1
|
Yaeger JDW, Achua JK, Booth CD, Khalid D, John MM, Ledesma LJ, Greschke TL, Potter AM, Howe CB, Krupp KT, Smith JP, Ronan PJ, Summers CH. Learned phenotypes emerge during social stress modifying hippocampal orexin receptor gene expression. Sci Rep 2024; 14:31691. [PMID: 39738291 DOI: 10.1038/s41598-024-81590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved. The hippocampus, studied for its role in learning, is divided into regions that designate the passage of neuronal signaling during memory formation, including dentate gyrus (DG), CA3, CA2, and CA1. Inputs into these hippocampal subregions, like those from hypothalamic orexinergic neurons, may modify learning outcomes. We have previously shown the orexin system to balance stress states, where receptor subtypes prompt opposing actions on behavior. Here, we explore the connection between hippocampal orexin receptors and learning during stress. In a social stress/learning paradigm separating mice into stress resilient and vulnerable populations, hippocampal Orx1R and Orx2R transcription is regulated in a phenotype-dependent fashion. We further identified Orx1R as highly expressed in the hilus of DG, while Orx2R is abundant in CA2. Finally, we designed an experiment where mice were provided prior exposure to a stressful environment, which ultimately modified behavior, as well as transcription of hippocampal orexin receptors.
Collapse
Affiliation(s)
- Jazmine D W Yaeger
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, 2301 E. 60th St. N., Sioux Falls, SD, 57104, USA
| | - Justin K Achua
- Division of Urology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Clarissa D Booth
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th St. N., Sioux Falls, SD, 57104, USA
| | - Delan Khalid
- School of Medicine, BMP, University of Pittsburgh, 3500 Fifth Ave., Pittsburg, PA, 12213, USA
| | - Megan M John
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Leighton J Ledesma
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trent L Greschke
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
| | - Ashley M Potter
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80521, USA
| | - Chase B Howe
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kevin T Krupp
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
- Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA
- Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO, 80220, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
2
|
Davies JR, Clayton NS. Is episodic-like memory like episodic memory? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230397. [PMID: 39278246 PMCID: PMC11449162 DOI: 10.1098/rstb.2023.0397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 09/18/2024] Open
Abstract
Episodic memory involves the conscious recollection of personally experienced events and when absent, results in profound losses to the typical human conscious experience. Over the last 2.5 decades, the debate surrounding whether episodic memory is unique to humans has seen a lot of controversy and accordingly has received significant research attention. Various behavioural paradigms have been developed to test episodic-like memory; a term designed to reflect the behavioural characteristics of episodic memory in the absence of evidence for consciously experienced recall. In this review, we first outline the most influential paradigms that have been developed to assess episodic-like memory across a variety of non-human taxa (including mammals, birds and cephalopods), namely the what-where-when memory, incidental encoding and unexpected question, and source memory paradigms. Then, we examine whether various key features of human episodic memory are conceptually represented in episodic-like memory across phylogenetically and neurologically diverse taxa, identifying similarities, differences and gaps in the literature. We conclude that the evidence is mixed, and as episodic memory encompasses a variety of cognitive structures and processes, research on episodic-like memory in non-humans should follow this multifaceted approach and assess evidence across various behavioural paradigms that each target different aspects of human episodic memory.This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- James R Davies
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
3
|
Whittle S, Zhang L, Rakesh D. Environmental and neurodevelopmental contributors to youth mental illness. Neuropsychopharmacology 2024; 50:201-210. [PMID: 39030435 PMCID: PMC11526094 DOI: 10.1038/s41386-024-01926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
While a myriad of factors likely contribute to the development of mental illness in young people, the social environment (including early adverse experiences) in concert with neurodevelopmental alterations is undeniably important. A number of influential theories make predictions about how and why neurodevelopmental alterations may mediate or moderate the effects of the social environment on the emergence of mental illness. Here, we discuss current evidence supporting each of these theories. Although this area of research is rapidly growing, the body of evidence is still relatively limited. However, there exist some consistent findings, including increased striatal reactivity during positive affective processing and larger hippocampal volumes being associated with increased vulnerability or susceptibility to the effects of social environments on internalizing symptoms. Limited longitudinal work has investigated neurodevelopmental mechanisms linking the social environment with mental health. Drawing from human research and insights from animal studies, we propose an integrated mediation-moderation model and outline future research directions to advance the field.
Collapse
Affiliation(s)
- Sarah Whittle
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia.
- Orygen, Parkville, VIC, Australia.
| | - Lu Zhang
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Divyangana Rakesh
- Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Liu J, Hall AF, Wang DV. Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation. Nat Commun 2024; 15:9248. [PMID: 39461946 PMCID: PMC11513146 DOI: 10.1038/s41467-024-53665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Memories are crucial for daily life, yet the network-level organizing principles governing neural representations of experiences remain unknown. Employing dual-site in vivo recording in freely behaving male mice, here we show that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies for novel experiences. A small assembly of BLA neurons emerged active during memory acquisition and persisted through consolidation, whereas most dCA1 neurons were engaged in both processes. Machine learning decoding revealed that dCA1 population spikes predicted BLA assembly firing rate, suggesting that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communication with a specific BLA assembly - a process we term "many-to-one weighted mapping." We also found that dCA1 reactivations preceded BLA assembly activity preferably during elongated and enlarged dCA1 ripples. Using a closed-loop strategy, we demonstrated that suppressing BLA activity after large dCA1 ripples impaired memory. These findings highlight a many-to-one weighted mapping mechanism underlying both the acquisition and consolidation of new memories.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
5
|
Morales-Calva F, Leal SL. Tell me why: the missing w in episodic memory's what, where, and when. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01234-4. [PMID: 39455523 DOI: 10.3758/s13415-024-01234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
Endel Tulving defined episodic memory as consisting of a spatiotemporal context. It enables us to recollect personal experiences of people, things, places, and situations. In other words, it is made up of what, where, and when components. However, this definition does not include arguably the most important aspect of episodic memory: the why. Understanding why we remember has important implications to better understand how our memory system works and as a potential target of intervention for memory impairment. The intrinsic and extrinsic factors related to why some experiences are better remembered than others have been widely investigated but largely independently studied. How these factors interact with one another to drive an event to become a lasting memory is still unknown. This review summarizes research examining the why of episodic memory, where we aim to uncover the factors that drive core features of our memory. We discuss the concept of episodic memory examining the what, where, and when, and how the why is essential to each of these key components of episodic memory. Furthermore, we discuss the neural mechanisms known to support our rich episodic memories and how a why signal may provide critical modulatory impact on neural activity and communication. Finally, we discuss the individual differences that may further drive why we remember certain experiences over others. A better understanding of these elements, and how we experience memory in daily life, can elucidate why we remember what we remember, providing important insight into the overarching goal of our memory system.
Collapse
Affiliation(s)
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, Houston, TX, USA.
- Department of Integrative Biology & Physiology, UCLA, 621 Charles E Young Dr S, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Martinez M, Cai T, Yang B, Zhou Z, Shankman SA, Mittal VA, Haase CM, Qu Y. Depressive symptoms during the transition to adolescence: Left hippocampal volume as a marker of social context sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2321965121. [PMID: 39226358 PMCID: PMC11406239 DOI: 10.1073/pnas.2321965121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/17/2024] [Indexed: 09/05/2024] Open
Abstract
The transition to adolescence is a critical period for mental health development. Socio-experiential environments play an important role in the emergence of depressive symptoms with some adolescents showing more sensitivity to social contexts than others. Drawing on recent developmental neuroscience advances, we examined whether hippocampal volume amplifies social context effects in the transition to adolescence. We analyzed 2-y longitudinal data from the Adolescent Brain Cognitive Development (ABCD®) study in a diverse sample of 11,832 youth (mean age: 9.914 y; range: 8.917 to 11.083 y; 47.8% girls) from 21 sites across the United States. Socio-experiential environments (i.e., family conflict, primary caregiver's depressive symptoms, parental warmth, peer victimization, and prosocial school environment), hippocampal volume, and a wide range of demographic characteristics were measured at baseline. Youth's symptoms of major depressive disorder were assessed at both baseline and 2 y later. Multilevel mixed-effects linear regression analyses showed that negative social environments (i.e., family conflict, primary caregiver's depressive symptoms, and peer victimization) and the absence of positive social environments (i.e., parental warmth and prosocial school environment) predicted greater increases in youth's depressive symptoms over 2 y. Importantly, left hippocampal volume amplified social context effects such that youth with larger left hippocampal volume experienced greater increases in depressive symptoms in more negative and less positive social environments. Consistent with brain-environment interaction models of mental health, these findings underscore the importance of families, peers, and schools in the development of depression during the transition to adolescence and show how neural structure amplifies social context sensitivity.
