledge and prospects of future research fueled by increased access to plant genome sequence data and new tools for genome annotation for addressing the extent, impact, and role of ECVs on plant biology and the origin and evolutionary trajectories of the Caulimoviridae.
Collapse
Affiliation(s)
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre de La Réunion, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre de La Réunion, France
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, 78026 Versailles, France
| |
Collapse
|
17
|
Rogers RL, Grizzard SL, Garner JT. Strong, Recent Selective Sweeps Reshape Genetic Diversity in Freshwater Bivalve Megalonaias nervosa. Mol Biol Evol 2023; 40:7026026. [PMID: 36738170 PMCID: PMC9976758 DOI: 10.1093/molbev/msad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Freshwater Unionid bivalves have recently faced ecological upheaval through pollution, barriers to dispersal, harvesting, and changes in fish-host prevalence. Currently, over 70% of species in North America are threatened, endangered or extinct. To characterize the genetic response to recent selective pressures, we collected population genetic data for one successful bivalve species, Megalonaias nervosa. We identify megabase-sized regions that are nearly monomorphic across the population, signals of strong, recent selection reshaping diversity across 73 Mb total. These signatures of selection are greater than is commonly seen in population genetic models. We observe 102 duplicate genes with high dN/dS on terminal branches among regions with sweeps, suggesting that gene duplication is a causative mechanism of recent adaptation in M. nervosa. Genes in sweeps reflect functional classes important for Unionid survival, including anticoagulation genes important for fish host parasitization, detox genes, mitochondria management, and shell formation. We identify sweeps in regions with no known functional impacts, suggesting mechanisms of adaptation that deserve greater attention in future work on species survival. In contrast, polymorphic transposable elements (TEs) appear to be detrimental and underrepresented among regions with sweeps. TE site frequency spectra are skewed toward singleton variants, and TEs among regions with sweeps are present at low frequency. Our work suggests that duplicate genes are an essential source of genetic novelty that has helped this species succeed in environments where others have struggled. These results suggest that gene duplications deserve greater attention in non-model population genomics, especially in species that have recently faced sudden environmental challenges.
Collapse
Affiliation(s)
- Rebekah L Rogers
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC 28223, USA
| | | | - Jeffrey T Garner
- Division of Wildlife and Freshwater Fisheries, Alabama Department of Conservation and Natural Resources, Florence, AL, USA
| |
Collapse
|
18
|
Alvarado-Marchena L, Martínez-Pérez M, Aparicio F, Pallas V, Maumus F. Recent Acquisition of Functional m6A RNA Demethylase Domain in Orchid Ty3/Gypsy Elements. FRONTIERS IN PLANT SCIENCE 2022; 13:939843. [PMID: 35860540 PMCID: PMC9289625 DOI: 10.3389/fpls.2022.939843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Long terminal repeats (LTR) retrotransposons are transposable elements (TEs) representing major components of most plant genomes. The fixation of additional conserved protein domains in their genomes is considered a rare event in the course of their evolution. Such changes can bring novel functions and increase their fitness by playing a role in the regulation of their replicative cycle or by affecting their integration landscape so that the detection of new domains can in turn reveal important aspects of host-TE interactions. We have mined angiosperm genomes for the presence of additional domains in LTR retrotransposons. We report a lineage of large (25 kbp) Gypsy-type elements in the genomes of Phalaenopsis orchids that contain an additional open reading frame containing a 2-ODD domain with close similarity to those responsible for m6A RNA demethylase activity in AlkB proteins. By performing in vitro assays, we demonstrate the RNA binding capability and the demethylase activity of the Gypsy-encoded AlkB protein, suggesting it could be functional against cognate TE mRNA or any cellular RNA in planta. In line with recent literature, we propose that the fixation of an RNA demethylase in this lineage of LTR retrotransposons may reflect an important role for epitranscriptomic control in host surveillance against TEs.
Collapse
Affiliation(s)
- Luis Alvarado-Marchena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Mireya Martínez-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Frederic Aparicio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, Versailles, France
| |
Collapse
|
19
|
Grau-Bové X, Navarrete C, Chiva C, Pribasnig T, Antó M, Torruella G, Galindo LJ, Lang BF, Moreira D, López-Garcia P, Ruiz-Trillo I, Schleper C, Sabidó E, Sebé-Pedrós A. A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Nat Ecol Evol 2022; 6:1007-1023. [PMID: 35680998 PMCID: PMC7613034 DOI: 10.1038/s41559-022-01771-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically-comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in Archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (e.g., methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Thomas Pribasnig
- Department of Functional and Evolutionary Ecology, Archaea Biology Unit, University of Vienna, Vienna, Austria
| | - Meritxell Antó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Guifré Torruella
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Luis Javier Galindo
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Bernd Franz Lang
- Robert Cedergren Centre in Bioinformatics and Genomics, Department of Biochemistry, Université de Montréal, Montréal, Quebec, Canada
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-Garcia
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology Unit, University of Vienna, Vienna, Austria
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
20
|
Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements. Cells 2022; 11:cells11050761. [PMID: 35269383 PMCID: PMC8909793 DOI: 10.3390/cells11050761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are abundant components of constitutive heterochromatin of the most diverse evolutionarily distant organisms. TEs enrichment in constitutive heterochromatin was originally described in the model organism Drosophila melanogaster, but it is now considered as a general feature of this peculiar portion of the genomes. The phenomenon of TE enrichment in constitutive heterochromatin has been proposed to be the consequence of a progressive accumulation of transposable elements caused by both reduced recombination and lack of functional genes in constitutive heterochromatin. However, this view does not take into account classical genetics studies and most recent evidence derived by genomic analyses of heterochromatin in Drosophila and other species. In particular, the lack of functional genes does not seem to be any more a general feature of heterochromatin. Sequencing and annotation of Drosophila melanogaster constitutive heterochromatin have shown that this peculiar genomic compartment contains hundreds of transcriptionally active genes, generally larger in size than that of euchromatic ones. Together, these genes occupy a significant fraction of the genomic territory of heterochromatin. Moreover, transposable elements have been suggested to drive the formation of heterochromatin by recruiting HP1 and repressive chromatin marks. In addition, there are several pieces of evidence that transposable elements accumulation in the heterochromatin might be important for centromere and telomere structure. Thus, there may be more complexity to the relationship between transposable elements and constitutive heterochromatin, in that different forces could drive the dynamic of this phenomenon. Among those forces, preferential transposition may be an important factor. In this article, we present an overview of experimental findings showing cases of transposon enrichment into the heterochromatin and their positive evolutionary interactions with an impact to host genomes.
