1
|
Chatterjee S, De R, Hens C, Dana SK, Kapitaniak T, Bhattacharyya S. Response of a three-species cyclic ecosystem to a short-lived elevation of death rate. Sci Rep 2023; 13:20740. [PMID: 38007582 PMCID: PMC10676407 DOI: 10.1038/s41598-023-48104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
A balanced ecosystem with coexisting constituent species is often perturbed by different natural events that persist only for a finite duration of time. What becomes important is whether, in the aftermath, the ecosystem recovers its balance or not. Here we study the fate of an ecosystem by monitoring the dynamics of a particular species that encounters a sudden increase in death rate. For exploration of the fate of the species, we use Monte-Carlo simulation on a three-species cyclic rock-paper-scissor model. The density of the affected (by perturbation) species is found to drop exponentially immediately after the pulse is applied. In spite of showing this exponential decay as a short-time behavior, there exists a region in parameter space where this species surprisingly remains as a single survivor, wiping out the other two which had not been directly affected by the perturbation. Numerical simulations using stochastic differential equations of the species give consistency to our results.
Collapse
Affiliation(s)
- Sourin Chatterjee
- Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata, West Bengal, 741246, India
| | - Rina De
- Department of Physics, Raja Rammohun Roy Mahavidyalaya, Radhanagar, Hooghly, 712406, India
| | - Chittaranjan Hens
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Gachibowli, Hyderabad, 500 032, India
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | - Syamal K Dana
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Faculty of Mechanical Engineering, Lodz University of Technology, 90-924, Lodz, Poland
| | | |
Collapse
|
2
|
Universal scaling of extinction time in stochastic evolutionary dynamics. Sci Rep 2022; 12:22403. [PMID: 36575301 PMCID: PMC9794815 DOI: 10.1038/s41598-022-27102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
Evolutionary dynamics is well captured by the replicator equations when the population is infinite and well-mixed. However, the extinction dynamics is modified with finite and structured populations. Experiments on the non-transitive ecosystem containing three populations of bacteria found that the ecological stability sensitively depends on the spatial structure of the populations. Based on the Reference-Gamble-Birth algorithm, we use agent-based Monte Carlo simulations to investigate the extinction dynamics in the rock-paper-scissors ecosystem with finite and structured populations. On the fully-connected network, the extinction time in stable and unstable regimes falls into two universal functions when plotted with the rescaled variables. On the two dimensional grid, the spatial structure changes the transition boundary between stable and unstable regimes but doesn't change its extinction trend. The finding of universal scaling in extinction dynamics is unexpected, and may provide a powerful method to classify different evolutionary dynamics into universal classes.
Collapse
|
3
|
Hajihashemi M, Aghababaei Samani K. Multi-strategy evolutionary games: A Markov chain approach. PLoS One 2022; 17:e0263979. [PMID: 35176094 PMCID: PMC8853582 DOI: 10.1371/journal.pone.0263979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Interacting strategies in evolutionary games is studied analytically in a well-mixed population using a Markov chain method. By establishing a correspondence between an evolutionary game and Markov chain dynamics, we show that results obtained from the fundamental matrix method in Markov chain dynamics are equivalent to corresponding ones in the evolutionary game. In the conventional fundamental matrix method, quantities like fixation probability and fixation time are calculable. Using a theorem in the fundamental matrix method, conditional fixation time in the absorbing Markov chain is calculable. Also, in the ergodic Markov chain, the stationary probability distribution that describes the Markov chain’s stationary state is calculable analytically. Finally, the Rock, scissor, paper evolutionary game are evaluated as an example, and the results of the analytical method and simulations are compared. Using this analytical method saves time and computational facility compared to prevalent simulation methods.
Collapse
Affiliation(s)
- Mahdi Hajihashemi
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
- * E-mail:
| | | |
Collapse
|
4
|
Godara P, Aléman TD, Herminghaus S. Bounded rational agents playing a public goods game. Phys Rev E 2022; 105:024114. [PMID: 35291115 DOI: 10.1103/physreve.105.024114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
An agent-based model for human behavior in the well-known public goods game (PGG) is developed making use of bounded rationality, but without invoking mechanisms of learning. The underlying Markov decision process is driven by a path integral formulation of reward maximization. The parameters of the model can be related to human preferences accessible to measurement. Fitting simulated game trajectories to available experimental data, we demonstrate that our agents are capable of modeling human behavior in PGG quite well, including aspects of cooperation emerging from the game. We find that only two fitting parameters are relevant to account for the variations in playing behavior observed in 16 cities from all over the world. We thereby find that learning is not a necessary ingredient to account for empirical data.