Collapse
Affiliation(s)
- Matias Martinez
- School of Education and Social Policy, Northwestern University, Evanston, IL 60208
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
| | - Tianying Cai
- School of Education and Social Policy, Northwestern University, Evanston, IL 60208
- Institute of Child Development, University of Minnesota, Twin Cities, Minneapolis, MN 55455
| | - Beiming Yang
- School of Education and Social Policy, Northwestern University, Evanston, IL 60208
| | - Zexi Zhou
- Department of Human Development and Family Sciences, University of Texas, Austin, TX 78712
| | - Stewart A Shankman
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611
- Department of Psychology, Northwestern University, Evanston, IL 60208
- Department of Psychiatry, Northwestern University, Chicago, IL 60611
| | - Vijay A Mittal
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
- Department of Psychology, Northwestern University, Evanston, IL 60208
- Department of Psychiatry, Northwestern University, Chicago, IL 60611
| | - Claudia M Haase
- School of Education and Social Policy, Northwestern University, Evanston, IL 60208
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
- Department of Psychology, Northwestern University, Evanston, IL 60208
- Department of Psychiatry, Northwestern University, Chicago, IL 60611
- Interdepartmental Neuroscience, Northwestern University, Evanston, IL 60611
- Buffett Institute for Global Studies, Northwestern University, Evanston, IL 60201
| | - Yang Qu
- School of Education and Social Policy, Northwestern University, Evanston, IL 60208
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611
- Institute for Policy Research, Northwestern University, Evanston, IL 60208
- Department of Psychology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
7
|
Yamakawa H, Fukawa A, Yairi IE, Matsuo Y. Brain-consistent architecture for imagination. Front Syst Neurosci 2024; 18:1302429. [PMID: 39229305 PMCID: PMC11368743 DOI: 10.3389/fnsys.2024.1302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus. Objective In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ. Results In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.
Collapse
Affiliation(s)
- Hiroshi Yamakawa
- School of Engineering, The University of Tokyo, Tokyo, Japan
- The Whole Brain Architecture Initiative, Tokyo, Japan
| | - Ayako Fukawa
- The Whole Brain Architecture Initiative, Tokyo, Japan
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Yutaka Matsuo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Davies JR, Keuneke LS, Clayton NS, Davidson GL. Episodic-like memory in wild free-living blue tits and great tits. Curr Biol 2024; 34:3593-3602.e5. [PMID: 38964317 DOI: 10.1016/j.cub.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Episodic-like memory in non-human animals represents the behavioral characteristics of human episodic memory-the ability to mentally travel backward in time to "re-live" past experiences. A focus on traditional model species of episodic-like memory may overlook taxa possessing this cognitive ability and consequently its evolution across species. Experiments conducted in the wild have the potential to broaden the scope of episodic-like memory research under the natural conditions in which they evolved. We combine two distinct yet complementary episodic-like memory tasks (the what-where-when memory and incidental encoding paradigms), each targeting a different aspect of human episodic memory, namely the content (what-where-when) and process (incidental encoding), to comprehensively test the memory abilities of wild, free-living, non-caching blue tits (Cyanistes caeruleus) and great tits (Parus major). Automated feeders with custom-built programs allowed for experimental manipulation of spatiotemporal experiences on an individual-level basis. In the what-where-when memory experiment, after learning individualized temporal feeder rules, the birds demonstrated their ability to recall the "what" (food type), "where" (feeder location), and "when" (time since their initial visit of the day) of previous foraging experiences. In the incidental encoding experiment, the birds showed that they were able to encode and recall incidental spatial information regarding previous foraging experiences ("where" test), and juveniles, but not adults, were also able to recall incidentally encoded visual information ("which" test). Consequently, this study presents multiple lines of converging evidence for episodic-like memory in a wild population of generalist foragers, suggesting that episodic-like memory may be more taxonomically widespread than previously assumed.
Collapse
Affiliation(s)
- James R Davies
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Lasse S Keuneke
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn 53127, Germany
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Gabrielle L Davidson
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| |
Collapse
|
9
|
Kunčická D, Krajčovič B, Stuchlík A, Brožka H. Neuroscientist's Behavioral Toolbox for Studying Episodic-Like Memory. eNeuro 2024; 11:ENEURO.0073-24.2024. [PMID: 39214694 PMCID: PMC11366770 DOI: 10.1523/eneuro.0073-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Episodic memory, the ability to recall specific events and experiences, is a cornerstone of human cognition with profound clinical implications. While animal studies have provided valuable insights into the neuronal underpinnings of episodic memory, research has largely relied on a limited subset of tasks that model only some aspects of episodic memory. In this narrative review, we provide an overview of rodent episodic-like memory tasks that expand the methodological repertoire and diversify the approaches used in episodic-like memory research. These tasks assess various aspects of human episodic memory, such as integrated what-where-when or what-where memory, source memory, free recall, temporal binding, and threshold retrieval dynamics. We review each task's general principle and consider whether alternative non-episodic mechanisms can account for the observed behavior. While our list of tasks is not exhaustive, we hope it will guide researchers in selecting models that align with their specific research objectives, leading to novel advancements and a more comprehensive understanding of mechanisms underlying specific aspects of episodic memory.
Collapse
Affiliation(s)
- Daniela Kunčická
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague 142 20, Czechia
| | - Branislav Krajčovič
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague 142 20, Czechia
| | - Hana Brožka
- Laboratory of Neurophysiology of Memory, Institute of Physiology, Czech Academy of Sciences, Prague 142 20, Czechia
| |
Collapse
|
10
|
Rich PD, Thiberge SY, Scott BB, Guo C, Tervo DGR, Brody CD, Karpova AY, Daw ND, Tank DW. Magnetic voluntary head-fixation in transgenic rats enables lifespan imaging of hippocampal neurons. Nat Commun 2024; 15:4154. [PMID: 38755205 PMCID: PMC11099169 DOI: 10.1038/s41467-024-48505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
The precise neural mechanisms within the brain that contribute to the remarkable lifetime persistence of memory are not fully understood. Two-photon calcium imaging allows the activity of individual cells to be followed across long periods, but conventional approaches require head-fixation, which limits the type of behavior that can be studied. We present a magnetic voluntary head-fixation system that provides stable optical access to the brain during complex behavior. Compared to previous systems that used mechanical restraint, there are no moving parts and animals can engage and disengage entirely at will. This system is failsafe, easy for animals to use and reliable enough to allow long-term experiments to be routinely performed. Animals completed hundreds of trials per session of an odor discrimination task that required 2-4 s fixations. Together with a reflectance fluorescence collection scheme that increases two-photon signal and a transgenic Thy1-GCaMP6f rat line, we are able to reliably image the cellular activity in the hippocampus during behavior over long periods (median 6 months), allowing us track the same neurons over a large fraction of animals' lives (up to 19 months).
Collapse
Affiliation(s)
- P Dylan Rich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | | | - Benjamin B Scott
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Caiying Guo
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - D Gowanlock R Tervo
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Alla Y Karpova
- Janelia Research Campus, Ashburn, VA, USA
- Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Modo M, Sparling K, Novotny J, Perry N, Foley LM, Hitchens TK. Mapping mesoscale connectivity within the human hippocampus. Neuroimage 2023; 282:120406. [PMID: 37827206 PMCID: PMC10623761 DOI: 10.1016/j.neuroimage.2023.120406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
The connectivity of the hippocampus is essential to its functions. To gain a whole system view of intrahippocampal connectivity, ex vivo mesoscale (100 μm isotropic resolution) multi-shell diffusion MRI (11.7T) and tractography were performed on entire post-mortem human right hippocampi. Volumetric measurements indicated that the head region was largest followed by the body and tail regions. A unique anatomical organization in the head region reflected a complex organization of the granule cell layer (GCL) of the dentate gyrus. Tractography revealed the volumetric distribution of the perforant path, including both the tri-synaptic and temporoammonic pathways, as well as other well-established canonical connections, such as Schaffer collaterals. Visualization of the perforant path provided a means to verify the borders between the pro-subiculum and CA1, as well as between CA1/CA2. A specific angularity of different layers of fibers in the alveus was evident across the whole sample and allowed a separation of afferent and efferent connections based on their origin (i.e. entorhinal cortex) or destination (i.e. fimbria) using a cluster analysis of streamlines. Non-canonical translamellar connections running along the anterior-posterior axis were also discerned in the hilus. In line with "dentations" of the GCL, mossy fibers were bunching together in the sagittal plane revealing a unique lamellar organization and connections between these. In the head region, mossy fibers projected to the origin of the fimbria, which was distinct from the body and tail region. Mesoscale tractography provides an unprecedented systems view of intrahippocampal connections that underpin cognitive and emotional processing.
Collapse
Affiliation(s)
- Michel Modo
- Department of Radiology; Department of BioEngineering; McGowan Institute for Regenerative Medicine; Centre for Neuroscience University of Pittsburgh (CNUP); Centre for the Neural Basis of Cognition (CNBC).
| | | | | | | | | | - T Kevin Hitchens
- Small Animal Imaging Center; Departmnet of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15203, USA
| |
Collapse
|
12
|
Woo SH, Hahm J, Kyong JS, Kim HR, Kim KK. Time Perception and Memory in Mild Cognitive Impairment and Alzheimer's Disease: A Preliminary Study. Dement Neurocogn Disord 2023; 22:148-157. [PMID: 38025407 PMCID: PMC10654483 DOI: 10.12779/dnd.2023.22.4.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Purpose Episodic memory is a system that receives and stores information about temporally dated episodes and their interrelations. Our study aimed to investigate the relevance of episodic memory to time perception, with a specific focus on simultaneity/order judgment. Methods Experiment 1 employed the simultaneity judgment task to discern differences in time perception between patients with mild cognitive impairment or dementia, and age-matched normals. A mathematical analysis capable of estimating subjects' time processing was utilized to identify the sensory and decisional components of temporal order and simultaneity judgment. Experiment 2 examined how differences in temporal perception relate to performance in temporal order memory, in which time delays play a critical role. Results The temporal decision windows for both temporal order and simultaneity judgments exhibited marginal differences between patients with episodic memory impairment, and their healthy counterparts (p = 0.15, t(22) = 1.34). These temporal decision windows may be linked to the temporal separation of events in episodic memory (Pearson's ρ = -0.53, p = 0.05). Conclusions Based on our findings, the frequency of visual events accumulated and encoded in the working memory system in the patients' and normal group appears to be approximately (5.7 and 11.2) Hz, respectively. According to the internal clock model, a lower frequency of event pulses tends to result in underestimation of event duration, which phenomenon might be linked to the observed time distortions in patients with dementia.