Collapse
|
21
|
Abascal-Palacios G, Jochem L, Pla-Prats C, Beuron F, Vannini A. Structural basis of Ty3 retrotransposon integration at RNA Polymerase III-transcribed genes. Nat Commun 2021; 12:6992. [PMID: 34848735 PMCID: PMC8632968 DOI: 10.1038/s41467-021-27338-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
Retrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.
Collapse
Affiliation(s)
| | - Laura Jochem
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Carlos Pla-Prats
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Human Technopole, 20157, Milan, Italy.
| |
Collapse
|
22
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
23
|
Regulation of retrotransposition in Arabidopsis. Biochem Soc Trans 2021; 49:2241-2251. [PMID: 34495315 DOI: 10.1042/bst20210337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
Plant genomes are largely comprised of retrotransposons which can replicate through 'copy and paste' mechanisms. Long terminal repeat (LTR) retrotransposons are the major class of retrotransposons in plant species, and importantly they broadly affect the expression of nearby genes. Although most LTR retrotransposons are non-functional, active retrotranspositions have been reported in plant species or mutants under normal growth condition and environmental stresses. With the well-defined reference genome and numerous mutant alleles, Arabidopsis studies have significantly expanded our understanding of retrotransposon regulation. Active LTR retrotransposon loci produce virus-like particles to perform reverse transcription, and their complementary DNA can be inserted into new genomic loci. Due to the detrimental consequences of retrotransposition, plants like animals, have developed transcriptional and post-transcriptional silencing mechanisms. Recently several different genome-wide techniques have been developed to understand LTR retrotransposition in Arabidopsis and different plant species. Transposome, methylome, transcriptome, translatome and small RNA sequencing data have revealed how host silencing mechanisms can affect multiple steps of retrotransposition. These recent advances shed light on future mechanistic studies of retrotransposition as well as retrotransposon diversity.
Collapse
|
24
|
Hackl T, Duponchel S, Barenhoff K, Weinmann A, Fischer MG. Virophages and retrotransposons colonize the genomes of a heterotrophic flagellate. eLife 2021; 10:72674. [PMID: 34698016 PMCID: PMC8547959 DOI: 10.7554/elife.72674] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Virophages can parasitize giant DNA viruses and may provide adaptive anti-giant virus defense in unicellular eukaryotes. Under laboratory conditions, the virophage mavirus integrates into the nuclear genome of the marine flagellate Cafeteria burkhardae and reactivates upon superinfection with the giant virus CroV. In natural systems, however, the prevalence and diversity of host-virophage associations has not been systematically explored. Here, we report dozens of integrated virophages in four globally sampled C. burkhardae strains that constitute up to 2% of their host genomes. These endogenous mavirus-like elements (EMALEs) separated into eight types based on GC-content, nucleotide similarity, and coding potential and carried diverse promoter motifs implicating interactions with different giant viruses. Between host strains, some EMALE insertion loci were conserved indicating ancient integration events, whereas the majority of insertion sites were unique to a given host strain suggesting that EMALEs are active and mobile. Furthermore, we uncovered a unique association between EMALEs and a group of tyrosine recombinase retrotransposons, revealing yet another layer of parasitism in this nested microbial system. Our findings show that virophages are widespread and dynamic in wild Cafeteria populations, supporting their potential role in antiviral defense in protists. Viruses exist in all ecosystems in vast numbers and infect many organisms. Some of them are harmful but others can protect the organisms they infect. For example, a group of viruses called virophages protect microscopic sea creatures called plankton from deadly infections by so-called giant viruses. In fact, virophages need plankton infected with giant viruses to survive because they use enzymes from the giant viruses to turn on their own genes. A virophage called mavirus integrates its genes into the DNA of a type of plankton called Cafeteria. It lays dormant in the DNA until a giant virus called CroV infects the plankton. This suggests that the mavirus may be a built-in defense against CroV infections and laboratory studies seem to confirm this. But whether wild Cafeteria also use these defenses is unknown. Hackl et al. show that virophages are common in the DNA of wild Cafeteria and that the two appear to have a mutually beneficial relationship. In the experiments, the researchers sequenced the genomes of four Cafeteria populations from the Atlantic and Pacific Oceans and looked for virophages in their DNA. Each of the four Cafeteria genomes contained dozens of virophages, which suggests that virophages are important to these plankton. This included several relatives of the mavirus and seven new virophages. Virophage genes were often interrupted by so called jumping genes, which may take advantage of the virophages the way the virophages use giant viruses to meet their own needs. The experiments show that virophages often co-exist with marine plankton from around the world and these relationships are likely beneficial. In fact, the experiments suggest that the virophages may have played an important role in the evolution of these plankton. Further studies may help scientists learn more about virus ecology and how viruses have shaped the evolution of other creatures.