Collapse
Affiliation(s)
- Prakhar Godara
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Tilman Diego Aléman
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Stephan Herminghaus
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Ursell T. Structured environments foster competitor coexistence by manipulating interspecies interfaces. PLoS Comput Biol 2021; 17:e1007762. [PMID: 33412560 PMCID: PMC7790539 DOI: 10.1371/journal.pcbi.1007762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Natural environments, like soils or the mammalian gut, frequently contain microbial consortia competing within a niche, wherein many species contain genetically encoded mechanisms of interspecies competition. Recent computational work suggests that physical structures in the environment can stabilize local competition between species that would otherwise be subject to competitive exclusion under isotropic conditions. Here we employ Lotka-Volterra models to show that interfacial competition localizes to physical structures, stabilizing competitive ecological networks of many species, even with significant differences in the strength of competitive interactions between species. Within a limited range of parameter space, we show that for stable communities the length-scale of physical structure inversely correlates with the width of the distribution of competitive fitness, such that physical environments with finer structure can sustain a broader spectrum of interspecific competition. These results highlight the potentially stabilizing effects of physical structure on microbial communities and lay groundwork for engineering structures that stabilize and/or select for diverse communities of ecological, medical, or industrial utility.
Collapse
Affiliation(s)
- Tristan Ursell
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
- Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America
- Department of Physics, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
6
|
Liao MJ, Miano A, Nguyen CB, Chao L, Hasty J. Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli. Nat Commun 2020; 11:6055. [PMID: 33247128 PMCID: PMC7699631 DOI: 10.1038/s41467-020-19963-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022] Open
Abstract
Hierarchical organization in ecology, whereby interactions are nested in a manner that leads to a dominant species, naturally result in the exclusion of all but the dominant competitor. Alternatively, non-hierarchical competitive dynamics, such as cyclical interactions, can sustain biodiversity. Here, we designed a simple microbial community with three strains of E. coli that cyclically interact through (i) the inhibition of protein production, (ii) the digestion of genomic DNA, and (iii) the disruption of the cell membrane. We find that intrinsic differences in these three major mechanisms of bacterial warfare lead to an unbalanced community that is dominated by the weakest strain. We also use a computational model to describe how the relative toxin strengths, initial fractional occupancies, and spatial patterns affect the maintenance of biodiversity. The engineering of active warfare between microbial species establishes a framework for exploration of the underlying principles that drive complex ecological interactions. The maintenance of ecological diversity depends on the strength and direction of competitive interactions, but these interactions are difficult to study in microbial communities. Here the authors use engineered E. coli strains to show that competitively weak strains can persist when pairwise interactions are asymmetrical.
Collapse
Affiliation(s)
- Michael J Liao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Arianna Miano
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.,BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Chloe B Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Lin Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA. .,Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Vandermeer J, Perfecto I. Endogenous spatial pattern formation from two intersecting ecological mechanisms: the dynamic coexistence of two noxious invasive ant species in Puerto Rico. Proc Biol Sci 2020; 287:20202214. [PMID: 33049175 PMCID: PMC7657856 DOI: 10.1098/rspb.2020.2214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Endogenous (or autonomous, or emergent) spatial pattern formation is a subject transcending a variety of sciences. In ecology, there is growing interest in how spatial patterns can 'emerge' from internal system processes and simultaneously affect those very processes. A classic situation emerges when a predator's focus on a dominant competitor releases competitive pressure on a subdominant competitor, allowing coexistence of the two. If this idea is formulated spatially, two interesting consequences immediately arise. First, a spatial predator/prey system may take the form of a Turing instability, in which an activator (the dispersing prey population) is contained by a repressor (the more rapidly dispersing predator population) generating a spatial pattern of clusters of prey and predators, and second, an indirect intransitive loop (where A beats B beats C beats A) emerges from the simple fact that the system is spatial. Two common invasive ant species, Wasmannia auropunctata and Solenopsis invicta, and the parasitic phorid flies of S. invicta commonly coexist in Puerto Rico. Emergent spatial patterns generated by the combination of the Turing mechanism and the indirect intransitive loop are likely to be common here. This theoretical framework and the realities of the natural history in the field could explain both the long-term coexistence of these two species, and the highly variable pattern of their occurrence across a large landscape.
