1
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
2
|
Otrin N, Otrin L, Bednarz C, Träger TK, Hamdi F, Kastritis PL, Ivanov I, Sundmacher K. Protein-Rich Rafts in Hybrid Polymer/Lipid Giant Unilamellar Vesicles. Biomacromolecules 2024; 25:778-791. [PMID: 38190609 PMCID: PMC10865357 DOI: 10.1021/acs.biomac.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Considerable attention has been dedicated to lipid rafts due to their importance in numerous cell functions such as membrane trafficking, polarization, and signaling. Next to studies in living cells, artificial micrometer-sized vesicles with a minimal set of components are established as a major tool to understand the phase separation dynamics and their intimate interplay with membrane proteins. In parallel, mixtures of phospholipids and certain amphiphilic polymers simultaneously offer an interface for proteins and mimic this segregation behavior, presenting a tangible synthetic alternative for fundamental studies and bottom-up design of cellular mimics. However, the simultaneous insertion of complex and sensitive membrane proteins is experimentally challenging and thus far has been largely limited to natural lipids. Here, we present the co-reconstitution of the proton pump bo3 oxidase and the proton consumer ATP synthase in hybrid polymer/lipid giant unilamellar vesicles (GUVs) via fusion/electroformation. Variations of the current method allow for tailored reconstitution protocols and control of the vesicle size. In particular, mixing of protein-free and protein-functionalized nanosized vesicles in the electroformation film results in larger GUVs, while separate reconstitution of the respiratory enzymes enables higher ATP synthesis rates. Furthermore, protein labeling provides a synthetic mechanism for phase separation and protein sequestration, mimicking lipid- and protein-mediated domain formation in nature. The latter means opens further possibilities for re-enacting phenomena like supercomplex assembly or symmetry breaking and enriches the toolbox of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Nika Otrin
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Lado Otrin
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Claudia Bednarz
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Toni K. Träger
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
| | - Panagiotis L. Kastritis
- Interdisciplinary
Research Center HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Biozentrum, 06120 Halle/Saale, Germany
- Institute
of Chemical Biology, National Hellenic Research
Foundation, 11635 Athens, Greece
| | - Ivan Ivanov
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
- Grup
de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Spain
| | - Kai Sundmacher
- Process
Systems Engineering, Max Planck Institute
for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany
| |
Collapse
|
3
|
Stępień P, Świątek S, Robles MYY, Markiewicz-Mizera J, Balakrishnan D, Inaba-Inoue S, De Vries AH, Beis K, Marrink SJ, Heddle JG. CRAFTing Delivery of Membrane Proteins into Protocells using Nanodiscs. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 38015973 PMCID: PMC10726305 DOI: 10.1021/acsami.3c11894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
For the successful generative engineering of functional artificial cells, a convenient and controllable means of delivering membrane proteins into membrane lipid bilayers is necessary. Here we report a delivery system that achieves this by employing membrane protein-carrying nanodiscs and the calcium-dependent fusion of phosphatidylserine lipid membranes. We show that lipid nanodiscs can fuse a transported lipid bilayer with the lipid bilayers of small unilamellar vesicles (SUVs) or giant unilamellar vesicles (GUVs) while avoiding recipient vesicles aggregation. This is triggered by a simple, transient increase in calcium concentration, which results in efficient and rapid fusion in a one-pot reaction. Furthermore, nanodiscs can be loaded with membrane proteins that can be delivered into target SUV or GUV membranes in a detergent-independent fashion while retaining their functionality. Nanodiscs have a proven ability to carry a wide range of membrane proteins, control their oligomeric state, and are highly adaptable. Given this, our approach may be the basis for the development of useful tools that will allow bespoke delivery of membrane proteins to protocells, equipping them with the cell-like ability to exchange material across outer/subcellular membranes.
Collapse
Affiliation(s)
- Piotr Stępień
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Sylwia Świątek
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | | | | | - Dhanasekaran Balakrishnan
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
- Postgraduate
School of Molecular Medicine, Żwirki i Wigury 61, Warsaw 02-091, Poland
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Alex H. De Vries
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K.
- Rutherford
Appleton Laboratory, Research Complex at
Harwell, Didcot, Oxfordshire OX11 0FA, U.K.
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jonathan G. Heddle
- Malopolska
Centre of Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
4
|
Singha T, Polley A, Barma M. Clustering of lipids driven by integrin. SOFT MATTER 2023; 19:6814-6824. [PMID: 37654180 DOI: 10.1039/d3sm00809f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Integrin is an important transmembrane receptor protein which remodels the actin network and anchors the cell membrane towards the extracellular matrix via mechanochemical pathways. The clustering of specific lipids and lipid-anchored proteins, which is essential for a certain type of endocytosis process, is facilitated at integrin-mediated active regions. To study this, we propose a minimal exactly solvable model which includes the interplay of stochastic shuttling between integrin on and off states with the intrinsic dynamics of the membrane. We propose a two-step mechanism in which the integrin induces an aster-like arrangement in the actin network, followed by clustering of lipids in that region. We obtain an analytic expression for the deformation and local membrane velocity, and thereby the evolution of clustering mediated by a single integrin. The deformation evolves nonmonotonically and its dependence on the stochastic shuttling timescales and membrane properties is elucidated. Our estimates of the area of the deformed region and the number of lipids in it indicate strong clustering.
Collapse
Affiliation(s)
- Tapas Singha
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Anirban Polley
- Shanmugha Arts, Science, Technology and Research Academy, Tirumalaisamudram, Thanjavur, Tamilnadu 613401, India
- National Centre for Biological Sciences, UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Mustansir Barma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
| |
Collapse
|
5
|
Agrawal V, Pandey V, Mitra D. Active buckling of pressurized spherical shells: Monte Carlo simulation. Phys Rev E 2023; 108:L032601. [PMID: 37849090 DOI: 10.1103/physreve.108.l032601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/06/2023] [Indexed: 10/19/2023]
Abstract
We study the buckling of pressurized spherical shells by Monte Carlo simulations in which the detailed balance is explicitly broken-thereby driving the shell to be active, out of thermal equilibrium. Such a shell typically has either higher (active) or lower (sedate) fluctuations compared to one in thermal equilibrium depending on how the detailed balance is broken. We show that, for the same set of elastic parameters, a shell that is not buckled in thermal equilibrium can be buckled if turned active. Similarly a shell that is buckled in thermal equilibrium can unbuckle if sedated. Based on this result, we suggest that it is possible to experimentally design microscopic elastic shells whose buckling can be optically controlled.
Collapse
Affiliation(s)
- Vipin Agrawal
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
- Department of Physics, Stockholm University, AlbaNova University Centre, Fysikum, 106 91 Stockholm, Sweden
| | - Vikash Pandey
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| | - Dhrubaditya Mitra
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| |
Collapse
|
6
|
Singha T. Mean first-passage time of an active fluctuating membrane with stochastic resetting. Phys Rev E 2023; 107:044117. [PMID: 37198788 DOI: 10.1103/physreve.107.044117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/27/2023] [Indexed: 05/19/2023]
Abstract
We study the mean first-passage time of a one-dimensional active fluctuating membrane that is stochastically returned to the same flat initial condition at a finite rate. We start with a Fokker-Planck equation to describe the evolution of the membrane coupled with an Ornstein-Uhlenbeck type of active noise. Using the method of characteristics, we solve the equation and obtain the joint distribution of the membrane height and active noise. In order to obtain the mean first-passage time (MFPT), we further obtain a relation between the MFPT and a propagator that includes stochastic resetting. The derived relation is then used to calculate it analytically. Our studies show that the MFPT increases with a larger resetting rate and decreases with a smaller rate, i.e., there is an optimal resetting rate. We compare the results in terms of MFPT of the membrane with active and thermal noises for different membrane properties. The optimal resetting rate is much smaller with active noise compared to thermal. When the resetting rate is much lower than the optimal rate, we demonstrate how the MFPT scales with resetting rates, distance to the target, and the properties of the membranes.