Collapse
Affiliation(s)
- Thomas Hackl
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | - Sarah Duponchel
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | - Karina Barenhoff
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | - Alexa Weinmann
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| | - Matthias G Fischer
- Max Planck Institute for Medical Research, Department of Biomolecular Mechanisms, Heidelberg, Germany
| |
Collapse
|
25
|
Schmidt N, Seibt KM, Weber B, Schwarzacher T, Schmidt T, Heitkam T. Broken, silent, and in hiding: tamed endogenous pararetroviruses escape elimination from the genome of sugar beet (Beta vulgaris). ANNALS OF BOTANY 2021; 128:281-299. [PMID: 33729490 PMCID: PMC8389469 DOI: 10.1093/aob/mcab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Endogenous pararetroviruses (EPRVs) are widespread components of plant genomes that originated from episomal DNA viruses of the Caulimoviridae family. Due to fragmentation and rearrangements, most EPRVs have lost their ability to replicate through reverse transcription and to initiate viral infection. Similar to the closely related retrotransposons, extant EPRVs were retained and often amplified in plant genomes for several million years. Here, we characterize the complete genomic EPRV fraction of the crop sugar beet (Beta vulgaris, Amaranthaceae) to understand how they shaped the beet genome and to suggest explanations for their absent virulence. METHODS Using next- and third-generation sequencing data and genome assembly, we reconstructed full-length in silico representatives for the three host-specific EPRVs (beetEPRVs) in the B. vulgaris genome. Focusing on the endogenous caulimovirid beetEPRV3, we investigated its chromosomal localization, abundance and distribution by fluorescent in situ and Southern hybridization. KEY RESULTS Full-length beetEPRVs range between 7.5 and 10.7 kb in size, are heterogeneous in structure and sequence, and occupy about 0.3 % of the beet genome. Although all three beetEPRVs were assigned to the florendoviruses, they showed variably arranged protein-coding domains, different fragmentation, and preferences for diverse sequence contexts. We observed small RNAs that specifically target the individual beetEPRVs, indicating stringent epigenetic suppression. BeetEPRV3 sequences occur along all sugar beet chromosomes, preferentially in the vicinity of each other and are associated with heterochromatic, centromeric and intercalary satellite DNAs. BeetEPRV3 members also exist in genomes of related wild species, indicating an initial beetEPRV3 integration 13.4-7.2 million years ago. CONCLUSIONS Our study in beet illustrates the variability of EPRV structure and sequence in a single host genome. Evidence of sequence fragmentation and epigenetic silencing implies possible plant strategies to cope with long-term persistence of EPRVs, including amplification, fixation in the heterochromatin, and containment of EPRV virulence.
Collapse
Affiliation(s)
- Nicola Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Beatrice Weber
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, PR China
| | - Thomas Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
26
|
Cervantes-Pérez SA, Yong-Villalobos L, Florez-Zapata NMV, Oropeza-Aburto A, Rico-Reséndiz F, Amasende-Morales I, Lan T, Martínez O, Vielle-Calzada JP, Albert VA, Herrera-Estrella L. Atypical DNA methylation, sRNA-size distribution, and female gametogenesis in Utricularia gibba. Sci Rep 2021; 11:15725. [PMID: 34344949 PMCID: PMC8333044 DOI: 10.1038/s41598-021-95054-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.
Collapse
Affiliation(s)
- Sergio Alan Cervantes-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Lenin Yong-Villalobos
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico.,Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nathalia M V Florez-Zapata
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar (Circunvalar) #16-20, Bogotá, DC, 111311, Colombia
| | - Araceli Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Félix Rico-Reséndiz
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Itzel Amasende-Morales
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Octavio Martínez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Jean Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico. .,Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
27
|
Yañez-Santos AM, Paz RC, Paz-Sepúlveda PB, Urdampilleta JD. Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences. Chromosome Res 2021; 29:261-284. [PMID: 34086192 DOI: 10.1007/s10577-021-09663-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2020] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/01/2023]
Abstract
Capsicum annuum is a species that has undergone an expansion of the size of its genome caused mainly by the amplification of repetitive DNA sequences, including mobile genetic elements. Based on information obtained from sequencing the genome of pepper, the estimated fraction of retroelements is approximately 81%, and previous results revealed an important contribution of lineages derived from Gypsy superfamily. However, the dynamics of the retroelements in the C. annuum genome is poorly understood. In this way, the present work seeks to investigate the phylogenetic diversity and genomic abundance of the families of autonomous (complete and intact) LTR retroelements from C. annuum and inspect their distribution along its chromosomes. In total, we identified 1151 structurally full-length retroelements (340 Copia; 811 Gypsy) grouped in 124 phylogenetic families in the base of their retrotranscriptase. All the evolutive lineages of LTR retroelements identified in plants were present in pepper; however, three of them comprise 83% of the entire LTR retroelements population, the lineages Athila, Del/Tekay, and Ale/Retrofit. From them, only three families represent 70.8% of the total number of the identified retroelements. A massive family-specific wave of amplification of two of them occurred in the last 0.5 Mya (GypsyCa_16; CopiaCa_01), whereas the third is more ancient and occurred 3.0 Mya (GypsyCa_13). Fluorescent in situ hybridization performed with family and lineage-specific probes revealed contrasting patterns of chromosomal affinity. Our results provide a database of the populations LTR retroelements specific to C. annuum genome. The most abundant families were analyzed according to chromosome insertional preferences, suppling useful tools to the design of retroelement-based markers specific to the species.
Collapse
Affiliation(s)
- Anahí Mara Yañez-Santos
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| | - Rosalía Cristina Paz
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.
| | - Paula Beatriz Paz-Sepúlveda
- Instituto Multidisciplinario de Biología Celular (IMBICE), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) - Comisión de Investigaciones Científicas (CIC) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Juan Domingo Urdampilleta
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
| |
Collapse
|
28
|
Vangelisti A, Simoni S, Usai G, Ventimiglia M, Natali L, Cavallini A, Mascagni F, Giordani T. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC PLANT BIOLOGY 2021; 21:221. [PMID: 34000996 PMCID: PMC8127270 DOI: 10.1186/s12870-021-02991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/24/2020] [Accepted: 04/15/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences. RESULTS In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established. CONCLUSIONS The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Maria Ventimiglia
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Flavia Mascagni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Tommaso Giordani
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
29
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
30
|
Wang Y, Dai A, Tang T. Weak Effect of Gypsy Retrotransposon Bursts on Sonneratia alba Salt Stress Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:830079. [PMID: 35111190 PMCID: PMC8801733 DOI: 10.3389/fpls.2021.830079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 05/07/2023]
Abstract
Transposable elements (TEs) are an important source of genetic diversity and can be co-opted for the regulation of host genes. However, to what extent the pervasive TE colonization of plant genomes has contributed to stress adaptation remains controversial. Plants inhabiting harsh environments in nature provide a unique opportunity to answer this question. We compared TE compositions and their evolutionary dynamics in the genomes of two mangrove species: the pioneer Sonneratia alba and its less salt-tolerant relative S. caseolaris. Age distribution, strength of purifying selection and the removal rate of LTR (long terminal repeat) retrotransposons were estimated. Phylogenetic analysis of LTR retrotransposons and their distribution in the genome of S. alba were surveyed. Small RNA sequencing and whole-genome bisulfite sequencing was conducted using leaves of S. alba. Expression pattern of LTR retrotransposons and their nearby genes were examined using RNA-seq data of S. alba under different salt treatments. S. alba possesses more TEs than S. caseolaris. Particularly, many more young Gypsy LTR retrotransposons have accumulated in S. alba than in S. caseolaris despite an increase in purifying selection against TE insertions. The top two most abundant Gypsy families in S. alba preferentially insert in gene-poor regions. They are under relaxed epigenetic repression, probably due to the presence of CHROMO domains in their 3'-ends. Although a considerable number of TEs in S. alba showed differential expression under salt stress, only four copies were significantly correlated with their nearby genes in expression levels. One such TE-gene pair involves Abscisic acid 8'-hydroxylase 3 functioning in abscisic acid catabolism. This study sheds light on the evolutionary dynamics and potential function of TEs in an extremophile. Our results suggest that the conclusion on co-option of TEs should be cautious even though activation of TEs by stress might be prevalent.