Collapse
Affiliation(s)
- John Vandermeer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in the Environment, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ivette Perfecto
- Program in the Environment, University of Michigan, Ann Arbor, MI 48109, USA
- School of Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Park HJ, Pichugin Y, Traulsen A. Why is cyclic dominance so rare? eLife 2020; 9:57857. [PMID: 32886604 PMCID: PMC7473768 DOI: 10.7554/elife.57857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022] Open
Abstract
Natural populations can contain multiple types of coexisting individuals. How does natural selection maintain such diversity within and across populations? A popular theoretical basis for the maintenance of diversity is cyclic dominance, illustrated by the rock-paper-scissor game. However, it appears difficult to find cyclic dominance in nature. Why is this the case? Focusing on continuously produced novel mutations, we theoretically addressed the rareness of cyclic dominance. We developed a model of an evolving population and studied the formation of cyclic dominance. Our results showed that the chance for cyclic dominance to emerge is lower when the newly introduced type is similar to existing types compared to the introduction of an unrelated type. This suggests that cyclic dominance is more likely to evolve through the assembly of unrelated types whereas it rarely evolves within a community of similar types.
Collapse
Affiliation(s)
- Hye Jin Park
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Asia Pacific Center for Theoretical Physics, Pohang, Republic of Korea
| | - Yuriy Pichugin
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Arne Traulsen
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
9
|
Bhattacharyya S, Sinha P, De R, Hens C. Mortality makes coexistence vulnerable in evolutionary game of rock-paper-scissors. Phys Rev E 2020; 102:012220. [PMID: 32795013 DOI: 10.1103/physreve.102.012220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/13/2020] [Indexed: 11/07/2022]
Abstract
Multiple species in the ecosystem are believed to compete cyclically for maintaining balance in nature. The evolutionary dynamics of cyclic interaction crucially depends on different interactions representing different natural habits. Based on a rock-paper-scissors model of cyclic competition, we explore the role of mortality of individual organisms in the collective survival of a species. For this purpose a parameter called "natural death" is introduced. It is meant for bringing about the decease of an individual irrespective of any intra- and interspecific interaction. We perform a Monte Carlo simulation followed by a stability analysis of different fixed points of defined rate equations and observe that the natural death rate is surprisingly one of the most significant factors in deciding whether an ecosystem would come up with a coexistence or a single-species survival.
Collapse
Affiliation(s)
| | - Pritam Sinha
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Rina De
- Department of Physics, R.R.R Mahavidyalaya, Radhanagar, Hooghly 712406, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
10
|
Guo H, Song Z, Geček S, Li X, Jusup M, Perc M, Moreno Y, Boccaletti S, Wang Z. A novel route to cyclic dominance in voluntary social dilemmas. J R Soc Interface 2020; 17:20190789. [PMID: 32126192 DOI: 10.1098/rsif.2019.0789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cooperation is the backbone of modern human societies, making it a priority to understand how successful cooperation-sustaining mechanisms operate. Cyclic dominance, a non-transitive set-up comprising at least three strategies wherein the first strategy overrules the second, which overrules the third, which, in turn, overrules the first strategy, is known to maintain biodiversity, drive competition between bacterial strains, and preserve cooperation in social dilemmas. Here, we present a novel route to cyclic dominance in voluntary social dilemmas by adding to the traditional mix of cooperators, defectors and loners, a fourth player type, risk-averse hedgers, who enact tit-for-tat upon paying a hedging cost to avoid being exploited. When this cost is sufficiently small, cooperators, defectors and hedgers enter a loop of cyclic dominance that preserves cooperation even under the most adverse conditions. By contrast, when the hedging cost is large, hedgers disappear, consequently reverting to the traditional interplay of cooperators, defectors, and loners. In the interim region of hedging costs, complex evolutionary dynamics ensues, prompting transitions between states with two, three or four competing strategies. Our results thus reveal that voluntary participation is but one pathway to sustained cooperation via cyclic dominance.
Collapse
Affiliation(s)
- Hao Guo
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Zhao Song
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Sunčana Geček
- Division for Marine and Environmental Research, Ruđer Bošković Institute, HR-10002 Zagreb, Croatia
| | - Xuelong Li
- Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Marko Jusup
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.,Complexity Science Hub Vienna, Josefstädterstraße 39, Vienna 1080, Austria.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yamir Moreno
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50009 Zaragoza, Spain.,ISI Foundation, Turin 10126, Italy
| | - Stefano Boccaletti
- Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy.,Moscow Institute of Physics and Technology, National Research University, Moscow Region 141701, Russia
| | - Zhen Wang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China.,Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
11
|
Bazeia D, de Oliveira BF, Szolnoki A. Phase transitions in dependence of apex predator decaying ratio in a cyclic dominant system. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/124/68001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Avelino PP, Bazeia D, Losano L, Menezes J, de Oliveira BF, Santos MA. How directional mobility affects coexistence in rock-paper-scissors models. Phys Rev E 2018; 97:032415. [PMID: 29776155 DOI: 10.1103/physreve.97.032415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Indexed: 11/07/2022]
Abstract
This work deals with a system of three distinct species that changes in time under the presence of mobility, selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the modification of the mobility rule to the case of directional mobility, in which the species move following the direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood. Directional mobility can be used to simulate eyes that see or a nose that smells, and we show how it may contribute to reduce the probability of coexistence.