Collapse
Affiliation(s)
- Tapas Singha
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005 Paris, France
| |
Collapse
|
7
|
Hosaka Y, Andelman D, Komura S. Pair dynamics of active force dipoles in an odd-viscous fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:18. [PMID: 36947274 DOI: 10.1140/epje/s10189-023-00265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We discuss the lateral dynamics of two active force dipoles, which interact with each other via hydrodynamic interactions in a thin fluid layer that is active and chiral. The fluid layer is modeled as a two-dimensional (2D) compressible fluid with an odd viscosity, while the force dipole (representing an active protein or enzyme) induces a dipolar flow. Taking into account the momentum decay in the 2D fluid, we obtain analytically the mobility tensor that depends on the odd viscosity and includes nonreciprocal hydrodynamic interactions. We find that the particle pair shows spiral behavior due to the transverse flow induced by the odd viscosity. When the magnitude of the odd viscosity is large as compared with the shear viscosity, two types of oscillatory behaviors are seen. One of them can be understood as arising from closed orbits in dynamical systems, and its circular trajectories are determined by the ratio between the magnitude of the odd viscosity and the force dipole. In addition, the phase diagrams of the particle dipolar angles are obtained numerically. Our findings reveal that the nonreciprocal response leads to complex dynamics of active particles embedded in an active fluid with odd viscosity.
Collapse
Affiliation(s)
- Yuto Hosaka
- Max Planck Institute for Dynamics and Self-Organization (MPI DS), Am Faßberg 17, 37077, Göttingen, Germany
| | - David Andelman
- School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Shigeyuki Komura
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China.
- Oujiang Laboratory, Wenzhou, 325000, Zhejiang, China.
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, 192-0397, Japan.
| |
Collapse
|
8
|
Yang Y, Gress H, Ekinci KL. Measurement of the low-frequency charge noise of bacteria. Phys Rev E 2022; 105:064413. [PMID: 35854507 DOI: 10.1103/physreve.105.064413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Abstract
Bacteria meticulously regulate their intracellular ion concentrations and create ionic concentration gradients across the bacterial membrane. These ionic concentration gradients provide free energy for many cellular processes and are maintained by transmembrane transport. Given the physical dimensions of a bacterium and the stochasticity in transmembrane transport, intracellular ion concentrations and hence the charge state of a bacterium are bound to fluctuate. Here we investigate the charge noise of hundreds of nonmotile bacteria by combining electrical measurement techniques from condensed matter physics with microfluidics. In our experiments, bacteria in a microchannel generate charge density fluctuations in the embedding electrolyte due to random influx and efflux of ions. Detected as electrical resistance noise, these charge density fluctuations display a power spectral density proportional to 1/f^{2} for frequencies 0.05Hz≤f≤1Hz. Fits to a simple noise model suggest that the steady-state charge of a bacterium fluctuates by ±1.30×10^{6}e(e≈1.60×10^{-19}C), indicating that bacterial ion homeostasis is highly dynamic and dominated by strong charge noise. The rms charge noise can then be used to estimate the fluctuations in the membrane potential; however, the estimates are unreliable due to our limited understanding of the intracellular concentration gradients.
Collapse
Affiliation(s)
- Yichao Yang
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Hagen Gress
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Kamil L Ekinci
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
9
|
Hosaka Y, Komura S, Andelman D. Hydrodynamic lift of a two-dimensional liquid domain with odd viscosity. Phys Rev E 2021; 104:064613. [PMID: 35030884 DOI: 10.1103/physreve.104.064613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/12/2021] [Indexed: 11/07/2022]
Abstract
We discuss hydrodynamic forces acting on a two-dimensional liquid domain that moves laterally within a supported fluid membrane in the presence of odd viscosity. Since active rotating proteins can accumulate inside the domain, we focus on the difference in odd viscosity between the inside and outside of the domain. Taking into account the momentum leakage from a two-dimensional incompressible fluid to the underlying substrate, we analytically obtain the fluid flow induced by the lateral domain motion and calculate the drag and lift forces acting on the moving liquid domain. In contrast to the passive case without odd viscosity, the lateral lift arises in the active case only when the in and out odd viscosities are different. The in-out contrast in the odd viscosity leads to nonreciprocal hydrodynamic responses of an active liquid domain.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.,Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - David Andelman
- School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Mukhina T, Gerelli Y, Hemmerle A, Koutsioubas A, Kovalev K, Teulon JM, Pellequer JL, Daillant J, Charitat T, Fragneto G. Insertion and activation of functional Bacteriorhodopsin in a floating bilayer. J Colloid Interface Sci 2021; 597:370-382. [PMID: 33894545 DOI: 10.1016/j.jcis.2021.03.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method. The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single and floating bilayers with the aim of determining the structure and composition of this membrane-protein system before and after protein reconstitution at sub-nanometer resolution. Lipid bilayer integrity and protein activity were preserved upon the reconstitution process. Reversible structural modifications of the membrane, induced by the bacteriorhodopsin functional activity triggered by visible light, were observed and characterized at the nanoscale.
Collapse
Affiliation(s)
- Tetiana Mukhina
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Yuri Gerelli
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France; Marche Polytechnic University, Department of Life and Environmental Sciences, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arnaud Hemmerle
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Kirill Kovalev
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France; Institute of Biological Information Processing (IBI-7), Structural Biochemistry, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany; Jülich Centre for Structural Biology, Forschungszentrum Jülich, 52428, Wilhelm-Johnen-Straße, Jülich, Germany; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141071, 9 Institutskiy per., Dolgoprudny, Russia; Institute of Crystallography, RWTH Aachen University, 52066, Jägerstraße 17-19, Aachen, Germany
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), F-38000 Grenoble, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Thierry Charitat
- Institut Charles Sadron, Université de Strasbourg, CNRS, UPR 22, 67034 Strasbourg, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 av.des Martyrs, BP 156, 38042 Grenoble Cedex, France
| |
Collapse
|
11
|
Undulation of a moving fluid membrane pushed by filament growth. Sci Rep 2021; 11:7985. [PMID: 33846435 PMCID: PMC8041810 DOI: 10.1038/s41598-021-87073-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Biomembranes experience out-of-equilibrium conditions in living cells. Their undulation spectra are different from those in thermal equilibrium. Here, we report on the undulation of a fluid membrane pushed by the stepwise growth of filaments as in the leading edge of migrating cells, using three-dimensional Monte Carlo simulations. The undulations are largely modified from equilibrium behavior. When the tension is constrained, the low-wave-number modes are suppressed or enhanced at small or large growth step sizes, respectively, for high membrane surface tensions. In contrast, they are always suppressed for the tensionless membrane, wherein the wave-number range of the suppression depends on the step size. When the membrane area is constrained, in addition to these features, a specific mode is excited for zero and low surface tensions. The reduction of the undulation first induces membrane buckling at the lowest wave-number, and subsequently, other modes are excited, leading to a steady state.
