1
|
Glaser M, Mollenkopf P, Prascevic D, Ferraz C, Käs JA, Schnauß J, Smith DM. Systematic altering of semiflexible DNA-based polymer networks via tunable crosslinking. NANOSCALE 2023; 15:7374-7383. [PMID: 37039012 PMCID: PMC10134436 DOI: 10.1039/d2nr05615a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
In order to understand and predict the mechanical behaviours of complex, soft biomaterials such as cells or stimuli-responsive hydrogels, it is important to connect how the nanoscale properties of their constituent components impact those of the bulk material. Crosslinked networks of semiflexible polymers are particularly ubiquitous, being underlying mechanical components of biological systems such as cells or ECM, as well as many synthetic or biomimetic materials. Cell-derived components such as filamentous biopolymers or protein crosslinkers are readily available and well-studied model systems. However, as evolutionarily derived materials, they are constrained to a fixed set of structural parameters such as the rigidity and size of the filaments, or the valency and strength of binding of crosslinkers forming inter-filament connections. By implementing a synthetic model system based on the self-assembly of DNA oligonucleotides into nanometer-scale tubes and simple crosslinking constructs, we used the thermodynamic programmability of DNA hybridization to explore the impact of binding affinity on bulk mechanical response. Stepwise tuning the crosslinking affinity over a range from transient to thermodynamically stable shows an according change in viscoelastic behaviour from loosely entangled to elastic, consistent with models accounting for generalized inter-filament interactions. While characteristic signatures of concentration-dependent changes in network morphology found in some other natural and synthetic filament-crosslinker systems were not apparent, the presence of a distinct elasticity increase within a narrow range of conditions points towards potential subtle alterations of crosslink-filament architecture. Here, we demonstrate a new synthetic approach for gaining a deeper understanding of both biological as well as engineered hydrogel systems.
Collapse
Affiliation(s)
- Martin Glaser
- DNA Nanodevices Group, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
- Soft Matter Physics Division, Peter Debye Institute, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Paul Mollenkopf
- DNA Nanodevices Group, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
- Soft Matter Physics Division, Peter Debye Institute, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Dusan Prascevic
- DNA Nanodevices Group, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
| | - Catarina Ferraz
- DNA Nanodevices Group, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
- Soft Matter Physics Division, Peter Debye Institute, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Josef A Käs
- DNA Nanodevices Group, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
| | - Jörg Schnauß
- DNA Nanodevices Group, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
- Soft Matter Physics Division, Peter Debye Institute, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - David M Smith
- DNA Nanodevices Group, Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany.
- Soft Matter Physics Division, Peter Debye Institute, Faculty of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Chen S, Markovich T, MacKintosh FC. Nonaffine Deformation of Semiflexible Polymer and Fiber Networks. PHYSICAL REVIEW LETTERS 2023; 130:088101. [PMID: 36898114 DOI: 10.1103/physrevlett.130.088101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Networks of semiflexible or stiff polymers such as most biopolymers are known to deform inhomogeneously when sheared. The effects of such nonaffine deformation have been shown to be much stronger than for flexible polymers. To date, our understanding of nonaffinity in such systems is limited to simulations or specific 2D models of athermal fibers. Here, we present an effective medium theory for nonaffine deformation of semiflexible polymer and fiber networks, which is general to both 2D and 3D and in both thermal and athermal limits. The predictions of this model are in good agreement with both prior computational and experimental results for linear elasticity. Moreover, the framework we introduce can be extended to address nonlinear elasticity and network dynamics.
Collapse
Affiliation(s)
- Sihan Chen
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
3
|
Abbasi Moud A. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. Int J Biol Macromol 2022; 222:1-29. [PMID: 36156339 DOI: 10.1016/j.ijbiomac.2022.09.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022]
Abstract
The most common and abundant polymer in nature is the linear polysaccharide cellulose, but processing it requires a new approach since cellulose degrades before melting and does not dissolve in ordinary organic solvents. Cellulose aerogels are exceptionally porous (>90 %), have a high specific surface area, and have low bulk density (0.0085 mg/cm3), making them suitable for a variety of sophisticated applications including but not limited to adsorbents. The production of materials with different qualities from the nanocellulose based aerogels is possible thanks to the ease with which other chemicals may be included into the structure of nanocellulose based aerogels; despite processing challenges, cellulose can nevertheless be formed into useful, value-added products using a variety of traditional and cutting-edge techniques. To improve the adsorption of these aerogels, rheology, 3-D printing, surface modification, employment of metal organic frameworks, freezing temperature, and freeze casting techniques were all investigated and included. In addition to exploring venues for creation of aerogels, their integration with CNC liquid crystal formation were also explored and examined to pursue "smart adsorbent aerogels". The objective of this endeavour is to provide a concise and in-depth evaluation of recent findings about the conception and understanding of nanocellulose aerogel employing a variety of technologies and examination of intricacies involved in enhancing adsorption properties of these aerogels.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
4
|
Abbasi Moud A. Chiral Liquid Crystalline Properties of Cellulose Nanocrystals: Fundamentals and Applications. ACS OMEGA 2022; 7:30673-30699. [PMID: 36092570 PMCID: PMC9453985 DOI: 10.1021/acsomega.2c03311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
By using an independent self-assembly process that is occasionally controlled by evaporation, cellulose nanocrystals (CNCs) may create films (pure or in conjunction with other materials) that have iridescent structural colors. The self-forming chiral nematic structures and environmental safety of a new class of photonic liquid crystals (LCs), referred to as CNCs and CNC-embedded materials, make them simple to make and treat. The structure of the matrix interacts with light to give structural coloring, as opposed to other dye pigments, which interact with light by adsorption and reflection. Understanding how CNC self-assembly constructs structures is vital in several fields, including physics, science, and engineering. To constructure this review, the colloidal characteristics of CNC particles and their behavior during the formation of liquid crystals and gelling were studied. Then, some of the recognized applications for these naturally occurring nanoparticles were summarized. Different factors were considered, including the CNC aspect ratio, surface chemistry, concentration, the amount of time needed to produce an anisotropic phase, and the addition of additional substances to the suspension medium. The effects of alignment and the drying process conditions on structural changes are also covered. The focus of this study however is on the optical properties of the films as well as the impact of the aforementioned factors on the final transparency, iridescent colors, and versus the overall response of these bioinspired photonic materials. Control of the examined factors was found to be necessary to produce reliable materials for optoelectronics, intelligent inks and papers, transparent flexible support for electronics, and decorative coatings and films.