Collapse
Affiliation(s)
- Sung-Ho Woo
- Institute of Interdisciplinary Brain Science, Dongguk University College of Medicine, Goyang, Korea
| | - Jarang Hahm
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jeong-Sug Kyong
- Institute of Interdisciplinary Brain Science, Dongguk University College of Medicine, Goyang, Korea
| | - Hang-Rai Kim
- Institute of Interdisciplinary Brain Science, Dongguk University College of Medicine, Goyang, Korea
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Kwang Ki Kim
- Institute of Interdisciplinary Brain Science, Dongguk University College of Medicine, Goyang, Korea
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
13
|
Liu J, Hall AF, Wang DV. Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556568. [PMID: 37732176 PMCID: PMC10508749 DOI: 10.1101/2023.09.06.556568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Memories are crucial for our daily lives, yet the network-level organizing principle that governs neural representations of our experiences remains to be determined. Employing dual-site electrophysiology recording in freely behaving mice, we discovered that hippocampal dorsal CA1 (dCA1) and basolateral amygdala (BLA) utilize distinct coding strategies to represent novel experiences. A small assembly of BLA neurons rapidly emerged during memory acquisition and remained active during subsequent consolidation, whereas the majority of dCA1 neurons engaged in the same processes. Machine learning decoding revealed that dCA1 population spikes predicted the BLA assembly firing rate. This suggests that most dCA1 neurons concurrently index an episodic event by rapidly establishing weighted communications with a specific BLA assembly, a process we call "many-to-one weighted mapping." Furthermore, we demonstrated that closed-loop optoinhibition of BLA activity triggered by dCA1 ripples after new learning resulted in impaired memory. These findings highlight a new principle of hippocampus-amygdala communication underlying memory formation and provide new insights into how the brain creates and stores memories.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Arron F Hall
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Dong V Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
14
|
Forro T, Klausberger T. Differential behavior-related activity of distinct hippocampal interneuron types during odor-associated spatial navigation. Neuron 2023:S0896-6273(23)00380-X. [PMID: 37279749 DOI: 10.1016/j.neuron.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Hippocampal pyramidal cells represent an animal's position in space together with specific contexts and events. However, it is largely unknown how distinct types of GABAergic interneurons contribute to such computations. We recorded from the intermediate CA1 hippocampus of head-fixed mice exhibiting odor-to-place memory associations during navigation in a virtual reality (VR). The presence of an odor cue and its prediction of a different reward location induced a remapping of place cell activity in the virtual maze. Based on this, we performed extracellular recording and juxtacellular labeling of identified interneurons during task performance. The activity of parvalbumin (PV)-expressing basket, but not of PV-expressing bistratified cells, reflected the expected contextual change in the working-memory-related sections of the maze. Some interneurons, including identified cholecystokinin-expressing cells, decreased activity during visuospatial navigation and increased activity during reward. Our findings suggest that distinct types of GABAergic interneuron are differentially involved in cognitive processes of the hippocampus.
Collapse
Affiliation(s)
- Thomas Forro
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Thomas Klausberger
- Division of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Huston JP, Chao OY. Probing the nature of episodic memory in rodents. Neurosci Biobehav Rev 2023; 144:104930. [PMID: 36544301 DOI: 10.1016/j.neubiorev.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Episodic memory (EM) specifies the experience of retrieving information of an event at the place and time of occurrence. Whether non-human animals are capable of EM remains debated, whereas evidence suggests that they have a memory system akin to EM. We here trace the development of various behavioral paradigms designed to study EM in non-human animals, in particular the rat. We provide an in-depth description of the available behavioral tests which combine three spontaneous object exploration paradigms, namely novel object preference (for measuring memory for "what"), novel location preference (for measuring memory for "where") and temporal order memory (memory for "when"), into a single trial to gauge a memory akin to EM. Most important, we describe a variation of such a test in which each memory component interacts with the others, demonstrating an integration of diverse mnemonic information. We discuss why a behavioral model of EM must be able to assess the ability to integrate "what", "where" and "when" information into a single experience. We attempt an interpretation of the various tests and review the studies that have applied them in areas such as pharmacology, neuroanatomy, circuit analysis, and sleep. Finally, we anticipate future directions in the search for neural mechanisms of EM in the rat and outline model experiments and methodologies in this pursuit.
Collapse
Affiliation(s)
- Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| |
Collapse
|
16
|
Barbosa FF, Castelo-Branco R. Assessing episodic memory in rodents using spontaneous object recognition tasks. Emerg Top Life Sci 2022; 6:ETLS20220010. [PMID: 36477302 DOI: 10.1042/etls20220010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 02/17/2024]
Abstract
Models of episodic memory are successfully established using spontaneous object recognition tasks in rodents. In this review, we present behavioral techniques devised to investigate this type of memory, emphasizing methods based on associations of places and temporal order of items explored by rats and mice. We also provide a review on the areas and circuitry of the medial temporal lobe underlying episodic-like memory, considering that a large number of neurobiology data derived from these protocols. Although spontaneous recognition tasks are commonplace in this field, there is need for careful evaluation of factors affecting animal performance. Such as the ongoing development of tools for investigating the neural basis of memory, efforts should be put in the refinement of experimental designs, in order to provide reliable behavioral evidence of this complex mnemonic system.
Collapse
Affiliation(s)
- Flávio Freitas Barbosa
- Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Rochele Castelo-Branco
- Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
17
|
Asiminas A, Lyon SA, Langston RF, Wood ER. Developmental trajectory of episodic-like memory in rats. Front Behav Neurosci 2022; 16:969871. [PMID: 36523755 PMCID: PMC9745197 DOI: 10.3389/fnbeh.2022.969871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/08/2022] [Indexed: 08/17/2023] Open
Abstract
Introduction Episodic memory formation requires the binding of multiple associations to a coherent episodic representation, with rich detail of times, places, and contextual information. During postnatal development, the ability to recall episodic memories emerges later than other types of memory such as object recognition. However, the precise developmental trajectory of episodic memory, from weaning to adulthood has not yet been established in rats. Spontaneous object exploration tasks do not require training, and allow repeated testing of subjects, provided novel objects are used on each trial. Therefore, these tasks are ideally suited for the study of the ontogeny of episodic memory and its constituents (e.g., object, spatial, and contextual memory). Methods In the present study, we used four spontaneous short-term object exploration tasks over two days: object (OR), object-context (OCR), object-place (OPR), and object-place-context (OPCR) recognition to characterise the ontogeny of episodic-like memory and its components in three commonly used outbred rat strains (Lister Hooded, Long Evans Hooded, and Sprague Dawley). Results In longitudinal studies starting at 3-4 weeks of age, we observed that short term memory for objects was already present at the earliest time point we tested, indicating that it is established before the end of the third week of life (consistent with several other reports). Object-context memory developed during the fifth week of life, while both object-in-place and the episodic-like object-place-context memory developed around the seventh postnatal week. To control for the effects of previous experience in the development of associative memory, we confirmed these developmental trajectories using a cross-sectional protocol. Discussion Our work provides robust evidence for different developmental trajectories of recognition memory in rats depending on the content and/or complexity of the associations and emphasises the utility of spontaneous object exploration tasks to assess the ontogeny of memory systems with high temporal resolution.
Collapse
Affiliation(s)
- Antonis Asiminas
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A. Lyon
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Rosamund F. Langston
- Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Emma R. Wood
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Development and Repair, Bengaluru, India
| |
Collapse
|
18
|
Ahmed S, Jing Y, Mockett BG, Zhang H, Abraham WC, Liu P. Partial Endothelial Nitric Oxide Synthase Deficiency Exacerbates Cognitive Deficit and Amyloid Pathology in the APPswe/PS1ΔE9 Mouse Model of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23137316. [PMID: 35806318 PMCID: PMC9266765 DOI: 10.3390/ijms23137316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence implicates endothelial dysfunction in the pathogenesis of Alzheimer’s disease (AD). Nitric oxide (NO) derived from endothelial NO synthase (eNOS) is essential in maintaining cerebrovascular function and can modulate the production and clearance of amyloid beta (Aβ). APPswe/PSdE1 (APP/PS1) mice display age-related Aβ accumulation and memory deficits. In order to make the model more clinically relevant with an element of endothelial dysfunction, we generated APP/PS1/eNOS+/− mice by crossing complete eNOS deficient (eNOS−/−) mice and APP/PS1 mice. APP/PS1/eNOS+/− mice at 8 months of age displayed a more severe spatial working memory deficit relative to age-matched APP/PS1 mice. Moreover, immunohistochemistry and immunoblotting revealed significantly increased Aβ plaque load in the brains of APP/PS1/eNOS+/− mice, concomitant with upregulated BACE-1 (hence increased Aβ production), downregulated insulin-degrading enzyme (hence reduced Aβ clearance) and increased immunoreactivity and expression of microglia. The present study, for the first time, demonstrated that partial eNOS deficiency exacerbated behavioral dysfunction, Aβ brain deposition, and microglial pathology in APP/PS1 mice, further implicating endothelial dysfunction in the pathogenesis of AD. The present findings also provide the scientific basis for developing preventive and/or therapeutic strategies by targeting endothelial dysfunction.