Collapse
|
12
|
Al-Izzi SC, Sens P, Turner MS, Komura S. Dynamics of passive and active membrane tubes. SOFT MATTER 2020; 16:9319-9330. [PMID: 32935733 DOI: 10.1039/d0sm01290d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Utilising Onsager's variational formulation, we derive dynamical equations for the relaxation of a fluid membrane tube in the limit of small deformation, allowing for a contrast of solvent viscosity across the membrane and variations in surface tension due to membrane incompressibility. We compute the relaxation rates, recovering known results in the case of purely axis-symmetric perturbations and making new predictions for higher order (azimuthal) m-modes. We analyse the long and short wavelength limits of these modes by making use of various asymptotic arguments. We incorporate stochastic terms to our dynamical equations suitable to describe both passive thermal forces and non-equilibrium active forces. We derive expressions for the fluctuation amplitudes, an effective temperature associated with active fluctuations, and the power spectral density for both the thermal and active fluctuations. We discuss an experimental assay that might enable measurement of these fluctuations to infer the properties of the active noise. Finally we discuss our results in the context of active membranes more generally and give an overview of some open questions in the field.
Collapse
Affiliation(s)
- Sami C Al-Izzi
- School of Physics & EMBL-Australia node in Single Molecule Science, University of New South Wales, Sydney, Australia and Department of Mathematics, University of Warwick, Coventry CV4 7AL, UK and Institut Curie, PSL Research University, CNRS, Physical Chemistry Curie, F-75005, Paris, France and Sorbonne Université, CNRS, UMR 168, F-75005, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS, Physical Chemistry Curie, F-75005, Paris, France and Sorbonne Université, CNRS, UMR 168, F-75005, Paris, France
| | - Matthew S Turner
- Department of Physics & Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK and Department of Chemical Engineering, University of Kyoto, Kyoto 615-8510, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| |
Collapse
|
13
|
Marušič N, Otrin L, Zhao Z, Lira RB, Kyrilis FL, Hamdi F, Kastritis PL, Vidaković-Koch T, Ivanov I, Sundmacher K, Dimova R. Constructing artificial respiratory chain in polymer compartments: Insights into the interplay between bo3 oxidase and the membrane. Proc Natl Acad Sci U S A 2020; 117:15006-15017. [PMID: 32554497 PMCID: PMC7334566 DOI: 10.1073/pnas.1919306117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytochrome bo3 ubiquinol oxidase is a transmembrane protein, which oxidizes ubiquinone and reduces oxygen, while pumping protons. Apart from its combination with F1Fo-ATPase to assemble a minimal ATP regeneration module, the utility of the proton pump can be extended to other applications in the context of synthetic cells such as transport, signaling, and control of enzymatic reactions. In parallel, polymers have been speculated to be phospholipid mimics with respect to their ability to self-assemble in compartments with increased stability. However, their usability as interfaces for complex membrane proteins has remained questionable. In the present work, we optimized a fusion/electroformation approach to reconstitute bo3 oxidase in giant unilamellar vesicles made of PDMS-g-PEO and/or phosphatidylcholine (PC). This enabled optical access, while microfluidic trapping allowed for online analysis of individual vesicles. The tight polymer membranes and the inward oriented enzyme caused 1 pH unit difference in 30 min, with an initial rate of 0.35 pH·min-1 To understand the interplay in these composite systems, we studied the relevant mechanical and rheological membrane properties. Remarkably, the proton permeability of polymer/lipid hybrids decreased after protein insertion, while the latter also led to a 20% increase of the polymer diffusion coefficient in polymersomes. In addition, PDMS-g-PEO increased the activity lifetime and the resistance to free radicals. These advantageous properties may open diverse applications, ranging from cell-free biotechnology to biomedicine. Furthermore, the presented study serves as a comprehensive road map for studying the interactions between membrane proteins and synthetic membranes, which will be fundamental for the successful engineering of such hybrid systems.
Collapse
Affiliation(s)
- Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Lado Otrin
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Ziliang Zhao
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Rafael B Lira
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Tanja Vidaković-Koch
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;
| | - Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
14
|
Liang CC, Yasuda K, Komura S, Wu KA, Chen HY. Dynamics of a membrane coupled to an active fluid. Phys Rev E 2020; 101:042601. [PMID: 32422731 DOI: 10.1103/physreve.101.042601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/11/2020] [Indexed: 11/07/2022]
Abstract
The dynamics of a membrane coupled to an active fluid on top of a substrate is considered theoretically. It is assumed that the director field of the active fluid has rotational symmetry in the membrane plane. This situation is likely to be relevant for in vitro reconstructed actomyosin-membrane system. Different from a membrane coupled to a polar active fluid, this model predicts that only when the viscosity of the fluid above the membrane is sufficiently large, a contractile active fluid is able to slow down the relaxation of the membrane for perturbations with wavelength comparable to the thickness of the active fluid. Hence, our model predicts a finite-wavelength instability in the limit of strong contractility, which is different from a membrane coupled to a polar active fluid. However, a membrane coupled to an extensile active fluid is always unstable against long-wavelength perturbations due to active extensile stress enhanced membrane undulation.
Collapse
Affiliation(s)
- Chia-Chun Liang
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kento Yasuda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
| | - Kuo-An Wu
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsuan-Yi Chen
- Department of Physics, National Central University, Jhongli 32001, Taiwan.,Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
15
|
Takatori SC, Sahu A. Active Contact Forces Drive Nonequilibrium Fluctuations in Membrane Vesicles. PHYSICAL REVIEW LETTERS 2020; 124:158102. [PMID: 32357050 DOI: 10.1103/physrevlett.124.158102] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/20/2020] [Indexed: 05/24/2023]
Abstract
We analyze the nonequilibrium shape fluctuations of giant unilamellar vesicles encapsulating motile bacteria. Owing to bacteria-membrane collisions, we experimentally observe a significant increase in the magnitude of membrane fluctuations at low wave numbers, compared to the well-known thermal fluctuation spectrum. We interrogate these results by numerically simulating membrane height fluctuations via a modified Langevin equation, which includes bacteria-membrane contact forces. Taking advantage of the lengthscale and timescale separation of these contact forces and thermal noise, we further corroborate our results with an approximate theoretical solution to the dynamical membrane equations. Our theory and simulations demonstrate excellent agreement with nonequilibrium fluctuations observed in experiments. Moreover, our theory reveals that the fluctuation-dissipation theorem is not broken by the bacteria; rather, membrane fluctuations can be decomposed into thermal and active components.
Collapse
Affiliation(s)
- Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Amaresh Sahu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
16
|
Mura F, Gradziuk G, Broedersz CP. Mesoscopic non-equilibrium measures can reveal intrinsic features of the active driving. SOFT MATTER 2019; 15:8067-8076. [PMID: 31576897 DOI: 10.1039/c9sm01169b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological assemblies such as chromosomes, membranes, and the cytoskeleton are driven out of equilibrium at the nanoscale by enzymatic activity and molecular motors. Similar non-equilibrium dynamics can be realized in synthetic systems, such as chemically fueled colloidal particles. Characterizing the stochastic non-equilibrium dynamics of such active soft assemblies still remains a challenge. Recently, new non-invasive approaches have been proposed to determine the non-equilibrium behavior, which are based on detecting broken detailed balance in the stochastic trajectories of several coordinates of the system. Inspired by the method of two-point microrheology, in which the equilibrium fluctuations of a pair of probe particles reveal the viscoelastic response of an equilibrium system, here, we investigate whether we can extend such an approach to non-equilibrium assemblies: can one extract information on the nature of the active driving in a system from the analysis of a two-point non-equilibrium measure? We address this question theoretically in the context of a class of elastic systems, driven out of equilibrium by a spatially heterogeneous stochastic internal driving. We consider several scenarios for the spatial features of the internal driving that may be relevant in biological and synthetic systems, and investigate how such features of the active noise may be reflected in the long-range scaling behavior of two-point non-equilibrium measures.