Collapse
|
5
|
Usuelli M, Ruzzi V, Buzzaccaro S, Nyström G, Piazza R, Mezzenga R. Unraveling gelation kinetics, arrested dynamics and relaxation phenomena in filamentous colloids by photon correlation imaging. SOFT MATTER 2022; 18:5632-5644. [PMID: 35861104 DOI: 10.1039/d1sm01578h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental understanding of the gelation kinetics, stress relaxation and temporal evolution in colloidal filamentous gels is central to many aspects of soft and biological matter, yet a complete description of the inherent complex dynamics of these systems is still missing. By means of photon correlation imaging (PCI), we studied the gelation of amyloid fibril solutions, chosen as a model filamentous colloid with immediate significance to biology and nanotechnology, upon passage of ions through a semi-permeable membrane. We observed a linear-in-time evolution of the gelation front and rich rearrangement dynamics of the gels, the magnitude and the spatial propagation of which depend on how effectively electrostatic interactions are screened by different ionic strengths. Our analysis confirms the pivotal role of salt concentration in tuning the properties of amyloid gels, and suggests potential routes for explaining the physical mechanisms behind the linear advance of the salt ions.
Collapse
Affiliation(s)
- Mattia Usuelli
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Gustav Nyström
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- EMPA, Laboratory for Cellulose & Wood Materials, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Raffaele Mezzenga
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- ETH Zürich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Fenton A, Xie R, Aplan MP, Lee Y, Gill MG, Fair R, Kempe F, Sommer M, Snyder CR, Gomez ED, Colby RH. Predicting the Plateau Modulus from Molecular Parameters of Conjugated Polymers. ACS CENTRAL SCIENCE 2022; 8:268-274. [PMID: 35233458 PMCID: PMC8880420 DOI: 10.1021/acscentsci.1c01396] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Indexed: 06/14/2023]
Abstract
The relationship between Kuhn length l k , Kuhn monomer volume v 0, and plateau modulus G N 0, initially proposed by Graessley and Edwards for flexible polymers, and extended by Everaers, has a large gap in experimental data between the flexible and stiff regimes. This gap prevents the prediction of mechanical properties from the chain structure for any polymer in this region. Given the chain architecture, including a semiflexible backbone and side chains, conjugated polymers are an ideal class of material to study this crossover region. Using small angle neutron scattering, oscillatory shear rheology, and the freely rotating chain model, we have shown that 12 polymers with aromatic backbones populate a large part of this gap. We also have shown that a few of these polymers exhibit nematic ordering, which lowers G N 0. When fully isotropic, these polymers follow a relationship between l k , v 0, and G N 0, with a simple crossover proposed in terms of the number of Kuhn segments in an entanglement strand N e.
Collapse
Affiliation(s)
- Abigail
M. Fenton
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Renxuan Xie
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Melissa P. Aplan
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Youngmin Lee
- Department
of Chemical Engineering, The New Mexico
Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Michael G. Gill
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Ryan Fair
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Fabian Kempe
- Institute
for Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany
| | - Michael Sommer
- Institute
for Chemistry, Chemnitz University of Technology, Strasse der Nationen 62, 09111 Chemnitz, Germany
| | - Chad R. Snyder
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Enrique D. Gomez
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| | - Ralph H. Colby
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University
Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Constraint Release for Reptating Filaments in Semiflexible Networks Depends on Background Fluctuations. Polymers (Basel) 2022; 14:polym14040707. [PMID: 35215620 PMCID: PMC8879693 DOI: 10.3390/polym14040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Entangled semiflexible polymer networks are usually described by the tube model, although this concept has not been able to explain all experimental observations. One of its major shortcomings is neglecting the thermal fluctuations of the polymers surrounding the examined test filament, such that disentanglement effects are not captured. In this study, we present experimental evidence that correlated constraint release which has been predicted theoretically occurs in entangled, but not in crosslinked semiflexible polymer networks. By tracking single semiflexible DNA nanotubes embedded both in entangled and crosslinked F-actin networks, we observed different reptation dynamics in both systems, emphasizing the need for a revision of the classical tube theory for entangled polymer solutions.
Collapse
|
8
|
Händler T, Tutmarc C, Glaser M, Freitag JS, Smith DM, Schnauß J. Measuring structural parameters of crosslinked and entangled semiflexible polymer networks with single-filament tracing. Phys Rev E 2021; 103:062501. [PMID: 34271634 DOI: 10.1103/physreve.103.062501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/17/2021] [Indexed: 12/15/2022]
Abstract
Single-filament tracing has been a valuable tool to directly determine geometrical and mechanical properties of entangled polymer networks. However, systematically verifying how the stiffness of the tracer filament or its molecular interactions with the surrounding network impacts the measurement of these parameters has not been possible with the established experimental systems. Here we use mechanically programmable DNA nanotubes embedded in crosslinked and entangled F-actin networks, as well as in synthetic DNA networks, in order to measure fundamental, structural network properties like tube width and mesh size with respect to the stiffness of the tracers. While we confirm some predictions derived from models based purely on steric interactions, our results indicate that these models should be expanded to account for additional interfilament interactions, thereby describing the behavior of real polymer networks.
