1
|
Hajisoltani R, Meftahi GH. Epinephrine injected into the basolateral amygdala affects anxiety-like behavior and memory performance in stressed rats. Neurosci Lett 2024; 819:137590. [PMID: 38086522 DOI: 10.1016/j.neulet.2023.137590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The amygdala is known to mediate in moderating the impacts of emotional arousal and stress on memory. According to a growing body of research, the basolateral amygdala (BLA) is an important locus for integrating neuromodulator influences coordinating the retrieval of different types of memory and anxiety. This study aimed to investigate how the epinephrine in the BLA affects hippocampal fear memory, anxiety, and plasticity in control and stressed rats. For four days, male Wistar rats were exposed to electrical foot-shock stress. Animals received bilateral micro-injections of either vehicle or epinephrine (1 µg/side) into the BLA over four days (5 min before foot-shock stress). Behavioral characteristics (fear memory and anxiety-like behavior), histological features and electrophysiological parameters were investigated. Epinephrine injection into BLA resulted in a considerable impairment of fear memory in stressed rats. On the other hand, epinephrine effectively affected fear memory in control rats. Under stress conditions, epinephrine in the BLA is thought to increase anxiety-like behaviors. Treatment with epinephrine significantly increases the slope of fEPSP in the CA1 region of the hippocampus in the control and stress rats. In different groups, foot-shock stress had no effect on the apical and basal dendritic length in the CA1 region of the hippocampus. These results indicate that activating adrenergic receptors diminish fear memory and anxiety-like behaviors in the foot-shock stress, which this impact is independent of CA1 long-term potentiation induction.
Collapse
Affiliation(s)
- Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Omoluabi T, Power KD, Sepahvand T, Yuan Q. Phasic and Tonic Locus Coeruleus Stimulation Associated Valence Learning Engages Distinct Adrenoceptors in the Rat Basolateral Amygdala. Front Cell Neurosci 2022; 16:886803. [PMID: 35614971 PMCID: PMC9124852 DOI: 10.3389/fncel.2022.886803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Reward exploitation and aversion are mediated in part by the locus coeruleus (LC), a brainstem structure significantly involved in learning and memory via the release of norepinephrine. Different LC firing patterns are associated with different functions. Previously, we have shown that high tonic and phasic LC activation signal negative and positive valence, respectively, via basolateral amygdala (BLA) circuitry. Tonic LC activation is associated preferentially with BLA-central amygdala (CeA) activation, while phasic LC stimulation preferentially recruits the BLA-nucleus accumbens (NAc) pathway. Here, we ask if phasic and tonic LC activation-associated valence learning requires different adrenoceptors in the BLA, in comparison with the odor valence learning induced by natural reward and aversive conditioning. Using optogenetic activation of the LC and local drug infusions in the BLA, we show that phasic LC activation-induced positive odor valence learning is dependent on both α1 and β-adrenoceptors, whereas tonic LC activation induced-negative odor valence learning depends on β-adrenoceptors only. In parallel, both α1 and β-adrenoceptors were required in the odor valence learning induced by reward while aversive conditioning was dependent on β-adrenoceptors. Phasic stimulation and reward conditioning likewise activated more NAc-projectors of the BLA, in comparison to tonic and aversive conditioning. There was a higher proportion of α1+ cells in the NAc-projectors compared to CeA-projectors in the BLA. Together, these results provide insight into the mechanisms underlying the effects of tonic and phasic activation of the LC, and more generally, negative and positive valence signaling.
Collapse
|
3
|
Rezaei M, Ahmadirad N, Ghasemi Z, Shojaei A, Raoufy MR, Barkley V, Fathollahi Y, Mirnajafi-Zadeh J. Alpha adrenergic receptors have role in the inhibitory effect of electrical low frequency stimulation on epileptiform activity in rats. Int J Neurosci 2021; 133:496-504. [PMID: 33998961 DOI: 10.1080/00207454.2021.1929211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aim: Low frequency stimulation (LFS) inhibits neuronal hyperexcitability following epileptic activity. However, knowledge about LFS' inhibitory mechanisms is lacking. Here, α1 and α2 adrenergic receptors' roles in mediating LFS inhibitory action on high-K+ induced epileptiform activity (EA) was examined in rat hippocampal slices.Materials and methods: LFS (1 Hz, 900 pulses) was applied to the Schaffer collaterals. Whole-cell, patch clamp recording was used to measure changes in CA1 pyramidal neurons' excitability. By applying high-K+ on hippocampal slices, EA was induced, and neuronal excitability increased.Results: When administered at the beginning of EA, LFS reduced neuronal excitability. In the presence of prazosin (10 µM, an α1 adrenergic receptor antagonist) and yohimbine (5 µM, an α2 adrenergic receptor antagonist), LFS' typically has a restorative impact on EA-induced membrane potential hyperpolarization and spike firing frequency, but this effect was reduced after high-K+ washout; These antagonists did not have a significant effect on LFS' inhibitory action on spike firing during EA.Conclusion: These findings suggest that LFS' anticonvulsant effect, on neuronal hyperexcitability following high-K+ EA, may be mediated partly through α adrenergic receptors in hippocampal slices.
Collapse
Affiliation(s)
- Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Fujita S, Yoshida S, Matsuki T, Jaiswal MK, Seki K. The α1-adrenergic receptors in the amygdala regulate the induction of learned despair through protein kinase C-beta signaling. Behav Pharmacol 2021; 32:73-85. [PMID: 33164996 DOI: 10.1097/fbp.0000000000000605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hyperactivity of amygdala is observed in patients with major depressive disorder. Although the role of α1-adrenoceptor in amygdala on fear memory has been well studied, the role of α1-adrenoceptor in amygdala on depression-like behaviors remains unclear. Therefore, we investigated the effect of α1A-adrenoreceptor in amygdala on despair behavior, evaluated by the immobility time during tail suspension test (TST), pharmacological intervention, and immunohistological methods. C57BL6/J mice given a bilateral intra-amygdala injection of artificial cerebrospinal fluid exhibited an increased duration of immobility in the latter half of both trials of TST with a 24-h interval, a phenomenon known as learned despair. Intra-amygdala injection of WB4101 (1.7 nmol/0.1 µl), an α1 adrenoreceptor antagonist, but not propranolol (250 pmol/0.1 µl), a β-adrenoreceptor antagonist, blocked the induction of learned despair during TST. Immunostaining experiments revealed that ~61-75% of α1A-adrenoreceptor-positive neurons were colocalized with GAD65/67 in amygdala, implying that the α1-adrenoceptors in amygdala may enormously regulate the GABA release. Protein kinase C-beta (PKCβ) was predominantly expressed in the α1A-adrenoreceptor-positive neurons in the BLA, whereas protein kinase C-epsilon (PKCε) was highly expressed with the α1A-adrenoreceptor in the Central nucleus of amygdala. Intra-amygdala injection of ruboxistaurin (10 pmol/0.1 µl), a PKCβ inhibitor, blocked the induction of learned despair during TST, whereas neither TAT-εV1-2 (500 ng/0.1 μl), a cell-permeant PKCε inhibitory peptide, nor HBDDE (50 pmol/0.1 µl), an inhibitor of PKCα and -γ, affected the duration of immobility during TST. These data suggest that the α1-adrenoreceptor in amygdala regulates the induction of learned despair via PKCβ.