Collapse
Affiliation(s)
- Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | - Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| |
Collapse
|
17
|
Statistical Mechanics of an Elastically Pinned Membrane: Equilibrium Dynamics and Power Spectrum. Biophys J 2019; 117:542-552. [PMID: 31349987 DOI: 10.1016/j.bpj.2019.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 11/21/2022] Open
Abstract
In biological settings, membranes typically interact locally with other membranes: the extracellular matrix in the exterior or internal cellular structures such as the cytoskeleton, locally pinning the membrane. Characterizing the dynamical properties of such interactions presents a difficult task. Significant progress has been achieved through simulations and experiments, yet analytical progress in modeling pinned membranes has been impeded by the complexity of governing equations. Here, we circumvent these difficulties by calculating analytically the time-dependent Green's function of the operator governing the dynamics of an elastically pinned membrane in a hydrodynamic surrounding and subject to external forces. This enables us to calculate the equilibrium power spectral density for an overdamped membrane pinned by an elastic, permanently attached spring subject to thermal excitations. By considering the effects of the finite experimental resolution on the measured spectra, we show that the elasticity of the pinning can be extracted from the experimentally measured spectrum. Membrane fluctuations can thus be used as a tool to probe mechanical properties of the underlying structures. Such a tool may be particularly relevant in the context of cell mechanics, in which the elasticity of the membrane's attachment to the cytoskeleton could be measured.
Collapse
|
18
|
Gradziuk G, Mura F, Broedersz CP. Scaling behavior of nonequilibrium measures in internally driven elastic assemblies. Phys Rev E 2019; 99:052406. [PMID: 31212437 DOI: 10.1103/physreve.99.052406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/07/2022]
Abstract
Detecting and quantifying nonequilibrium activity is essential for studying internally driven assemblies, including synthetic active matter and complex living systems such as cells or tissue. We discuss a noninvasive approach of measuring nonequilibrium behavior based on the breaking of detailed balance. We focus on "cycling frequencies"-the average frequency with which the trajectories of pairs of degrees of freedom revolve in phase space-and explain their connection with other nonequilibrium measures, including the area enclosing rate and the entropy production rate. We test our approach on simple toy models composed of elastic networks immersed in a viscous fluid with site-dependent internal driving. We prove both numerically and analytically that the cycling frequencies obey a power law as a function of distance between the tracked degrees of freedom. Importantly, the behavior of the cycling frequencies contains information about the dimensionality of the system and the amplitude of active noise. The mapping we use in our analytical approach thus offers a convenient framework for predicting the behavior of two-point nonequilibrium measures for a given activity distribution in the network.
Collapse
Affiliation(s)
- Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| |
Collapse
|
19
|
Knežević M, Jiang H, Wang S. Active Tuning of Synaptic Patterns Enhances Immune Discrimination. PHYSICAL REVIEW LETTERS 2018; 121:238101. [PMID: 30576186 DOI: 10.1103/physrevlett.121.238101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/07/2018] [Indexed: 06/09/2023]
Abstract
Immune cells learn about their antigenic targets using tactile sense: a self-organized motif named immunological synapse forms between an immune cell and an antigen-presenting cell (APC) during recognition. Via synapses, immune cells apply mechanical pulling forces to selectively extract antigen (Ag) from APCs. Curiously, depending on its stage of development, a B lymphocyte exhibits distinct synaptic patterns and uses force at different strength and timing, which appears to strongly impact its ability to distinguish Ag affinities. We use a statistical-mechanical model to study how the experimentally observed synaptic architectures can originate from normal cytoskeletal forces coupled to the lateral organization of mobile receptors, and show how this active regulation scheme, collective in nature, may enhance the efficiency and capacity of discrimination.
Collapse
Affiliation(s)
- Miloš Knežević
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hongda Jiang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
20
|
Alimohamadi H, Rangamani P. Modeling Membrane Curvature Generation due to Membrane⁻Protein Interactions. Biomolecules 2018; 8:E120. [PMID: 30360496 PMCID: PMC6316661 DOI: 10.3390/biom8040120] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
To alter and adjust the shape of the plasma membrane, cells harness various mechanisms of curvature generation. Many of these curvature generation mechanisms rely on the interactions between peripheral membrane proteins, integral membrane proteins, and lipids in the bilayer membrane. Mathematical and computational modeling of membrane curvature generation has provided great insights into the physics underlying these processes. However, one of the challenges in modeling these processes is identifying the suitable constitutive relationships that describe the membrane free energy including protein distribution and curvature generation capability. Here, we review some of the commonly used continuum elastic membrane models that have been developed for this purpose and discuss their applications. Finally, we address some fundamental challenges that future theoretical methods need to overcome to push the boundaries of current model applications.
Collapse
Affiliation(s)
- Haleh Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
21
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|
22
|
Ota Y, Hosaka Y, Yasuda K, Komura S. Three-disk microswimmer in a supported fluid membrane. Phys Rev E 2018; 97:052612. [PMID: 29906974 DOI: 10.1103/physreve.97.052612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 06/08/2023]
Abstract
A model of three-disk micromachine swimming in a quasi-two-dimensional supported membrane is proposed. We calculate the average swimming velocity as a function of the disk size and the arm length. Due to the presence of the hydrodynamic screening length in the quasi-two-dimensional fluid, the geometric factor appearing in the average velocity exhibits three different asymptotic behaviors depending on the microswimmer size and the hydrodynamic screening length. This is in sharp contrast with a microswimmer in a three-dimensional bulk fluid that shows only a single scaling behavior. We also find that the maximum velocity is obtained when the disks are equal-sized, whereas it is minimized when the average arm lengths are identical. The intrinsic drag of the disks on the substrate does not alter the scaling behaviors of the geometric factor.
Collapse
Affiliation(s)
- Yui Ota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Yuto Hosaka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kento Yasuda
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
23
|
Thoms VL, Hormel TT, Reyer MA, Parthasarathy R. Tension Independence of Lipid Diffusion and Membrane Viscosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12510-12515. [PMID: 28984459 DOI: 10.1021/acs.langmuir.7b02917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The diffusion of biomolecules at lipid membranes is governed by the viscosity of the underlying two-dimensionally fluid lipid bilayer. For common three-dimensional fluids, viscosity can be modulated by hydrostatic pressure, and pressure-viscosity data have been measured for decades. Remarkably, the two-dimensional analogue of this relationship, the dependence of molecular mobility on tension, has to the best of our knowledge never been measured for lipid bilayers, limiting our understanding of cellular mechanotransduction as well as the fundamental fluid mechanics of membranes. Here we report both molecular-scale and mesoscopic measures of fluidity in giant lipid vesicles as a function of mechanical tension applied using micropipette aspiration. Both molecular-scale data, from fluorescence recovery after photobleaching, and micron-scale data, from tracking the diffusion of phase-separated domains, show a surprisingly weak dependence of viscosity on tension, in contrast to predictions of recent molecular dynamics simulations, highlighting fundamental gaps in our understanding of membrane fluidity.