Collapse
Affiliation(s)
- Tina Händler
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Cary Tutmarc
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Martin Glaser
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Jessica S Freitag
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - David M Smith
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany.,Institute of Clinical Immunology, University of Leipzig Medical Faculty, 04103 Leipzig, Germany.,Dhirubhai Ambani Institute of Information and Communication Technology, Gandhinagar 382 007, India
| | - Jörg Schnauß
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, Linnéstraße 5, 04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany.,Unconventional Computing Laboratory, Department of Computer Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
9
|
Usuelli M, Cao Y, Bagnani M, Handschin S, Nyström G, Mezzenga R. Probing the Structure of Filamentous Nonergodic Gels by Dynamic Light Scattering. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Yiping Cao
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Stephan Handschin
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Gustav Nyström
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
- Laboratory for Cellulose & Wood Materials, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
- Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
10
|
Wu H, Shen Y, Wang D, Herrmann H, Goldman RD, Weitz DA. Effect of Divalent Cations on the Structure and Mechanics of Vimentin Intermediate Filaments. Biophys J 2020; 119:55-64. [PMID: 32521238 DOI: 10.1016/j.bpj.2020.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022] Open
Abstract
Divalent cations behave as effective cross-linkers of intermediate filaments (IFs) such as vimentin IF (VIF). These interactions have been mostly attributed to their multivalency. However, ion-protein interactions often depend on the ion species, and these effects have not been widely studied in IFs. Here, we investigate the effects of two biologically important divalent cations, Zn2+ and Ca2+, on VIF network structure and mechanics in vitro. We find that the network structure is unperturbed at micromolar Zn2+ concentrations, but strong bundle formation is observed at a concentration of 100 μM. Microrheological measurements show that network stiffness increases with cation concentration. However, bundling of filaments softens the network. This trend also holds for VIF networks formed in the presence of Ca2+, but remarkably, a concentration of Ca2+ that is two orders higher is needed to achieve the same effect as with Zn2+, which suggests the importance of salt-protein interactions as described by the Hofmeister effect. Furthermore, we find evidence of competitive binding between the two divalent ion species. Hence, specific interactions between VIFs and divalent cations are likely to be an important mechanism by which cells can control their cytoplasmic mechanics.
Collapse
Affiliation(s)
- Huayin Wu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Yinan Shen
- Department of Physics, Harvard University, Cambridge, Massachusetts
| | - Dianzhuo Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Harald Herrmann
- Division of Cell Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert D Goldman
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts; Department of Physics, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
11
|
Bobbili SV, Milner ST. Simulation Study of Entanglement in Semiflexible Polymer Melts and Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sai Vineeth Bobbili
- Pennsylvania State University, University Park 16801, Pennsylvania, United States
| | - Scott T. Milner
- Pennsylvania State University, University Park 16801, Pennsylvania, United States
| |
Collapse
|
12
|
Hoy RS, Kröger M. Unified Analytic Expressions for the Entanglement Length, Tube Diameter, and Plateau Modulus of Polymer Melts. PHYSICAL REVIEW LETTERS 2020; 124:147801. [PMID: 32338959 DOI: 10.1103/physrevlett.124.147801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
By combining molecular dynamics simulations and topological analyses with scaling arguments, we obtain analytic expressions that quantitatively predict the entanglement length N_{e}, the plateau modulus G, and the tube diameter a in melts that span the entire range of chain stiffnesses for which systems remain isotropic. Our expressions resolve conflicts between previous scaling predictions for the loosely entangled [Lin-Noolandi, Gℓ_{K}^{3}/k_{B}T∼(ℓ_{K}/p)^{3}], semiflexible [Edwards-de Gennes: Gℓ_{K}^{3}/k_{B}T∼(ℓ_{K}/p)^{2}], and tightly entangled [Morse, Gℓ_{K}^{3}/k_{B}T∼(ℓ_{K}/p)^{1+ϵ}] regimes, where ℓ_{K} and p are, respectively, the Kuhn and packing lengths. We also find that maximal entanglement (minimal N_{e}) coincides with the onset of local nematic order.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Martin Kröger
- Polymer Physics, ETH Zürich, Department of Materials, CH-8093 Zürich, Switzerland
| |
Collapse
|
13
|
Svaneborg C, Everaers R. Characteristic Time and Length Scales in Melts of Kremer–Grest Bead–Spring Polymers with Wormlike Bending Stiffness. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02437] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ralf Everaers
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l’ENS de Lyon, F-69342 Lyon, France
| |
Collapse
|
14
|
Dutta S, Benetatos P. Statistical ensemble inequivalence for flexible polymers under confinement in various geometries. SOFT MATTER 2020; 16:2114-2127. [PMID: 32016271 DOI: 10.1039/c9sm02246e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The problem of statistical ensemble inequivalence for single polymers has been the subject of intense research. In a recent publication, we show that even though the force-extension relation of a free Gaussian chain exhibits ensemble equivalence, confinement to half-space due to tethering to a planar substrate induces significant inequivalence [S. Dutta and P. Benetatos, Soft Matter, 2018, 14, 6857-6866]. In the present article, we extend that work to the conformational response to confining forces distributed over surfaces. We analyze in both the Helmholtz and the Gibbs ensemble the pressure-volume equation of state of a chain in rectangular, spherical, and cylindrical confinement. We especially consider the case of a directed polymer in a cylinder. We also analyze the case of a tethered chain inside a rectangular box, a sphere, and outside a sphere. In general, confinement causes significant ensemble inequivalence. Remarkably, we recover ensemble equivalence in the limit of squashing confinement. We trace the ensemble inequivalence to the persistence of strong fluctuations. Our work may be useful in the interpretation of single molecule experiments and caging phenomena.
Collapse
Affiliation(s)
- Sandipan Dutta
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan 44919, Korea
| | - Panayotis Benetatos
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
| |
Collapse
|
15
|
Milner ST. Unified Entanglement Scaling for Flexible, Semiflexible, and Stiff Polymer Melts and Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Golde T, Glaser M, Tutmarc C, Elbalasy I, Huster C, Busteros G, Smith DM, Herrmann H, Käs JA, Schnauß J. The role of stickiness in the rheology of semiflexible polymers. SOFT MATTER 2019; 15:4865-4872. [PMID: 31161188 DOI: 10.1039/c9sm00433e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiflexible polymers form central structures in biological material. Modelling approaches usually neglect influences of polymer-specific molecular features aiming to describe semiflexible polymers universally. Here, we investigate the influence of molecular details on networks assembled from filamentous actin, intermediate filaments, and synthetic DNA nanotubes. In contrast to prevalent theoretical assumptions, we find that bulk properties are affected by various inter-filament interactions. We present evidence that these interactions can be merged into a single parameter in the frame of the glassy wormlike chain model. The interpretation of this parameter as a polymer specific stickiness is consistent with observations from macro-rheological measurements and reptation behaviour. Our findings demonstrate that stickiness should generally not be ignored in semiflexible polymer models.
