1
|
Hellec E, Nunes F, Corporeau C, Cormier A. KiNext: a portable and scalable workflow for the identification and classification of protein kinases. BMC Bioinformatics 2024; 25:338. [PMID: 39455913 PMCID: PMC11515245 DOI: 10.1186/s12859-024-05953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Protein kinases are a diverse superfamily of proteins common to organisms across the tree of life that are typically involved in signal transduction, allowing organisms to sense and respond to biotic or abiotic environmental factors. They have important roles in organismal physiology, including development, reproduction, acclimation to environmental stress, while their dysregulation can lead to disease, including several forms of cancer. Identifying the complement of protein kinases (the kinome) of any organism is useful for understanding its physiological capabilities, limitations and adaptations to environmental stress. The increasing availability of genomes makes it now possible to examine and compare the kinomes across a broad diversity of organisms. Here we present a pipeline respecting the FAIR principles (findable, accessible, interoperable and reusable) that facilitates the search and identification of protein kinases from a predicted proteome, and classifies them according to group of serine/threonine/tyrosine protein kinases present in eukaryotes. RESULTS KiNext is a Nextflow pipeline that regroups a number of existing bioinformatic tools to search for and classify the protein kinases of an organism in a reproducible manner, starting from a set of amino acid sequences. Conventional eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs) are identified by using Hidden Markov Models (HMMs) generated from the catalytic domains of kinases. Furthermore, KiNext categorizes ePKs into the eight kinase groups by employing dedicated Hidden Markov Models (HMMs) tailored for each group. The performance of the KiNext pipeline was validated against previously identified kinomes obtained with other tools that were already published for two marine species, the Pacific oyster Crassostrea gigas and the unicellular green alga Ostreoccocus tauri. KiNext outperformed previous results by finding previously unidentified kinases and by attributing a large proportion of previously unclassified kinases to a group in both species. These results demonstrate improvements in kinase identification and classification, all while providing traceability and reproducibility of results in a FAIR pipeline. The default HMM models provided with KiNext are most suitable for eukaryotes, but the pipeline can be easily modified to include HMM models for other taxa of interest. CONCLUSION The KiNext pipeline enables efficient and reproducible identification of kinomes based on predicted amino acid sequences (i.e. proteomes). KiNext was designed to be easy to use, automated, portable and scalable.
Collapse
Affiliation(s)
- Elisabeth Hellec
- Ifremer, IRSI-SeBiMER, Plouzané, France
- Ifremer, DYNECO-LEBCO, Plouzané, France
- Ifremer, Université de Brest, CNRS, IRD, LEMAR, F -29280, Plouzané, France
| | | | | | | |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Grunfeld N, Levine E, Libby E. Experimental measurement and computational prediction of bacterial Hanks-type Ser/Thr signaling system regulatory targets. Mol Microbiol 2024; 122:152-164. [PMID: 38167835 PMCID: PMC11219531 DOI: 10.1111/mmi.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024]
Abstract
Bacteria possess diverse classes of signaling systems that they use to sense and respond to their environments and execute properly timed developmental transitions. One widespread and evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also sometimes termed "eukaryotic-like" due to their homology with eukaryotic kinases. In diverse bacterial species, these signaling systems function as critical regulators of general cellular processes such as metabolism, growth and division, developmental transitions such as sporulation, biofilm formation, and virulence, as well as antibiotic tolerance. This multifaceted regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally modify the activity of multiple proteins, resulting in the coordinated regulation of diverse cellular pathways. However, in part due to their deep integration with cellular physiology, to date, we have a relatively limited understanding of the timing, regulatory hierarchy, the complete list of targets of a given kinase, as well as the potential regulatory overlap between the often multiple kinases present in a single organism. In this review, we discuss experimental methods and curated datasets aimed at elucidating the targets of these signaling pathways and approaches for using these datasets to develop computational models for quantitative predictions of target motifs. We emphasize novel approaches and opportunities for collecting data suitable for the creation of new predictive computational models applicable to diverse species.
Collapse
Affiliation(s)
- Noam Grunfeld
- Department of Bioengineering, Northeastern University, Boston MA USA
| | - Erel Levine
- Department of Bioengineering, Northeastern University, Boston MA USA
- Department of Chemical Engineering, Northeastern University, Boston MA USA
| | - Elizabeth Libby
- Department of Bioengineering, Northeastern University, Boston MA USA
| |
Collapse
|
4
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
5
|
Cao C, Zhang W, Gao Y, Yang J, Liu H, Gan J. High-resolution crystal structure of RNA kinase ArK1 from G. acetivorans. Biochem Biophys Res Commun 2024; 714:149966. [PMID: 38657448 DOI: 10.1016/j.bbrc.2024.149966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
U47 phosphorylation (Up47) is a novel tRNA modification discovered recently; it can confer thermal stability and nuclease resistance to tRNAs. U47 phosphorylation is catalyzed by Archaeal RNA kinase (Ark1) in an ATP-dependent manner. However, the structural basis for tRNA and/or ATP binding by Ark1 is unclear. Here, we report the expression, purification, and crystallization studies of Ark1 from G. acetivorans (GaArk1). In addition to the Apo-form structure, one GaArk1-ATP complex was also determined in atomic resolution and revealed the detailed basis for ATP binding by GaArk1. The GaArk1-ATP complex represents the only ATP-bound structure of the Ark1 protein. The majority of the ATP-binding residues are conserved, suggesting that GaArk1 and the homologous proteins share similar mechanism in ATP binding. Sequence and structural analysis further indicated that endogenous guanosine will only inhibit the activities of certain Ark1 proteins, such as Ark1 from T. kodakarensis.
Collapse
Affiliation(s)
- Chulei Cao
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Weizhen Zhang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Yanqing Gao
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Jie Yang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Hehua Liu
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Jianhua Gan
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
6
|
Ghandadi M, Dobi A, Malhotra SV. A role for RIO kinases in the crosshair of cancer research and therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189100. [PMID: 38604268 DOI: 10.1016/j.bbcan.2024.189100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
RIO (right open reading frame) family of kinases including RIOK1, RIOK2 and RIOK3 are known for their role in the ribosomal biogenesis. Dysfunction of RIO kinases have been implicated in malignancies, including acute myeloid leukemia, glioma, breast, colorectal, lung and prostatic adenocarcinoma suggesting RIO kinases as potential targets in cancer. In vitro, in vivo and clinical studies have demonstrated that RIO kinases are overexpressed in various types of cancers suggesting important roles in tumorigenesis, especially in metastasis. In the context of malignancies, RIO kinases are involved in cancer-promoting pathways including AKT/mTOR, RAS, p53 and NF-κB and cell cycle regulation. Here we review the role of RIO kinases in cancer development emphasizing their potential as therapeutic target and encouraging further development and investigation of inhibitors in the context of cancer.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Medicinal Plants Research Center, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery at the Uniformed Services, University of the Health Sciences, Bethesda, MD 20817, USA; Henry Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Sanjay V Malhotra
- Department of Cell, Development and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
7
|
Xiong H, Yu Q, Ma H, Yu X, Ouyang Y, Zhang ZM, Zhou W, Zhang Z, Cai Q. Exploration of tricyclic heterocycles as core structures for RIOK2 inhibitors. RSC Med Chem 2023; 14:2007-2011. [PMID: 37859717 PMCID: PMC10583808 DOI: 10.1039/d3md00209h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 10/21/2023] Open
Abstract
Right open reading frame kinase 2 (RIOK2) is an atypical kinase and has been proved to be involved in multiple human cancers including non-small cell lung cancer (NSCLC), acute myeloid leukemia (AML), glioblastoma and anemia. Although tremendous efforts have been devoted to the studies of RIOK2, its biological functions remain poorly understood. It is highly important to develop potent and selective RIOK2 inhibitors as potential research tools to elucidate its functions and as drug candidates for further therapies. We have previously identified a highly potent and selective RIOK2 inhibitor (CQ211). To confirm the importance of the "V-shaped" structure of CQ211 for binding with RIOK2, a variety of tricyclic compounds with different core structures instead of the [1,2,3]triazolo[4,5-c]quinolin-4-one core of CQ211 were designed, synthesized, and the binding affinities of these tricyclic heterocycles with RIOK2 were also evaluated.
Collapse
Affiliation(s)
- Huilan Xiong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Qiuchun Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Haowen Ma
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Xiuwen Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yifan Ouyang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Wei Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of People's Republic of China, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
8
|
Zorina AA, Novikova GV, Gusev NB, Leusenko AV, Los DA, Klychnikov OI. SpkH (Sll0005) from Synechocystis sp. PCC 6803 is an active Mn 2+-dependent Ser kinase. Biochimie 2023; 213:114-122. [PMID: 37209809 DOI: 10.1016/j.biochi.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Twelve genes for the potential serine-threonine protein kinases (STPKs) have been annotated in the genome of Synechocystis sp. PCC 6803. Based on similarities and distinctive domain organization, they were divided into two clusters: serine/threonine-protein N2-like kinases (PKN2-type) and "activity of bc1 complex" kinases (ABC1-type). While the activity of the PKN2-type kinases have been demonstrated, no ABC1-type kinases activity have hitherto been reported. In this study, a recombinant protein previously annotated as a potential STPK of ABC1-type (SpkH, Sll0005) was expressed and purified to homogeneity. We demonstrated SpkH phosphorylating activity and substrate preference for casein in in vitro assays using [γ-32P]ATP. Detailed analyses of activity showed that Mn2+ had the strongest activation effect. The activity of SpkH was significantly inhibited by heparin and spermine, but not by staurosporine. By means of semi-quantitative mass-spectrometric detection of phosphopeptides, we identified a consensus motif recognized by this kinase - X1X2pSX3E. Thus, we first report here that SpkH of Synechocystis represents a true active serine protein kinase, which shares the properties of casein kinases according to its substrate specificity and sensitivity to some activity effectors.