Collapse
Affiliation(s)
- Vincent L Thoms
- Department of Physics and Materials Science Institute, The University of Oregon , Eugene, Oregon 97403-1274, United States
| | - Tristan T Hormel
- Department of Physics and Materials Science Institute, The University of Oregon , Eugene, Oregon 97403-1274, United States
| | - Matthew A Reyer
- Department of Physics and Materials Science Institute, The University of Oregon , Eugene, Oregon 97403-1274, United States
| | - Raghuveer Parthasarathy
- Department of Physics and Materials Science Institute, The University of Oregon , Eugene, Oregon 97403-1274, United States
| |
Collapse
|
24
|
Nonequilibrium fluctuations of lipid membranes by the rotating motor protein F 1F 0-ATP synthase. Proc Natl Acad Sci U S A 2017; 114:11291-11296. [PMID: 29073046 PMCID: PMC5664490 DOI: 10.1073/pnas.1701207114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The shape of biological membranes is constantly remodeled and maintained out of equilibrium by active proteins. The functional capacity of membrane deformation is mainly determined by the mechanical interplay between protein activity and bending elasticity. In our experiments, we find that ATP synthase, a rotating membrane protein that synthesizes the biochemical energy in cells through proton-pumping activity across the membrane, promotes localized nonequilibrium membrane fluctuations when reconstituted in giant lipid vesicles. The large membrane deformations emerge from the pumping action of rotating proteins clustered at specific emplacements in the membrane. Our results pave the way to new experimental realizations to explore the collective effects of rotating ATP synthases and their possible biological implications for biomembrane organization and protein functionality. ATP synthase is a rotating membrane protein that synthesizes ATP through proton-pumping activity across the membrane. To unveil the mechanical impact of this molecular active pump on the bending properties of its lipid environment, we have functionally reconstituted the ATP synthase in giant unilamellar vesicles and tracked the membrane fluctuations by means of flickering spectroscopy. We find that ATP synthase rotates at a frequency of about 20 Hz, promoting large nonequilibrium deformations at discrete hot spots in lipid vesicles and thus inducing an overall membrane softening. The enhanced nonequilibrium fluctuations are compatible with an accumulation of active proteins at highly curved membrane sites through a curvature−protein coupling mechanism that supports the emergence of collective effects of rotating ATP synthases in lipid membranes.
Collapse
|
25
|
Moleiro L, Mell M, Bocanegra R, López-Montero I, Fouquet P, Hellweg T, Carrascosa J, Monroy F. Permeability modes in fluctuating lipid membranes with DNA-translocating pores. Adv Colloid Interface Sci 2017; 247:543-554. [PMID: 28735883 DOI: 10.1016/j.cis.2017.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
Abstract
Membrane pores can significantly alter not only the permeation dynamics of biological membranes but also their elasticity. Large membrane pores able to transport macromolecular contents represent an interesting model to test theoretical predictions that assign active-like (non-equilibrium) behavior to the permeability contributions to the enhanced membrane fluctuations existing in permeable membranes [Maneville et al. Phys. Rev. Lett. 82, 4356 (1999)]. Such high-amplitude active contributions arise from the forced transport of solvent and solutes through the open pores, which becomes even dominant at large permeability. In this paper, we present a detailed experimental analysis of the active shape fluctuations that appear in highly permeable lipid vesicles with large macromolecular pores inserted in the lipid membrane, which are a consequence of transport permeability events occurred in an osmotic gradient. The experimental results are found in quantitative agreement with theory, showing a remarkable dependence with the density of membrane pores and giving account of mechanical compliances and permeability rates that are compatible with the large size of the membrane pore considered. The presence of individual permeation events has been detected in the fluctuation time-series, from which a stochastic distribution of the permeation events compatible with a shot-noise has been deduced. The non-equilibrium character of the membrane fluctuations in a permeation field, even if the membrane pores are mere passive transporters, is clearly demonstrated. Finally, a bio-nano-technology outlook of the proposed synthetic concept is given on the context of prospective uses as active membrane DNA-pores exploitable in gen-delivery applications based on lipid vesicles.
Collapse
|
26
|
Hosaka Y, Yasuda K, Okamoto R, Komura S. Lateral diffusion induced by active proteins in a biomembrane. Phys Rev E 2017; 95:052407. [PMID: 28618510 DOI: 10.1103/physreve.95.052407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 06/07/2023]
Abstract
We discuss the hydrodynamic collective effects due to active protein molecules that are immersed in lipid bilayer membranes and modeled as stochastic force dipoles. We specifically take into account the presence of the bulk solvent that surrounds the two-dimensional fluid membrane. Two membrane geometries are considered: the free membrane case and the confined membrane case. Using the generalized membrane mobility tensors, we estimate the active diffusion coefficient and the drift velocity as a function of the size of a diffusing object. The hydrodynamic screening lengths distinguish the two asymptotic regimes of these quantities. Furthermore, the competition between the thermal and nonthermal contributions in the total diffusion coefficient is characterized by two length scales corresponding to the two membrane geometries. These characteristic lengths describe the crossover between different asymptotic behaviors when they are larger than the hydrodynamic screening lengths.
Collapse
Affiliation(s)
- Yuto Hosaka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kento Yasuda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryuichi Okamoto
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
27
|
Lemière J, Valentino F, Campillo C, Sykes C. How cellular membrane properties are affected by the actin cytoskeleton. Biochimie 2016; 130:33-40. [PMID: 27693515 DOI: 10.1016/j.biochi.2016.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/26/2016] [Indexed: 11/30/2022]
Abstract
Lipid membranes define the boundaries of living cells and intracellular compartments. The dynamic remodelling of these membranes by the cytoskeleton, a very dynamic structure made of active biopolymers, is crucial in many biological processes such as motility or division. In this review, we present some aspects of cellular membranes and how they are affected by the presence of the actin cytoskeleton. We show that, in parallel with the direct study of membranes and cytoskeleton in vivo, biomimetic in vitro systems allow reconstitution of biological processes in a controlled environment. In particular, we show that liposomes, or giant unilamellar vesicles, encapsulating a reconstituted actin network polymerizing at their membrane are suitable models of living cells and can be used to decipher the relative contributions of membrane and actin on the mechanical properties of the cellular interface.
Collapse
Affiliation(s)
- J Lemière
- Department of Molecular Biophysics and Biochemistry, Nanobiology Institute, Yale University, New Haven, CT, USA.
| | - F Valentino
- Institut Curie, PSL Research University, CNRS, UMR 168, 75005, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, 75005, Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas-Mann, 75205, Paris, France
| | - C Campillo
- Université Evry Val d'Essonne, LAMBE, Boulevard F Mitterrand, Evry, 91025, France
| | - C Sykes
- Institut Curie, PSL Research University, CNRS, UMR 168, 75005, Paris, France.
| |
Collapse
|
28
|
Koyano Y, Kitahata H, Mikhailov AS. Hydrodynamic collective effects of active proteins in biological membranes. Phys Rev E 2016; 94:022416. [PMID: 27627343 DOI: 10.1103/physreve.94.022416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Indexed: 11/07/2022]
Abstract
Lipid bilayers forming biological membranes are known to behave as viscous two-dimensional fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it was shown [A. S. Mikhailov and R. Kapral, Proc. Natl. Acad. Sci. USA 112, E3639 (2015)PNASA60027-842410.1073/pnas.1506825112] that such active proteins should induce nonthermal fluctuating lipid flows leading to diffusion enhancement and chemotaxislike drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.