Collapse
Affiliation(s)
- Tom Golde
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xie R, Aplan MP, Caggiano NJ, Weisen AR, Su T, Müller C, Segad M, Colby RH, Gomez ED. Local Chain Alignment via Nematic Ordering Reduces Chain Entanglement in Conjugated Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Renxuan Xie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Melissa P. Aplan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicholas J. Caggiano
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Albree R. Weisen
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tang Su
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Mo Segad
- The Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ralph H. Colby
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- The Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Cox H, Xu H, Waigh TA, Lu JR. Single-Molecule Study of Peptide Gel Dynamics Reveals States of Prestress. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14678-14689. [PMID: 30407830 DOI: 10.1021/acs.langmuir.8b03334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
De novo peptide surfactant (I3K) gels provide an ideal system to study the complex dynamics of lightly cross-linked semiflexible fibers because of their large contour lengths, simple chemistry, and slow dynamics. We used single-molecule fluorescence microscopy to record individual fibers and Fourier decomposition of the fiber dynamics to separate thermal contributions to the persistence length from compressive states of prestress (SPS). Our results show that SPS in the network depend strongly on peptide concentration, buffer, and pH and that the fibril energies in SPS follow a Lévy distribution. The presence of SPS in the network imply that collective states of self-stress are also present. Therefore, semiflexible polymer gels need to be considered as complex load-bearing structures and the mean field models for polymer gel elasticity and dynamics often applied to them will not be fully representative of the behavior at the nanoscale. We quantify the impact of cross-links on reptation tube dynamics, which provides a second population of tube fluctuations in addition to those expected for uncross-linked entangled solutions.
Collapse
Affiliation(s)
- Henry Cox
- Biological Physics, School of Physics and Astronomy , University of Manchester , Manchester M13 9PL , U.K
| | - Hai Xu
- Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266555 , China
| | - Thomas A Waigh
- Biological Physics, School of Physics and Astronomy , University of Manchester , Manchester M13 9PL , U.K
- Photon Science Institute , University of Manchester , Manchester M13 9PY , U.K
| | - Jian R Lu
- Biological Physics, School of Physics and Astronomy , University of Manchester , Manchester M13 9PL , U.K
| |
Collapse
|
19
|
Leitmann S, Höfling F, Franosch T. Dynamically crowded solutions of infinitely thin Brownian needles. Phys Rev E 2018; 96:012118. [PMID: 29347251 DOI: 10.1103/physreve.96.012118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/07/2022]
Abstract
We study the dynamics of solutions of infinitely thin needles up to densities deep in the semidilute regime by Brownian dynamics simulations. For high densities, these solutions become strongly entangled and the motion of a needle is essentially restricted to a one-dimensional sliding in a confining tube composed of neighboring needles. From the density-dependent behavior of the orientational and translational diffusion, we extract the long-time transport coefficients and the geometry of the confining tube. The sliding motion within the tube becomes visible in the non-Gaussian parameter of the translational motion as an extended plateau at intermediate times and in the intermediate scattering function as an algebraic decay. This transient dynamic arrest is also corroborated by the local exponent of the mean-square displacements perpendicular to the needle axis. Moreover, the probability distribution of the displacements perpendicular to the needle becomes strongly non-Gaussian; rather, it displays an exponential distribution for large displacements. On the other hand, based on the analysis of higher-order correlations of the orientation we find that the rotational motion becomes diffusive again for strong confinement. At coarse-grained time and length scales, the spatiotemporal dynamics of the needle for the high entanglement is captured by a single freely diffusing phantom needle with long-time transport coefficients obtained from the needle in solution. The time-dependent dynamics of the phantom needle is also assessed analytically in terms of spheroidal wave functions. The dynamic behavior of the needle in solution is found to be identical to needle Lorentz systems, where a tracer needle explores a quenched disordered array of other needles.
Collapse
Affiliation(s)
- Sebastian Leitmann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Felix Höfling
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
20
|
Schnauß J, Glaser M, Lorenz JS, Schuldt C, Möser C, Sajfutdinow M, Händler T, Käs JA, Smith DM. DNA Nanotubes as a Versatile Tool to Study Semiflexible Polymers. J Vis Exp 2017:56056. [PMID: 29155710 PMCID: PMC5755217 DOI: 10.3791/56056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mechanical properties of complex, polymer-based soft matter, such as cells or biopolymer networks, can be understood in neither the classical frame of flexible polymers nor of rigid rods. Underlying filaments remain outstretched due to their non-vanishing backbone stiffness, which is quantified via the persistence length (lp), but they are also subject to strong thermal fluctuations. Their finite bending stiffness leads to unique, non-trivial collective mechanics of bulk networks, enabling the formation of stable scaffolds at low volume fractions while providing large mesh sizes. This underlying principle is prevalent in nature (e.g., in cells or tissues), minimizing the high molecular content and thereby facilitating diffusive or active transport. Due to their biological implications and potential technological applications in biocompatible hydrogels, semiflexible polymers have been subject to considerable study. However, comprehensible investigations remained challenging since they relied on natural polymers, such as actin filaments, which are not freely tunable. Despite these limitations and due to the lack of synthetic, mechanically tunable, and semiflexible polymers, actin filaments were established as the common model system. A major limitation is that the central quantity lp cannot be freely tuned to study its impact on macroscopic bulk structures. This limitation was resolved by employing structurally programmable DNA nanotubes, enabling controlled alteration of the filament stiffness. They are formed through tile-based designs, where a discrete set of partially complementary strands hybridize in a ring structure with a discrete circumference. These rings feature sticky ends, enabling the effective polymerization into filaments several microns in length, and display similar polymerization kinetics as natural biopolymers. Due to their programmable mechanics, these tubes are versatile, novel tools to study the impact of lp on the single-molecule as well as the bulk scale. In contrast to actin filaments, they remain stable over weeks, without notable degeneration, and their handling is comparably straightforward.