Collapse
Affiliation(s)
- A A Zorina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - G V Novikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - N B Gusev
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - A V Leusenko
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - D A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - O I Klychnikov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
9
|
Chatterjee A. Mycobacterium tuberculosis and its secreted tyrosine phosphatases. Biochimie 2023; 212:41-47. [PMID: 37059349 DOI: 10.1016/j.biochi.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Tuberculosis is one of the most common infectious diseases and has been a major burden for a long time now. Increasing drug resistance in TB is slowing down the process of disease treatment. Mycobacterium tuberculosis, the causative agent of TB is known to have a cascade of virulence factors to fight with host's immune system. The phosphatases (PTPs) of Mtb plays a critical role as these are secretory in nature and help the survival of bacteria in host. Researchers have been trying to synthesize inhibitors against a lot of virulence factors of Mtb but recently the phosphatases have gained a lot of interest due to their secretory nature. This review gives a concise overview of virulence factors of Mtb with emphasis on mPTPs. Here we discuss the current scenario of drug development against mPTPs.
Collapse
Affiliation(s)
- Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
10
|
Frando A, Boradia V, Gritsenko M, Beltejar C, Day L, Sherman DR, Ma S, Jacobs JM, Grundner C. The Mycobacterium tuberculosis protein O-phosphorylation landscape. Nat Microbiol 2023; 8:548-561. [PMID: 36690861 PMCID: PMC11376436 DOI: 10.1038/s41564-022-01313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/16/2022] [Indexed: 01/25/2023]
Abstract
Bacterial phosphosignalling has been synonymous with two-component systems and their histidine kinases, but many bacteria, including Mycobacterium tuberculosis (Mtb), also code for Ser/Thr protein kinases (STPKs). STPKs are the main phosphosignalling enzymes in eukaryotes but the full extent of phosphorylation on protein Ser/Thr and Tyr (O-phosphorylation) in bacteria is untested. Here we explored the global signalling capacity of the STPKs in Mtb using a panel of STPK loss-of-function and overexpression strains combined with mass spectrometry-based phosphoproteomics. A deep phosphoproteome with >14,000 unique phosphosites shows that O-phosphorylation in Mtb is a vastly underexplored protein modification that affects >80% of the proteome and extensively interfaces with the transcriptional machinery. Mtb O-phosphorylation gives rise to an expansive, distributed and cooperative network of a complexity that has not previously been seen in bacteria and that is on par with eukaryotic phosphosignalling networks. A resource of >3,700 high-confidence direct substrate-STPK interactions and their transcriptional effects provides signalling context for >80% of Mtb proteins and allows the prediction and assembly of signalling pathways for mycobacterial physiology.
Collapse
Affiliation(s)
- Andrew Frando
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Vishant Boradia
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Claude Beltejar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Le Day
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jon M Jacobs
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Murray NH, Asquith CRM, Fang Z, East MP, Ptak N, Smith RW, Vasta JD, Zimprich CA, Corona CR, Robers MB, Johnson GL, Bingman CA, Pagliarini DJ. Small-molecule inhibition of the archetypal UbiB protein COQ8. Nat Chem Biol 2023; 19:230-238. [PMID: 36302899 PMCID: PMC9898131 DOI: 10.1038/s41589-022-01168-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/08/2022] [Indexed: 02/06/2023]
Abstract
Small-molecule tools have enabled mechanistic investigations and therapeutic targeting of the protein kinase-like (PKL) superfamily. However, such tools are still lacking for many PKL members, including the highly conserved and disease-related UbiB family. Here, we sought to develop and characterize an inhibitor for the archetypal UbiB member COQ8, whose function is essential for coenzyme Q (CoQ) biosynthesis. Guided by crystallography, activity assays and cellular CoQ measurements, we repurposed the 4-anilinoquinoline scaffold to selectively inhibit human COQ8A in cells. Our chemical tool promises to lend mechanistic insights into the activities of these widespread and understudied proteins and to offer potential therapeutic strategies for human diseases connected to their dysfunction.
Collapse
Affiliation(s)
- Nathan H Murray
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher R M Asquith
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zixiang Fang
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael P East
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Naomi Ptak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Smith
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | - Gary L Johnson
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Morgridge Institute for Research, Madison, WI, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Yeung W, Zhou Z, Mathew L, Gravel N, Taujale R, O’Boyle B, Salcedo M, Venkat A, Lanzilotta W, Li S, Kannan N. Tree visualizations of protein sequence embedding space enable improved functional clustering of diverse protein superfamilies. Brief Bioinform 2023; 24:bbac619. [PMID: 36642409 PMCID: PMC9851311 DOI: 10.1093/bib/bbac619] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 01/17/2023] Open
Abstract
Protein language models, trained on millions of biologically observed sequences, generate feature-rich numerical representations of protein sequences. These representations, called sequence embeddings, can infer structure-functional properties, despite protein language models being trained on primary sequence alone. While sequence embeddings have been applied toward tasks such as structure and function prediction, applications toward alignment-free sequence classification have been hindered by the lack of studies to derive, quantify and evaluate relationships between protein sequence embeddings. Here, we develop workflows and visualization methods for the classification of protein families using sequence embedding derived from protein language models. A benchmark of manifold visualization methods reveals that Neighbor Joining (NJ) embedding trees are highly effective in capturing global structure while achieving similar performance in capturing local structure compared with popular dimensionality reduction techniques such as t-SNE and UMAP. The statistical significance of hierarchical clusters on a tree is evaluated by resampling embeddings using a variational autoencoder (VAE). We demonstrate the application of our methods in the classification of two well-studied enzyme superfamilies, phosphatases and protein kinases. Our embedding-based classifications remain consistent with and extend upon previously published sequence alignment-based classifications. We also propose a new hierarchical classification for the S-Adenosyl-L-Methionine (SAM) enzyme superfamily which has been difficult to classify using traditional alignment-based approaches. Beyond applications in sequence classification, our results further suggest NJ trees are a promising general method for visualizing high-dimensional data sets.
Collapse
Affiliation(s)
- Wayland Yeung
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Zhongliang Zhou
- School of Computing, University of Georgia, 30602, Georgia, USA
| | - Liju Mathew
- Department of Microbiology, University of Georgia, 30602, Georgia, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
| | - Brady O’Boyle
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Mariah Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| | - Sheng Li
- School of Data Science, University of Virginia, 22903, Virginia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, 30602, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, 30602, Georgia, USA
| |
Collapse
|
13
|
Krysińska M, Baranowski B, Deszcz B, Pawłowski K, Gradowski M. Pan-kinome of Legionella expanded by a bioinformatics survey. Sci Rep 2022; 12:21782. [PMID: 36526881 PMCID: PMC9758233 DOI: 10.1038/s41598-022-26109-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
The pathogenic Legionella bacteria are notorious for delivering numerous effector proteins into the host cell with the aim of disturbing and hijacking cellular processes for their benefit. Despite intensive studies, many effectors remain uncharacterized. Motivated by the richness of Legionella effector repertoires and their oftentimes atypical biochemistry, also by several known atypical Legionella effector kinases and pseudokinases discovered recently, we undertook an in silico survey and exploration of the pan-kinome of the Legionella genus, i.e., the union of the kinomes of individual species. In this study, we discovered 13 novel (pseudo)kinase families (all are potential effectors) with the use of non-standard bioinformatic approaches. Together with 16 known families, we present a catalog of effector and non-effector protein kinase-like families within Legionella, available at http://bioinfo.sggw.edu.pl/kintaro/ . We analyze and discuss the likely functional roles of the novel predicted kinases. Notably, some of the kinase families are also present in other bacterial taxa, including other pathogens, often phylogenetically very distant from Legionella. This work highlights Nature's ingeniousness in the pathogen-host arms race and offers a useful resource for the study of infection mechanisms.