Collapse
Affiliation(s)
- Yuki Koyano
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - Alexander S Mikhailov
- Abteilung Physikalische Chemie, Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany.,Department of Mathematical and Life Sciences, Hiroshima University, Hiroshima 739-8526, Japan
| |
Collapse
|
29
|
Jørgensen IL, Kemmer GC, Pomorski TG. Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:103-119. [DOI: 10.1007/s00249-016-1155-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/18/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
|
30
|
Biner O, Schick T, Müller Y, von Ballmoos C. Delivery of membrane proteins into small and giant unilamellar vesicles by charge-mediated fusion. FEBS Lett 2016; 590:2051-62. [DOI: 10.1002/1873-3468.12233] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Olivier Biner
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Switzerland
| | - Thomas Schick
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
- Graduate School for Cellular and Biomedical Sciences; University of Bern; Switzerland
| | - Yannic Müller
- Department of Chemistry and Biochemistry; University of Bern; Switzerland
| | | |
Collapse
|
31
|
Yasuda K, Komura S, Okamoto R. Dynamics of a membrane interacting with an active wall. Phys Rev E 2016; 93:052407. [PMID: 27300924 DOI: 10.1103/physreve.93.052407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 11/07/2022]
Abstract
Active motions of a biological membrane can be induced by nonthermal fluctuations that occur in the outer environment of the membrane. We discuss the dynamics of a membrane interacting hydrodynamically with an active wall that exerts random velocities on the ambient fluid. Solving the hydrodynamic equations of a bound membrane, we first derive a dynamic equation for the membrane fluctuation amplitude in the presence of different types of walls. Membrane two-point correlation functions are calculated for three different cases: (i) a static wall, (ii) an active wall, and (iii) an active wall with an intrinsic time scale. We focus on the mean squared displacement (MSD) of a tagged membrane describing the Brownian motion of a membrane segment. For the static wall case, there are two asymptotic regimes of MSD (∼t^{2/3} and ∼t^{1/3}) when the hydrodynamic decay rate changes monotonically. In the case of an active wall, the MSD grows linearly in time (∼t) in the early stage, which is unusual for a membrane segment. This linear-growth region of the MSD is further extended when the active wall has a finite intrinsic time scale.
Collapse
Affiliation(s)
- Kento Yasuda
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shigeyuki Komura
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Ryuichi Okamoto
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
32
|
Monzel C, Schmidt D, Seifert U, Smith AS, Merkel R, Sengupta K. Nanometric thermal fluctuations of weakly confined biomembranes measured with microsecond time-resolution. SOFT MATTER 2016; 12:4755-4768. [PMID: 27142463 DOI: 10.1039/c6sm00412a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We probe the bending fluctuations of bio-membranes using highly deflated giant unilamellar vesicles (GUVs) bound to a substrate by a weak potential arising from generic interactions. The substrate is either homogeneous, with GUVs bound only by the weak potential, or is chemically functionalized with a micro-pattern of very strong specific binders. In both cases, the weakly adhered membrane is seen to be confined at a well-defined distance above the surface while it continues to fluctuate strongly. We quantify the fluctuations of the weakly confined membrane at the substrate proximal surface as well as of the free membrane at the distal surface of the same GUV. This strategy enables us to probe in detail the damping of fluctuations in the presence of the substrate, and to independently measure the membrane tension and the strength of the generic interaction potential. Measurements were done using two complementary techniques - dynamic optical displacement spectroscopy (DODS, resolution: 20 nm, 10 μs), and dual wavelength reflection interference contrast microscopy (DW-RICM, resolution: 4 nm, 50 ms). After accounting for the spatio-temporal resolution of the techniques, an excellent agreement between the two measurements was obtained. For both weakly confined systems we explore in detail the link between fluctuations on the one hand and membrane tension and the interaction potential on the other hand.
Collapse
Affiliation(s)
- Cornelia Monzel
- Aix-Marseille Université, CNRS UMR 7325 (Centre Interdisciplinaire de Nanosciences de Marseille - CINaM), Marseille Cedex 9, France. and Institute of Complex Systems 7 (ICS-7), Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Schmidt
- II. Institut für Theoretische Physik, Universität Stuttgart, Germany and Institut für Theoretische Physik, Friedrich Alexander Universität Erlangen-Nürnberg, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, Germany
| | - Ana-Sunčana Smith
- Institut für Theoretische Physik, Friedrich Alexander Universität Erlangen-Nürnberg, Germany and Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Rudolf Merkel
- Institute of Complex Systems 7 (ICS-7), Forschungszentrum Jülich, Jülich, Germany
| | - Kheya Sengupta
- Aix-Marseille Université, CNRS UMR 7325 (Centre Interdisciplinaire de Nanosciences de Marseille - CINaM), Marseille Cedex 9, France.
| |
Collapse
|
33
|
Alert R, Casademunt J, Brugués J, Sens P. Model for probing membrane-cortex adhesion by micropipette aspiration and fluctuation spectroscopy. Biophys J 2016; 108:1878-86. [PMID: 25902428 DOI: 10.1016/j.bpj.2015.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 02/25/2015] [Accepted: 02/25/2015] [Indexed: 10/23/2022] Open
Abstract
We propose a model for membrane-cortex adhesion that couples membrane deformations, hydrodynamics, and kinetics of membrane-cortex ligands. In its simplest form, the model gives explicit predictions for the critical pressure for membrane detachment and for the value of adhesion energy. We show that these quantities exhibit a significant dependence on the active acto-myosin stresses. The model provides a simple framework to access quantitative information on cortical activity by means of micropipette experiments. We also extend the model to incorporate fluctuations and show that detailed information on the stability of membrane-cortex coupling can be obtained by a combination of micropipette aspiration and fluctuation spectroscopy measurements.
Collapse
Affiliation(s)
- Ricard Alert
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Casademunt
- Departament d'Estructura i Constituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Max Planck Institute for Physics of Complex Systems, Dresden, Germany.
| | - Pierre Sens
- Laboratoire Gulliver, Centre National de la Recherche Scientifique-ESPCI Paris Tech, UMR 7083, Paris, France.
| |
Collapse
|
34
|
Komura S, Yasuda K, Okamoto R. Dynamics of two-component membranes surrounded by viscoelastic media. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:432001. [PMID: 26448393 DOI: 10.1088/0953-8984/27/43/432001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We discuss the dynamics of two-component fluid membranes which are surrounded by viscoelastic media. We assume that membrane-embedded proteins can diffuse laterally and induce a local membrane curvature. The mean squared displacement of a tagged membrane segment is obtained as a generalized Einstein relation. When the elasticity of the surrounding media obeys a power-law behavior in frequency, an anomalous diffusion of the membrane segment is predicted. We also consider the situation where the proteins generate active non-equilibrium forces. The generalized Einstein relation is further modified by an effective temperature that depends on the force dipole energy. The obtained generalized Einstein relations are useful for membrane microrheology experiments.
Collapse
Affiliation(s)
- Shigeyuki Komura
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | | | | |
Collapse
|
35
|
Rangamani P, Mandadap KK, Oster G. Protein-induced membrane curvature alters local membrane tension. Biophys J 2015; 107:751-762. [PMID: 25099814 DOI: 10.1016/j.bpj.2014.06.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/01/2014] [Accepted: 06/09/2014] [Indexed: 10/24/2022] Open
Abstract
Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins.