Collapse
Affiliation(s)
- Jörg Schnauß
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig;
| | - Martin Glaser
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | | | - Carsten Schuldt
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | | | | | - Tina Händler
- Fraunhofer Institute for Cell Therapy and Immunology; Institute of Experimental Physics I, Universität Leipzig
| | - Josef A Käs
- Institute of Experimental Physics I, Universität Leipzig
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology;
| |
Collapse
|
21
|
Strehle D, Mollenkopf P, Glaser M, Golde T, Schuldt C, Käs JA, Schnauß J. Single Actin Bundle Rheology. Molecules 2017; 22:E1804. [PMID: 29064446 PMCID: PMC5860748 DOI: 10.3390/molecules22101804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022] Open
Abstract
Bundled actin structures play an essential role in the mechanical response of the actin cytoskeleton in eukaryotic cells. Although responsible for crucial cellular processes, they are rarely investigated in comparison to single filaments and isotropic networks. Presenting a highly anisotropic structure, the determination of the mechanical properties of individual bundles was previously achieved through passive approaches observing bending deformations induced by thermal fluctuations. We present a new method to determine the bending stiffness of individual bundles, by measuring the decay of an actively induced oscillation. This approach allows us to systematically test anisotropic, bundled structures. Our experiments revealed that thin, depletion force-induced bundles behave as semiflexible polymers and obey the theoretical predictions determined by the wormlike chain model. Thickening an individual bundle by merging it with other bundles enabled us to study effects that are solely based on the number of involved filaments. These thicker bundles showed a frequency-dependent bending stiffness, a behavior that is inconsistent with the predictions of the wormlike chain model. We attribute this effect to internal processes and give a possible explanation with regard to the wormlike bundle theory.
Collapse
Affiliation(s)
- Dan Strehle
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany.
| | - Paul Mollenkopf
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), DNA Nanodevices Group, Perlickstraße 1, 04103 Leipzig, Germany.
| | - Martin Glaser
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), DNA Nanodevices Group, Perlickstraße 1, 04103 Leipzig, Germany.
| | - Tom Golde
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany.
| | - Carsten Schuldt
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), DNA Nanodevices Group, Perlickstraße 1, 04103 Leipzig, Germany.
| | - Josef A Käs
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany.
| | - Jörg Schnauß
- Faculty of Physics and Earth Sciences, Peter Debye Institute, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), DNA Nanodevices Group, Perlickstraße 1, 04103 Leipzig, Germany.
| |
Collapse
|
22
|
Gladrow J, Broedersz CP, Schmidt CF. Nonequilibrium dynamics of probe filaments in actin-myosin networks. Phys Rev E 2017; 96:022408. [PMID: 28950472 DOI: 10.1103/physreve.96.022408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.
Collapse
Affiliation(s)
- J Gladrow
- Third Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, England, United Kingdom
| | - C P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - C F Schmidt
- Third Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
23
|
Tassieri M. Dynamics of Semiflexible Polymer Solutions in the Tightly Entangled Concentration Regime. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Manlio Tassieri
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| |
Collapse
|
24
|
Keshavarz M, Engelkamp H, Xu J, van den Boomen OI, Maan JC, Christianen PCM, Rowan AE. Confining Potential as a Function of Polymer Stiffness and Concentration in Entangled Polymer Solutions. J Phys Chem B 2017; 121:5613-5620. [DOI: 10.1021/acs.jpcb.6b12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masoumeh Keshavarz
- High
Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and
Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans Engelkamp
- High
Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and
Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jialiang Xu
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Onno I. van den Boomen
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. Maan
- High
Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and
Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Peter C. M. Christianen
- High
Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and
Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Alan E. Rowan
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
25
|
Dynamic cross-correlations between entangled biofilaments as they diffuse. Proc Natl Acad Sci U S A 2017; 114:3322-3327. [PMID: 28283664 DOI: 10.1073/pnas.1620935114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Entanglement in polymer and biological physics involves a state in which linear interthreaded macromolecules in isotropic liquids diffuse in a spatially anisotropic manner beyond a characteristic mesoscopic time and length scale (tube diameter). The physical reason is that linear macromolecules become transiently localized in directions transverse to their backbone but diffuse with relative ease parallel to it. Within the resulting broad spectrum of relaxation times there is an extended period before the longest relaxation time when filaments occupy a time-averaged cylindrical space of near-constant density. Here we show its implication with experiments based on fluorescence tracking of dilutely labeled macromolecules. The entangled pairs of aqueous F-actin biofilaments diffuse with separation-dependent dynamic cross-correlations that exceed those expected from continuum hydrodynamics up to strikingly large spatial distances of ≈15 µm, which is more than 104 times the size of the solvent water molecules in which they are dissolved, and is more than 50 times the dynamic tube diameter, but is almost equal to the filament length. Modeling this entangled system as a collection of rigid rods, we present a statistical mechanical theory that predicts these long-range dynamic correlations as an emergent consequence of an effective long-range interpolymer repulsion due to the de Gennes correlation hole, which is a combined consequence of chain connectivity and uncrossability. The key physical assumption needed to make theory and experiment agree is that solutions of entangled biofilaments localized in tubes that are effectively dynamically incompressible over the relevant intermediate time and length scales.