Collapse
Affiliation(s)
- Marianna Krysińska
- grid.13276.310000 0001 1955 7966Department of Biochemistry and Microbiology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland
| | - Bartosz Baranowski
- grid.413454.30000 0001 1958 0162Laboratory of Plant Pathogenesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Bartłomiej Deszcz
- grid.13276.310000 0001 1955 7966Department of Biochemistry and Microbiology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland
| | - Krzysztof Pawłowski
- grid.13276.310000 0001 1955 7966Department of Biochemistry and Microbiology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland ,grid.267313.20000 0000 9482 7121Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA ,grid.4514.40000 0001 0930 2361Department of Translational Medicine, Lund University, Lund, Sweden ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Dallas, TX, USA
| | - Marcin Gradowski
- grid.13276.310000 0001 1955 7966Department of Biochemistry and Microbiology, Warsaw University of Life Sciences — SGGW, Warsaw, Poland
| |
Collapse
|
14
|
A Novel Capsule Network with Attention Routing to Identify Prokaryote Phosphorylation Sites. Biomolecules 2022; 12:biom12121854. [PMID: 36551282 PMCID: PMC9775645 DOI: 10.3390/biom12121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
By denaturing proteins and promoting the formation of multiprotein complexes, protein phosphorylation has important effects on the activity of protein functional molecules and cell signaling. The regulation of protein phosphorylation allows microbes to respond rapidly and reversibly to specific environmental stimuli or niches, which is closely related to the molecular mechanisms of bacterial drug resistance. Accurate prediction of phosphorylation sites (p-site) of prokaryotes can contribute to addressing bacterial resistance and providing new perspectives for developing novel antibacterial drugs. Most existing studies focus on human phosphorylation sites, while tools targeting phosphorylation site identification of prokaryotic proteins are still relatively scarce. This study designs a capsule network-based prediction technique for p-site in prokaryotes. To address the poor scalability and unreliability of dynamic routing processes in the output space of capsule networks, a more reliable way is introduced to learn the consistency between capsules. We incorporate a self-attention mechanism into the routing algorithm to capture the global information of the capsule, reducing the computational effort while enriching the representation capability of the capsule. Aiming at the weak robustness of the model, EcapsP improves the prediction accuracy and stability by introducing shortcuts and unconditional reconfiguration. In addition, the study compares and analyzes the prediction performance based on word vectors, physicochemical properties, and mixing characteristics in predicting serine (Ser/S), threonine (Thr/T), and tyrosine (Tyr/Y) p-site. The comprehensive experimental results show that the accuracy of the developed technique is close to 70% for the identification of the three phosphorylation sites in prokaryotes. Importantly, in side-by-side comparisons with other state-of-the-art predictors, our method improves the Matthews correlation coefficient (MCC) by approximately 7%. The results demonstrate the superiority of EcapsP in terms of high performance and reliability.
Collapse
|
15
|
Li K, Zou J, Yan H, Li Y, Li MM, Liu Z. Pan-cancer analyses reveal multi-omics and clinical characteristics of RIO kinase 2 in cancer. Front Chem 2022; 10:1024670. [DOI: 10.3389/fchem.2022.1024670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
RIO kinase 2 has emerged as a critical kinase for ribosome maturation, and recently it has also been found to play a fundamental role in cancer, being involved in the occurrence and progression of glioblastoma, liver cancer, prostate cancer, non-small cell lung cancer, and acute myeloid leukemia. However, our knowledge in this regard is fragmented and limited and it is difficult to determine the exact role of RIO kinase 2 in tumors. Here, we conducted an integrated pan-cancer analysis comprising 33 cancer-types to determine the function of RIO kinase 2 in malignancies. The results show that RIO kinase 2 is highly expressed in all types of cancer and is significantly associated with tumor survival, metastasis, and immune cell infiltration. Moreover, RIO kinase 2 alteration via DNA methylation, and protein phosphorylation are involved in tumorigenesis. In summary, RIO kinase two serves as a promising target for the identification of cancer and increases our understanding of tumorigenesis and cancer progression and enhancing the ultimate goal of improved treatment for these diseases.
Collapse
|
16
|
Murray NH, Lewis A, Rincon Pabon JP, Gross ML, Henzler-Wildman K, Pagliarini DJ. 2-Propylphenol Allosterically Modulates COQ8A to Enhance ATPase Activity. ACS Chem Biol 2022; 17:2031-2038. [PMID: 35904798 PMCID: PMC9586199 DOI: 10.1021/acschembio.2c00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
COQ8A is an atypical kinase-like protein that aids the biosynthesis of coenzyme Q, an essential cellular cofactor and antioxidant. COQ8A's mode of action remains unclear, in part due to the lack of small molecule tools to probe its function. Here, we blend NMR and hydrogen-deuterium exchange mass spectrometry to help determine how a small CoQ precursor mimetic, 2-propylphenol, modulates COQ8A activity. We identify a likely 2-propylphenol binding site and reveal that this compound modulates a conserved COQ8A domain to increase nucleotide affinity and ATPase activity. Our findings promise to aid further investigations into COQ8A's precise enzymatic function and the design of compounds capable of boosting endogenous CoQ production for therapeutic gain.
Collapse
Affiliation(s)
- Nathan H. Murray
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam Lewis
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Juan P. Rincon Pabon
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | - David J. Pagliarini
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Correspondence and requests for materials should be addressed to D.J.P.,
| |
Collapse
|
17
|
Ouyang Y, Si H, Zhu C, Zhong L, Ma H, Li Z, Xiong H, Liu T, Liu Z, Zhang Z, Zhang ZM, Cai Q. Discovery of 8-(6-Methoxypyridin-3-yl)-1-(4-(piperazin-1-yl)-3-(trifluoromethyl)phenyl)-1,5-dihydro- 4H-[1,2,3]triazolo[4,5- c]quinolin-4-one (CQ211) as a Highly Potent and Selective RIOK2 Inhibitor. J Med Chem 2022; 65:7833-7842. [PMID: 35584513 DOI: 10.1021/acs.jmedchem.2c00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RIOK2 is an atypical kinase implicated in multiple human cancers. Although recent studies establish the role of RIOK2 in ribosome maturation and cell cycle progression, its biological functions remain poorly elucidated, hindering the potential to explore RIOK2 as a therapeutic target. Here, we report the discovery of CQ211, the most potent and selective RIOK2 inhibitor reported so far. CQ211 displays a high binding affinity (Kd = 6.1 nM) and shows excellent selectivity to RIOK2 in both enzymatic and cellular studies. It also exhibits potent proliferation inhibition activity against multiple cancer cell lines and demonstrates promising in vivo efficacy in mouse xenograft models. The crystal structure of RIOK2-CQ211 sheds light on the molecular mechanism of inhibition and informs the subsequent optimization. The study provides a cell-active chemical probe for verifying RIOK2 functions, which may also serve as a leading molecule in the development of therapeutic RIOK2 inhibitors.
Collapse
Affiliation(s)
- Yifan Ouyang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Hongfei Si
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Chengjun Zhu
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Liang Zhong
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Haowen Ma
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Huilan Xiong
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Zhi-Min Zhang
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| | - Qian Cai
- College of Pharmacy, Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510530, China
| |
Collapse
|
18
|
A suite of in vitro and in vivo assays for monitoring the activity of the pseudokinase Bud32. Methods Enzymol 2022; 667:729-773. [PMID: 35525560 DOI: 10.1016/bs.mie.2022.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bud32 is a member of the protein kinase superfamily that is invariably conserved in all eukaryotic and archaeal organisms. In both of these kingdoms, Bud32 forms part of the KEOPS (Kinase, Endopeptidase and Other Proteins of Small size) complex together with the three other core subunits Kae1, Cgi121 and Pcc1. KEOPS functions to generate the universal and essential tRNA post-transcriptional modification N6-theronylcarbamoyl adenosine (t6A), which is present at position A37 in all tRNAs that bind to codons with an A in the first position (ANN decoding tRNAs) and is essential for the fidelity of translation. Mutations in KEOPS genes in humans underlie the severe genetic disease Galloway-Mowat syndrome, which results in childhood death. KEOPS activity depends on two major functions of Bud32. Firstly, Bud32 facilitates efficient tRNA substrate recruitment to KEOPS and helps in positioning the A37 site of the tRNA in the active site of Kae1, which carries out the t6A modification reaction. Secondly, the enzymatic activity of Bud32 is required for the ability of KEOPS to modify tRNA. Unlike conventional protein kinases, which employ their enzymatic activity for phosphorylation of protein substrates, Bud32 employs its enzymatic activity to function as an ATPase. Herein, we present a comprehensive suite of assays to monitor the activity of Bud32 in KEOPS in vitro and in vivo. We present protocols for the purification of the archaeal KEOPS proteins and of a tRNA substrate, as well as protocols for monitoring the ATPase activity of Bud32 and for analyzing its role in tRNA binding. We further present a complementary protocol for monitoring the role Bud32 has in cell growth in yeast.
Collapse
|
19
|
Ohira T, Minowa K, Sugiyama K, Yamashita S, Sakaguchi Y, Miyauchi K, Noguchi R, Kaneko A, Orita I, Fukui T, Tomita K, Suzuki T. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance. Nature 2022; 605:372-379. [PMID: 35477761 PMCID: PMC9095486 DOI: 10.1038/s41586-022-04677-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Post-transcriptional modifications have critical roles in tRNA stability and function1–4. In thermophiles, tRNAs are heavily modified to maintain their thermal stability under extreme growth temperatures5,6. Here we identified 2′-phosphouridine (Up) at position 47 of tRNAs from thermophilic archaea. Up47 confers thermal stability and nuclease resistance to tRNAs. Atomic structures of native archaeal tRNA showed a unique metastable core structure stabilized by Up47. The 2′-phosphate of Up47 protrudes from the tRNA core and prevents backbone rotation during thermal denaturation. In addition, we identified the arkI gene, which encodes an archaeal RNA kinase responsible for Up47 formation. Structural studies showed that ArkI has a non-canonical kinase motif surrounded by a positively charged patch for tRNA binding. A knockout strain of arkI grew slowly at high temperatures and exhibited a synthetic growth defect when a second tRNA-modifying enzyme was depleted. We also identified an archaeal homologue of KptA as an eraser that efficiently dephosphorylates Up47 in vitro and in vivo. Taken together, our findings show that Up47 is a reversible RNA modification mediated by ArkI and KptA that fine-tunes the structural rigidity of tRNAs under extreme environmental conditions. Reversible internal RNA phosphrylation contributes to thermal stability and nuclease resistance of tRNA, and cellular thermotolerance of hyperthermophiles.