Collapse
Affiliation(s)
- Padmini Rangamani
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California
| | - Kranthi K Mandadap
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California; Department of Chemistry, University of California at Berkeley, Berkeley, California
| | - George Oster
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California.
| |
Collapse
|
36
|
Mallory SA, Valeriani C, Cacciuto A. Anomalous dynamics of an elastic membrane in an active fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012314. [PMID: 26274169 DOI: 10.1103/physreve.92.012314] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Using numerical simulations, we characterized the behavior of an elastic membrane immersed in an active fluid. Our findings reveal a nontrivial folding and re-expansion of the membrane that is controlled by the interplay of its resistance to bending and the self-propulsion strength of the active components in solution. We show how flexible membranes tend to collapse into multifolded states, whereas stiff membranes fluctuate between an extended configuration and a singly folded state. This study provides a simple example of how to exploit the random motion of active particles to perform mechanical work at the microscale.
Collapse
Affiliation(s)
- S A Mallory
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - C Valeriani
- Departamento de Fisica Aplicada I, Facultad de Ciencias Fisica, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
37
|
Janshoff A, Steinem C. Mechanics of lipid bilayers: What do we learn from pore-spanning membranes? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2977-83. [PMID: 26025679 DOI: 10.1016/j.bbamcr.2015.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022]
Abstract
The mechanical properties of biological membranes have become increasingly important not only from a biophysical viewpoint but also as they play a substantial role in the information transfer in cells and tissues. This minireview summarizes some of our recent understanding of the mechanical properties of artificial model membranes with particular emphasis on membranes suspending an array of pores, so called pore-spanning membranes. A theoretical description of the mechanical properties of these membranes might pave the way to biophysically describe and understand the complex behavior of native biological membranes. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Andreas Janshoff
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany; Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany; Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, 37077 Göttingen, Germany.
| |
Collapse
|
38
|
Taloni A, Kardash E, Salman OU, Truskinovsky L, Zapperi S, La Porta CAM. Volume Changes During Active Shape Fluctuations in Cells. PHYSICAL REVIEW LETTERS 2015; 114:208101. [PMID: 26047252 DOI: 10.1103/physrevlett.114.208101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Indexed: 06/04/2023]
Abstract
Cells modify their volume in response to changes in osmotic pressure but it is usually assumed that other active shape variations do not involve significant volume fluctuations. Here we report experiments demonstrating that water transport in and out of the cell is needed for the formation of blebs, commonly observed protrusions in the plasma membrane driven by cortex contraction. We develop and simulate a model of fluid-mediated membrane-cortex deformations and show that a permeable membrane is necessary for bleb formation which is otherwise impaired. Taken together, our experimental and theoretical results emphasize the subtle balance between hydrodynamics and elasticity in actively driven cell morphological changes.
Collapse
Affiliation(s)
- Alessandro Taloni
- CNR-Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via Roberto Cozzi 53, 20125 Milano, Italy
- Center for Complexity and Biosystems and Department of Physics, University of Milano, Via Celoria 16, 20133 Milano, Italy
| | - Elena Kardash
- Departments of Biochemistry and Molecular Biology, Sciences II, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| | - Oguz Umut Salman
- CNR-Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via Roberto Cozzi 53, 20125 Milano, Italy
- CNRS, LSPM UPR3407, Université Paris 13, Sorbonne Paris Cit, 93430 Villetaneuse, France
| | - Lev Truskinovsky
- LMS, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - Stefano Zapperi
- CNR-Consiglio Nazionale delle Ricerche, Istituto per l'Energetica e le Interfasi, Via Roberto Cozzi 53, 20125 Milano, Italy
- Center for Complexity and Biosystems and Department of Physics, University of Milano, Via Celoria 16, 20133 Milano, Italy
- Institute for Scientific Interchange Foundation, Via Alassio 11/C, 10126 Torino, Italy
- Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076 Aalto, Finland
| | - Caterina A M La Porta
- Center for Complexity and Biosystems and Department of Bioscience, University of Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
39
|
|
40
|
Maitra A, Srivastava P, Rao M, Ramaswamy S. Activating membranes. PHYSICAL REVIEW LETTERS 2014; 112:258101. [PMID: 25014831 DOI: 10.1103/physrevlett.112.258101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Indexed: 06/03/2023]
Abstract
We present a general dynamical theory of a membrane coupled to an actin cortex containing polymerizing filaments with active stresses and currents, and demonstrate that active membrane dynamics [S. Ramaswamy et al., Phys. Rev. Lett. 84, 3494 (2000)] and spontaneous shape oscillations emerge from this description. We also consider membrane instabilities and patterns induced by the presence of filaments with polar orientational correlations in the tangent plane of the membrane. The dynamical features we predict should be seen in a variety of cellular contexts involving the dynamics of the membrane-cytoskeleton composite and cytoskeletal extracts coupled to synthetic vesicles.
Collapse
Affiliation(s)
- Ananyo Maitra
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Pragya Srivastava
- Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080, India
| | - Madan Rao
- Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080, India and National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore 560 065, India
| | - Sriram Ramaswamy
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India and TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Osman Sagar Road, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
41
|
Shi Z, Baumgart T. Dynamics and instabilities of lipid bilayer membrane shapes. Adv Colloid Interface Sci 2014; 208:76-88. [PMID: 24529968 DOI: 10.1016/j.cis.2014.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/12/2014] [Accepted: 01/12/2014] [Indexed: 01/14/2023]
Abstract
Biological membranes undergo constant shape remodeling involving the formation of highly curved structures. The lipid bilayer represents the fundamental architecture of the cellular membrane with its shapes determined by the Helfrich curvature bending energy. However, the dynamics of bilayer shape transitions, especially their modulation by membrane proteins, and the resulting shape instabilities, are still not well understood. Here, we review in a unifying manner several theories that describe the fluctuations (i.e. undulations) of bilayer shapes as well as their local coupling with lipid or protein density variation. The coupling between local membrane curvature and lipid density gives rise to a 'slipping mode' in addition to the conventional 'bending mode' for damping the membrane fluctuation. This leads to a number of interesting experimental phenomena regarding bilayer shape dynamics. More importantly, curvature-inducing proteins can couple with membrane shape and eventually render the membrane unstable. A criterion for membrane shape instability is derived from a linear stability analysis. The instability criterion reemphasizes the importance of membrane tension in regulating the stability and dynamics of membrane geometry. Recent progresses in understanding the role of membrane tension in regulating dynamical cellular processes are also reviewed. Protein density is emphasized as a key factor in regulating membrane shape transitions: a threshold density of curvature coupling proteins is required for inducing membrane morphology transitions.
Collapse
Affiliation(s)
- Zheng Shi
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104, USA
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, 231 S. 34th St., Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Dimova R. Recent developments in the field of bending rigidity measurements on membranes. Adv Colloid Interface Sci 2014; 208:225-34. [PMID: 24666592 DOI: 10.1016/j.cis.2014.03.003] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 12/19/2022]
Abstract
This review gives a brief overview of experimental approaches used to assess the bending rigidity of membranes. Emphasis is placed on techniques based on the use of giant unilamellar vesicles. We summarize the effect on the bending rigidity of membranes as a function of membrane composition, presence of various inclusions in the bilayer and molecules and ions in the bathing solutions. Examples for the impact of temperature, cholesterol, some peptides and proteins, sugars and salts are provided and the literature data are discussed critically. Future directions, open questions and possible developments in this research field are also included.