Collapse
|
26
|
Schweizer KS, Sussman DM. A force-level theory of the rheology of entangled rod and chain polymer liquids. I. Tube deformation, microscopic yielding, and the nonlinear elastic limit. J Chem Phys 2016; 145:214903. [DOI: 10.1063/1.4968516] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kenneth S. Schweizer
- Department of Materials Science and Department of Chemistry, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA
| | - Daniel M. Sussman
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
27
|
Schuldt C, Schnauß J, Händler T, Glaser M, Lorenz J, Golde T, Käs JA, Smith DM. Tuning Synthetic Semiflexible Networks by Bending Stiffness. PHYSICAL REVIEW LETTERS 2016; 117:197801. [PMID: 27858441 DOI: 10.1103/physrevlett.117.197801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The mechanics of complex soft matter often cannot be understood in the classical physical frame of flexible polymers or rigid rods. The underlying constituents are semiflexible polymers, whose finite bending stiffness (κ) leads to nontrivial mechanical responses. A natural model for such polymers is the protein actin. Experimental studies of actin networks, however, are limited since the persistence length (l_{p}∝κ) cannot be tuned. Here, we experimentally characterize this parameter for the first time in entangled networks formed by synthetically produced, structurally tunable DNA nanotubes. This material enabled the validation of characteristics inherent to semiflexible polymers and networks thereof, i.e., persistence length, inextensibility, reptation, and mesh size scaling. While the scaling of the elastic plateau modulus with concentration G_{0}∝c^{7/5} is consistent with previous measurements and established theories, the emerging persistence length scaling G_{0}∝l_{p} opposes predominant theoretical predictions.
Collapse
Affiliation(s)
- Carsten Schuldt
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Jörg Schnauß
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Tina Händler
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Martin Glaser
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Jessica Lorenz
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| | - Tom Golde
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - Josef A Käs
- Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig, Germany
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Lämmel M, Jaschinski E, Merkel R, Kroy K. Microstructure of Sheared Entangled Solutions of Semiflexible Polymers. Polymers (Basel) 2016; 8:E353. [PMID: 30974627 PMCID: PMC6432445 DOI: 10.3390/polym8100353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023] Open
Abstract
We study the influence of finite shear deformations on the microstructure and rheology of solutions of entangled semiflexible polymers theoretically and by numerical simulations and experiments with filamentous actin. Based on the tube model of semiflexible polymers, we predict that large finite shear deformations strongly affect the average tube width and curvature, thereby exciting considerable restoring stresses. In contrast, the associated shear alignment is moderate, with little impact on the average tube parameters, and thus expected to be long-lived and detectable after cessation of shear. Similarly, topologically preserved hairpin configurations are predicted to leave a long-lived fingerprint in the shape of the distributions of tube widths and curvatures. Our numerical and experimental data support the theory.
Collapse
Affiliation(s)
- Marc Lämmel
- Institut für theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany.
| | - Evelin Jaschinski
- Institute of Complex Systems 7: Biomechanics, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Rudolf Merkel
- Institute of Complex Systems 7: Biomechanics, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Klaus Kroy
- Institut für theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany.
| |
Collapse
|
29
|
Leitmann S, Höfling F, Franosch T. Tube Concept for Entangled Stiff Fibers Predicts Their Dynamics in Space and Time. PHYSICAL REVIEW LETTERS 2016; 117:097801. [PMID: 27610885 DOI: 10.1103/physrevlett.117.097801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 06/06/2023]
Abstract
We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted neighbor list. We demonstrate that in such crowded environments the intermediate scattering function, characterizing the motion in space and time, can be predicted quantitatively by simulating a single freely diffusing phantom needle only, yet with very unusual diffusion coefficients.
Collapse
Affiliation(s)
- Sebastian Leitmann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Felix Höfling
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
Schnauß J, Händler T, Käs JA. Semiflexible Biopolymers in Bundled Arrangements. Polymers (Basel) 2016; 8:polym8080274. [PMID: 30974551 PMCID: PMC6432226 DOI: 10.3390/polym8080274] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.
Collapse
Affiliation(s)
- Jörg Schnauß
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig 04103, Germany.
| | - Tina Händler
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig 04103, Germany.
| | - Josef A Käs
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
| |
Collapse
|
31
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
32
|
Plagge J, Fischer A, Heussinger C. Viscoelasticity of reversibly crosslinked networks of semiflexible polymers. Phys Rev E 2016; 93:062502. [PMID: 27415312 DOI: 10.1103/physreve.93.062502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 11/07/2022]
Abstract
We present a theoretical framework for the linear and nonlinear viscoelastic properties of reversibly crosslinked networks of semiflexible polymers. In contrast to affine models where network strain couples to the polymer end-to-end distance, in our model strain rather serves to locally distort the network structure. This induces bending modes in the polymer filaments, the properties of which are slaved to the surrounding network structure. Specifically, we investigate the frequency-dependent linear rheology, in particular in combination with crosslink binding-unbinding processes. We also develop schematic extensions to describe the nonlinear response during creep measurements as well as during constant strain-rate ramps.
Collapse
Affiliation(s)
- Jan Plagge
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Andreas Fischer
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Claus Heussinger
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
33
|
Gurmessa B, Fitzpatrick R, Falzone TT, Robertson-Anderson RM. Entanglement Density Tunes Microscale Nonlinear Response of Entangled Actin. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02802] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bekele Gurmessa
- Department of Physics and
Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Robert Fitzpatrick
- Department of Physics and
Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Tobias T. Falzone
- Department of Physics and
Biophysics, University of San Diego, San Diego, California 92110, United States
| | - Rae M. Robertson-Anderson
- Department of Physics and
Biophysics, University of San Diego, San Diego, California 92110, United States
| |
Collapse
|
34
|
Zhang W, Gomez ED, Milner ST. Predicting Chain Dimensions of Semiflexible Polymers from Dihedral Potentials. Macromolecules 2014. [DOI: 10.1021/ma500923r] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wenlin Zhang
- Department of Chemical
Engineering and ‡Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Enrique D. Gomez
- Department of Chemical
Engineering and ‡Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott T. Milner
- Department of Chemical
Engineering and ‡Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
35
|
Affiliation(s)
- Jian Qin
- Institute
for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Scott T. Milner
- Department
of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
36
|
von Hansen Y, Rode S, Netz RR. Convolution theory for dynamic systems: a bottom-up approach to the viscoelasticity of polymeric networks. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:137. [PMID: 24326906 DOI: 10.1140/epje/i2013-13137-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/12/2013] [Accepted: 10/18/2013] [Indexed: 06/03/2023]
Abstract
Biological materials such as the cytoskeleton are characterized by remarkable viscoelastic properties and therefore represent the subject of numerous micro- and macrorheological experimental studies. By generalizing the previously introduced dynamic convolution theory (DCT) to two dimensions, we devise a bottom-up approach for the viscoelastic properties of extended, crosslinked semiflexible polymer networks. Brownian dynamics (BD) simulations serve to determine the dynamic linear self- and cross-response properties of isolated semiflexible polymers to externally applied forces and torques; these response functions are used as input to the DCT. For a given network topology, the frequency-dependent response of the network subject to a given external force/torque distribution is calculated via the DCT allowing to resolve both micro- and macrorheological properties of the networks. A mapping on continuum viscoelastic theory yields the corresponding viscoelastic bulk moduli. Special attention is drawn to the flexibility of crosslinkers, which couple angular degrees of freedom at the network nodes and which are found to sensitively affect the resulting rheological properties of the polymeric meshwork.