Collapse
Affiliation(s)
- Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Keiichi Minowa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kei Sugiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Noguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Akira Kaneko
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Izumi Orita
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
20
|
ADCK2 Knockdown Affects the Migration of Melanoma Cells via MYL6. Cancers (Basel) 2022; 14:cancers14041071. [PMID: 35205819 PMCID: PMC8869929 DOI: 10.3390/cancers14041071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Melanoma is a growing health issue in the 21st century. Due to early metastasis and the development of resistance, it still goes along with a poor prognosis. ADCK protein kinases have been shown to play a role during cancer development and metastasis. Here, we investigated the role of ADCK2 in melanoma. In our study, we showed that higher levels of intratumoral ADCK2 benefit patient survival, while a low expression of ADCK2 was associated with a higher motility and a dedifferentiated state of melanoma cells, which facilitates metastasis. Our results could give new insights into melanoma metastasis, and ADCK2 could qualify as a prognostic marker or a target for melanoma therapy in the future. Abstract Background: ADCK2 is a member of the AarF domain-containing kinase family, which consists of five members, and has been shown to play a role in CoQ metabolism. However, ADCKs have also been connected to cancer cell survival, proliferation and motility. In this study, we investigated the role of ADCK2 in melanoma. Methods: The effect of ADCK2 on melanoma cell motility was evaluated by a scratch assay and a transwell invasion assay upon siRNA-mediated knockdown or stable overexpression of ADCK2. Results: We found that high levels of intratumoral ADCK2 and MYL6 are associated with a higher survival rate in melanoma patients. Knocking down ADCK2 resulted in enhanced cell migration of melanoma cells. Moreover, ADCK2-knockdown cells adopted a more dedifferentiated phenotype. A gene expression array revealed that the expression of ADCK2 correlated with the expressions of MYL6 and RAB2A. Knocking down MYL6 in ADCK2-overexpressing cells could abrogate the effect of ADCK2 overexpression and thus confirm the functional connection between ADCK2 and MYL6. Conclusion: ADCK2 affects melanoma cell motility, most probably via MYL6. Our results allow the conclusion that ADCK2 could act as a tumor suppressor in melanoma.
Collapse
|
21
|
Rajpurohit YS, Sharma DK, Misra HS. Involvement of Serine / Threonine protein kinases in DNA damage response and cell division in bacteria. Res Microbiol 2021; 173:103883. [PMID: 34624492 DOI: 10.1016/j.resmic.2021.103883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
The roles of Serine/Threonine protein kinases (STPKs) in bacterial physiology, including bacterial responses to nutritional stresses and under pathogenesis have been well documented. STPKs roles in bacterial cell cycle regulation and DNA damage response have not been much emphasized, possibly because the LexA/RecA type SOS response became the synonym to DNA damage response and cell cycle regulation in bacteria. This review summarizes current knowledge of STPKs genetics, domain organization, and their roles in DNA damage response and cell division regulation in bacteria.
Collapse
Affiliation(s)
- Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Life Sciences, Homi Bhabha National Institute (DAE- Deemed University), Mumbai, 400094, India
| |
Collapse
|
22
|
Pinkston J, Jo J, Olsen KJ, Comer D, Glaittli CA, Loria JP, Johnson SJ, Hengge AC. Significant Loop Motions in the SsoPTP Protein Tyrosine Phosphatase Allow for Dual General Acid Functionality. Biochemistry 2021; 60:2888-2901. [PMID: 34496202 DOI: 10.1021/acs.biochem.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conformational dynamics are important factors in the function of enzymes, including protein tyrosine phosphatases (PTPs). Crystal structures of PTPs first revealed the motion of a protein loop bearing a conserved catalytic aspartic acid, and subsequent nuclear magnetic resonance and computational analyses have shown the presence of motions, involved in catalysis and allostery, within and beyond the active site. The tyrosine phosphatase from the thermophilic and acidophilic Sulfolobus solfataricus (SsoPTP) displays motions of its acid loop together with dynamics of its phosphoryl-binding P-loop and the Q-loop, the first instance of such motions in a PTP. All three loops share the same exchange rate, implying their motions are coupled. Further evidence of conformational flexibility comes from mutagenesis, kinetics, and isotope effect data showing that E40 can function as an alternate general acid to protonate the leaving group when the conserved acid, D69, is mutated to asparagine. SsoPTP is not the first PTP to exhibit an alternate general acid (after VHZ and TkPTP), but E40 does not correspond to the sequence or structural location of the alternate general acids in those precedents. A high-resolution X-ray structure with the transition state analogue vanadate clarifies the role of the active site arginine R102, which varied in structures of substrates bound to a catalytically inactive mutant. The coordinated motions of all three functional loops in SsoPTP, together with the function of an alternate general acid, suggest that catalytically competent conformations are present in solution that have not yet been observed in crystal structures.
Collapse
Affiliation(s)
- Justin Pinkston
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Jihye Jo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Drake Comer
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Charsti A Glaittli
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
23
|
Cellular Models for Primary CoQ Deficiency Pathogenesis Study. Int J Mol Sci 2021; 22:ijms221910211. [PMID: 34638552 PMCID: PMC8508219 DOI: 10.3390/ijms221910211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.
Collapse
|
24
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
25
|
UbiB proteins regulate cellular CoQ distribution in Saccharomyces cerevisiae. Nat Commun 2021; 12:4769. [PMID: 34362905 PMCID: PMC8346625 DOI: 10.1038/s41467-021-25084-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 07/22/2021] [Indexed: 11/08/2022] Open
Abstract
Beyond its role in mitochondrial bioenergetics, Coenzyme Q (CoQ, ubiquinone) serves as a key membrane-embedded antioxidant throughout the cell. However, how CoQ is mobilized from its site of synthesis on the inner mitochondrial membrane to other sites of action remains a longstanding mystery. Here, using a combination of Saccharomyces cerevisiae genetics, biochemical fractionation, and lipid profiling, we identify two highly conserved but poorly characterized mitochondrial proteins, Ypl109c (Cqd1) and Ylr253w (Cqd2), that reciprocally affect this process. Loss of Cqd1 skews cellular CoQ distribution away from mitochondria, resulting in markedly enhanced resistance to oxidative stress caused by exogenous polyunsaturated fatty acids, whereas loss of Cqd2 promotes the opposite effects. The activities of both proteins rely on their atypical kinase/ATPase domains, which they share with Coq8-an essential auxiliary protein for CoQ biosynthesis. Overall, our results reveal protein machinery central to CoQ trafficking in yeast and lend insights into the broader interplay between mitochondria and the rest of the cell.
Collapse
|
26
|
Nilkanth VV, Mande SC. Structure-sequence features based prediction of phosphosites of serine/threonine protein kinases of Mycobacterium tuberculosis. Proteins 2021; 90:131-141. [PMID: 34329517 DOI: 10.1002/prot.26195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Elucidation of signaling events in a pathogen is potentially important to tackle the infection caused by it. Such events mediated by protein phosphorylation play important roles in infection, and therefore, to predict the phosphosites and substrates of the serine/threonine protein kinases, we have developed a Machine learning-based approach for Mycobacterium tuberculosis serine/threonine protein kinases using kinase-peptide structure-sequence data. This approach utilizes features derived from kinase three-dimensional-structure environment and known phosphosite sequences to generate support vector machine (SVM)-based kinase-specific predictions of phosphosites of serine/threonine protein kinases (STPKs) with no or scarce data of their substrates. SVM outperformed the four machine learning algorithms we tried (random forest, logistic regression, SVM, and k-nearest neighbors) with an area under the curve receiver-operating characteristic value of 0.88 on the independent testing dataset and a 10-fold cross-validation accuracy of ~81.6% for the final model. Our predicted phosphosites of M. tuberculosis STPKs form a useful resource for experimental biologists enabling elucidation of STPK mediated posttranslational regulation of important cellular processes.
Collapse
Affiliation(s)
- Vipul V Nilkanth
- National Centre for Cell Science, S.P. Pune University Campus, Pune, India
| | - Shekhar C Mande
- Council of Scientific and Industrial Research, New Delhi, India
| |
Collapse
|
27
|
The expanding world of protein kinase-like families in bacteria: forty families and counting. Biochem Soc Trans 2021; 48:1337-1352. [PMID: 32677675 DOI: 10.1042/bst20190712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
The protein kinase-like clan/superfamily is a large group of regulatory, signaling and biosynthetic enzymes that were historically regarded as typically eukaryotic proteins, although bacterial members have also been known for a long time. In this review, we explore the diversity of bacterial protein kinase like families, and discuss functional versatility of these enzymes, both the ones acting within the bacterial cell, and those acting within eukaryotic cells as effectors during infection. We focus on novel bacterial kinase-like families discovered in the last five years. A bioinformatics perspective is held here, hence sequence and structure comparison overview is presented, and also a comparison of genomic neighbourhoods of the families. We perform a phylum-level census of the families. Also, we discuss apparent pseudokinases that turned out to perform alternative catalytic functions by repurposing their atypical kinase-like active sites. We also highlight some 'unpopular' kinase-like families that await characterisation.