Collapse
Affiliation(s)
- Sara Ahmed
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (S.A.); (Y.J.)
| | - Yu Jing
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (S.A.); (Y.J.)
| | - Bruce G. Mockett
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (B.G.M.); (W.C.A.)
| | - Hu Zhang
- School of Pharmacy, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand;
| | - Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (B.G.M.); (W.C.A.)
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand; (S.A.); (Y.J.)
- Correspondence:
| |
Collapse
|
19
|
Mason GJ, Lavery JM. What Is It Like to Be a Bass? Red Herrings, Fish Pain and the Study of Animal Sentience. Front Vet Sci 2022; 9:788289. [PMID: 35573409 PMCID: PMC9094623 DOI: 10.3389/fvets.2022.788289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Debates around fishes' ability to feel pain concern sentience: do reactions to tissue damage indicate evaluative consciousness (conscious affect), or mere nociception? Thanks to Braithwaite's discovery of trout nociceptors, and concerns that current practices could compromise welfare in countless fish, this issue's importance is beyond dispute. However, nociceptors are merely necessary, not sufficient, for true pain, and many measures held to indicate sentience have the same problem. The question of whether fish feel pain - or indeed anything at all - therefore stimulates sometimes polarized debate. Here, we try to bridge the divide. After reviewing key consciousness concepts, we identify "red herring" measures that should not be used to infer sentience because also present in non-sentient organisms, notably those lacking nervous systems, like plants and protozoa (P); spines disconnected from brains (S); decerebrate mammals and birds (D); and humans in unaware states (U). These "S.P.U.D. subjects" can show approach/withdrawal; react with apparent emotion; change their reactivity with food deprivation or analgesia; discriminate between stimuli; display Pavlovian learning, including some forms of trace conditioning; and even learn simple instrumental responses. Consequently, none of these responses are good indicators of sentience. Potentially more valid are aspects of working memory, operant conditioning, the self-report of state, and forms of higher order cognition. We suggest new experiments on humans to test these hypotheses, as well as modifications to tests for "mental time travel" and self-awareness (e.g., mirror self-recognition) that could allow these to now probe sentience (since currently they reflect perceptual rather than evaluative, affective aspects of consciousness). Because "bullet-proof" neurological and behavioral indicators of sentience are thus still lacking, agnosticism about fish sentience remains widespread. To end, we address how to balance such doubts with welfare protection, discussing concerns raised by key skeptics in this debate. Overall, we celebrate the rigorous evidential standards required by those unconvinced that fish are sentient; laud the compassion and ethical rigor shown by those advocating for welfare protections; and seek to show how precautionary principles still support protecting fish from physical harm.
Collapse
Affiliation(s)
- G. J. Mason
- Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
20
|
Miller JG, Buthmann JL, Gotlib IH. Hippocampal volume indexes neurobiological sensitivity to the effect of pollution burden on telomere length in adolescents. New Dir Child Adolesc Dev 2022; 2022:155-172. [PMID: 35738556 PMCID: PMC9492639 DOI: 10.1002/cad.20471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exposure to environmental pollutants has been associated with cellular aging in children and adolescents. Individuals may vary, however, in their sensitivity or vulnerability to the effects of environmental pollutants. Larger hippocampal volume has emerged as a potential index of increased sensitivity to social contexts. In exploratory analyses (N = 214), we extend work in this area by providing evidence that larger hippocampal volume in early adolescence reflects increased sensitivity to the effect of neighborhood pollution burden on telomere length (standardized β = -0.40, 95% CI[-0.65, -0.15]). In contrast, smaller hippocampal volume appears to buffer this association (standardized β = 0.02). In youth with larger hippocampal volume, pollution burden was indirectly associated with shorter telomere length approximately 2 years later through shorter telomere length at baseline (indirect standardized β = -0.25, 95% CI[-0.40, 0.10]). For these youth, living in high or low pollution-burdened neighborhoods may predispose them to develop shorter or longer telomeres, respectively, later in adolescence.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Jessica L Buthmann
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, California, USA
| |
Collapse
|
21
|
Schicker D, Blankenagel S, Zimmer C, Hauner H, Freiherr J. Less is more: Removing a modality of an expected olfactory-visual stimulation enhances brain activation. Hum Brain Mapp 2022; 43:2567-2581. [PMID: 35142405 PMCID: PMC9057098 DOI: 10.1002/hbm.25806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/06/2022] Open
Abstract
In recent years, multisensory integration of visual and olfactory stimuli has extensively been explored resulting in the identification of responsible brain areas. As the experimental designs of previous research often include alternating presentations of unimodal and bimodal stimuli, the conditions cannot be regarded as completely independent. This could lead to effects of an expected but surprisingly missing sensory modality. In our experiment, we used a common functional magnetic resonance imaging (fMRI) study design with alternating strong unimodal and bimodal olfactory-visual food stimuli, in addition to a slight overhang of the bimodal stimuli in an effort to examine the effects of removing a visual or olfactory congruent stimulus for older people (41-83 years). Our results suggest that the processing of olfactory and visual stimuli stays intact over a wide age-range and that the utilization of strong stimuli does not lead to superadditive multisensory integration in accordance with the principle of inverse effectiveness. However, our results demonstrate that the removal of a stimulus modality leads to an activation of additional brain areas. For example, when the visual stimulus modality is missing, the right posterior superior temporal gyrus shows higher activation, whereas the removal of the olfactory stimulus modality leads to higher activation in the amygdala/hippocampus and the postcentral gyrus. These brain areas are related to attention, memory, and the search of the missing stimulus. Consequently, careful attention must be paid to the design of a valid, multimodal sensory experiment while also controlling for cognitive expectancy effects that might confound multimodal results.
Collapse
Affiliation(s)
- Doris Schicker
- Sensory Analytics & Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sonja Blankenagel
- Sensory Analytics & Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.,Plant Breeding, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.,Institute for Nutritional Medicine, Else Kröner-Fresenius-Centre for Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jessica Freiherr
- Sensory Analytics & Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.,Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Yu C, Moss CF. Natural acoustic stimuli evoke selective responses in the hippocampus of passive listening bats. Hippocampus 2022; 32:298-309. [PMID: 35085416 PMCID: PMC9306857 DOI: 10.1002/hipo.23407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Abstract
A growing body of research details spatial representation in bat hippocampus, and experiments have yet to explore hippocampal neuron responses to sonar signals in animals that rely on echolocation for spatial navigation. To bridge this gap, we investigated bat hippocampal responses to natural echolocation sounds in a non‐spatial context. In this experiment, we recorded from CA1 of the hippocampus of three awake bats that listened passively to single echolocation calls, call‐echo pairs, or natural echolocation sequences. Our data analysis identified a subset of neurons showing response selectivity to the duration of single echolocation calls. However, the sampled population of CA1 neurons did not respond selectively to call‐echo delay, a stimulus dimension posited to simulate target distance in recordings from auditory brain regions of bats. A population analysis revealed ensemble coding of call duration and sequence identity. These findings open the door to many new investigations of auditory coding in the mammalian hippocampus.
Collapse
Affiliation(s)
- Chao Yu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cynthia F Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Le AA, Quintanilla J, Amani M, Piomelli D, Lynch G, Gall CM. Persistent sexually dimorphic effects of adolescent THC exposure on hippocampal synaptic plasticity and episodic memory in rodents. Neurobiol Dis 2022; 162:105565. [PMID: 34838664 DOI: 10.1016/j.nbd.2021.105565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023] Open
Abstract
There is evidence that cannabis use during adolescence leads to memory and cognitive problems in young adulthood but little is known about effects of early life cannabis exposure on synaptic operations that are critical for encoding and organizing information. We report here that a 14-day course of daily Δ9-tetrahydrocannabinol treatments administered to adolescent rats and mice (aTHC) leads to profound but selective deficits in synaptic plasticity in two axonal systems in female, and to lesser extent male, hippocampus as assessed in adulthood. Adolescent-THC exposure did not alter basic synaptic transmission (input/output curves) and had only modest effects on frequency facilitation. Nevertheless, aTHC severely impaired the endocannabinoid-dependent long-term potentiation in the lateral perforant path in females of both species, and in male mice; this was reliably associated with impaired acquisition of a component of episodic memory that depends on lateral perforant path function. Potentiation in the Schaffer-commissural (S-C) projection to field CA1 was disrupted by aTHC treatment in females only and this was associated with both a deficit in estrogen effects on S-C synaptic responses and impairments to CA1-dependent spatial (object location) memory. In all the results demonstrate sexually dimorphic and projection system-specific effects of aTHC exposure that could underlie discrete effects of early life cannabinoid usage on adult cognitive function. Moreover they suggest that some of the enduring, sexually dimorphic effects of cannabis use reflect changes in synaptic estrogen action.
Collapse
Affiliation(s)
- Aliza A Le
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Julian Quintanilla
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Mohammad Amani
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Daniele Piomelli
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America
| | - Gary Lynch
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Psychiatry & Human Behavior, University of California, Irvine, CA 92868, United States of America.
| | - Christine M Gall
- Departments of Anatomy & Neurobiology, University of California, Irvine, CA 92697, United States of America; Departments of Neurobiology & Behavior, University of California, Irvine, CA 92697, United States of America.
| |
Collapse
|
24
|
Why language survives as the dominant communication tool: A neurocognitive perspective. Behav Brain Sci 2021; 44:e94. [PMID: 34588016 DOI: 10.1017/s0140525x20000692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
By focusing on the contributions of subcortical structures, our commentary suggests that the functions of the hippocampus underlying "displacement," a feature enabling humans to communicate things and situations that are remote in space and time, make language more effective at social bonding. Based on the functions of the basal ganglia and hippocampus, evolutionary trajectory of the subcomponents of music and language in different species will also be discussed.