Collapse
Affiliation(s)
- Yann von Hansen
- Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany,
| | | | | |
Collapse
|
37
|
Sharma R, Cherayil BJ. Interfacial growth as a model of tube-width heterogeneities in concentrated solutions of stiff polymers. J Chem Phys 2013; 138:244911. [DOI: 10.1063/1.4811661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rati Sharma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
38
|
Lu Y, An L, Wang SQ, Wang ZG. Evolution of Chain Conformation and Entanglements during Startup Shear. ACS Macro Lett 2013; 2:561-565. [PMID: 35581819 DOI: 10.1021/mz400145m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using Brownian dynamics simulation, we determine chain dimensions in an entangled polymer melt undergoing startup shear at a rate lower than the reciprocal of the Rouse time yet higher than the reciprocal reptation time. Here the tube model expects negligible chain stretching. In contrast, our simulation shows the deformed coil to conform closely to affine deformation. We find that the total number of entanglements decreases with increasing shear. Remarkably, up to many Rouse time, the decline in the number of initial entanglements is slower than that under the quiescent condition. These results point to fundamental deficiencies in the molecular picture of the tube model for startup shear.
Collapse
Affiliation(s)
- Yuyuan Lu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Lijia An
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Shi-Qing Wang
- Department
of Polymer Science, University of Akron, Akron, Ohio 44325-3909, United States
| | - Zhen-Gang Wang
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
39
|
Groot RD. Mesoscale simulation of semiflexible chains. II. Evolution dynamics and stability of fiber bundle networks. J Chem Phys 2013; 138:224904. [DOI: 10.1063/1.4808200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Groot RD. Mesoscale simulation of semiflexible chains. I. Endpoint distribution and chain dynamics. J Chem Phys 2013; 138:224903. [PMID: 23781817 DOI: 10.1063/1.4808199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endpoint distribution and dynamics of semiflexible fibers are studied by numerical simulation. A brief overview is given over the analytical theory of flexible and semiflexible polymers. In particular, a closed expression is given for the relaxation spectrum of wormlike chains, which determines polymer diffusion and rheology. Next a simulation model for wormlike chains with full hydrodynamic interaction is described, and relations for the bending and torsion modulus are given. Two methods are introduced to include torsion stiffness into the model. The model is validated by simulating single chains in a heat bath, and comparing the endpoint distribution of the chains with established Monte Carlo results. It is concluded that torsion stiffness leads to a slightly shorter effective persistence length for a given bending stiffness. To further validate the simulation model, polymer diffusion is studied for fixed persistence length and varying polymer length N. The diffusion constant shows crossover from Rouse (D [proportionality] N(-1)) to reptation behaviour (D [proportionality] N(-2)). The terminal relaxation time obtained from the monomer displacement is consistent with the theory of wormlike chains. The probability for chain crossing has also been studied. This probability is so low that it does not influence the present results.
Collapse
Affiliation(s)
- Robert D Groot
- Unilever Research Vlaardingen, P.O. Box 114, 3130 AC Vlaardingen, The Netherlands
| |
Collapse
|
41
|
Mao X, Stenull O, Lubensky TC. Effective-medium theory of a filamentous triangular lattice. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042601. [PMID: 23679437 DOI: 10.1103/physreve.87.042601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Indexed: 06/02/2023]
Abstract
We present an effective-medium theory that includes bending as well as stretching forces, and we use it to calculate the mechanical response of a diluted filamentous triangular lattice. In this lattice, bonds are central-force springs, and there are bending forces between neighboring bonds on the same filament. We investigate the diluted lattice in which each bond is present with a probability p. We find a rigidity threshold p(b) which has the same value for all positive bending rigidity and a crossover characterizing bending, stretching, and bend-stretch coupled elastic regimes controlled by the central-force rigidity percolation point at p(CF)=/~2/3 of the lattice when fiber bending rigidity vanishes.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
42
|
Huber F, Schnauß J, Rönicke S, Rauch P, Müller K, Fütterer C, Käs J. Emergent complexity of the cytoskeleton: from single filaments to tissue. ADVANCES IN PHYSICS 2013; 62:1-112. [PMID: 24748680 PMCID: PMC3985726 DOI: 10.1080/00018732.2013.771509] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 01/11/2013] [Indexed: 05/17/2023]
Abstract
Despite their overwhelming complexity, living cells display a high degree of internal mechanical and functional organization which can largely be attributed to the intracellular biopolymer scaffold, the cytoskeleton. Being a very complex system far from thermodynamic equilibrium, the cytoskeleton's ability to organize is at the same time challenging and fascinating. The extensive amounts of frequently interacting cellular building blocks and their inherent multifunctionality permits highly adaptive behavior and obstructs a purely reductionist approach. Nevertheless (and despite the field's relative novelty), the physics approach has already proved to be extremely successful in revealing very fundamental concepts of cytoskeleton organization and behavior. This review aims at introducing the physics of the cytoskeleton ranging from single biopolymer filaments to multicellular organisms. Throughout this wide range of phenomena, the focus is set on the intertwined nature of the different physical scales (levels of complexity) that give rise to numerous emergent properties by means of self-organization or self-assembly.