Collapse
|
28
|
Frankovsky J, Vozáriková V, Nosek J, Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion 2021; 57:148-162. [PMID: 33412333 DOI: 10.1016/j.mito.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Protein phosphorylation is one of the best-known post-translational modifications occurring in all domains of life. In eukaryotes, protein phosphorylation affects all cellular compartments including mitochondria. High-throughput techniques of mass spectrometry combined with cell fractionation and biochemical methods yielded thousands of phospho-sites on hundreds of mitochondrial proteins. We have compiled the information on mitochondrial protein kinases and phosphatases and their substrates in Saccharomyces cerevisiae and provide the current state-of-the-art overview of mitochondrial protein phosphorylation in this model eukaryote. Using several examples, we describe emerging features of the yeast mitochondrial phosphoproteome and present challenges lying ahead in this exciting field.
Collapse
Affiliation(s)
- Jan Frankovsky
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia.
| |
Collapse
|
29
|
Phillips IL, Everman JL, Bermudez LE, Danelishvili L. Acanthamoeba castellanii as a Screening Tool for Mycobacterium avium Subspecies paratuberculosis Virulence Factors with Relevance in Macrophage Infection. Microorganisms 2020; 8:microorganisms8101571. [PMID: 33066018 PMCID: PMC7601679 DOI: 10.3390/microorganisms8101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
The high prevalence of Johne's disease has driven a continuous effort to more readily understand the pathogenesis of the etiological causative bacterium, Mycobacterium avium subsp. paratuberculosis (MAP), and to develop effective preventative measures for infection spread. In this study, we aimed to create an in vivo MAP infection model employing an environmental protozoan host and used it as a tool for selection of bacterial virulence determinants potentially contributing to MAP survival in mammalian host macrophages. We utilized Acanthamoeba castellanii (amoeba) to explore metabolic consequences of the MAP-host interaction and established a correlation between metabolic changes of this phagocytic host and MAP virulence. Using the library of gene knockout mutants, we identified MAP clones that can either enhance or inhibit amoeba metabolism and we discovered that, for most part, it mirrors the pattern of MAP attenuation or survival during infection of macrophages. It was found that MAP mutants that induced an increase in amoeba metabolism were defective in intracellular growth in macrophages. However, MAP clones that exhibited low metabolic alteration in amoeba were able to survive at a greater rate within mammalian cells, highlighting importance of both category of genes in bacterial pathogenesis. Sequencing of MAP mutants has identified several virulence factors previously shown to have a biological relevance in mycobacterial survival and intracellular growth in phagocytic cells. In addition, we uncovered new genetic determinants potentially contributing to MAP pathogenicity. Results of this study support the use of the amoeba model system as a quick initial screening tool for selection of virulence factors of extremely slow-grower MAP that is challenging to study.
Collapse
Affiliation(s)
- Ida L. Phillips
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
| | - Jamie L. Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Correspondence: ; Tel.: +541-737-6544; Fax: +541-737-2730
| |
Collapse
|
30
|
Sharma DK, Bihani SC, Siddiqui MQ, Misra HS, Rajpurohit YS. WD40 domain of RqkA regulates its kinase activity and role in extraordinary radioresistance of D. radiodurans. J Biomol Struct Dyn 2020; 40:1246-1259. [PMID: 32990194 DOI: 10.1080/07391102.2020.1824810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RqkA, a DNA damage responsive serine/threonine kinase, is characterized for its role in DNA repair and cell division in D. radiodurans. It has a unique combination of a kinase domain at N-terminus and a WD40 type domain at C-terminus joined through a linker. WD40 domain is comprised of eight β-propeller repeats held together via 'tryptophan-docking motifs' and forming a typical 'velcro' closure structure. RqkA mutants lacking the WD40 region (hereafter referred to as WD mutant) could not complement RqkA loss in γ radiation resistance in D. radiodurans and lacked γ radiation-mediated activation of kinase activity in vivo. WD mutants failed to phosphorylate its cognate substrate (e.g. DrRecA) in surrogate E. coli cells. Unlike wild-type enzyme, the kinase activity of its WD40 mutants was not stimulated by pyrroloquinoline quinine (PQQ) indicating the role of the WD motifs in PQQ interaction and stimulation of its kinase activity. Together, results highlighted the importance of the WD40 domain in the regulation of RqkA kinase signaling functions in vivo, and thus, the role of WD40 domain in the regulation of any STPK is first time demonstrated in bacteria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhirendra K Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Subhash C Bihani
- Radiation Biology and Health Science Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Mohammad Q Siddiqui
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Yogendra S Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
31
|
van Hooff JJE, Tromer E, van Dam TJP, Kops GJPL, Snel B. Inferring the Evolutionary History of Your Favorite Protein: A Guide for Molecular Biologists. Bioessays 2020; 41:e1900006. [PMID: 31026339 DOI: 10.1002/bies.201900006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/17/2019] [Indexed: 01/01/2023]
Abstract
Comparative genomics has proven a fruitful approach to acquire many functional and evolutionary insights into core cellular processes. Here it is argued that in order to perform accurate and interesting comparative genomics, one first and foremost has to be able to recognize, postulate, and revise different evolutionary scenarios. After all, these studies lack a simple protocol, due to different proteins having different evolutionary dynamics and demanding different approaches. The authors here discuss this challenge from a practical (what are the observations?) and conceptual (how do these indicate a specific evolutionary scenario?) viewpoint, with the aim to guide investigators who want to analyze the evolution of their protein(s) of interest. By sharing how the authors draft, test, and update such a scenario and how it directs their investigations, the authors hope to illuminate how to execute molecular evolution studies and how to interpret them. Also see the video abstract here https://youtu.be/VCt3l2pbdbQ.
Collapse
Affiliation(s)
- Jolien J E van Hooff
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Eelco Tromer
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.,Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.,Molecular Cancer Research, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Biology, Science Faculty, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
32
|
Calzadilla PI, Kirilovsky D. Revisiting cyanobacterial state transitions. Photochem Photobiol Sci 2020; 19:585-603. [DOI: 10.1039/c9pp00451c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Critical evaluation of “new” and “old” models of cyanobacterial state transitions. Phycobilisome and membrane contributions to this mechanism are addressed. The signaling transduction pathway is discussed.
Collapse
Affiliation(s)
- Pablo I. Calzadilla
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| | - Diana Kirilovsky
- Université Paris-Saclay
- CNRS
- CEA
- Institute for Integrative Biology of the Cell (I2BC)
- 91198 Gif sur Yvette
| |
Collapse
|
33
|
Wang Y, Hekimi S. The Complexity of Making Ubiquinone. Trends Endocrinol Metab 2019; 30:929-943. [PMID: 31601461 DOI: 10.1016/j.tem.2019.08.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Ubiquinone (UQ, coenzyme Q) is an essential electron transfer lipid in the mitochondrial respiratory chain. It is a main source of mitochondrial reactive oxygen species (ROS) but also has antioxidant properties. This mix of characteristics is why ubiquinone supplementation is considered a potential therapy for many diseases involving mitochondrial dysfunction. Mutations in the ubiquinone biosynthetic pathway are increasingly being identified in patients. Furthermore, secondary ubiquinone deficiency is a common finding associated with mitochondrial disorders and might exacerbate these conditions. Recent developments have suggested that ubiquinone biosynthesis occurs in discrete domains of the mitochondrial inner membrane close to ER-mitochondria contact sites. This spatial requirement for ubiquinone biosynthesis could be the link between secondary ubiquinone deficiency and mitochondrial dysfunction, which commonly results in loss of mitochondrial structural integrity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
34
|
Odendall F, Backes S, Tatsuta T, Weill U, Schuldiner M, Langer T, Herrmann JM, Rapaport D, Dimmer KS. The mitochondrial intermembrane space-facing proteins Mcp2 and Tgl2 are involved in yeast lipid metabolism. Mol Biol Cell 2019; 30:2681-2694. [PMID: 31483742 PMCID: PMC6761770 DOI: 10.1091/mbc.e19-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are unique organelles harboring two distinct membranes, the mitochondrial inner and outer membrane (MIM and MOM, respectively). Mitochondria comprise only a subset of metabolic pathways for the synthesis of membrane lipids; therefore most lipid species and their precursors have to be imported from other cellular compartments. One such import process is mediated by the ER mitochondria encounter structure (ERMES) complex. Both mitochondrial membranes surround the hydrophilic intermembrane space (IMS). Therefore, additional systems are required that shuttle lipids between the MIM and MOM. Recently, we identified the IMS protein Mcp2 as a high-copy suppressor for cells that lack a functional ERMES complex. To understand better how mitochondria facilitate transport and biogenesis of lipids, we searched for genetic interactions of this suppressor. We found that MCP2 has a negative genetic interaction with the gene TGL2 encoding a neutral lipid hydrolase. We show that this lipase is located in the intermembrane space of the mitochondrion and is imported via the Mia40 disulfide relay system. Furthermore, we show a positive genetic interaction of double deletion of MCP2 and PSD1, the gene encoding the enzyme that synthesizes the major amount of cellular phosphatidylethanolamine. Finally, we demonstrate that the nucleotide-binding motifs of the predicted atypical kinase Mcp2 are required for its proper function. Taken together, our data suggest that Mcp2 is involved in mitochondrial lipid metabolism and an increase of this involvement by overexpression suppresses loss of ERMES.