Collapse
Affiliation(s)
- Shisui Fujita
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Koriyama, Fukushima
| | - Satomi Yoshida
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Koriyama, Fukushima
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Manoj Kumar Jaiswal
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Koriyama, Fukushima
| |
Collapse
|
5
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
6
|
Ketenci S, Acet NG, Sarıdoğan GE, Aydın B, Cabadak H, Gören MZ. The Neurochemical Effects of Prazosin Treatment on Fear Circuitry in a Rat Traumatic Stress Model. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2020; 18:219-230. [PMID: 32329303 PMCID: PMC7242110 DOI: 10.9758/cpn.2020.18.2.219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 02/04/2023]
Abstract
Objective The timing of administration of pharmacologic agents is crucial in traumatic stress since they can either potentiate the original fear memory or may cause fear extinction depending on the phase of fear conditioning. Brain noradrenergic system has a role in fear conditioning. Data regarding the role of prazosin in traumatic stress are controversial. Methods In this study, we examined the effects of prazosin and the noradrenergic system in fear conditioning in a predator stress rat model. We evaluated the direct or indirect effects of stress and prazosin on noradrenaline (NA), gamma-aminobuytyric acid (GABA), glutamate, glycine levels and choline esterase activity in the amygdaloid complex, the dorsal hippocampus, the prefrontal cortex and the rostral pons. Results Our results demonstrated that prazosin might alleviate defensive behaviors and traumatic stress symptoms when given during the traumatic cue presentation in the stressed rats. However prazosin administration resulted in higher anxiety levels in non stressed rats when the neutral cue was presented. Conclusion Prazosin should be used in PTSD with caution because prazosin might exacerbate anxiety in non-traumatized subjects. However prazosin might as well alleviate stress responses very effectively. Stress induced changes included increased NA and GABA levels in the amygdaloid complex in our study, attributing noradrenaline a possible inhibitory role on fear acquisition. Acetylcholine also has a role in memory modulation in the brain. We also demonstrated increased choline esterase acitivity. Cholinergic modulation might be another target for indirect prazosin action which needs to be further studied.
Collapse
Affiliation(s)
- Sema Ketenci
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | - Nazife Gökçe Acet
- Department of Medical Pharmacology, Medeniyet University, Faculty of Medicine, Istanbul, Turkey
| | - Gökçe Elif Sarıdoğan
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey.,Department of Psychiatry, Erenköy Mental Health and Research Hospital, Istanbul, Turkey
| | - Banu Aydın
- Department of Biophysics, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Hülya Cabadak
- Department of Biophysics, Marmara University, Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Zafer Gören
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
8
|
Meis S, Endres T, Munsch T, Lessmann V. Impact of Chronic BDNF Depletion on GABAergic Synaptic Transmission in the Lateral Amygdala. Int J Mol Sci 2019; 20:ijms20174310. [PMID: 31484392 PMCID: PMC6747405 DOI: 10.3390/ijms20174310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 01/14/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has previously been shown to play an important role in glutamatergic synaptic plasticity in the amygdala, correlating with cued fear learning. While glutamatergic neurotransmission is facilitated by BDNF signaling in the amygdala, its mechanism of action at inhibitory synapses in this nucleus is far less understood. We therefore analyzed the impact of chronic BDNF depletion on GABAA-mediated synaptic transmission in BDNF heterozygous knockout mice (BDNF+/−). Analysis of miniature and evoked inhibitory postsynaptic currents (IPSCs) in the lateral amygdala (LA) revealed neither pre- nor postsynaptic differences in BDNF+/− mice compared to wild-type littermates. In addition, long-term potentiation (LTP) of IPSCs was similar in both genotypes. In contrast, facilitation of spontaneous IPSCs (sIPSCs) by norepinephrine (NE) was significantly reduced in BDNF+/− mice. These results argue against a generally impaired efficacy and plasticity at GABAergic synapses due to a chronic BDNF deficit. Importantly, the increase in GABAergic tone mediated by NE is reduced in BDNF+/− mice. As release of NE is elevated during aversive behavioral states in the amygdala, effects of a chronic BDNF deficit on GABAergic inhibition may become evident in response to states of high arousal, leading to amygdala hyper-excitability and impaired amygdala function.
Collapse
Affiliation(s)
- Susanne Meis
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| | - Thomas Endres
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
| | - Thomas Munsch
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| | - Volkmar Lessmann
- Institut für Physiologie, Otto-von-Guericke-Universität, D-39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences, D-39106 Magdeburg, Germany.
| |
Collapse
|
9
|
Shinohara F, Asaoka Y, Kamii H, Minami M, Kaneda K. Stress augments the rewarding memory of cocaine via the activation of brainstem-reward circuitry. Addict Biol 2019; 24:509-521. [PMID: 29480583 DOI: 10.1111/adb.12617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/09/2018] [Accepted: 02/06/2018] [Indexed: 12/31/2022]
Abstract
Effects of stress on the reward system are well established in the literature. Although previous studies have revealed that stress can reinstate extinguished addictive behaviors related to cocaine, the effects of stress on the rewarding memory of cocaine are not fully understood. Here, we provide evidence that stress potentiates the expression of rewarding memory of cocaine via the activation of brainstem-reward circuitry using a cocaine-induced conditioned place preference (CPP) paradigm combined with restraint stress in rats. The rats exposed to 30-minute restraint stress immediately before posttest exhibited significantly larger CPP scores compared with non-stressed rats. Intra-laterodorsal tegmental nucleus (LDT) microinjection of a β or α2 adrenoceptor antagonist attenuated the stress-induced enhancement of cocaine CPP. Consistent with this observation, intra-LDT microinjection of a β or α2 adrenoceptor agonist before posttest increased cocaine CPP. Additionally, intra-ventral tegmental area (VTA) microinjection of antagonists for the muscarinic acetylcholine, nicotinic acetylcholine or glutamate receptors attenuated the stress-induced enhancement of cocaine CPP. Finally, intra-medial prefrontal cortex (mPFC) microinjection of a D1 receptor antagonist also reduced the stress-induced enhancement of cocaine CPP. These findings suggest a mechanism wherein the LDT is activated by noradrenergic input from the locus coeruleus, leading to the activation of VTA dopamine neurons via both cholinergic and glutamatergic transmission and the subsequent excitation of the mPFC to enhance the memory of cocaine-induced reward value.