Collapse
|
25
|
Bennett MS. What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front Psychol 2021; 12:685853. [PMID: 34393912 PMCID: PMC8358274 DOI: 10.3389/fpsyg.2021.685853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
This paper presents 13 hypotheses regarding the specific behavioral abilities that emerged at key milestones during the 600-million-year phylogenetic history from early bilaterians to extant humans. The behavioral, intellectual, and cognitive faculties of humans are complex and varied: we have abilities as diverse as map-based navigation, theory of mind, counterfactual learning, episodic memory, and language. But these faculties, which emerge from the complex human brain, are likely to have evolved from simpler prototypes in the simpler brains of our ancestors. Understanding the order in which behavioral abilities evolved can shed light on how and why our brains evolved. To propose these hypotheses, I review the available data from comparative psychology and evolutionary neuroscience.
Collapse
|
26
|
Abstract
There are currently a number of theories of rodent hippocampal function. They fall into two major groups that differ in the role they impute to space in hippocampal information processing. On one hand, the cognitive map theory sees space as crucial and central, with other types of nonspatial information embedded in a primary spatial framework. On the other hand, most other theories see the function of the hippocampal formation as broader, treating all types of information as equivalent and concentrating on the processes carried out irrespective of the specific material being represented, stored, and manipulated. One crucial difference, therefore, is the extent to which theories see hippocampal pyramidal cells as representing nonspatial information independently of a spatial framework. Studies have reported the existence of single hippocampal unit responses to nonspatial stimuli, both to simple sensory inputs as well as to more complex stimuli such as objects, conspecifics, rewards, and time, and these findings been interpreted as evidence in favor of a broader hippocampal function. Alternatively, these nonspatial responses might actually be feature-in-place signals where the spatial nature of the response has been masked by the fact that the objects or features were only presented in one location or one spatial context. In this article, we argue that when tested in multiple locations, the hippocampal response to nonspatial stimuli is almost invariably dependent on the animal's location. Looked at collectively, the data provide strong support for the cognitive map theory.
Collapse
Affiliation(s)
- John O'Keefe
- Sainsbury Wellcome Centre and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Julija Krupic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Takamura R, Mizuta K, Sekine Y, Islam T, Saito T, Sato M, Ohkura M, Nakai J, Ohshima T, Saido TC, Hayashi Y. Modality-Specific Impairment of Hippocampal CA1 Neurons of Alzheimer's Disease Model Mice. J Neurosci 2021; 41:5315-5329. [PMID: 33980545 PMCID: PMC8211543 DOI: 10.1523/jneurosci.0208-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/10/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
Impairment of episodic memory, a class of memory for spatiotemporal context of an event, is an early symptom of Alzheimer's disease. Both spatial and temporal information are encoded and represented in the hippocampal neurons, but how these representations are impaired under amyloid β (Aβ) pathology remains elusive. We performed chronic imaging of the hippocampus in awake male amyloid precursor protein (App) knock-in mice behaving in a virtual reality environment to simultaneously monitor spatiotemporal representations and the progression of Aβ depositions. We found that temporal representation is preserved, whereas spatial representation is significantly impaired in the App knock-in mice. This is because of the overall reduction of active place cells, but not time cells, and compensatory hyperactivation of remaining place cells near Aβ aggregates. These results indicate the differential impact of Aβ aggregates on two major modalities of episodic memory, suggesting different mechanisms for forming and maintaining these two representations in the hippocampus.
Collapse
Affiliation(s)
- Risa Takamura
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
- Center for Brain Science, RIKEN, Saitama 351-0198, Japan
- Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Kotaro Mizuta
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Yukiko Sekine
- Center for Brain Science, RIKEN, Saitama 351-0198, Japan
- Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Tanvir Islam
- Center for Brain Science, RIKEN, Saitama 351-0198, Japan
- Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Takashi Saito
- Center for Brain Science, RIKEN, Saitama 351-0198, Japan
- Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Masaaki Sato
- Center for Brain Science, RIKEN, Saitama 351-0198, Japan
- Brain Science Institute, RIKEN, Saitama 351-0198, Japan
- Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan
| | - Masamichi Ohkura
- Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan
| | - Junichi Nakai
- Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Takaomi C Saido
- Center for Brain Science, RIKEN, Saitama 351-0198, Japan
- Brain Science Institute, RIKEN, Saitama 351-0198, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Brain Science Institute, RIKEN, Saitama 351-0198, Japan
- Brain and Body System Science Institute, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
28
|
Whishaw IQ, Burke CJ. Memory for surface objects in an arena by the horse (Equus ferus caballus) under saddle: Evidence for dual process theory of spatial representation. Behav Processes 2021; 189:104442. [PMID: 34116138 DOI: 10.1016/j.beproc.2021.104442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023]
Abstract
Place memory, the ability to remember locations, is a feature of many animal species. This episodic-like memory is displayed in the foraging behavior of animals and has been studied in many different kinds of laboratory spatial tasks. A horse stallion, Equus ferus caballus, will create "dung-heaps or stud-piles" by defecation in the same place suggesting that the behavior is central to spatial behavior but to date there has been little investigation of horse olfactory/spatial behavior. The present study describes investigatory behavior of horses for objects on the surface of a riding arena. Horses under saddle approached objects on the arena surface that included small pieces of straw, fur, and paper and larger objects including clumps of debris and were especially interested in dung droppings left by other horses. Once an object was investigated by sniffing, it was usually not approached again during that outing but could be approached anew on the following day. Dung investigatory behavior and place memory were confirmed in a number of structured tests in which test-retest intervals were varied. The results are discussed in relation to the dual process theory that proposes that spatial representations central to adaptive behavior require both allocentric Cartesian spatial information and egocentric episodic-like information.
Collapse
Affiliation(s)
- Ian Q Whishaw
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Canada.
| | - Candace J Burke
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Canada
| |
Collapse
|
29
|
Mechie IR, Plaisted-Grant K, Cheke LG. How does episodic memory develop in adolescence? ACTA ACUST UNITED AC 2021; 28:204-217. [PMID: 34011517 PMCID: PMC8139634 DOI: 10.1101/lm.053264.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/20/2021] [Indexed: 11/30/2022]
Abstract
Key areas of the episodic memory (EM) network demonstrate changing structure and volume during adolescence. EM is multifaceted and yet studies of EM thus far have largely examined single components, used different methods and have unsurprisingly yielded inconsistent results. The Treasure Hunt task is a single paradigm that allows parallel investigation of memory content, associative structure, and the impact of different retrieval support. Combining the cognitive and neurobiological accounts, we hypothesized that some elements of EM performance may decline in late adolescence owing to considerable restructuring of the hippocampus at this time. Using the Treasure Hunt task, we examined EM performance in 80 participants aged 10–17 yr. Results demonstrated a cubic trajectory with youngest and oldest participants performing worst. This was emphasized in associative memory, which aligns well with existing literature indicating hippocampal restructuring in later adolescence. It is proposed that memory development may follow a nonlinear path as children approach adulthood, but that future work is required to confirm and extend the trends demonstrated in this study.
Collapse
Affiliation(s)
- Imogen R Mechie
- Department of Psychology, University of Cambridge, Cambridge CB23EB, United Kingdom
| | - Kate Plaisted-Grant
- Department of Psychology, University of Cambridge, Cambridge CB23EB, United Kingdom
| | - Lucy G Cheke
- Department of Psychology, University of Cambridge, Cambridge CB23EB, United Kingdom
| |
Collapse
|
30
|
Shelley LE, Nitz DA. Locomotor action sequences impact the scale of representation in hippocampus and posterior parietal cortex. Hippocampus 2021; 31:677-689. [DOI: 10.1002/hipo.23339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Laura E. Shelley
- Department of Cognitive Science University of California San Diego California USA
| | - Douglas A. Nitz
- Department of Cognitive Science University of California San Diego California USA
| |
Collapse
|
31
|
Kurzina NP, Volnova AB, Aristova IY, Gainetdinov RR. A New Paradigm for Training Hyperactive Dopamine Transporter Knockout Rats: Influence of Novel Stimuli on Object Recognition. Front Behav Neurosci 2021; 15:654469. [PMID: 33967714 PMCID: PMC8100052 DOI: 10.3389/fnbeh.2021.654469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is believed to be connected with a high level of hyperactivity caused by alterations of the control of dopaminergic transmission in the brain. The strain of hyperdopaminergic dopamine transporter knockout (DAT-KO) rats represents an optimal model for investigating ADHD-related pathological mechanisms. The goal of this work was to study the influence of the overactivated dopamine system in the brain on a motor cognitive task fulfillment. The DAT-KO rats were trained to learn an object recognition task and store it in long-term memory. We found that DAT-KO rats can learn to move an object and retrieve food from the rewarded familiar objects and not to move the non-rewarded novel objects. However, we observed that the time of task performance and the distances traveled were significantly increased in DAT-KO rats in comparison with wild-type controls. Both groups of rats explored the novel objects longer than the familiar cubes. However, unlike controls, DAT-KO rats explored novel objects significantly longer and with fewer errors, since they preferred not to move the non-rewarded novel objects. After a 3 months' interval that followed the training period, they were able to retain the learned skills in memory and to efficiently retrieve them. The data obtained indicate that DAT-KO rats have a deficiency in learning the cognitive task, but their hyperactivity does not prevent the ability to learn a non-spatial cognitive task under the presentation of novel stimuli. The longer exploration of novel objects during training may ensure persistent learning of the task paradigm. These findings may serve as a base for developing new ADHD learning paradigms.