Collapse
|
31
|
Zhang SJ, Liu L, Yang R, Wang X. Genome Size Evolution Mediated by Gypsy Retrotransposons in Brassicaceae. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:321-332. [PMID: 33137519 PMCID: PMC7801240 DOI: 10.1016/j.gpb.2018.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/09/2018] [Revised: 05/31/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
Abstract
The dynamic activity of transposable elements (TEs) contributes to the vast diversity of genome size and architecture among plants. Here, we examined the genomic distribution and transposition activity of long terminal repeat retrotransposons (LTR-RTs) in Arabidopsis thaliana (Ath) and three of its relatives, Arabidopsis lyrata (Aly), Eutrema salsugineum (Esa), and Schrenkiella parvula (Spa), in Brassicaceae. Our analyses revealed the distinct evolutionary dynamics of Gypsyretrotransposons, which reflects the different patterns of genome size changes of the four species over the past million years. The rate of Gypsy transposition in Aly is approximately five times more rapid than that of Ath and Esa, suggesting an expanding Aly genome. Gypsy insertions in Esa are strictly confined to pericentromeric heterochromatin and associated with dramatic centromere expansion. In contrast, Gypsy insertions in Spa have been largely suppressed over the last million years, likely as a result of a combination of an inherent molecular mechanism of preferential DNA removal and purifying selection at Gypsy elements. Additionally, species-specific clades of Gypsy elements shaped the distinct genome architectures of Aly and Esa.
Collapse
Affiliation(s)
- Shi-Jian Zhang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Lei Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Sciences, Beijing Technology and Business University, Beijing 100048, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China.
| |
Collapse
|
32
|
R2 and Non-Site-Specific R2-Like Retrotransposons of the German Cockroach, Blattella germanica. Genes (Basel) 2020; 11:genes11101202. [PMID: 33076367 PMCID: PMC7650587 DOI: 10.3390/genes11101202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
The structural and functional organization of the ribosomal RNA gene cluster and the full-length R2 non-LTR retrotransposon (integrated into a specific site of 28S ribosomal RNA genes) of the German cockroach, Blattella germanica, is described. A partial sequence of the R2 retrotransposon of the cockroach Rhyparobia maderae is also analyzed. The analysis of previously published next-generation sequencing data from the B. germanica genome reveals a new type of retrotransposon closely related to R2 retrotransposons but with a random distribution in the genome. Phylogenetic analysis reveals that these newly described retrotransposons form a separate clade. It is shown that proteins corresponding to the open reading frames of newly described retrotransposons exhibit unequal structural domains. Within these retrotransposons, a recombination event is described. New mechanism of transposition activity is discussed. The essential structural features of R2 retrotransposons are conserved in cockroaches and are typical of previously described R2 retrotransposons. However, the investigation of the number and frequency of 5′-truncated R2 retrotransposon insertion variants in eight B. germanica populations suggests recent mobile element activity. It is shown that the pattern of 5′-truncated R2 retrotransposon copies can be an informative molecular genetic marker for revealing genetic distances between insect populations.
Collapse
|
33
|
Rahnama M, Novikova O, Starnes JH, Zhang S, Chen L, Farman ML. Transposon-mediated telomere destabilization: a driver of genome evolution in the blast fungus. Nucleic Acids Res 2020; 48:7197-7217. [PMID: 32558886 PMCID: PMC7367193 DOI: 10.1093/nar/gkaa287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
The fungus Magnaporthe oryzae causes devastating diseases of crops, including rice and wheat, and in various grasses. Strains from ryegrasses have highly unstable chromosome ends that undergo frequent rearrangements, and this has been associated with the presence of retrotransposons (Magnaporthe oryzae Telomeric Retrotransposons-MoTeRs) inserted in the telomeres. The objective of the present study was to determine the mechanisms by which MoTeRs promote telomere instability. Targeted cloning, mapping, and sequencing of parental and novel telomeric restriction fragments (TRFs), along with MinION sequencing of genomic DNA allowed us to document the precise molecular alterations underlying 109 newly-formed TRFs. These included truncations of subterminal rDNA sequences; acquisition of MoTeR insertions by 'plain' telomeres; insertion of the MAGGY retrotransposons into MoTeR arrays; MoTeR-independent expansion and contraction of subtelomeric tandem repeats; and a variety of rearrangements initiated through breaks in interstitial telomere tracts that are generated during MoTeR integration. Overall, we estimate that alterations occurred in approximately sixty percent of chromosomes (one in three telomeres) analyzed. Most importantly, we describe an entirely new mechanism by which transposons can promote genomic alterations at exceptionally high frequencies, and in a manner that can promote genome evolution while minimizing collateral damage to overall chromosome architecture and function.