Collapse
Affiliation(s)
- Fumiya Shinohara
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Yuta Asaoka
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Hironori Kamii
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health SciencesKanazawa University Kanazawa Japan
| | - Masabumi Minami
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
| | - Katsuyuki Kaneda
- Department of Pharmacology, Graduate School of Pharmaceutical SciencesHokkaido University Sapporo Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health SciencesKanazawa University Kanazawa Japan
| |
Collapse
|
10
|
Gowrishankar R, Bruchas MR. Defining circuit-specific roles for G protein-coupled receptors in aversive learning. Curr Opin Behav Sci 2019; 26:146-156. [PMID: 32855999 DOI: 10.1016/j.cobeha.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The encoding of negative valence in response to noxious stimuli/experiences and in turn, the behavioral representation of negative affective states is essential for survival. Recent advances in neuroscience have determined multiple sites of neural plasticity and key circuits of connectivity across these regions in mediating aversive behavior. G protein-coupled receptors (GPCRs), owing to their neuromodulatory role, are especially important to refining our understanding of the molecular substrates involved in these circuits. In this review, we will focus on recent, contemporary findings that explore neural circuit-specific roles for neurotransmitter/peptide GPCRs and the importance of using novel approaches to illuminate the molecular mechanisms central to aversive learning.
Collapse
Affiliation(s)
- Raajaram Gowrishankar
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195.,Department of Pharmacology, Center for the Neurobiology of Addiction, University of Washington, Seattle, WA 98195.,Pain and Emotion, University of Washington, Seattle, WA 98195
| |
Collapse
|
11
|
Ahmadirad N, Fathollahi Y, Janahmadi M, Shojaei A, Ghasemi Z, Barkley V, Mirnajafi-Zadeh J. Low-Frequency Electrical Stimulation Reduces the Impairment in Synaptic Plasticity Following Epileptiform Activity in Rat Hippocampal Slices through α 1, But Not α 2, Adrenergic Receptors. Neuroscience 2019; 406:176-185. [PMID: 30872164 DOI: 10.1016/j.neuroscience.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023]
Abstract
Low frequency stimulation (LFS) has anticonvulsant effect and may restore the ability of long-term potentiation (LTP) to the epileptic brain. The mechanisms of LFS have not been completely determined. Here, we showed that LTP induction was impaired following in vitro epileptiform activity (EA) in hippocampal slices, but application of LFS prevented this impairment. Then, we investigated the involvement of α-adrenergic receptors in this effect of LFS. EA was induced by increasing the extracellular K+ concentration to 12 mM and EPSPs were recorded from CA1 neurons in whole cell configuration. EA increased EPSP amplitude from 6.9 ± 0.7 mV to 9.6 ± 0.6 mV. For LTP induction, the Schaffer collaterals were stimulated by high frequency stimulation (HFS; two trains of 100 pulses, 100 Hz at the interval of 20 s). The application of HFS resulted in 40.9 ± 2.3% increase in the amplitude of EPSPs. However, following EA, HFS could not produce any significant changes in EPSP amplitude. Administration of LFS (1 Hz, 900 pulses) to Schaffer collaterals at the beginning of EA restored LTP induction to the hippocampal slices and HFS increased the EPSPs amplitude up to 41.7 ± 3.1% of baseline. When slices were perfused by prazosin (α1-adrenergic receptor antagonist; 10 μM) before and during LFS application, LFS improvement on LTP induction was reduced significantly. Perfusion of slices by yohimbine (α2-adrenergic receptor antagonist; 5 μM) had no effect on LFS action. Therefore, it may be concluded that following epileptiform activity, LFS can improve the impairment of LTP generation through α1, but not α2, adrenergic receptor activity.
Collapse
Affiliation(s)
- Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Cahill EN, Milton AL. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl) 2019; 236:111-132. [PMID: 30656364 PMCID: PMC6373198 DOI: 10.1007/s00213-018-5121-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Extinction within the reconsolidation window, or 'retrieval-extinction', has received much research interest as a possible technique for targeting the reconsolidation of maladaptive memories with a behavioural intervention. However, it remains to be determined whether the retrieval-extinction effect-a long-term reduction in fear behaviour, which appears resistant to spontaneous recovery, renewal and reinstatement-depends specifically on destabilisation of the original memory (the 'reconsolidation-update' account) or represents facilitation of an extinction memory (the 'extinction-facilitation' account). We propose that comparing the neurotransmitter systems, receptors and intracellular signalling pathways recruited by reconsolidation, extinction and retrieval-extinction will provide a way of distinguishing between these accounts.
Collapse
Affiliation(s)
- Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK.
| |
Collapse
|
13
|
Lucas EK, Wu WC, Roman-Ortiz C, Clem RL. Prazosin during fear conditioning facilitates subsequent extinction in male C57Bl/6N mice. Psychopharmacology (Berl) 2019; 236:273-279. [PMID: 30112577 PMCID: PMC6374171 DOI: 10.1007/s00213-018-5001-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/08/2018] [Indexed: 11/25/2022]
Abstract
RATIONALE Recovery from a traumatic experience requires extinction of cue-based fear responses, a process that is impaired in post-traumatic stress disorder. While studies suggest a link between fear behavioral flexibility and noradrenaline signaling, the role of specific receptors and brain regions in these effects is unclear. OBJECTIVES Here, we examine the role of prazosin, an α1-adrenergic receptor (α1-AR) antagonist, in auditory fear conditioning and extinction. METHODS C57Bl/6N mice were subjected to auditory fear conditioning and extinction in combination with systemic (0.1-2 mg/kg) or local microinjections (3 or 6 mM) of the α1-AR antagonist prazosin into the prelimbic division of medial prefrontal cortex or basolateral amygdala. Conditioned fear and anxiety-like behaviors were compared with vehicle-injected control animals. RESULTS Mice that received systemic prazosin prior to fear conditioning exhibited similar initial levels of cue-elicited freezing compared to vehicle controls on the following day. However, at all doses tested, fear that was acquired during prazosin treatment was more readily extinguished, whereas anxiety-like behavior on the day of extinction was unaffected. A similar pattern of results was observed when prazosin was microinjected into the basolateral amygdala but not the prelimbic cortex. In contrast to pre-conditioning injections, prazosin administration prior to extinction had no effect on freezing. CONCLUSIONS Our results indicate that α1-AR activity during aversive conditioning is dispensable for memory acquisition but renders conditioned fear more impervious to extinction. This suggests that behavioral flexibility is constrained by noradrenaline at the time of initial learning via activation of a specific AR isoform.