Collapse
Affiliation(s)
- Natalia P. Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Anna B. Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
- Department of Physiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Irina Y. Aristova
- Department of Physiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
- Saint Petersburg State University Hospital, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
32
|
de Siqueira Mendes FDCC, Paixão LTVB, Diniz DG, Anthony DC, Brites D, Diniz CWP, Sosthenes MCK. Sedentary Life and Reduced Mastication Impair Spatial Learning and Memory and Differentially Affect Dentate Gyrus Astrocyte Subtypes in the Aged Mice. Front Neurosci 2021; 15:632216. [PMID: 33935629 PMCID: PMC8081835 DOI: 10.3389/fnins.2021.632216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
To explore the impact of reduced mastication and a sedentary lifestyle on spatial learning and memory in the aged mice, as well as on the morphology of astrocytes in the molecular layer of dentate gyrus (MolDG), different masticatory regimens were imposed. Control mice received a pellet-type hard diet, while the reduced masticatory activity group received a pellet diet followed by a powdered diet, and the masticatory rehabilitation group received a pellet diet, followed by powder diet and then a pellet again. To mimic sedentary or active lifestyles, mice were housed in an impoverished environment of standard cages or in an enriched environment. The Morris Water Maze (MWM) test showed that masticatory-deprived group, regardless of environment, was not able to learn and remember the hidden platform location, but masticatory rehabilitation combined with enriched environment recovered such disabilities. Microscopic three-dimensional reconstructions of 1,800 glial fibrillary acidic protein (GFAP)-immunolabeled astrocytes from the external third of the MolDG were generated using a stereological systematic and random sampling approach. Hierarchical cluster analysis allowed the characterization into two main groups of astrocytes with greater and lower morphological complexities, respectively, AST1 and AST2. When compared to compared to the hard diet group subjected to impoverished environment, deprived animals maintained in the same environment for 6 months showed remarkable shrinkage of astrocyte branches. However, the long-term environmental enrichment (18-month-old) applied to the deprived group reversed the shrinkage effect, with significant increase in the morphological complexity of AST1 and AST2, when in an impoverished or enriched environment. During housing under enriched environment, complexity of branches of AST1 and AST2 was reduced by the powder diet (pellet followed by powder regimes) in young but not in old mice, where it was reversed by pellet diet (pellet followed by powder and pellet regime again). The same was not true for mice housed under impoverished environment. Interestingly, we were unable to find any correlation between MWM data and astrocyte morphological changes. Our findings indicate that both young and aged mice subjected to environmental enrichment, and under normal or rehabilitated masticatory activity, preserve spatial learning and memory. Nonetheless, data suggest that an impoverished environment and reduced mastication synergize to aggravate age-related cognitive decline; however, the association with morphological diversity of AST1 and AST2 at the MolDG requires further investigation.
Collapse
Affiliation(s)
- Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Curso de Medicina, Centro Universitário do Estado do Pará, Belém, Brazil
| | - Luisa Taynah Vasconcelos Barbosa Paixão
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
33
|
Giri S, Ranjan A, Kumar A, Amar M, Mallick BN. Rapid eye movement sleep deprivation impairs neuronal plasticity and reduces hippocampal neuronal arborization in male albino rats: Noradrenaline is involved in the process. J Neurosci Res 2021; 99:1815-1834. [PMID: 33819353 DOI: 10.1002/jnr.24838] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
Rapid eye movement sleep (REMS) favors brain development and memory, while it is decreased in neurodegenerative diseases. REMS deprivation (REMSD) affects several physiological processes including memory consolidation; however, its detailed mechanism(s) of action was unknown. REMS reduces, while REMSD elevates noradrenaline (NA) level in the brain; the latter induces several deficiencies and disorders, including changes in neuronal cytomorphology and apoptosis. Therefore, we proposed that REMS- and REMSD-associated modulation of NA level might affect neuronal plasticity and affect brain functions. Male albino rats were REMS deprived by flower-pot method for 6 days, and its effects were compared with home cage and large platform controls as well as post-REMSD recovered and REMS-deprived prazosin (α1-adrenoceptor antagonist)-treated rats. We observed that REMSD reduced CA1 and CA3 neuronal dendritic length, branching, arborization, and spine density, while length of active zone and expressions of pre- as well as post-synaptic proteins were increased as compared to controls; interestingly, prazosin prevented most of the effects in vivo. Studies on primary culture of neurons from chick embryo brain confirmed that NA at lower concentration(s) induced neuronal branching and arborization, while higher doses were destructive. The findings support our contention that REMSD adversely affects neuronal plasticity, branching, and synaptic scaffold, which explain the underlying cytoarchitectural basis of REMSD-associated patho-physio-behavioral changes. Consolidation of findings of this study along with that of our previous reports suggest that the neuronal disintegration could be due to either withdrawal of direct protective and proliferative role of low dose of NA or indirect effect of high dose of NA or both.
Collapse
Affiliation(s)
- Shatrunjai Giri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amit Ranjan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Awanish Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Megha Amar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | |
Collapse
|
34
|
Clinton SM, Shupe EA, Glover ME, Unroe KA, McCoy CR, Cohen JL, Kerman IA. Modeling heritability of temperamental differences, stress reactivity, and risk for anxiety and depression: Relevance to research domain criteria (RDoC). Eur J Neurosci 2021; 55:2076-2107. [PMID: 33629390 PMCID: PMC8382785 DOI: 10.1111/ejn.15158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Animal models provide important tools to study biological and environmental factors that shape brain function and behavior. These models can be effectively leveraged by drawing on concepts from the National Institute of Mental Health Research Domain Criteria (RDoC) Initiative, which aims to delineate molecular pathways and neural circuits that underpin behavioral anomalies that transcend psychiatric conditions. To study factors that contribute to individual differences in emotionality and stress reactivity, our laboratory utilized Sprague-Dawley rats that were selectively bred for differences in novelty exploration. Selective breeding for low versus high locomotor response to novelty produced rat lines that differ in behavioral domains relevant to anxiety and depression, particularly the RDoC Negative Valence domains, including acute threat, potential threat, and loss. Bred Low Novelty Responder (LR) rats, relative to their High Responder (HR) counterparts, display high levels of behavioral inhibition, conditioned and unconditioned fear, avoidance, passive stress coping, anhedonia, and psychomotor retardation. The HR/LR traits are heritable, emerge in the first weeks of life, and appear to be driven by alterations in the developing amygdala and hippocampus. Epigenomic and transcriptomic profiling in the developing and adult HR/LR brain suggest that DNA methylation and microRNAs, as well as differences in monoaminergic transmission (dopamine and serotonin in particular), contribute to their distinct behavioral phenotypes. This work exemplifies ways that animal models such as the HR/LR rats can be effectively used to study neural and molecular factors driving emotional behavior, which may pave the way toward improved understanding the neurobiological mechanisms involved in emotional disorders.
Collapse
Affiliation(s)
- Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth A Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Joshua L Cohen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Go MA, Rogers J, Gava GP, Davey CE, Prado S, Liu Y, Schultz SR. Place Cells in Head-Fixed Mice Navigating a Floating Real-World Environment. Front Cell Neurosci 2021; 15:618658. [PMID: 33642996 PMCID: PMC7906988 DOI: 10.3389/fncel.2021.618658] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/25/2020] [Indexed: 12/27/2022] Open
Abstract
The hippocampal place cell system in rodents has provided a major paradigm for the scientific investigation of memory function and dysfunction. Place cells have been observed in area CA1 of the hippocampus of both freely moving animals, and of head-fixed animals navigating in virtual reality environments. However, spatial coding in virtual reality preparations has been observed to be impaired. Here we show that the use of a real-world environment system for head-fixed mice, consisting of an air-floating track with proximal cues, provides some advantages over virtual reality systems for the study of spatial memory. We imaged the hippocampus of head-fixed mice injected with the genetically encoded calcium indicator GCaMP6s while they navigated circularly constrained or open environments on the floating platform. We observed consistent place tuning in a substantial fraction of cells despite the absence of distal visual cues. Place fields remapped when animals entered a different environment. When animals re-entered the same environment, place fields typically remapped over a time period of multiple days, faster than in freely moving preparations, but comparable with virtual reality. Spatial information rates were within the range observed in freely moving mice. Manifold analysis indicated that spatial information could be extracted from a low-dimensional subspace of the neural population dynamics. This is the first demonstration of place cells in head-fixed mice navigating on an air-lifted real-world platform, validating its use for the study of brain circuits involved in memory and affected by neurodegenerative disorders.