Collapse
Affiliation(s)
- Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Olga Novikova
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - John H Starnes
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Shouan Zhang
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Li Chen
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| |
Collapse
|
34
|
Asif‐Laidin A, Conesa C, Bonnet A, Grison C, Adhya I, Menouni R, Fayol H, Palmic N, Acker J, Lesage P. A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes. EMBO J 2020; 39:e104337. [PMID: 32677087 PMCID: PMC7459421 DOI: 10.15252/embj.2019104337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
Integration of transposable elements into the genome is mutagenic. Mechanisms targeting integrations into relatively safe locations, hence minimizing deleterious consequences for cell fitness, have emerged during evolution. In budding yeast, integration of the Ty1 LTR retrotransposon upstream of RNA polymerase III (Pol III)-transcribed genes requires interaction between Ty1 integrase (IN1) and AC40, a subunit common to Pol I and Pol III. Here, we identify the Ty1 targeting domain of IN1 that ensures (i) IN1 binding to Pol I and Pol III through AC40, (ii) IN1 genome-wide recruitment to Pol I- and Pol III-transcribed genes, and (iii) Ty1 integration only at Pol III-transcribed genes, while IN1 recruitment by AC40 is insufficient to target Ty1 integration into Pol I-transcribed genes. Swapping the targeting domains between Ty5 and Ty1 integrases causes Ty5 integration at Pol III-transcribed genes, indicating that the targeting domain of IN1 alone confers Ty1 integration site specificity.
Collapse
Affiliation(s)
- Amna Asif‐Laidin
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Christine Conesa
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Amandine Bonnet
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Camille Grison
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Indranil Adhya
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Rachid Menouni
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Hélène Fayol
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Noé Palmic
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Joël Acker
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| |
Collapse
|
35
|
Quesneville H. Twenty years of transposable element analysis in the Arabidopsis thaliana genome. Mob DNA 2020; 11:28. [PMID: 32742313 PMCID: PMC7385966 DOI: 10.1186/s13100-020-00223-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2020] [Accepted: 07/16/2020] [Indexed: 11/10/2022] Open
Abstract
Transposable elements (TEs) are mobile repetitive DNA sequences shown to be major drivers of genome evolution. As the first plant to have its genome sequenced and analyzed at the genomic scale, Arabidopsis thaliana has largely contributed to our TE knowledge. The present report describes 20 years of accumulated TE knowledge gained through the study of the Arabidopsis genome and covers the known TE families, their relative abundance, and their genomic distribution. It presents our knowledge of the different TE family activities, mobility, population and long-term evolutionary dynamics. Finally, the role of TE as substrates for new genes and their impact on gene expression is illustrated through a few selected demonstrative cases. Promising future directions for TE studies in this species conclude the review.
Collapse
|
36
|
Cerbin S, Wai CM, VanBuren R, Jiang N. GingerRoot: A Novel DNA Transposon Encoding Integrase-Related Transposase in Plants and Animals. Genome Biol Evol 2020; 11:3181-3193. [PMID: 31633753 PMCID: PMC6839031 DOI: 10.1093/gbe/evz230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 10/20/2019] [Indexed: 02/06/2023] Open
Abstract
Transposable elements represent the largest components of many eukaryotic genomes and different genomes harbor different combinations of elements. Here, we discovered a novel DNA transposon in the genome of the clubmoss Selaginella lepidophylla. Further searching for related sequences to the conserved DDE region uncovered the presence of this superfamily of elements in fish, coral, sea anemone, and other animal species. However, this element appears restricted to Bryophytes and Lycophytes in plants. This transposon, named GingerRoot, is associated with a 6 bp (base pair) target site duplication, and 100-150 bp terminal inverted repeats. Analysis of transposase sequences identified the DDE motif, a catalytic domain, which shows similarity to the integrase of Gypsy-like long terminal repeat retrotransposons, the most abundant component in plant genomes. A total of 77 intact and several hundred truncated copies of GingerRoot elements were identified in S. lepidophylla. Like Gypsy retrotransposons, GingerRoots show a lack of insertion preference near genes, which contrasts to the compact genome size of about 100 Mb. Nevertheless, a considerable portion of GingerRoot elements was found to carry gene fragments, suggesting the capacity of duplicating gene sequences is unlikely attributed to the proximity to genes. Elements carrying gene fragments appear to be less methylated, more diverged, and more distal to genes than those without gene fragments, indicating they are preferentially retained in gene-poor regions. This study has identified a broadly dispersed, novel DNA transposon, and the first plant DNA transposon with an integrase-related transposase, suggesting the possibility of de novo formation of Gypsy-like elements in plants.
Collapse
Affiliation(s)
- Stefan Cerbin
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| | - Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
37
|
Abstract
Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome.
Collapse
|
38
|
Vendrell-Mir P, López-Obando M, Nogué F, Casacuberta JM. Different Families of Retrotransposons and DNA Transposons Are Actively Transcribed and May Have Transposed Recently in Physcomitrium ( Physcomitrella) patens. FRONTIERS IN PLANT SCIENCE 2020; 11:1274. [PMID: 32973835 PMCID: PMC7466625 DOI: 10.3389/fpls.2020.01274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/21/2020] [Accepted: 08/05/2020] [Indexed: 05/07/2023]
Abstract
Similarly to other plant genomes of similar size, more than half of the genome of P. patens is covered by Transposable Elements (TEs). However, the composition and distribution of P. patens TEs is quite peculiar, with Long Terminal Repeat (LTR)-retrotransposons, which form patches of TE-rich regions interleaved with gene-rich regions, accounting for the vast majority of the TE space. We have already shown that RLG1, the most abundant TE in P. patens, is expressed in non-stressed protonema tissue. Here we present a non-targeted analysis of the TE expression based on RNA-Seq data and confirmed by qRT-PCR analyses that shows that, at least four LTR-RTs (RLG1, RLG2, RLC4 and tRLC5) and one DNA transposon (PpTc2) are expressed in P. patens. These TEs are expressed during development or under stresses that P. patens frequently faces, such as dehydratation/rehydratation stresses, suggesting that TEs have ample possibilities to transpose during P. patens life cycle. Indeed, an analysis of the TE polymorphisms among four different P. patens accessions shows that different TE families have recently transposed in this species and have generated genetic variability that may have phenotypic consequences, as a fraction of the TE polymorphisms are within or close to genes. Among the transcribed and mobile TEs, tRLC5 is particularly interesting as it concentrates in a single position per chromosome that could coincide with the centromere, and its expression is specifically induced in young sporophyte, where meiosis takes place.