Collapse
Affiliation(s)
- Elizabeth K Lucas
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1065, New York, NY, 10029, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Wan-Chen Wu
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1065, New York, NY, 10029, USA
| | - Ciorana Roman-Ortiz
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1065, New York, NY, 10029, USA
| | - Roger L Clem
- Fishberg Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1065, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
14
|
Giustino TF, Maren S. Noradrenergic Modulation of Fear Conditioning and Extinction. Front Behav Neurosci 2018; 12:43. [PMID: 29593511 PMCID: PMC5859179 DOI: 10.3389/fnbeh.2018.00043] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
The locus coeruleus norepinephrine (LC-NE) system plays a broad role in learning and memory. Here we begin with an overview of the LC-NE system. We then consider how both direct and indirect manipulations of the LC-NE system affect cued and contextual aversive learning and memory. We propose that NE dynamically modulates Pavlovian conditioning and extinction, either promoting or impairing learning aversive processes under different levels of behavioral arousal. We suggest that under high levels of stress (e.g., during/soon after fear conditioning) the locus coeruleus (LC) promotes cued fear learning by enhancing amygdala function while simultaneously blunting prefrontal function. Under low levels of arousal, the LC promotes PFC function to promote downstream inhibition of the amygdala and foster the extinction of cued fear. Thus, LC-NE action on the medial prefrontal cortex (mPFC) might be described by an inverted-U function such that it can either enhance or hinder learning depending on arousal states. In addition, LC-NE seems to be particularly important for the acquisition, consolidation and extinction of contextual fear memories. This may be due to dense adrenoceptor expression in the hippocampus (HPC) which encodes contextual information, and the ability of NE to regulate long-term potentiation (LTP). Moreover, recent work reveals that the diversity of LC-NE functions in aversive learning and memory are mediated by functionally heterogeneous populations of LC neurons that are defined by their projection targets. Hence, LC-NE function in learning and memory is determined by projection-specific neuromodulation that accompanies various states of behavioral arousal.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
15
|
Homan P, Lin Q, Murrough JW, Soleimani L, Bach DR, Clem RL, Schiller D. Prazosin during threat discrimination boosts memory of the safe stimulus. ACTA ACUST UNITED AC 2017; 24:597-601. [PMID: 29038221 PMCID: PMC5647929 DOI: 10.1101/lm.045898.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/10/2017] [Indexed: 11/24/2022]
Abstract
The α-1 adrenoreceptor antagonist prazosin has shown promise in the treatment of post-traumatic stress disorder (PTSD) symptoms, but its mechanisms are not well understood. Here we administered prazosin or placebo prior to threat conditioning (day 1) and tested subsequent extinction (day 2) and reextinction (day 3) in healthy human participants. Prazosin did not affect threat conditioning but augmented stimulus discrimination during extinction and reextinction, via lower responding to the safe stimulus. These results suggest that prazosin during threat acquisition may have influenced encoding or consolidation of safety processing in particular, subsequently leading to enhanced discrimination between the safe and threatening stimuli.
Collapse
Affiliation(s)
- Philipp Homan
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Qi Lin
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - James W Murrough
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Laili Soleimani
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Dominik R Bach
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, 8032 Zurich, Switzerland
| | - Roger L Clem
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daniela Schiller
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
16
|
Rodríguez-Ortega E, Cañadas F, Carvajal F, Cardona D. In vivo stimulation of locus coeruleus: effects on amygdala subnuclei. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Skelly MJ, Ariwodola OJ, Weiner JL. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala. Neuropharmacology 2016; 113:231-240. [PMID: 27720769 DOI: 10.1016/j.neuropharm.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/26/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Inappropriate fear memory formation is symptomatic of many psychopathologies, and delineating the neurobiology of non-pathological fear learning may provide critical insight into treating these disorders. Fear memory formation is associated with decreased inhibitory signaling in the basolateral amygdala (BLA), and disrupted noradrenergic signaling may contribute to this decrease. BLA noradrenergic neurotransmission has been implicated in fear memory formation, and distinct adrenoreceptor (AR) subtypes modulate excitatory and inhibitory neurotransmission in this region. For example, α1-ARs promote GABA release from local inhibitory interneurons, while β3-ARs potentiate neurotransmission at lateral paracapsular (LPC) GABAergic synapses. Conversely, β1/2-ARs amplify excitatory signaling at glutamatergic synapses in the BLA. As increased BLA excitability promotes fear memory formation, we hypothesized that fear learning shifts the balanced regional effects of noradrenergic signaling toward excitation. To test this hypothesis, we used the fear-potentiated startle paradigm in combination with whole cell patch clamp electrophysiology to examine the effects of AR activation on BLA synaptic transmission following fear conditioning in male Long-Evans rats. We first demonstrated that inhibitory neurotransmission is decreased at both local and LPC synapses following fear conditioning. We next measured noradrenergic facilitation of BLA inhibitory signaling at local and LPC synapses using α1-and β3-AR agonists (1 μM A61603 and 10 μM BRL37344), and found that the ability of these agents to facilitate inhibitory neurotransmission is disrupted following fear conditioning. Conversely, we found that fear learning does not disrupt noradrenergic modulation of glutamatergic signaling via a β1/2-AR agonist (1 μM isoproterenol). Taken together, these studies suggest that fear learning increases BLA excitability by selectively disrupting the inhibitory effects of noradrenaline.