Collapse
Affiliation(s)
- F. Huber
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - J. Schnauß
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - S. Rönicke
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - P. Rauch
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - K. Müller
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - C. Fütterer
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| | - J. Käs
- Institute for Experimental Physics I, University of Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Sarmiento-Gomez E, Montalvan-Sorrosa D, Garza C, Mas-Oliva J, Castillo R. Rheology and DWS microrheology of concentrated suspensions of the semiflexible filamentous fd virus. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:35. [PMID: 22610819 DOI: 10.1140/epje/i2012-12035-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
Microrheology measurements were performed on suspensions of bacteriophage fd with diffusive wave spectroscopy in the concentrated regime, at different values of ionic strength. Viscosity vs. shear rate was also measured, and the effect of bacteriophage concentration and salt addition on shear thinning was determined, as well as on the peaks in the viscosity vs. shear curves corresponding to a transition from tumbling to wagging flow. The influence of concentration and salt addition on the mean square displacement of microspheres embedded in the suspensions was determined, as well as on their viscoelastic moduli up to high angular frequencies. Our results were compared with another microrheology technique previously reported where the power spectral density of thermal fluctuations of embedded micron-sized particles was evaluated. Although both results in general agree, the diffusive wave spectroscopy results are much less noisy and can reach larger frequencies. A comparison was made between measured and calculated shear modulus. Calculations were made employing the theory for highly entangled isotropic solutions of semiflexible polymers using a tube model, where various ways of calculating the needed parameters were used. Although some features are captured by the model, it is far from the experimental results mainly at high frequencies.
Collapse
Affiliation(s)
- E Sarmiento-Gomez
- Instituto de Fisica, Universidad Nacional Autónoma de Mexico, P. O. Box 20-364, Mexico DF 01000
| | | | | | | | | |
Collapse
|
44
|
van der Linden E. From peptides and proteins to micro-structure mechanics and rheological properties of fibril systems. Food Hydrocoll 2012. [DOI: 10.1016/j.foodhyd.2010.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Nöding B, Köster S. Intermediate filaments in small configuration spaces. PHYSICAL REVIEW LETTERS 2012; 108:088101. [PMID: 22463576 DOI: 10.1103/physrevlett.108.088101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Indexed: 05/17/2023]
Abstract
Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length.
Collapse
Affiliation(s)
- Bernd Nöding
- Institute for X-Ray Physics and Courant Research Centre Nano-Spectroscopy and X-Ray Imaging, Georg-August-Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
46
|
Glaser J, Kroy K. Tube-width fluctuations of entangled stiff polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051801. [PMID: 22181433 DOI: 10.1103/physreve.84.051801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 09/28/2011] [Indexed: 05/31/2023]
Abstract
The tubelike cages of stiff polymers in entangled solutions have been shown to exhibit characteristic spatial heterogeneities. We explain these observations by a systematic theory generalizing previous work by Morse [Phys. Rev. E 63, 031502 (2001)]. With a local version of the binary collision approximation, the distribution of confinement strengths is calculated, and the magnitude and the distribution function of tube radius fluctuations are predicted. Our main result is a unique scaling function for the tube radius distribution, in good agreement with experimental and simulation data.
Collapse
Affiliation(s)
- Jens Glaser
- Institut für Theoretische Physik, Universität Leipzig, Leipzig, Germany.
| | | |
Collapse
|
47
|
Sussman DM, Schweizer KS. Communication: Effects of stress on the tube confinement potential and dynamics of topologically entangled rod fluids. J Chem Phys 2011; 135:131104. [DOI: 10.1063/1.3651143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel M. Sussman
- Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
| | - Kenneth S. Schweizer
- Departments of Materials Science, Chemistry and Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
48
|
Yamaoka H, Matsushita S, Shimada Y, Adachi T. Multiscale modeling and mechanics of filamentous actin cytoskeleton. Biomech Model Mechanobiol 2011; 11:291-302. [PMID: 21614531 DOI: 10.1007/s10237-011-0317-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/08/2011] [Indexed: 01/07/2023]
Affiliation(s)
- Hidetaka Yamaoka
- Computational Cell Biomechanics Team, VCAD System Research Program, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | | | | |
Collapse
|
49
|
Thüroff F, Obermayer B, Frey E. Longitudinal response of confined semiflexible polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:021802. [PMID: 21405854 DOI: 10.1103/physreve.83.021802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Indexed: 05/15/2023]
Abstract
The longitudinal response of single semiflexible polymers to sudden changes in externally applied forces is known to be controlled by the propagation and relaxation of backbone tension. Under many experimental circumstances, realized, for example, in nanofluidic devices or in polymeric networks or solutions, these polymers are effectively confined in a channel- or tubelike geometry. By means of heuristic scaling laws and rigorous analytical theory, we analyze the tension dynamics of confined semiflexible polymers for various generic experimental setups. It turns out that in contrast to the well-known linear response, the influence of confinement on the nonlinear dynamics can largely be described as that of an effective prestress. We also study the free relaxation of an initially confined chain, finding a surprising superlinear ~t(9/8) growth law for the change in end-to-end distance at short times.
Collapse
Affiliation(s)
- Florian Thüroff
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), LMU München, Theresienstraße 37, D-80333 München, Germany
| | | | | |
Collapse
|
50
|
Glaser J, Chakraborty D, Kroy K, Lauter I, Degawa M, Kirchgessner N, Hoffmann B, Merkel R, Giesen M. Tube width fluctuations in F-actin solutions. PHYSICAL REVIEW LETTERS 2010; 105:037801. [PMID: 20867808 DOI: 10.1103/physrevlett.105.037801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Indexed: 05/29/2023]
Abstract
We determine the statistics of the local tube width in F-actin solutions, beyond the usually reported mean value. Our experimental observations are explained by a segment fluid theory based on the binary collision approximation. In this systematic generalization of the standard mean-field approach, effective polymer segments interact via a potential representing the topological constraints. The analytically predicted universal tube width distribution with a stretched tail is in good agreement with the data.
Collapse
Affiliation(s)
- J Glaser
- Institut für Theoretische Physik, Universität Leipzig, PF 100920, 04009 Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|