Collapse
Affiliation(s)
- Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
| | - Mauricio López-Obando
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- *Correspondence: Fabien Nogué, ; Josep M. Casacuberta,
| | - Josep M. Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
- *Correspondence: Fabien Nogué, ; Josep M. Casacuberta,
| |
Collapse
|
39
|
Jedlicka P, Lexa M, Vanat I, Hobza R, Kejnovsky E. Nested plant LTR retrotransposons target specific regions of other elements, while all LTR retrotransposons often target palindromes and nucleosome-occupied regions: in silico study. Mob DNA 2019; 10:50. [PMID: 31871489 PMCID: PMC6911290 DOI: 10.1186/s13100-019-0186-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background Nesting is common in LTR retrotransposons, especially in large genomes containing a high number of elements. Results We analyzed 12 plant genomes and obtained 1491 pairs of nested and original (pre-existing) LTR retrotransposons. We systematically analyzed mutual nesting of individual LTR retrotransposons and found that certain families, more often belonging to the Ty3/gypsy than Ty1/copia superfamilies, showed a higher nesting frequency as well as a higher preference for older copies of the same family ("autoinsertions"). Nested LTR retrotransposons were preferentially located in the 3'UTR of other LTR retrotransposons, while coding and regulatory regions (LTRs) are not commonly targeted. Insertions displayed a weak preference for palindromes and were associated with a strong positional pattern of higher predicted nucleosome occupancy. Deviation from randomness in target site choice was also found in 13,983 non-nested plant LTR retrotransposons. Conclusions We reveal that nesting of LTR retrotransposons is not random. Integration is correlated with sequence composition, secondary structure and the chromatin environment. Insertion into retrotransposon positions with a low negative impact on family fitness supports the concept of the genome being viewed as an ecosystem of various elements.
Collapse
Affiliation(s)
- Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
| | - Matej Lexa
- 2Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic
| | - Ivan Vanat
- 2Faculty of Informatics, Masaryk University, Botanicka 68a, 60200 Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic
| |
Collapse
|
40
|
Van-Lume B, Mata-Sucre Y, Báez M, Ribeiro T, Huettel B, Gagnon E, Leitch IJ, Pedrosa-Harand A, Lewis GP, Souza G. Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition. PLANTA 2019; 250:2173-2186. [PMID: 31696317 DOI: 10.1007/s00425-019-03287-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/09/2019] [Accepted: 09/25/2019] [Indexed: 05/02/2023]
Abstract
We demonstrated by cytogenomic analysis that the proximal heterochromatin of the Northeast Brazilian species of Caesalpinia group is enriched with phylogenetically conserved Ty3/Gypsy-Tekay RT, but diverge in the presence of Ty3/Gypsy-Athila RT and satDNA. The Caesalpinia Group includes 225 species and 27 monophyletic genera of which four occur in Northeastern Brazil: Erythrostemon (1 sp.), Cenostigma (7 spp.), Libidibia (1 sp.), and Paubrasilia (1 sp.). The last three genera are placed in different clades in the Caesalpinia Group phylogeny, and yet they are characterized by having a numerically stable karyotype 2n = 24 (16 M+8A) and GC-rich heterochromatic bands (chromomycin A3 positive/CMA+ bands) in the proximal chromosome regions. To characterize the composition of their heterochromatin and test for the homology of these chromosomal regions, genomic DNA was extracted from Cenostigma microphyllum, Libidibia ferrea, and Paubrasilia echinata, and sequenced at low coverage using the Illumina platform. The genomic repetitive fractions were characterized using a Galaxy/RepeatExplorer-Elixir platform. The most abundant elements of each genome were chromosomally located by fluorescent in situ hybridization (FISH) and compared to the CMA+ heterochromatin distribution. The repetitive fraction of the genomes of C. microphyllum, L. ferrea, and P. echinata were estimated to be 41.70%, 38.44%, and 72.51%, respectively. Ty3/Gypsy retrotransposons (RT), specifically the Tekay lineage, were the most abundant repeats in each of the three genomes. FISH mapping revealed species-specific patterns for the Tekay elements in the proximal regions of the chromosomes, co-localized with CMA+ bands. Other species-specific patterns were observed, e.g., for the Ty3/Gypsy RT Athila elements which were found in all the proximal heterochromatin of L. ferrea or restricted to the acrocentric chromosomes of C. microphyllum. This Athila labeling co-localized with satellite DNAs (satDNAs). Although the Caesalpinia Group diverged around 55 Mya, our results suggest an ancestral colonization of Tekay RT in the proximal heterochromatin. Thus, the present-day composition of the pericentromeric heterochromatin in these Northeast Brazilian species is a combination of the maintenance of an ancestral Tekay distribution with a species-specific accumulation of other repeats.
Collapse
Affiliation(s)
- Brena Van-Lume
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Yennifer Mata-Sucre
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Tiago Ribeiro
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
- Department of Botany and Ecology, Institute of Biosciences, Federal University of Mato Grosso, Av. Fernando Correa da Costa, 2.367, Boa Esperança, Cuiabá, MT, 78060-900, Brazil
| | | | - Edeline Gagnon
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5NZ, UK
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Gwilym P Lewis
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Rua Nelson Chaves S/N, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
41
|
Patterson K, Shavarebi F, Magnan C, Chang I, Qi X, Baldi P, Bilanchone V, Sandmeyer SB. Local features determine Ty3 targeting frequency at RNA polymerase III transcription start sites. Genome Res 2019; 29:1298-1309. [PMID: 31249062 PMCID: PMC6673722 DOI: 10.1101/gr.240861.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2018] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
Abstract
Retroelement integration into host genomes affects chromosome structure and function. A goal of a considerable number of investigations is to elucidate features influencing insertion site selection. The Saccharomyces cerevisiae Ty3 retrotransposon inserts proximal to the transcription start sites (TSS) of genes transcribed by RNA polymerase III (RNAP3). In this study, differential patterns of insertion were profiled genome-wide using a random barcode-tagged Ty3. Saturation transposition showed that tRNA genes (tDNAs) are targeted at widely different frequencies even within isoacceptor families. Ectopic expression of Ty3 integrase (IN) showed that it localized to targets independent of other Ty3 proteins and cDNA. IN, RNAP3, and transcription factor Brf1 were enriched at tDNA targets with high frequencies of transposition. To examine potential effects of cis-acting DNA features on transposition, targeting was tested on high-copy plasmids with restricted amounts of 5′ flanking sequence plus tDNA. Relative activity of targets was reconstituted in these constructions. Weighting of genomic insertions according to frequency identified an A/T-rich sequence followed by C as the dominant site of strand transfer. This site lies immediately adjacent to the adenines previously implicated in the RNAP3 TSS motif (CAA). In silico DNA structural analysis upstream of this motif showed that targets with elevated DNA curvature coincide with reduced integration. We propose that integration mediated by the Ty3 intasome complex (IN and cDNA) is subject to inputs from a combination of host factor occupancy and insertion site architecture, and that this results in the wide range of Ty3 targeting frequencies.