Collapse
Affiliation(s)
- M J Skelly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - O J Ariwodola
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
18
|
Funk D, Coen K, Tamadon S, Li Z, Loughlin A, Lê AD. Effects of prazosin and doxazosin on yohimbine-induced reinstatement of alcohol seeking in rats. Psychopharmacology (Berl) 2016; 233:2197-2207. [PMID: 27020784 DOI: 10.1007/s00213-016-4273-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/05/2016] [Indexed: 12/16/2022]
Abstract
RATIONALE AND OBJECTIVES Alpha-1 adrenoceptor antagonists, such as prazosin, show promise in treating alcoholism. In rats, prazosin reduces alcohol self-administration and relapse induced by footshock stress and the alpha-2 antagonist yohimbine, but the processes involved in these effects of prazosin are not known. Here, we present studies on the central mechanisms underlying the effects of prazosin on yohimbine-induced reinstatement of alcohol seeking. METHODS In experiment 1, we trained rats to self-administer alcohol (12 % w/v, 1 h/day), extinguished their responding, and tested the effects of prazosin, administered ICV (2 and 6 nmol) or systemically (1 mg/kg) on yohimbine (1.25 mg/kg)-induced reinstatement. In experiment 2, we determined potential central sites of action by analyzing effects of prazosin (1 mg/kg) on yohimbine (1.25 mg/kg)-induced Fos expression. In experiment 3, we determined the effects of doxazosin (1.25, 2.5, and 5 mg/kg), an alpha-1 antagonist with a longer half-life on yohimbine-induced reinstatement. RESULTS Yohimbine-induced reinstatement of alcohol seeking was reduced significantly by ICV and systemic prazosin (50 and 69 % decreases, respectively). Systemic prazosin reduced yohimbine-induced Fos expression in the prefrontal cortex, accumbens shell, ventral bed nucleus of the stria terminalis, and basolateral amygdala (46-67 % decreases). Doxazosin reduced yohimbine-induced reinstatement of alcohol seeking (78 % decrease). CONCLUSIONS Prazosin acts centrally to reduce yohimbine-induced alcohol seeking. The Fos mapping study suggests candidate sites where it may act. Doxazosin is also effective in reducing yohimbine-induced reinstatement. These data provide information on the mechanisms of alpha-1 antagonists on yohimbine-induced alcohol seeking and indicate their further investigation for the treatment of alcoholism.
Collapse
Affiliation(s)
- D Funk
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada.
| | - K Coen
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - S Tamadon
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - Z Li
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - A Loughlin
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
| | - A D Lê
- Neurobiology of Alcohol Laboratory, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, M5S 2S1, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Salgado H, Treviño M, Atzori M. Layer- and area-specific actions of norepinephrine on cortical synaptic transmission. Brain Res 2016; 1641:163-76. [PMID: 26820639 DOI: 10.1016/j.brainres.2016.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/20/2022]
Abstract
The cerebral cortex is a critical target of the central noradrenergic system. The importance of norepinephrine (NE) in the regulation of cortical activity is underscored by clinical findings that involve this catecholamine and its receptor subtypes in the regulation of a large number of emotional and cognitive functions and illnesses. In this review, we highlight diverse effects of the LC/NE system in the mammalian cortex. Indeed, electrophysiological, pharmacological, and behavioral studies in the last few decades reveal that NE elicits a mixed repertoire of excitatory, inhibitory, and biphasic effects on the firing activity and transmitter release of cortical neurons. At the intrinsic cellular level, NE can produce a series of effects similar to those elicited by other monoamines or acetylcholine, associated with systemic arousal. At the synaptic level, NE induces numerous acute changes in synaptic function, and ׳gates' the induction of long-term plasticity of glutamatergic synapses, consisting in an enhancement of engaged and relevant cortical synapses and/or depression of unengaged synapses. Equally important in shaping cortical function, in many cortical areas NE promotes a characteristic, most often reversible, increase in the gain of local inhibitory synapses, whose extent and temporal properties vary between different areas and sometimes even between cortical layers of the same area. While we are still a long way from a comprehensive theory of the function of the LC/NE system, its cellular, synaptic, and plastic effects are consistent with the hypothesis that noradrenergic modulation is critical in coordinating the activity of cortical and subcortical circuits for the integration of sensory activity and working memory. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
Affiliation(s)
| | | | - Marco Atzori
- Universidad Autónoma de San Luis Potosí, México.
| |
Collapse
|
20
|
Skelly MJ, Chappell AM, Ariwodola OJ, Weiner JL. Behavioral and neurophysiological evidence that lateral paracapsular GABAergic synapses in the basolateral amygdala contribute to the acquisition and extinction of fear learning. Neurobiol Learn Mem 2015; 127:10-6. [PMID: 26593151 DOI: 10.1016/j.nlm.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 10/12/2015] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Abstract
The lateral/basolateral amygdala (BLA) is crucial to the acquisition and extinction of Pavlovian fear conditioning, and synaptic plasticity in this region is considered to be a neural correlate of learned fear. We recently reported that activation of BLA β3-adrenoreceptors (β3-ARs) selectively enhances lateral paracapsular (LPC) feed-forward GABAergic inhibition onto BLA pyramidal neurons, and that intra-BLA infusion of a β3-AR agonist reduces measures of unconditioned anxiety-like behavior. Here, we utilized a combination of behavioral and electrophysiological approaches to characterize the role of BLA LPCs in the acquisition of fear and extinction learning in adult male Long-Evans rats. We report that intra-BLA microinjection of β3-AR agonists (BRL37344 or SR58611A, 1μg/0.5μL/side) prior to training fear conditioning or extinction blocks the expression of these behaviors 24h later. Furthermore,ex vivo low-frequency stimulation of the external capsule (LFS; 1Hz, 15min), which engages LPC synapses, induces LTP of BLA fEPSPs, while application of a β3-AR agonist (SR58611A, 5μM) induces LTD of fEPSPs when combined with LFS. Interestingly, fEPSP LTP is not observed in recordings from fear conditioned animals, suggesting that fear learning may engage the same mechanisms that induce synaptic plasticity at this input. In support of this, we find that LFS produces LTD of inhibitory postsynaptic currents (iLTD) at LPC GABAergic synapses, and that this effect is also absent following fear conditioning. Taken together, these data provide preliminary evidence that modulation of LPC GABAergic synapses can influence the acquisition and extinction of fear learning and related synaptic plasticity in the BLA.
Collapse
Affiliation(s)
- M J Skelly
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - A M Chappell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - O J Ariwodola
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, United States.
| |
Collapse
|
21
|
An Overview of Translationally Informed Treatments for Posttraumatic Stress Disorder: Animal Models of Pavlovian Fear Conditioning to Human Clinical Trials. Biol Psychiatry 2015; 78:E15-27. [PMID: 26238379 PMCID: PMC4527085 DOI: 10.1016/j.biopsych.2015.06.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/07/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023]
Abstract
Posttraumatic stress disorder manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology of normative and pathological fear. Preclinical studies reveal a number of neurotransmitter systems and circuits critical for aversive learning and memory that have informed the development of therapies used in human clinical trials. In this review, we discuss the evidence for a number of established and emerging pharmacotherapies and device-based treatments for posttraumatic stress disorder that have been developed via a bench to bedside translational model.