Collapse
Affiliation(s)
- Mary Ann Go
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Jake Rogers
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Giuseppe P. Gava
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Catherine E. Davey
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Seigfred Prado
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Yu Liu
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom
| | - Simon R. Schultz
- Department of Bioengineering and Centre for Neurotechnology, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
de França Malheiros MAS, Castelo-Branco R, de Medeiros PHS, de Lima Marinho PE, da Silva Rodrigues Meurer Y, Barbosa FF. Conspecific Presence Improves Episodic-Like Memory in Rats. Front Behav Neurosci 2021; 14:572150. [PMID: 33519391 PMCID: PMC7844209 DOI: 10.3389/fnbeh.2020.572150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
A number of studies have provided evidence that animals, including rats, remember past episodes. However, few experiments have addressed episodic-like memory from a social perspective. In the present study, we evaluated Wistar rats in the WWWhen/ELM task as single setups and in dyads, applying a long retention interval. We also investigated behaviors that could subserve the emergence of this type of memory. We found that only rats tested in the social setting were able to recollect an integrated episodic-like memory that lasted 24 h. Additionally, rats in dyads presented higher levels of exploration during the task. When exposed to the testing environment, the dyads exhibited affiliative behavior toward each other and presented fewer anxiety-like responses. Our findings indicate that the presence of a conspecific could act as a facilitating factor in memory evaluations based on spontaneous exploration of objects and provide empirical support for applying more naturalistic settings in investigations of episodic-like memory in rats.
Collapse
Affiliation(s)
- Maria Augustta Sobral de França Malheiros
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Rochele Castelo-Branco
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Paulo Henrique Santos de Medeiros
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Pedro Emmílio de Lima Marinho
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Ywlliane da Silva Rodrigues Meurer
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Flávio Freitas Barbosa
- Laboratory of Psychopharmaology, Federal University of Paraíba, João Pessoa, Brazil.,Memory and Cognition Studies Laboratory, Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
37
|
Sweet but Bitter: Focus on Fructose Impact on Brain Function in Rodent Models. Nutrients 2020; 13:nu13010001. [PMID: 33374894 PMCID: PMC7821920 DOI: 10.3390/nu13010001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Fructose consumption has drastically increased during the last decades due to the extensive commercial use of high-fructose corn syrup as a sweetener for beverages, snacks and baked goods. Fructose overconsumption is known to induce obesity, dyslipidemia, insulin resistance and inflammation, and its metabolism is considered partially responsible for its role in several metabolic diseases. Indeed, the primary metabolites and by-products of gut and hepatic fructolysis may impair the functions of extrahepatic tissues and organs. However, fructose itself causes an adenosine triphosphate (ATP) depletion that triggers inflammation and oxidative stress. Many studies have dealt with the effects of this sugar on various organs, while the impact of fructose on brain function is, to date, less explored, despite the relevance of this issue. Notably, fructose transporters and fructose metabolizing enzymes are present in brain cells. In addition, it has emerged that fructose consumption, even in the short term, can adversely influence brain health by promoting neuroinflammation, brain mitochondrial dysfunction and oxidative stress, as well as insulin resistance. Fructose influence on synaptic plasticity and cognition, with a major impact on critical regions for learning and memory, was also reported. In this review, we discuss emerging data about fructose effects on brain health in rodent models, with special reference to the regulation of food intake, inflammation, mitochondrial function and oxidative stress, insulin signaling and cognitive function.
Collapse
|
38
|
Robinson NTM, Descamps LAL, Russell LE, Buchholz MO, Bicknell BA, Antonov GK, Lau JYN, Nutbrown R, Schmidt-Hieber C, Häusser M. Targeted Activation of Hippocampal Place Cells Drives Memory-Guided Spatial Behavior. Cell 2020; 183:1586-1599.e10. [PMID: 33159859 PMCID: PMC7754708 DOI: 10.1016/j.cell.2020.09.061] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/20/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022]
Abstract
The hippocampus is crucial for spatial navigation and episodic memory formation. Hippocampal place cells exhibit spatially selective activity within an environment and have been proposed to form the neural basis of a cognitive map of space that supports these mnemonic functions. However, the direct influence of place cell activity on spatial navigation behavior has not yet been demonstrated. Using an 'all-optical' combination of simultaneous two-photon calcium imaging and two-photon optogenetics, we identified and selectively activated place cells that encoded behaviorally relevant locations in a virtual reality environment. Targeted stimulation of a small number of place cells was sufficient to bias the behavior of animals during a spatial memory task, providing causal evidence that hippocampal place cells actively support spatial navigation and memory.
Collapse
Affiliation(s)
- Nick T M Robinson
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| | - Lucie A L Descamps
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lloyd E Russell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Moritz O Buchholz
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Brendan A Bicknell
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Georgy K Antonov
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Joanna Y N Lau
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Rebecca Nutbrown
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Christoph Schmidt-Hieber
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael Häusser
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
39
|
Colombo M, Scarf D. Are There Differences in "Intelligence" Between Nonhuman Species? The Role of Contextual Variables. Front Psychol 2020; 11:2072. [PMID: 32973624 PMCID: PMC7471122 DOI: 10.3389/fpsyg.2020.02072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/27/2020] [Indexed: 12/03/2022] Open
Abstract
We review evidence for Macphail’s (1982, 1985, 1987)Null Hypothesis, that nonhumans animals do not differ either qualitatively or quantitatively in their cognitive capacities. Our review supports the Null Hypothesis in so much as there are no qualitative differences among nonhuman vertebrate animals, and any observed differences along the qualitative dimension can be attributed to failures to account for contextual variables. We argue species do differ quantitatively, however, and that the main difference in “intelligence” among animals lies in the degree to which one must account for contextual variables.
Collapse
Affiliation(s)
- Michael Colombo
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Damian Scarf
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
40
|
Wang L, Zuo S, Cai Y, Zhang B, Wang H, Zhou YD, Kwok SC. Fallacious reversal of event-order during recall reveals memory reconstruction in rhesus monkeys. Behav Brain Res 2020; 394:112830. [DOI: 10.1016/j.bbr.2020.112830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
|
41
|
van de Ven V, Lee C, Lifanov J, Kochs S, Jansma H, De Weerd P. Hippocampal-striatal functional connectivity supports processing of temporal expectations from associative memory. Hippocampus 2020; 30:926-937. [PMID: 32275344 PMCID: PMC7496232 DOI: 10.1002/hipo.23205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/02/2022]
Abstract
The hippocampus and dorsal striatum are both associated with temporal processing, but they are thought to play distinct roles. The hippocampus has been reported to contribute to storing temporal structure of events in memory, whereas the striatum contributes to temporal motor preparation and reward anticipation. Here, we asked whether the striatum cooperates with the hippocampus in processing the temporal context of memorized visual associations. In our task, participants were trained to implicitly form temporal expectations for one of two possible time intervals associated to specific cue-target associations, and subsequently were scanned using ultra-high-field 7T functional magnetic resonance imaging. During scanning, learned temporal expectations could be violated when the pairs were presented at either the associated or not-associated time intervals. When temporal expectations were met during testing trials, activity in left and right hippocampal subfields and right putamen decreased, compared to when temporal expectations were not met. Further, psycho-physiological interactions showed that functional connectivity between left hippocampal subfields and caudate decreased when temporal expectations were not met. Our results indicate that the hippocampus and striatum cooperate to process implicit temporal expectation from mnemonic associations. Our findings provide further support for a hippocampal-striatal network in temporal associative processing.
Collapse
Affiliation(s)
- Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Chanju Lee
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | | | - Sarah Kochs
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Henk Jansma
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
42
|
The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020; 113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Rats and mice have been demonstrated to show episodic-like memory, a prototype of episodic memory, as defined by an integrated memory of the experience of an object or event, in a particular place and time. Such memory can be assessed via the use of spontaneous object exploration paradigms, variably designed to measure memory for object, place, temporal order and object-location inter-relationships. We review the methodological properties of these tests, the neurobiology about time and discuss the evidence for the involvement of the medial prefrontal cortex (mPFC), entorhinal cortex (EC) and hippocampus, with respect to their anatomy, neurotransmitter systems and functional circuits. The systematic analysis suggests that a specific circuit between the mPFC, lateral EC and hippocampus encodes the information for event, place and time of occurrence into the complex episodic-like memory, as a top-down regulation from the mPFC onto the hippocampus. This circuit can be distinguished from the neuronal component memory systems for processing the individual information of object, time and place.
Collapse
|
43
|
Brown EM, Pierce ME, Clark DC, Fischl BR, Iglesias JE, Milberg WP, McGlinchey RE, Salat DH. Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners. Neuroimage 2020; 210:116563. [DOI: 10.1016/j.neuroimage.2020.116563] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 11/26/2022] Open
|
44
|
Abstract
OBJECTIVE The objective of this study was to examine the effects of physical exercise on parahippocampal function. METHODS Studies were identified using electronic databases, including PubMed, PsychInfo, Sports Discus, and Google Scholar. In total, 28 articles met the inclusionary criteria. Among these, 20 were among humans and 8 in animal models. Among the 20 human studies that examined some aspects of the parahippocampal gyrus, 5 evaluated the entorhinal cortex and 1 evaluated the perirhinal cortex. Among the 20 human studies, 3 evaluated neural activity (or BOLD-signal changes), 14 evaluated brain volume (gray or white matter), 2 examined fractional anisotropy, 1 examined glucose metabolism, and 1 examined functional connectivity between the parahippocampal gyrus and a proximal brain tissue. Among the 8 animal studies, 4 evaluated the entorhinal cortex, with the other 4 examining the perirhinal cortex. RESULTS The results demonstrated that, among both animal and human models, exercise had widespread effects on parahippocampal function. These effects, included, for example, increased neural excitability in the parahippocampal gyrus, increased gray/white matter, reduced volume of lesions, enhanced regional glucose metabolism, increased cerebral blood flow, augmented markers of synaptic plasticity, and increased functional connectivity with other proximal brain structures. CONCLUSION Exercise appears to have extensive effects on parahippocampal function.