Collapse
Affiliation(s)
- Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| |
Collapse
|
43
|
Reusch T, Mai DD, Osterhoff M, Khakhulin D, Wulff M, Salditt T. Nonequilibrium collective dynamics in photoexcited lipid multilayers by time resolved diffuse x-ray scattering. PHYSICAL REVIEW LETTERS 2013; 111:268101. [PMID: 24483815 DOI: 10.1103/physrevlett.111.268101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Indexed: 06/03/2023]
Abstract
We study the nonequilibrium shape fluctuations in fluorescence labeled phospholipid multibilayers composed of the model lipid DOPC and the well-known lipid dye Texas red, driven out of equilibrium by short laser pulses. The temporal evolution of the lipid bilayer undulations after excitation was recorded by time resolved x-ray diffraction. Already at moderate peak intensities (Pp≤10(5) W/cm2), pulsed laser illumination leads to significant changes of the undulation modes in a well-defined lateral wavelength band. The observed phenomena evolve on nano- to microsecond time scales after optical excitation, and can be described in terms of a modulation instability in the lipid multilamellar stack.
Collapse
Affiliation(s)
- T Reusch
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - D D Mai
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - M Osterhoff
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - D Khakhulin
- European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble, France
| | - M Wulff
- European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, 38000 Grenoble, France
| | - T Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
44
|
Sarkar N, Basu A. Generic instabilities in a fluid membrane coupled to a thin layer of ordered active polar fluid. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:86. [PMID: 23933986 DOI: 10.1140/epje/i2013-13086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
We develop an effective two-dimensional coarse-grained description for the coupled system of a planar fluid membrane anchored to a thin layer of polar ordered active fluid below. The macroscopic orientation of the active fluid layer is assumed to be perpendicular to the attached membrane. We demonstrate that activity or nonequilibrium drive of the active fluid makes such a system generically linearly unstable for either signature of a model parameter [Formula: see text] [Formula: see text] that characterises the strength of activity. Depending upon boundary conditions and within a range of the model parameters, underdamped propagating waves may be present in our model. We discuss the phenomenological significance of our results.
Collapse
Affiliation(s)
- Niladri Sarkar
- Theoretical Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, 700 064 Calcutta, India.
| | | |
Collapse
|
45
|
Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:126001. [PMID: 23168354 DOI: 10.1088/0034-4885/75/12/126001] [Citation(s) in RCA: 1213] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Collapse
Affiliation(s)
- Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
46
|
Sarkar N, Basu A. Instabilities and diffusion in a hydrodynamic model of a fluid membrane coupled to a thin active fluid layer. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:115. [PMID: 23149567 DOI: 10.1140/epje/i2012-12115-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/19/2012] [Indexed: 06/01/2023]
Abstract
We construct a coarse-grained effective two-dimensional (2d hydrodynamic theory as a theoretical model for a coupled system of a fluid membrane and a thin layer of a polar active fluid in its ordered state that is anchored to the membrane. We show that such a system is prone to generic instabilities through the interplay of nonequilibrium drive, polar order and membrane fluctuation. We use our model equations to calculate diffusion coefficients of an inclusion in the membrane and show that their values depend strongly on the system size, in contrast to their equilibrium values. Our work extends the work of S. Sankararaman and S. Ramaswamy (Phys. Rev. Lett., 102, 118107 (2009)) to a coupled system of a fluid membrane and an ordered active fluid layer. Our model is broadly inspired by and should be useful as a starting point for theoretical descriptions of the coupled dynamics of a cell membrane and a cortical actin layer anchored to it.
Collapse
Affiliation(s)
- N Sarkar
- Theoretical Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Calcutta, India.
| | | |
Collapse
|
47
|
Loubet B, Seifert U, Lomholt MA. Effective tension and fluctuations in active membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031913. [PMID: 22587129 DOI: 10.1103/physreve.85.031913] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Indexed: 05/31/2023]
Abstract
We calculate the fluctuation spectrum of the shape of a lipid vesicle or cell exposed to a nonthermal source of noise. In particular, we take constraints on the membrane area and the volume of fluid that it encapsulates into account when obtaining expressions for the dependency of the membrane tension on the noise. We then investigate three possible origins of the nonthermal noise taken from the literature: A direct force, which models an external medium pushing on the membrane, a curvature force, which models a fluctuating spontaneous curvature, and a permeation force coming from an active transport of fluid through the membrane. For the direct force and curvature force cases, we compare our results to existing experiments on active membranes.
Collapse
Affiliation(s)
- Bastien Loubet
- Department of Physics, MEMPHYS-Center for Biomembrane Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | | | | |
Collapse
|
48
|
Chattopadhyay AK. Role of fluctuations in membrane models: thermal versus nonthermal. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:032101. [PMID: 22060432 DOI: 10.1103/physreve.84.032101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/24/2011] [Indexed: 05/31/2023]
Abstract
We study the comparative importance of thermal to nonthermal fluctuations for membrane-based models in the linear regime. Our results, both in 1+1 and 2+1 dimensions, suggest that nonthermal fluctuations dominate thermal ones only when the relaxation time τ is large. For moderate to small values of τ, the dynamics is defined by a competition between these two forces. The results are expected to act as a quantitative benchmark for biological modeling in systems involving cytoskeletal and other nonthermal fluctuations.
Collapse
Affiliation(s)
- Amit K Chattopadhyay
- Aston University, Non-linearity and Complexity Research Group, EAS, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
49
|
Evans AA, Lauga E. Fluid transport by active elastic membranes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:031924. [PMID: 22060420 DOI: 10.1103/physreve.84.031924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Indexed: 05/31/2023]
Abstract
A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape and the resulting fluid motion result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.
Collapse
Affiliation(s)
- Arthur A Evans
- Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | |
Collapse
|
50
|
Mouritsen OG. Lipids, curvature, and nano-medicine. EUR J LIPID SCI TECH 2011; 113:1174-1187. [PMID: 22164124 PMCID: PMC3229985 DOI: 10.1002/ejlt.201100050] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 12/29/2022]
Abstract
The physical properties of the lamellar lipid-bilayer component of biological membranes are controlled by a host of thermodynamic forces leading to overall tensionless bilayers with a conspicuous lateral pressure profile and build-in curvature-stress instabilities that may be released locally or globally in terms of morphological changes. In particular, the average molecular shape and the propensity of the different lipid and protein species for forming non-lamellar and curved structures are a source of structural transitions and control of biological function. The effects of different lipids, sterols, and proteins on membrane structure are discussed and it is shown how one can take advantage of the curvature-stress modulations brought about by specific molecular agents, such as fatty acids, lysolipids, and other amphiphilic solutes, to construct intelligent drug-delivery systems that function by enzymatic triggering via curvature.Practical applications: The simple concept of lipid molecular shape and how it impacts on the structure of lipid aggregates, in particular the curvature and curvature stress in lipid bilayers and liposomes, can be exploited to construct liposome-based drug-delivery systems, e.g., for use as nano-medicine in cancer therapy. Non-lamellar-forming lysolipids and fatty acids, some of which may be designed to be prodrugs, can be created by phospholipase action in diseased tissues thereby providing for targeted drug release and proliferation of molecular entities with conical shape that break down the permeability barrier of the target cells and may hence enhance efficacy.
Collapse
Affiliation(s)
- Ole G Mouritsen
- MEMPHYS - Center for Biomembrane Physics, Department of Physics and Chemistry, University of Southern Denmark Campusvej, Odense M, Denmark
| |
Collapse
|