Collapse
|
22
|
Palotai M, Adamik A, Telegdy G. Involvement of neurotransmitters in the action of the nociceptin/orphanin FQ peptide-receptor system on passive avoidance learning in rats. Neurochem Res 2014; 39:1477-83. [PMID: 24893797 DOI: 10.1007/s11064-014-1337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 12/11/2022]
Abstract
The nociceptin/orphanin FQ peptide (NOP) receptor and its endogenous ligand plays role in several physiologic functions of the central nervous system, including pain, locomotion, anxiety and depression, reward and drug addiction, learning and memory. Previous studies demonstrated that the NOP-receptor system induces impairment in memory and learning. However, we have little evidence about the underlying neuromodulation. The aim of the present study was to investigate the involvement of distinct neurotransmitters in the action of the selective NOP receptor agonist orphan G protein-coupled receptor (GPCR) SP9155 P550 on memory consolidation in a passive avoidance learning test in rats. Accordingly, rats were pretreated with a nonselective muscarinic acetylcholine receptor antagonist, atropine, a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline, a D2, D3, D4 dopamine receptor antagonist, haloperidol, a nonselective opioid receptor antagonist, naloxone, a non-specific nitric oxide synthase inhibitor, nitro-L-arginine, a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol. Atropine, bicuculline, naloxone and phenoxybenzamine reversed the orphan GPCR SP9155 P550-induced memory impairment, whereas propranolol, haloperidol and nitro-L-arginine were ineffective. Our results suggest that the NOP system-induced impairment of memory consolidation is mediated through muscarinic cholinergic, GABA-A-ergic, opioid and α-adrenergic receptors, whereas β-adrenergic, D2, D3, D4-dopaminergic and nitrergic mechanisms are not be implicated.
Collapse
Affiliation(s)
- Miklós Palotai
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Semmelweis Str. 1, Szeged, 6701, Hungary
| | | | | |
Collapse
|
23
|
Morrison FG, Ressler KJ. From the neurobiology of extinction to improved clinical treatments. Depress Anxiety 2014; 31:279-90. [PMID: 24254958 PMCID: PMC4293038 DOI: 10.1002/da.22214] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022] Open
Abstract
The neural circuitry underlying the fear response is extremely well conserved across mammalian species, which has allowed for the rapid translation of research findings in rodent models of fear to therapeutic interventions in human populations. Many aspects of exposure-based psychotherapy treatments in humans, which are widely used in the treatment of PTSD, panic disorder, phobias, and other anxiety disorders, are closely paralleled by extinction training in rodent fear conditioning models. Here, we discuss how the neural circuitry of fear learning and extinction in rodent animal models may be used to understand the underlying neural circuitry of fear-related disorders, such as PTSD in humans. We examine the factors that contribute to the pathology and development of PTSD. Next, we will review how fear is measured in animal models using classical Pavlovian fear conditioning paradigms, as well as brain regions such as the amygdala, which are involved in the fear response across species. Finally, we highlight the following three systems involved in the extinction of fear, all of which represent promising avenues for therapeutic interventions in the clinic: (1) the role of the glutamatergic N-methyl-d-aspartate (NMDA) receptor, (2) the role of the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) induced signaling pathway, and (3) the role of the renin-angiotensin system. The modulation of pathways underlying fear learning and extinction, such as the ones presented in this review, in combination with extinction-based exposure therapy, represents promising avenues for therapeutic intervention in the treatment of human fear related disorders.
Collapse
Affiliation(s)
- Filomene G. Morrison
- Yerkes National Primate Research Center, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry J. Ressler
- Yerkes National Primate Research Center, Atlanta, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Howard Hughes Medical Institute, Chevy Chase, Maryland,Correspondence to: Kerry J. Ressler, Yerkes Research Center, 954 Gatewood Drive, Atlanta, Georgia 30329.
| |
Collapse
|
24
|
Carmack SA, Howell KK, Rasaei K, Reas ET, Anagnostaras SG. Animal model of methylphenidate's long-term memory-enhancing effects. Learn Mem 2014; 21:82-9. [PMID: 24434869 PMCID: PMC3895222 DOI: 10.1101/lm.033613.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methylphenidate (MPH), introduced more than 60 years ago, accounts for two-thirds of current prescriptions for attention deficit hyperactivity disorder (ADHD). Although many studies have modeled MPH's effect on executive function, almost none have directly modeled its effect on long-term memory (LTM), even though improvement in LTM is a critical target of therapeutic intervention in ADHD. We examined the effects of a wide range of doses of MPH (0.01–10 mg/kg, i.p.) on Pavlovian fear learning, a leading model of memory. MPH's effects were then compared to those of atomoxetine (0.1–10 mg/kg, i.p.), bupropion (0.5–20 mg/kg, i.p.), and citalopram (0.01–10 mg/kg, i.p.). At low, clinically relevant doses, MPH enhanced fear memory; at high doses it impaired memory. MPH's memory-enhancing effects were not confounded by its effects on locomotion or anxiety. Further, MPH-induced memory enhancement seemed to require both dopamine and norepinephrine transporter inhibition. Finally, the addictive potential of MPH (1 mg/kg and 10 mg/kg) was compared to those of two other psychostimulants, amphetamine (0.005 mg/kg and 1.5 mg/kg) and cocaine (0.15 mg/kg and 15 mg/kg), using a conditioned place preference and behavioral sensitization paradigm. We found that memory-enhancing effects of psychostimulants observed at low doses are readily dissociable from their reinforcing and locomotor activating effects at high doses. Together, our data suggest that fear conditioning will be an especially fruitful platform for modeling the effects of psychostimulants on LTM in drug development.