Collapse
Affiliation(s)
- Kurt Patterson
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Farbod Shavarebi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Christophe Magnan
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Ivan Chang
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Xiaojie Qi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Pierre Baldi
- School of Information and Computer Sciences, University of California, Irvine, Irvine, California 92697, USA
| | - Virginia Bilanchone
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | - Suzanne B Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
42
|
de Mendoza A, Pflueger J, Lister R. Capture of a functionally active methyl-CpG binding domain by an arthropod retrotransposon family. Genome Res 2019; 29:1277-1286. [PMID: 31239280 PMCID: PMC6673714 DOI: 10.1101/gr.243774.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2018] [Accepted: 06/20/2019] [Indexed: 12/30/2022]
Abstract
The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Despite MBD proteins being associated with silencing, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD. We functionally show how retrotransposon-encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding potentially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome disproportionately accumulate in methylated gene bodies compared with other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data show that retrotransposons can co-opt host-derived epigenome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process.
Collapse
Affiliation(s)
- Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia.,Harry Perkins Institute of Medical Research, Perth, Western Australia, 6009, Australia
| |
Collapse
|
43
|
Berjón-Otero M, Koslová A, Fischer MG. The dual lifestyle of genome-integrating virophages in protists. Ann N Y Acad Sci 2019; 1447:97-109. [PMID: 31162694 DOI: 10.1111/nyas.14118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 01/03/2023]
Abstract
DNA viruses with efficient host genome integration capability were unknown in eukaryotes until recently. The discovery of virophages, satellite-like DNA viruses that depend on lytic giant viruses that infect protists, revealed a genetically diverse group of viruses with high genome mobility. Virophages can act as strong inhibitors of their associated giant viruses, and the resulting beneficial effects on their unicellular hosts resemble a population-based antiviral defense mechanism. By comparing various aspects of genome-integrating virophages, in particular the virophage mavirus, with other mobile genetic elements and parasite-derived defense mechanisms in eukaryotes and prokaryotes, we show that virophages share many features with other host-parasite systems. Yet, the dual lifestyle exhibited by mavirus remains unprecedented among eukaryotic DNA viruses, with potentially far-reaching ecological and evolutionary consequences for the host.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Koslová
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Matthias G Fischer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
44
|
Choudhury RR, Rogivue A, Gugerli F, Parisod C. Impact of polymorphic transposable elements on linkage disequilibrium along chromosomes. Mol Ecol 2019; 28:1550-1562. [DOI: 10.1111/mec.15014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2018] [Accepted: 12/26/2018] [Indexed: 01/03/2023]
Affiliation(s)
| | - Aude Rogivue
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | | |
Collapse
|
45
|
Fernandes JB, Wlodzimierz P, Henderson IR. Meiotic recombination within plant centromeres. CURRENT OPINION IN PLANT BIOLOGY 2019; 48:26-35. [PMID: 30954771 DOI: 10.1016/j.pbi.2019.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/15/2018] [Revised: 01/21/2019] [Accepted: 02/28/2019] [Indexed: 05/18/2023]
Abstract
Meiosis is a conserved eukaryotic cell division that increases genetic diversity in sexual populations. During meiosis homologous chromosomes pair and undergo recombination that can result in reciprocal genetic exchange, termed crossover. The frequency of crossover is highly variable along chromosomes, with hot spots and cold spots. For example, the centromeres that contain the kinetochore, which attach chromosomes to the microtubular spindle, are crossover cold spots. Plant centromeres typically consist of large tandemly repeated arrays of satellite sequences and retrotransposons, a subset of which assemble CENH3-variant nucleosomes, which bind to kinetochore proteins. Although crossovers are suppressed in centromeres, there is abundant evidence for gene conversion and homologous recombination between repeats, which plays a role in satellite array change. We review the evidence for recombination within plant centromeres and the implications for satellite sequence evolution. We speculate on the genetic and epigenetic features of centromeres that may influence meiotic recombination in these regions. We also highlight unresolved questions relating to centromere function and sequence change and how the advent of new technologies promises to provide insights.
Collapse
Affiliation(s)
- Joiselle B Fernandes
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Wlodzimierz
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
46
|
Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 2019; 10:1. [PMID: 30622655 PMCID: PMC6317226 DOI: 10.1186/s13100-018-0144-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plant LTR-retrotransposons are classified into two superfamilies, Ty1/copia and Ty3/gypsy. They are further divided into an enormous number of families which are, due to the high diversity of their nucleotide sequences, usually specific to a single or a group of closely related species. Previous attempts to group these families into broader categories reflecting their phylogenetic relationships were limited either to analyzing a narrow range of plant species or to analyzing a small numbers of elements. Furthermore, there is no reference database that allows for similarity based classification of LTR-retrotransposons. RESULTS We have assembled a database of retrotransposon encoded polyprotein domains sequences extracted from 5410 Ty1/copia elements and 8453 Ty3/gypsy elements sampled from 80 species representing major groups of green plants (Viridiplantae). Phylogenetic analysis of the three most conserved polyprotein domains (RT, RH and INT) led to dividing Ty1/copia and Ty3/gypsy retrotransposons into 16 and 14 lineages respectively. We also characterized various features of LTR-retrotransposon sequences including additional polyprotein domains, extra open reading frames and primer binding sites, and found that the occurrence and/or type of these features correlates with phylogenies inferred from the three protein domains. CONCLUSIONS We have established an improved classification system applicable to LTR-retrotransposons from a wide range of plant species. This system reflects phylogenetic relationships as well as distinct sequence and structural features of the elements. A comprehensive database of retrotransposon protein domains (REXdb) that reflects this classification provides a reference for efficient and unified annotation of LTR-retrotransposons in plant genomes. Access to REXdb related tools is implemented in the RepeatExplorer web server (https://repeatexplorer-elixir.cerit-sc.cz/) or using a standalone version of REXdb that can be downloaded seaparately from RepeatExplorer web page (http://repeatexplorer.org/).