Collapse
Affiliation(s)
- P D Loprinzi
- 1 Exercise & Memory Laboratory, Department of Health, Exercise Science and Recreation Management, The University of Mississippi , University, MS, USA
| |
Collapse
|
45
|
Silva JSCD, Barbosa FF, Fonsêca ÉKGD, Albuquerque FDS, Cheke LG, Fernández-Calvo B. Load effect on what-where-when memory in younger and older adults. AGING NEUROPSYCHOLOGY AND COGNITION 2019; 27:841-853. [PMID: 31809651 DOI: 10.1080/13825585.2019.1700207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Episodic memory (EM) is a subsystem responsible for storing and evoking information about the "What", "Where" and "When" elements of an event in an integrated way. This capacity depends of structures with hippocampus and prefrontal cortex. The effect of aging on some capacities mediated by these areas, such as the influence of the number of objects on the coding of EM, remains unexplored. The present study examined the memory recall capacity of young and older adults in an EM task which used the number of 2, 4 and 6 items associated with specific space-temporal contexts. The young adults showed better performance coefficients than the older adults in all tasks, regardless of the load used, for all questions, except the "What" type. The group differences increase with load augmentation, stabilizing from the tasks with 4 items. In short, the EM efficiency, evaluated through What-Where-When Task, depends on the quantity information encoding.
Collapse
Affiliation(s)
| | - Flávio Freitas Barbosa
- Laboratory of memory and cognition studies, Department of Psychology, Federal University of Paraiba , João Pessoa, Brazil
| | | | - Fabíola Da Silva Albuquerque
- Laboratory of memory and cognition studies, Department of Physiology and Pathology, Federal University of Paraiba , João Pessoa, Brazil
| | - Lucy G Cheke
- Cognition and Motivated Behaviour Lab, Department of Psychology, University of Cambrigde , Cambrigde, UK
| | - Bernardino Fernández-Calvo
- Laboratory of aging and neuropsychological disorder, Department of Psychology, Federal University of Paraiba , João Pessoa, Brazil
| |
Collapse
|
46
|
Sugar J, Moser MB. Episodic memory: Neuronal codes for what, where, and when. Hippocampus 2019; 29:1190-1205. [PMID: 31334573 DOI: 10.1002/hipo.23132] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/07/2022]
Abstract
Episodic memory is defined as the ability to recall events in a spatiotemporal context. Formation of such memories is critically dependent on the hippocampal formation and its inputs from the entorhinal cortex. To be able to support the formation of episodic memories, entorhinal cortex and hippocampal formation should contain a neuronal code that follows several requirements. First, the code should include information about position of the agent ("where"), sequence of events ("when"), and the content of the experience itself ("what"). Second, the code should arise instantly thereby being able to support memory formation of one-shot experiences. For successful encoding and to avoid interference between memories during recall, variations in location, time, or in content of experience should result in unique ensemble activity. Finally, the code should capture several different resolutions of experience so that the necessary details relevant for future memory-based predictions will be stored. We review how neuronal codes in entorhinal cortex and hippocampus follow these requirements and argue that during formation of episodic memories entorhinal cortex provides hippocampus with instant information about ongoing experience. Such information originates from (a) spatially modulated neurons in medial entorhinal cortex, including grid cells, which provide a stable and universal positional metric of the environment; (b) a continuously varying signal in lateral entorhinal cortex providing a code for the temporal progression of events; and (c) entorhinal neurons coding the content of experiences exemplified by object-coding and odor-selective neurons. During formation of episodic memories, information from these systems are thought to be encoded as unique sequential ensemble activity in hippocampus, thereby encoding associations between the content of an event and its spatial and temporal contexts. Upon exposure to parts of the encoded stimuli, activity in these ensembles can be reinstated, leading to reactivation of the encoded activity pattern and memory recollection.
Collapse
Affiliation(s)
- Jørgen Sugar
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| | - May-Britt Moser
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Kavli Institute for Systems Neuroscience, Norwegian University for Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
47
|
A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology 2019; 152:90-101. [DOI: 10.1016/j.neuropharm.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
|
48
|
Widman AJ, Cohen JL, McCoy CR, Unroe KA, Glover ME, Khan AU, Bredemann T, McMahon LL, Clinton SM. Rats bred for high anxiety exhibit distinct fear-related coping behavior, hippocampal physiology, and synaptic plasticity-related gene expression. Hippocampus 2019; 29:939-956. [PMID: 30994250 DOI: 10.1002/hipo.23092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
The hippocampus is essential for learning and memory but also regulates emotional behavior. We previously identified the hippocampus as a major brain region that differs in rats bred for emotionality differences. Rats bred for low novelty response (LRs) exhibit high levels of anxiety- and depression-like behavior compared to high novelty responder (HR) rats. Manipulating the hippocampus of high-anxiety LR rats improves their behavior, although no work to date has examined possible HR/LR differences in hippocampal synaptic physiology. Thus, the current study examined hippocampal slice electrophysiology, dendritic spine density, and transcriptome profiling in HR/LR hippocampus, and compared performance on three hippocampus-dependent tasks: The Morris water maze, contextual fear conditioning, and active avoidance. Our physiology experiments revealed increased long-term potentiation (LTP) at CA3-CA1 synapses in HR versus LR hippocampus, and Golgi analysis found an increased number of dendritic spines in basal layer of CA1 pyramidal cells in HR versus LR rats. Transcriptome data revealed glutamate neurotransmission as the top functional pathway differing in the HR/LR hippocampus. Our behavioral experiments showed that HR/LR rats exhibit similar learning and memory capability in the Morris water maze, although the groups differed in fear-related tasks. LR rats displayed greater freezing behavior in the fear-conditioning task, and HR/LR rats adopted distinct behavioral strategies in the active avoidance task. In the active avoidance task, HRs avoided footshock stress by pressing a lever when presented with a warning cue; LR rats, on the other hand, waited until footshocks began before pressing the lever to stop them. Taken together, these findings concur with prior observations of HR rats generally exhibiting active stress coping behavior while LRs exhibit reactive coping. Overall, our current findings coupled with previous work suggest that HR/LR differences in stress reactivity and stress coping may derive, at least in part, from differences in the developing and adult hippocampus.
Collapse
Affiliation(s)
- Allie J Widman
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Joshua L Cohen
- Medical Scientist Training Program (MSTP), University of Alabama, Birmingham, Alabama
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Anas U Khan
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Teruko Bredemann
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Lori L McMahon
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
49
|
Memristor-CMOS Hybrid Circuit for Temporal-Pooling of Sensory and Hippocampal Responses of Cortical Neurons. MATERIALS 2019; 12:ma12060875. [PMID: 30875957 PMCID: PMC6470471 DOI: 10.3390/ma12060875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
As a software framework, Hierarchical Temporal Memory (HTM) has been developed to perform the brain’s neocortical functions, such as spatial and temporal pooling. However, it should be realized with hardware not software not only to mimic the neocortical function but also to exploit its architectural benefit. To do so, we propose a new memristor-CMOS (Complementary Metal-Oxide-Semiconductor) hybrid circuit of temporal-pooling here, which is composed of the input-layer and output-layer neurons mimicking the neocortex. In the hybrid circuit, the input-layer neurons have the proximal and basal/distal dendrites to combine sensory information with the temporal/location information from the brain’s hippocampus. Using the same crossbar architecture, the output-layer neurons can perform a prediction by integrating the temporal information on the basal/distal dendrites. For training the proposed circuit, we used only simple Hebbian learning, not the complicated backpropagation algorithm. Due to the simple hardware of Hebbian learning, the proposed hybrid circuit can be very suitable to online learning. The proposed memristor-CMOS hybrid circuit has been verified by the circuit simulation using the real memristor model. The proposed circuit has been verified to predict both the ordinal and out-of-order sequences. In addition, the proposed circuit has been tested with the external noise and memristance variation.
Collapse
|
50
|
Sex-Dependent Sensory Phenotypes and Related Transcriptomic Expression Profiles Are Differentially Affected by Angelman Syndrome. Mol Neurobiol 2019; 56:5998-6016. [PMID: 30706369 DOI: 10.1007/s12035-019-1503-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Angelman syndrome (AS) is a genetic disorder which entails autism, intellectual disability, lack of speech, motor deficits, and seizure susceptibility. It is caused by the lack of UBE3A protein expression, which is an E3-ubiquitin ligase. Despite AS equal prevalence in males and females, not much data on how sex affects the syndrome was reported. In the herein study, we thoroughly characterized many behavioral phenotypes of AS mice. The behavioral data acquired was analyzed with respect to sex. In addition, we generated a new mRNA sequencing dataset. We analyzed the coding transcriptome expression profiles with respect to the effects of genotype and sex observed in the behavioral phenotypes. We identified several neurobehavioral aspects, especially sensory perception, where AS mice either lack the male-to-female differences observed in wild-type littermates or even show opposed differences. However, motor phenotypes did not show male-to-female variation between wild-type (WT) and AS mice. In addition, by utilizing the mRNA sequencing, we identified genes and isoforms with expression profiles that mirror the sensory perception results. These genes are differentially regulated in the two sexes with inverse expression profiles in AS mice compared to WT littermates. Some of these are known pain-related and estrogen-dependent genes. The observed differences in sex-dependent neurobehavioral phenotypes and the differential transcriptome expression profiles in AS mice strengthen the evidence for molecular cross talk between Ube3a protein and sex hormone receptors or their elicited pathways. These interactions are essential for understanding Ube3a deletion effects, beyond its E3-ligase activity.
Collapse
|