Collapse
Affiliation(s)
- Fenja Odendall
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Sandra Backes
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | | | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
35
|
Basile W, Salvatore M, Bassot C, Elofsson A. Why do eukaryotic proteins contain more intrinsically disordered regions? PLoS Comput Biol 2019; 15:e1007186. [PMID: 31329574 PMCID: PMC6675126 DOI: 10.1371/journal.pcbi.1007186] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 08/01/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Intrinsic disorder is more abundant in eukaryotic than prokaryotic proteins. Methods predicting intrinsic disorder are based on the amino acid sequence of a protein. Therefore, there must exist an underlying difference in the sequences between eukaryotic and prokaryotic proteins causing the (predicted) difference in intrinsic disorder. By comparing proteins, from complete eukaryotic and prokaryotic proteomes, we show that the difference in intrinsic disorder emerges from the linker regions connecting Pfam domains. Eukaryotic proteins have more extended linker regions, and in addition, the eukaryotic linkers are significantly more disordered, 38% vs. 12-16% disordered residues. Next, we examined the underlying reason for the increase in disorder in eukaryotic linkers, and we found that the changes in abundance of only three amino acids cause the increase. Eukaryotic proteins contain 8.6% serine; while prokaryotic proteins have 6.5%, eukaryotic proteins also contain 5.4% proline and 5.3% isoleucine compared with 4.0% proline and ≈ 7.5% isoleucine in the prokaryotes. All these three differences contribute to the increased disorder in eukaryotic proteins. It is tempting to speculate that the increase in serine frequencies in eukaryotes is related to regulation by kinases, but direct evidence for this is lacking. The differences are observed in all phyla, protein families, structural regions and type of protein but are most pronounced in disordered and linker regions. The observation that differences in the abundance of three amino acids cause the difference in disorder between eukaryotic and prokaryotic proteins raises the question: Are amino acid frequencies different in eukaryotic linkers because the linkers are more disordered or do the differences cause the increased disorder? Intrinsic disorder is essential for various functions in eukaryotic cells and is a signature of eukaryotic proteins. Here, we try to understand the origin of the difference in disorder between eukaryotic and prokaryotic proteins. We show that eukaryotic proteins contain more extended linker regions and that these linker regions are significantly more disordered. Further, we show, for the first time, that the difference in disorder originates from a systematic difference in amino acid frequencies between eukaryotic and prokaryotic proteins. Three amino acids contribute to the difference in disorder; serine and proline are more abundant in eukaryotic linkers, while isoleucine is less frequent. These shifts in frequencies are observed in all phyla, protein families, structural regions and type of protein but are most pronounced in disordered and linker regions. It is tempting to speculate that the increase in serine frequencies in eukaryotes is related to regulation by kinases, but direct evidence for this is lacking. Anyhow the widespread of the shifts in abundance indicates that the differences are ancient and caused be some yet not fully understood selective difference acting on eukaryotic and prokaryotic proteins.
Collapse
Affiliation(s)
- Walter Basile
- Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Marco Salvatore
- Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Claudio Bassot
- Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Arne Elofsson
- Science for Life Laboratory, Stockholm University, Solna, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Swedish e-Science Research Center (SeRC), Stockholm, Sweden
- * E-mail:
| |
Collapse
|
36
|
Bellinzoni M, Wehenkel AM, Durán R, Alzari PM. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Microbes Infect 2019; 21:222-229. [PMID: 31254628 DOI: 10.1016/j.micinf.2019.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphorylation is known to be one of the keystones of signal sensing and transduction in all living organisms. Once thought to be essentially confined to the eukaryotic kingdoms, reversible phosphorylation on serine, threonine and tyrosine residues, has now been shown to play a major role in many prokaryotes, where the number of Ser/Thr protein kinases (STPKs) equals or even exceeds that of two component systems. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is one of the most studied organisms for the role of STPK-mediated signaling in bacteria. Driven by the interest and tractability of these enzymes as potential therapeutic targets, extensive studies revealed the remarkable conservation of protein kinases and their cognate phosphatases across evolution, and their involvement in bacterial physiology and virulence. Here, we present an overview of the current knowledge of mycobacterial STPKs structures and kinase activation mechanisms, and we then focus on PknB and PknG, two well-characterized STPKs that are essential for the intracellular survival of the bacillus. We summarize the mechanistic evidence that links PknB to the regulation of peptidoglycan synthesis in cell division and morphogenesis, and the major findings that establishes PknG as a master regulator of central carbon and nitrogen metabolism. Two decades after the discovery of STPKs in M. tuberculosis, the emerging landscape of O-phosphosignaling is starting to unveil how eukaryotic-like kinases can be engaged in unique, non-eukaryotic-like, signaling mechanisms in mycobacteria.
Collapse
Affiliation(s)
- Marco Bellinzoni
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Anne Marie Wehenkel
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Instituto de Investigaciones Biológicas Clemente Estable, Mataojo 2020, Montevideo 11400, Uruguay
| | - Pedro M Alzari
- Unit of Structural Microbiology, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528 & Université Paris Diderot, 25 rue du Docteur Roux, 75724 Paris cedex 15, France.
| |
Collapse
|
37
|
Haldane A, Flynn WF, He P, Levy RM. Coevolutionary Landscape of Kinase Family Proteins: Sequence Probabilities and Functional Motifs. Biophys J 2019; 114:21-31. [PMID: 29320688 DOI: 10.1016/j.bpj.2017.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/11/2017] [Accepted: 10/17/2017] [Indexed: 01/25/2023] Open
Abstract
The protein kinase catalytic domain is one of the most abundant domains across all branches of life. Although kinases share a common core function of phosphoryl-transfer, they also have wide functional diversity and play varied roles in cell signaling networks, and for this reason are implicated in a number of human diseases. This functional diversity is primarily achieved through sequence variation, and uncovering the sequence-function relationships for the kinase family is a major challenge. In this study we use a statistical inference technique inspired by statistical physics, which builds a coevolutionary "Potts" Hamiltonian model of sequence variation in a protein family. We show how this model has sufficient power to predict the probability of specific subsequences in the highly diverged kinase family, which we verify by comparing the model's predictions with experimental observations in the Uniprot database. We show that the pairwise (residue-residue) interaction terms of the statistical model are necessary and sufficient to capture higher-than-pairwise mutation patterns of natural kinase sequences. We observe that previously identified functional sets of residues have much stronger correlated interaction scores than are typical.
Collapse
Affiliation(s)
- Allan Haldane
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania
| | - William F Flynn
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania; Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Peng He
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Department of Chemistry, and Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
38
|
Wang J, Varin T, Vieth M, Elkins JM. Crystal structure of human RIOK2 bound to a specific inhibitor. Open Biol 2019; 9:190037. [PMID: 30991936 PMCID: PMC6501643 DOI: 10.1098/rsob.190037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/20/2019] [Indexed: 11/21/2022] Open
Abstract
The RIO kinases (RIOKs) are a universal family of atypical kinases that are essential for assembly of the pre-40S ribosome complex. Here, we present the crystal structure of human RIO kinase 2 (RIOK2) bound to a specific inhibitor. This first crystal structure of an inhibitor-bound RIO kinase reveals the binding mode of the inhibitor and explains the structure-activity relationship of the inhibitor series. The inhibitor binds in the ATP-binding site and forms extensive hydrophobic interactions with residues at the entrance to the ATP-binding site. Analysis of the conservation of active site residues reveals the reasons for the specificity of the inhibitor for RIOK2 over RIOK1 and RIOK3, and it provides a template for inhibitor design against the human RIOK family.
Collapse
Affiliation(s)
- Jing Wang
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Thibault Varin
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Michal Vieth
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Biotechnology Center, 10290 Campus Point Drive, San Diego, CA 92121, USA
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Structural Genomics Consortium, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Av. Dr. André Tosello 550, Barão Geraldo, Campinas/SP 13083-886, Brazil
| |
Collapse
|
39
|
Bellinzoni M, Wehenkel AM, Durán R, Alzari PM. Novel mechanistic insights into physiological signaling pathways mediated by mycobacterial Ser/Thr protein kinases. Genes Immun 2019; 20:383-393. [DOI: 10.1038/s41435-019-0069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
|
40
|
Han GZ. Origin and evolution of the plant immune system. THE NEW PHYTOLOGIST 2019; 222:70-83. [PMID: 30575972 DOI: 10.1111/nph.15596] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/02/2018] [Indexed: 05/11/2023]
Abstract
Contents Summary 70 I. Introduction 70 II. Ancient associations between plants and microbes 72 III. Evolutionary dynamics of plant-pathogen interactions 74 IV. Evolutionary signature of plant-pathogen interactions 74 V. Origin and evolution of RLK proteins 75 VI. Origin and evolution of NLR proteins 77 VII. Origin and evolution of SA signaling 78 VIII. Origin and evolution of RNA-based defense 79 IX. Perspectives 79 Acknowledgements 80 References 80 SUMMARY: Microbes have engaged in antagonistic associations with plants for hundreds of millions of years. Plants, in turn, have evolved diverse immune strategies to combat microbial pathogens. The conflicts between plants and pathogens result in everchanging coevolutionary cycles known as 'Red Queen' dynamics. These ancient and ongoing plant-pathogen interactions have shaped the evolution of both plant and pathogen genomes. With the recent explosion of plant genome-scale data, comparative analyses provide novel insights into the coevolutionary dynamics of plants and pathogens. Here, we discuss the ancient associations between plants and microbes as well as the evolutionary principles underlying plant-pathogen interactions. We synthesize and review the current knowledge on the origin and evolution of key components of the plant immune system. We also highlight the importance of studying algae and nonflowering land plants in understanding the evolution of the plant immune system.