Collapse
Affiliation(s)
- Stephanie A Carmack
- Molecular Cognition Laboratory, Department of Psychology, University of California, San Diego, California 92093-0109, USA
| | | | | | | | | |
Collapse
|
25
|
Sears RM, Schiff HC, LeDoux JE. Molecular Mechanisms of Threat Learning in the Lateral Nucleus of the Amygdala. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:263-304. [DOI: 10.1016/b978-0-12-420170-5.00010-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Prazosin differentially affects extinction of cocaine conditioned place preference on the basis of dose and initial preference. Neuroreport 2013; 23:1048-51. [PMID: 23108042 DOI: 10.1097/wnr.0b013e32835ad246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent work has shown that α1-adrenergic receptor blockade impairs extinction in fear conditioning paradigms in rodents. However, studies of the role of α1-adrenergic receptors in extinction using other conditioning paradigms, such as those examining the conditioned effects of drug of abuse, have yielded inconsistent results. In this article, we reanalyze and extend previously reported findings of the effect of prazosin, an α1-adrenergic receptor antagonist, on the extinction of a cocaine-induced conditioned place preference in rats, using a median split of performance during the initial test for preference. This new reanalysis, which includes further extinction testing, indicated a paradoxical dose effect. A single post-test administration of a lower dose of prazosin, 0.3 mg/kg intraperitoneally, impaired extinction in rats that showed a below-median preference during initial testing, but had no effect on extinction in rats that showed an above-median preference during initial testing. In contrast, a single post-test administration of a higher dose of prazosin, 1.0 mg/kg intraperitoneally, enhanced extinction in rats that showed an above-median preference during initial testing, but had no effect on extinction in rats that showed a below-median preference during initial testing. Consistent with other studies of fear and drug conditioning, these results suggest the involvement of the α1-adrenergic receptor in the formation of extinction memories, but also indicate a potentially important differential effect on extinction on the basis of the dose of prazosin and the strength of the initial learning.
Collapse
|
27
|
Lee S, Kim SJ, Kwon OB, Lee JH, Kim JH. Inhibitory networks of the amygdala for emotional memory. Front Neural Circuits 2013; 7:129. [PMID: 23914157 PMCID: PMC3729980 DOI: 10.3389/fncir.2013.00129] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/17/2013] [Indexed: 11/19/2022] Open
Abstract
The amygdala is important for emotional memory, including learned fear. A number of studies for amygdala neural circuits that underlie fear conditioning have elucidated specific cellular and molecular mechanisms of emotional memory. Recent technical advances such as optogenetic approaches have not only confirmed the importance of excitatory circuits in fear conditioning, but have also shed new light for a direct role of inhibitory circuits in both the acquisition and extinction of fear memory in addition to their role in fine tuning of excitatory neural circuitry. As a result, the circuits in amygdala could be drawn more elaborately, and it led us to understand how fear or extinction memories are formed in the detailed circuit level, and various neuromodulators affect these circuit activities, inducing subtle behavioral changes.
Collapse
Affiliation(s)
- Seungho Lee
- Department of Life Science, Pohang University of Science and Technology Pohang, South Korea
| | | | | | | | | |
Collapse
|
28
|
Prazosin, an α1-adrenoceptor antagonist, prevents memory deterioration in the APP23 transgenic mouse model of Alzheimer's disease. Neurobiol Aging 2013; 34:1105-15. [DOI: 10.1016/j.neurobiolaging.2012.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 01/16/2023]
|
29
|
Gazarini L, Stern CAJ, Carobrez AP, Bertoglio LJ. Enhanced noradrenergic activity potentiates fear memory consolidation and reconsolidation by differentially recruiting 1- and -adrenergic receptors. Learn Mem 2013; 20:210-9. [DOI: 10.1101/lm.030007.112] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Hott SC, Gomes FV, Fabri DRS, Reis DG, Crestani CC, Côrrea FMA, Resstel LBM. Both α1- and β1-adrenoceptors in the bed nucleus of the stria terminalis are involved in the expression of conditioned contextual fear. Br J Pharmacol 2013; 167:207-21. [PMID: 22506532 DOI: 10.1111/j.1476-5381.2012.01985.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The bed nucleus of the stria terminalis (BNST) is a limbic structure that is involved in the expression of conditioned contextual fear. Among the numerous neural inputs to the BNST, noradrenergic synaptic terminals are prominent and some evidence suggests an activation of this noradrenergic neurotransmission in the BNST during aversive situations. Here, we have investigated the involvement of the BNST noradrenergic system in the modulation of behavioural and autonomic responses induced by conditioned contextual fear in rats. EXPERIMENTAL APPROACH Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (6 footshocks, 1.5 ma/ 3 s). Twenty-four hours later freezing and autonomic responses (mean arterial pressure, heart rate and cutaneous temperature) to the conditioning box were measured for 10 min. The adrenoceptor antagonists were administered 10 min before the re-exposure to the aversive context. KEY RESULTS L-propranolol, a non-selective β-adrenoceptor antagonist, and phentolamine, a non-selective α-adrenoceptor antagonist, reduced both freezing and autonomic responses induced by aversive context. Similar results were observed with CGP20712, a selective β(1) -adrenoceptor antagonist, and WB4101, a selective α(1) -antagonist, but not with ICI118,551, a selective β(2) -adrenoceptor antagonist or RX821002, a selective α(2) -antagonist. CONCLUSIONS AND IMPLICATIONS These findings support the idea that noradrenergic neurotransmission in the BNST via α(1) - and β(1) -adrenoceptors is involved in the expression of conditioned contextual fear.
Collapse
Affiliation(s)
- Sara C Hott
- Department of Pharmacology, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Memories for emotionally arousing experiences are typically vivid and persistent. The recurrent, intrusive memories of traumatic events in post-traumatic stress disorder (PTSD) are an extreme example. Stress-responsive neurotransmitters released during emotional arousal are proposed to enhance the consolidation of fear memory. These transmitters may include norepinephrine and epinephrine (NE/E) because stimulating β-adrenergic receptors shortly after training can enhance memory consolidation. However, mice lacking NE/E acquire and consolidate fear memory normally. Here, we show by using pharmacologic and genetic manipulations in mice and rats that NE/E are not essential for classical fear memory consolidation because signaling by the β(2)-adrenergic receptor is redundant with signaling by dopamine at the D(5)-dopaminergic receptor. The intracellular signaling that is stimulated by these receptors to promote consolidation uses distinct G proteins to redundantly activate phospholipase C. The results support recent evidence indicating that blocking β-adrenergic receptors alone shortly after trauma may not be sufficient to prevent PTSD.
Collapse
|
32
|
Baker DG, Nievergelt CM, O'Connor DT. Biomarkers of PTSD: Neuropeptides and immune signaling. Neuropharmacology 2012; 62:663-73. [DOI: 10.1016/j.neuropharm.2011.02.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 02/07/2023]
|
33
|
Johansen JP, Cain CK, Ostroff LE, LeDoux JE. Molecular mechanisms of fear learning and memory. Cell 2011; 147:509-24. [PMID: 22036561 DOI: 10.1016/j.cell.2011.10.009] [Citation(s) in RCA: 731] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 01/08/2023]
Abstract
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.