Collapse
Affiliation(s)
- Pavel Neumann
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Nina Hoštáková
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| | - Jiří Macas
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, 37005 České Budějovice, Czech Republic
| |
Collapse
|
47
|
Nakashima K, Abe J, Kanazawa A. Chromosomal distribution of soybean retrotransposon SORE-1 suggests its recent preferential insertion into euchromatic regions. Chromosome Res 2018; 26:199-210. [PMID: 29789973 DOI: 10.1007/s10577-018-9579-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
Retrotransposons constitute a large portion of plant genomes. The chromosomal distribution of a wide variety of retrotransposons has been analyzed using genome sequencing data in several plants, but the evolutionary profile of transposition has been characterized for a limited number of retrotransposon families. Here, we characterized 96 elements of the SORE-1 family of soybean retrotransposons using genome sequencing data. Insertion time of each SORE-1 element into the genome was estimated on the basis of sequence differences between the 5' and 3' long terminal repeats (LTRs). Combining this estimation with information on the chromosomal location of these elements, we found that the insertion of the existing SORE-1 into gene-rich chromosome arms occurred on average more recently than that into gene-poor pericentromeric regions. In addition, both the number of insertions and the proportion of insertions into chromosome arms profoundly increased after 1 million years ago. Solo LTRs were detected in these regions at a similar frequency, suggesting that elimination of SORE-1 via unequal homologous recombination was unbiased. Taken together, these results suggest the preference of a recent insertion of SORE-1 into chromosome arms comprising euchromatic regions. This notion is contrary to an earlier view deduced from an overall profiling of soybean retrotransposons and suggests that the pattern of chromosomal distribution can be more diverse than previously thought between different families of retrotransposons.
Collapse
Affiliation(s)
- Kenta Nakashima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
48
|
Border collies of the genome: domestication of an autonomous retrovirus-like transposon. Curr Genet 2018; 65:71-78. [PMID: 29931377 DOI: 10.1007/s00294-018-0857-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/23/2022]
Abstract
Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.
Collapse
|
49
|
Kent TV, Uzunović J, Wright SI. Coevolution between transposable elements and recombination. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0458. [PMID: 29109221 DOI: 10.1098/rstb.2016.0458] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/18/2017] [Indexed: 12/24/2022] Open
Abstract
One of the most striking patterns of genome structure is the tight, typically negative, association between transposable elements (TEs) and meiotic recombination rates. While this is a highly recurring feature of eukaryotic genomes, the mechanisms driving correlations between TEs and recombination remain poorly understood, and distinguishing cause versus effect is challenging. Here, we review the evidence for a relation between TEs and recombination, and discuss the underlying evolutionary forces. Evidence to date suggests that overall TE densities correlate negatively with recombination, but the strength of this correlation varies across element types, and the pattern can be reversed. Results suggest that heterogeneity in the strength of selection against ectopic recombination and gene disruption can drive TE accumulation in regions of low recombination, but there is also strong evidence that the regulation of TEs can influence local recombination rates. We hypothesize that TE insertion polymorphism may be important in driving within-species variation in recombination rates in surrounding genomic regions. Furthermore, the interaction between TEs and recombination may create positive feedback, whereby TE accumulation in non-recombining regions contributes to the spread of recombination suppression. Further investigation of the coevolution between recombination and TEs has important implications for our understanding of the evolution of recombination rates and genome structure.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Tyler V Kent
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S3B2
| | - Jasmina Uzunović
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S3B2
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, Canada M5S3B2
| |
Collapse
|
50
|
Cheung S, Manhas S, Measday V. Retrotransposon targeting to RNA polymerase III-transcribed genes. Mob DNA 2018; 9:14. [PMID: 29713390 PMCID: PMC5911963 DOI: 10.1186/s13100-018-0119-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Retrotransposons are genetic elements that are similar in structure and life cycle to retroviruses by replicating via an RNA intermediate and inserting into a host genome. The Saccharomyces cerevisiae (S. cerevisiae) Ty1-5 elements are long terminal repeat (LTR) retrotransposons that are members of the Ty1-copia (Pseudoviridae) or Ty3-gypsy (Metaviridae) families. Four of the five S. cerevisiae Ty elements are inserted into the genome upstream of RNA Polymerase (Pol) III-transcribed genes such as transfer RNA (tRNA) genes. This particular genomic locus provides a safe environment for Ty element insertion without disruption of the host genome and is a targeting strategy used by retrotransposons that insert into compact genomes of hosts such as S. cerevisiae and the social amoeba Dictyostelium. The mechanism by which Ty1 targeting is achieved has been recently solved due to the discovery of an interaction between Ty1 Integrase (IN) and RNA Pol III subunits. We describe the methods used to identify the Ty1-IN interaction with Pol III and the Ty1 targeting consequences if the interaction is perturbed. The details of Ty1 targeting are just beginning to emerge and many unexplored areas remain including consideration of the 3-dimensional shape of genome. We present a variety of other retrotransposon families that insert adjacent to Pol III-transcribed genes and the mechanism by which the host machinery has been hijacked to accomplish this targeting strategy. Finally, we discuss why retrotransposons selected Pol III-transcribed genes as a target during evolution and how retrotransposons have shaped genome architecture.
Collapse
Affiliation(s)
- Stephanie Cheung
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Savrina Manhas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Vivien Measday
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Food Science, Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, Room 325-2205 East Mall, Vancouver, British Columbia V6T 1Z4 Canada
| |
Collapse
|