Collapse
Affiliation(s)
- Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
41
|
Shi L, Cavagnino A, Rabefiraisana JL, Lazar N, Li de la Sierra-Gallay I, Ochsenbein F, Valerio-Lepiniec M, Urvoas A, Minard P, Mijakovic I, Nessler S. Structural Analysis of the Hanks-Type Protein Kinase YabT From Bacillus subtilis Provides New Insights in its DNA-Dependent Activation. Front Microbiol 2019; 9:3014. [PMID: 30671027 PMCID: PMC6333020 DOI: 10.3389/fmicb.2018.03014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022] Open
Abstract
YabT is a serine/threonine kinase of the Hanks family from Bacillus subtilis, which lacks the canonical extracellular signal receptor domain but is anchored to the membrane through a C-terminal transmembrane helix. A previous study demonstrated that a basic juxtamembrane region corresponds to a DNA-binding motif essential for the activation of YabT trans-autophosphorylation. YabT is expressed during spore development and localizes to the asymmetric septum where it specifically phosphorylates essential proteins involved in genome maintenance, such as RecA, SsbA, and YabA. YabT has also been shown to phosphorylate proteins involved in protein synthesis, such as AbrB and Ef-Tu, suggesting a possible regulatory role in the progressive metabolic quiescence of the forespore. Finally, cross phosphorylations with other protein kinases implicate YabT in the regulation of numerous other cellular processes. Using an artificial protein scaffold as crystallization helper, we determined the first crystal structure of this DNA-dependent bacterial protein kinase. This allowed us to trap the active conformation of the kinase domain of YabT. Using NMR, we showed that the basic juxtamembrane region of YabT is disordered in the absence of DNA in solution, just like it is in the crystal, and that it is stabilized upon DNA binding. In comparison with its closest structural homolog, the mycobacterial kinase PknB allowed us to discuss the dimerization mode of YabT. Together with phosphorylation assays and DNA-binding experiments, this structural analysis helped us to gain new insights into the regulatory activation mechanism of YabT.
Collapse
Affiliation(s)
- Lei Shi
- Division of Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrea Cavagnino
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Luc Rabefiraisana
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Noureddine Lazar
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Inès Li de la Sierra-Gallay
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie Valerio-Lepiniec
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Agathe Urvoas
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Minard
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sylvie Nessler
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
42
|
In silico characterization of a novel putative aerotaxis chemosensory system in the myxobacterium, Corallococcus coralloides. BMC Genomics 2018; 19:757. [PMID: 30340510 PMCID: PMC6194562 DOI: 10.1186/s12864-018-5151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/08/2018] [Indexed: 11/23/2022] Open
Abstract
Background An efficient signal transduction system allows a bacterium to sense environmental cues and then to respond positively or negatively to those signals; this process is referred to as taxis. In addition to external cues, the internal metabolic state of any bacterium plays a major role in determining its ability to reside and thrive in its current environment. Similar to external signaling molecules, cytoplasmic signals are also sensed by methyl-accepting chemotaxis proteins (MCPs) via diverse ligand binding domains. Myxobacteria are complex soil-dwelling social microbes that can perform a variety of physiologic and metabolic activities ranging from gliding motility, sporulation, biofilm formation, carotenoid and secondary metabolite biosynthesis, predation, and slime secretion. To live such complex lifestyles, they have evolved efficient signal transduction systems with numerous one- and two-component regulatory system along with a large array of chemosensory systems to perceive and integrate both external and internal cues. Results Here we report the in silico characterization of a putative energy taxis cluster, Cc-5, which is present in only one amongst 34 known and sequenced myxobacterial genomes, Corallococcus coralloides. In addition, we propose that this energy taxis cluster is involved in oxygen sensing, suggesting that C. coralloides can sense (either directly or indirectly) and then respond to changing concentrations of molecular oxygen. Conclusions This hypothesis is based on the presence of a unique MCP encoded in this gene cluster that contains two different oxygen-binding sensor domains, PAS and globin. In addition, the two monooxygenases encoded in this cluster may contribute to aerobic respiration via ubiquinone biosynthesis, which is part of the cytochrome bc1 complex. Finally, we suggest that this cluster was acquired from Actinobacteria, Gammaproteobacteria or Cyanobacteria. Overall, this in silico study has identified a potentially innovative and evolved mechanism of energy taxis in only one of the myxobacteria, C. coralloides. Electronic supplementary material The online version of this article (10.1186/s12864-018-5151-6) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Kreamer NNK, Chopra R, Caughlan RE, Fabbro D, Fang E, Gee P, Hunt I, Li M, Leon BC, Muller L, Vash B, Woods AL, Stams T, Dean CR, Uehara T. Acylated-acyl carrier protein stabilizes the Pseudomonas aeruginosa WaaP lipopolysaccharide heptose kinase. Sci Rep 2018; 8:14124. [PMID: 30237436 PMCID: PMC6147952 DOI: 10.1038/s41598-018-32379-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Phosphorylation of Pseudomonas aeruginosa lipopolysaccharide (LPS) is important for maintaining outer membrane integrity and intrinsic antibiotic resistance. We solved the crystal structure of the LPS heptose kinase WaaP, which is essential for growth of P. aeruginosa. WaaP was structurally similar to eukaryotic protein kinases and, intriguingly, was complexed with acylated-acyl carrier protein (acyl-ACP). WaaP produced by in vitro transcription-translation was insoluble unless acyl-ACP was present. WaaP variants designed to perturb the acyl-ACP interaction were less stable in cells and exhibited reduced kinase function. Mass spectrometry identified myristyl-ACP as the likely physiological binding partner for WaaP in P. aeruginosa. Together, these results demonstrate that acyl-ACP is required for WaaP protein solubility and kinase function. To the best of our knowledge, this is the first report describing acyl-ACP in the role of a cofactor necessary for the production and stability of a protein partner.
Collapse
Affiliation(s)
- Naomi N K Kreamer
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Rajiv Chopra
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| | - Ruth E Caughlan
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Doriano Fabbro
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Eric Fang
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Patricia Gee
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Ian Hunt
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Min Li
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Barbara C Leon
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Lionel Muller
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Brian Vash
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Angela L Woods
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Travis Stams
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Charles R Dean
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, USA
| | - Tsuyoshi Uehara
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, CA, USA.
| |
Collapse
|
44
|
McDonald M, Trost B, Napper S. Conservation of kinase-phosphorylation site pairings: Evidence for an evolutionarily dynamic phosphoproteome. PLoS One 2018; 13:e0202036. [PMID: 30106995 PMCID: PMC6091962 DOI: 10.1371/journal.pone.0202036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
Kinase-mediated protein phosphorylation is a central mechanism for regulation of cellular responses and phenotypes. While considerable information is available regarding the evolutionary relationships within the kinase family, as well as the evolutionary conservation of phosphorylation sites, each aspect of this partnership is typically considered in isolation, despite their clear functional relationship. Here, to offer a more holistic perspective on the evolution of protein phosphorylation, the conservation of protein phosphorylation sites is considered in the context of the conservation of the corresponding modifying kinases. Specifically, conservation of defined kinase-phosphorylation site pairings (KPSPs), as well as of each of the component parts (the kinase and the phosphorylation site), were examined across a range of species. As expected, greater evolutionary distance between species was generally associated with lower probability of KPSP conservation, and only a small fraction of KPSPs were maintained across all species, with the vast majority of KPSP losses due to the absence of the phosphorylation site. This supports a model in which a relatively stable kinome promotes the emergence of functional substrates from an evolutionarily malleable phosphoproteome.
Collapse
Affiliation(s)
- Megan McDonald
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brett Trost
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization-International Vaccine Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
45
|
Khan MZ, Kaur P, Nandicoori VK. Targeting the messengers: Serine/threonine protein kinases as potential targets for antimycobacterial drug development. IUBMB Life 2018; 70:889-904. [DOI: 10.1002/iub.1871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/22/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Mehak Zahoor Khan
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi India
| | - Prabhjot Kaur
- National Institute of Immunology, Aruna Asaf Ali Marg; New Delhi India
| | | |
Collapse
|
46
|
Pagliarini DJ. A path to the powerhouse: systems-to-structure approaches for studying mitochondrial proteins. Protein Sci 2018; 27:1518-1525. [PMID: 29675961 DOI: 10.1002/pro.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/06/2022]
Abstract
The young investigator award from the Protein Society was a special honor for me because, at its essence, the goal of my laboratory is to define what obscure proteins do. Years ago, I stumbled into mitochondria as a venue for this work, and these organelles continue to define the biological theme of my laboratory. Our approaches are fairly broad, reflecting my own somewhat unorthodox training among diverse scientific fields spanning organic synthesis, chemical biology, mechanistic biochemistry, signal transduction, and systems biology. Yet, whatever the theme or the discipline, we aim to understand how proteins work-especially those that hide in the dark corners of mitochondria. Below, I recount my own path into this arena of protein science, and describe how my experiences along the way have shaped our current multi-disciplinary efforts to define the inner workings of this complex biological system.