Collapse
Affiliation(s)
- Joshua P Johansen
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
34
|
Gottesmann C. The involvement of noradrenaline in rapid eye movement sleep mentation. Front Neurol 2011; 2:81. [PMID: 22180750 PMCID: PMC3235734 DOI: 10.3389/fneur.2011.00081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/23/2011] [Indexed: 01/19/2023] Open
Abstract
Noradrenaline, one of the main brain monoamines, has powerful central influences on forebrain neurobiological processes which support the mental activities occurring during the sleep-waking cycle. Noradrenergic neurons are activated during waking, decrease their firing rate during slow wave sleep, and become silent during rapid eye movement (REM) sleep. Although a low level of noradrenaline is still maintained during REM sleep because of diffuse extrasynaptic release without rapid withdrawal, the decrease observed during REM sleep contributes to the mentation disturbances that occur during dreaming, which principally resemble symptoms of schizophrenia but seemingly also of attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Claude Gottesmann
- Département de Biologie, Université de Nice-Sophia AntipolisNice, France
| |
Collapse
|
35
|
de Oliveira EM, Kissaki PT, Ordonez TN, Lima-Silva TB. A systematic review of the neurobiological aspects of memory in the aging process. Dement Neuropsychol 2011; 5:310-321. [PMID: 29213758 PMCID: PMC5619044 DOI: 10.1590/s1980-57642011dn05040009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A systematic review of the neuroanatomical literature was performed to determine the neuropharmacological aspects most relevant to the study of memory processes. Articles were retrieved using the search terms "biology of memory", "memory and aging", "memory impairment", "elderly and memory," and their equivalents in Portuguese. Of the studies surveyed, five studies dealt with epidemiological and demographic issues, 12 were clinical trials i.e. were based on testing and implementation of instruments in human subjects, 33 studies were basic research involving studies of mice, rats and non-human primates, and biochemical and in vitro trials and finally, 52 studies were literature reviews or book chapters which in our view, fell into this category. Conclusions The work sought to highlight which neural networks are most involved in processing information, as well as their location within brain regions and the way in which neurotransmitters interact with each other for the formation of these memories. Moreover, it was shown how memory changes during the normal human aging process, both positively and negatively, by analyzing the morphological alterations that occur in the brain of aging individuals.
Collapse
Affiliation(s)
- Eduardo Moreira de Oliveira
- Bacharel em Gerontologia - Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo SP, Brazil. Pesquisadores do Núcleo de Estudos no Envelhecimento Cognitivo e Núcleo de Estudos em Gerontologia, EACH-USP, São Paulo SP, Brazil
| | - Priscilla Tiemi Kissaki
- Bacharel em Gerontologia - Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo SP, Brazil. Pesquisadores do Núcleo de Estudos no Envelhecimento Cognitivo e Núcleo de Estudos em Gerontologia, EACH-USP, São Paulo SP, Brazil
| | - Tiago Nascimento Ordonez
- Bacharel em Gerontologia - Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, São Paulo SP, Brazil. Pesquisadores do Núcleo de Estudos no Envelhecimento Cognitivo e Núcleo de Estudos em Gerontologia, EACH-USP, São Paulo SP, Brazil
| | - Thaís Bento Lima-Silva
- Pós-graduada em Neurociências pela Faculdade de Medicina do ABC - Mestranda em Neurologia, pelo Departamento de Neurologia Cognitiva e do Comportamento - Faculdade de Medicina da Universidade de São Paulo, São Paulo SP, Brazil
| |
Collapse
|
36
|
Mahan AL, Ressler KJ. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 2011; 35:24-35. [PMID: 21798604 DOI: 10.1016/j.tins.2011.06.007] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 06/11/2011] [Accepted: 06/17/2011] [Indexed: 12/30/2022]
Abstract
Posttraumatic stress disorder (PTSD) is an anxiety disorder that can develop after a traumatic experience such as domestic violence, natural disasters or combat-related trauma. The cost of such disorders on society and the individual can be tremendous. In this article, we review how the neural circuitry implicated in PTSD in humans is related to the neural circuitry of fear. We then discuss how fear conditioning is a suitable model for studying the molecular mechanisms of the fear components that underlie PTSD, and the biology of fear conditioning with a particular focus on the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB), GABAergic and glutamatergic ligand-receptor systems. We then summarize how such approaches might help to inform our understanding of PTSD and other stress-related disorders and provide insight to new pharmacological avenues of treatment of PTSD.
Collapse
Affiliation(s)
- Amy L Mahan
- Center for Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University School of Medicine, 954 Gatewood Drive, Atlanta, GA 30329, USA
| | | |
Collapse
|
37
|
Dębiec J, Bush DEA, LeDoux JE. Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats--a possible mechanism for the persistence of traumatic memories in PTSD. Depress Anxiety 2011; 28:186-93. [PMID: 21394851 PMCID: PMC3590026 DOI: 10.1002/da.20803] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is associated with enhanced noradrenergic activity. Animal and human studies demonstrate that noradrenergic stimulation augments consolidation of fear learning. Retrieval of well-established memories by presenting a learned fear cue triggers reconsolidation processes during which memories may be updated, weakened, or strengthened. We previously reported that noradrenergic blockade in the rat amygdala impairs reconsolidation of fear memories. Here we investigated the effects of noradrenergic enhancement on reconsolidation of learned fear. METHODS Using auditory fear conditioning in rats, we tested the effects of postretrieval intraamygdala infusion of the β-adrenergic receptor agonist isoproterenol or the antagonist propranolol on conditioned fear in the amygdala. RESULTS A single intraamygdala infusion of isoproterenol following a retrieval of a well-consolidated memory enhanced fear memory elicited by the learned fear stimulus and impaired extinction of this memory 48 hr later. Intraamygdala infusion of the β-adrenergic receptor antagonist propranolol following a consecutive retrieval trial blocked the enhancing effects of isoproterenol on fear memory. CONCLUSIONS Postretrieval β-adrenergic stimulation in the amygdala enhances reconsolidation of fear memories, making them resistant to extinction. Noradrenergic augmentation during retrieval of fear memories may thus contribute to persistence and severity of traumatic memories. Reconsolidation may be a useful tool in understanding the pathology of PTSD and may thus help in developing new and in modifying existing treatments of traumatic memories.
Collapse
Affiliation(s)
- Jacek Dębiec
- W.M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University, New York, NY, USA.
| | - David E. A. Bush
- W.M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University, New York, NY
| | - Joseph E. LeDoux
- W.M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University, New York, NY
,Department of Psychology, New York University, New York, NY
,Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| |
Collapse
|