Collapse
Affiliation(s)
- David J Pagliarini
- Morgridge Institute for Research, Madison, Wisconsin.,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
47
|
Jakobsson E, Argüello-Miranda O, Chiu SW, Fazal Z, Kruczek J, Nunez-Corrales S, Pandit S, Pritchet L. Towards a Unified Understanding of Lithium Action in Basic Biology and its Significance for Applied Biology. J Membr Biol 2017; 250:587-604. [PMID: 29127487 PMCID: PMC5696506 DOI: 10.1007/s00232-017-9998-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/21/2017] [Indexed: 01/14/2023]
Abstract
Lithium has literally been everywhere forever, since it is one of the three elements created in the Big Bang. Lithium concentration in rocks, soil, and fresh water is highly variable from place to place, and has varied widely in specific regions over evolutionary and geologic time. The biological effects of lithium are many and varied. Based on experiments in which animals are deprived of lithium, lithium is an essential nutrient. At the other extreme, at lithium ingestion sufficient to raise blood concentration significantly over 1 mM/, lithium is acutely toxic. There is no consensus regarding optimum levels of lithium intake for populations or individuals-with the single exception that lithium is a generally accepted first-line therapy for bipolar disorder, and specific dosage guidelines for sufferers of that condition are generally agreed on. Epidemiological evidence correlating various markers of social dysfunction and disease vs. lithium level in drinking water suggest benefits of moderately elevated lithium compared to average levels of lithium intake. In contrast to other biologically significant ions, lithium is unusual in not having its concentration in fluids of multicellular animals closely regulated. For hydrogen ions, sodium ions, potassium ions, calcium ions, chloride ions, and magnesium ions, blood and extracellular fluid concentrations are closely and necessarily regulated by systems of highly selective channels, and primary and secondary active transporters. Lithium, while having strong biological activity, is tolerated over body fluid concentrations ranging over many orders of magnitude. The lack of biological regulation of lithium appears due to lack of lithium-specific binding sites and selectivity filters. Rather lithium exerts its myriad physiological and biochemical effects by competing for macromolecular sites that are relatively specific for other cations, most especially for sodium and magnesium. This review will consider what is known about the nature of this competition and suggest using and extending this knowledge towards the goal of a unified understanding of lithium in biology and the application of that understanding in medicine and nutrition.
Collapse
Affiliation(s)
- Eric Jakobsson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | - See-Wing Chiu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zeeshan Fazal
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - James Kruczek
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Santiago Nunez-Corrales
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sagar Pandit
- Department of Physics, University of South Florida, Tampa, FL, USA
| | - Laura Pritchet
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
48
|
Reidenbach AG, Kemmerer ZA, Aydin D, Jochem A, McDevitt MT, Hutchins PD, Stark JL, Stefely JA, Reddy T, Hebert AS, Wilkerson EM, Johnson IE, Bingman CA, Markley JL, Coon JJ, Dal Peraro M, Pagliarini DJ. Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family. Cell Chem Biol 2017; 25:154-165.e11. [PMID: 29198567 DOI: 10.1016/j.chembiol.2017.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/10/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022]
Abstract
Human COQ8A (ADCK3) and Saccharomyces cerevisiae Coq8p (collectively COQ8) are UbiB family proteins essential for mitochondrial coenzyme Q (CoQ) biosynthesis. However, the biochemical activity of COQ8 and its direct role in CoQ production remain unclear, in part due to lack of known endogenous regulators of COQ8 function and of effective small molecules for probing its activity in vivo. Here, we demonstrate that COQ8 possesses evolutionarily conserved ATPase activity that is activated by binding to membranes containing cardiolipin and by phenolic compounds that resemble CoQ pathway intermediates. We further create an analog-sensitive version of Coq8p and reveal that acute chemical inhibition of its endogenous activity in yeast is sufficient to cause respiratory deficiency concomitant with CoQ depletion. Collectively, this work defines lipid and small-molecule modulators of an ancient family of atypical kinase-like proteins and establishes a chemical genetic system for further exploring the mechanistic role of COQ8 in CoQ biosynthesis.
Collapse
Affiliation(s)
- Andrew G Reidenbach
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachary A Kemmerer
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Deniz Aydin
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Adam Jochem
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Molly T McDevitt
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Paul D Hutchins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jaime L Stark
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jonathan A Stefely
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thiru Reddy
- Morgridge Institute for Research, Madison, WI 53715, USA
| | | | - Emily M Wilkerson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabel E Johnson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Genome Center of Wisconsin, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
49
|
Stancik IA, Šestak MS, Ji B, Axelson-Fisk M, Franjevic D, Jers C, Domazet-Lošo T, Mijakovic I. Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life. J Mol Biol 2017; 430:27-32. [PMID: 29138003 DOI: 10.1016/j.jmb.2017.11.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 11/26/2022]
Abstract
The main family of serine/threonine/tyrosine protein kinases present in eukarya was defined and described by Hanks et al. in 1988 (Science, 241, 42-52). It was initially believed that these kinases do not exist in bacteria, but extensive genome sequencing revealed their existence in many bacteria. For historical reasons, the term "eukaryotic-type kinases" propagated in the literature to describe bacterial members of this protein family. Here, we argue that this term should be abandoned as a misnomer, and we provide several lines of evidence to support this claim. Our comprehensive phylostratigraphic analysis suggests that Hanks-type kinases present in eukarya, bacteria and archaea all share a common evolutionary origin in the lineage leading to the last universal common ancestor (LUCA). We found no evidence to suggest substantial horizontal transfer of genes encoding Hanks-type kinases from eukarya to bacteria. Moreover, our systematic structural comparison suggests that bacterial Hanks-type kinases resemble their eukaryal counterparts very closely, while their structures appear to be dissimilar from other kinase families of bacterial origin. This indicates that a convergent evolution scenario, by which bacterial kinases could have evolved a kinase domain similar to that of eukaryal Hanks-type kinases, is not very likely. Overall, our results strongly support a monophyletic origin of all Hanks-type kinases, and we therefore propose that this term should be adopted as a universal name for this protein family.
Collapse
Affiliation(s)
- Ivan Andreas Stancik
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark
| | - Martin Sebastijan Šestak
- Laboratory of Evolutionary Genetics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Marina Axelson-Fisk
- Department of Mathematical Sciences, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Damjan Franjevic
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia; Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark.
| |
Collapse
|
50
|
Wang Q, Marchetti R, Prisic S, Ishii K, Arai Y, Ohta I, Inuki S, Uchiyama S, Silipo A, Molinaro A, Husson RN, Fukase K, Fujimoto Y. A Comprehensive Study of the Interaction between Peptidoglycan Fragments and the Extracellular Domain of Mycobacterium tuberculosis Ser/Thr Kinase PknB. Chembiochem 2017; 18:2094-2098. [PMID: 28851116 PMCID: PMC6261334 DOI: 10.1002/cbic.201700385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 11/07/2022]
Abstract
The Mycobacterium tuberculosis Ser/Thr kinase PknB is implicated in the regulation of bacterial cell growth and cell division. The intracellular kinase function of PknB is thought to be triggered by peptidoglycan (PGN) fragments that are recognized by the extracytoplasmic domain of PknB. The PGN in the cell wall of M. tuberculosis has several unusual modifications, including the presence of N-glycolyl groups (in addition to N-acetyl groups) in the muramic acid residues and amidation of d-Glu in the peptide chains. Using synthetic PGN fragments incorporating these diverse PGN structures, we analyzed their binding characters through biolayer interferometry (BLI), NMR spectroscopy, and native mass spectrometry (nMS) techniques. The results of BLI showed that muropeptides containing 1,6-anhydro-MurNAc and longer glycan chains exhibited higher binding potency and that the fourth amino acid of the peptide stem, d-Ala, was crucial for protein recognition. Saturation transfer difference (STD) NMR spectroscopy indicated the major involvement of the stem peptide region in the PASTA-PGN fragment binding. nMS suggested that the binding stoichiometry was 1:1. The data provide the first molecular basis for the specific interaction of PGN with PknB and firmly establish PGNs as the effective ligands of PknB.
Collapse
Affiliation(s)
- Qianqian Wang
- Faculty of Science and Technology, Keio University, Hiyoshi 3--14-1, Yokohama, Kanagawa 223--8522 (Japan),
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560--0043 (Japan)
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli (Italy)
| | - Sladjana Prisic
- Division of Infectious Disease, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (USA),
| | - Kentaro Ishii
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444--8787 (Japan)
| | - Yohei Arai
- Faculty of Science and Technology, Keio University, Hiyoshi 3--14-1, Yokohama, Kanagawa 223--8522 (Japan),
| | - Ippei Ohta
- Faculty of Science and Technology, Keio University, Hiyoshi 3--14-1, Yokohama, Kanagawa 223--8522 (Japan),
| | - Shinsuke Inuki
- Faculty of Science and Technology, Keio University, Hiyoshi 3--14-1, Yokohama, Kanagawa 223--8522 (Japan),
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444--8787 (Japan)
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565--0871 (Japan)
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli (Italy)
| | - Antonio Molinaro
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560--0043 (Japan)
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli (Italy)
| | - Robert N. Husson
- Division of Infectious Disease, Children’s Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 (USA),
| | - Koichi Fukase
- Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560--0043 (Japan)
| | - Yukari Fujimoto
- Faculty of Science and Technology, Keio University, Hiyoshi 3--14-1, Yokohama, Kanagawa 223--8522 (Japan),
| |
Collapse
|