Collapse
Affiliation(s)
- P P Avelino
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, PT4169-007 Porto, Portugal
| | - D Bazeia
- Departamento de Física, Universidade Federal da Paraíba 58051-900 João Pessoa, PB, Brazil
| | - L Losano
- Departamento de Física, Universidade Federal da Paraíba 58051-900 João Pessoa, PB, Brazil
| | - J Menezes
- Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal.,Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970, Natal, RN, Brazil.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| | - M A Santos
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
13
|
Souza-Filho CA, Bazeia D, Ramos JGGS. Apex predator and the cyclic competition in a rock-paper-scissors game of three species. Phys Rev E 2017; 95:062411. [PMID: 28709300 DOI: 10.1103/physreve.95.062411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 06/07/2023]
Abstract
This work deals with the effects of an apex predator on the cyclic competition among three distinct species that follow the rules of the rock-paper-scissors game. The investigation develops standard stochastic simulations but is motivated by a procedure which is explained in the work. We add the apex predator as the fourth species in a system that contains three species that evolve following the standard rules of migration, reproduction, and predation, and study how the system evolves in this new environment, in comparison with the case in the absence of the apex predator. The results show that the apex predator engenders the tendency to spread uniformly in the lattice, contributing to destroy the spiral patterns, keeping biodiversity but diminishing the average size of the clusters of the species that compete cyclically.
Collapse
Affiliation(s)
- C A Souza-Filho
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, Campus Princesa Isabel, 58755-000, Princesa Isabel, Paraíba, Brazil
| | - D Bazeia
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| | - J G G S Ramos
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| |
Collapse
|
14
|
A novel procedure for the identification of chaos in complex biological systems. Sci Rep 2017; 7:44900. [PMID: 28322257 PMCID: PMC5359622 DOI: 10.1038/srep44900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
We demonstrate the presence of chaos in stochastic simulations that are widely used to study biodiversity in nature. The investigation deals with a set of three distinct species that evolve according to the standard rules of mobility, reproduction and predation, with predation following the cyclic rules of the popular rock, paper and scissors game. The study uncovers the possibility to distinguish between time evolutions that start from slightly different initial states, guided by the Hamming distance which heuristically unveils the chaotic behavior. The finding opens up a quantitative approach that relates the correlation length to the average density of maxima of a typical species, and an ensemble of stochastic simulations is implemented to support the procedure. The main result of the work shows how a single and simple experimental realization that counts the density of maxima associated with the chaotic evolution of the species serves to infer its correlation length. We use the result to investigate others distinct complex systems, one dealing with a set of differential equations that can be used to model a diversity of natural and artificial chaotic systems, and another one, focusing on the ocean water level.
Collapse
|
15
|
Roman A, Dasgupta D, Pleimling M. A theoretical approach to understand spatial organization in complex ecologies. J Theor Biol 2016; 403:10-16. [DOI: 10.1016/j.jtbi.2016.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
16
|
Wang X, Pan Q, Kang Y, He M. Predator group size distributions in predator–prey systems. ECOLOGICAL COMPLEXITY 2016. [DOI: 10.1016/j.ecocom.2016.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Intoy B, Pleimling M. Synchronization and extinction in cyclic games with mixed strategies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052135. [PMID: 26066147 DOI: 10.1103/physreve.91.052135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Indexed: 06/04/2023]
Abstract
We consider cyclic Lotka-Volterra models with three and four strategies where at every interaction agents play a strategy using a time-dependent probability distribution. Agents learn from a loss by reducing the probability to play a losing strategy at the next interaction. For that, an agent is described as an urn containing β balls of three and four types, respectively, where after a loss one of the balls corresponding to the losing strategy is replaced by a ball representing the winning strategy. Using both mean-field rate equations and numerical simulations, we investigate a range of quantities that allows us to characterize the properties of these cyclic models with time-dependent probability distributions. For the three-strategy case in a spatial setting we observe a transition from neutrally stable to stable when changing the level of discretization of the probability distribution. For large values of β, yielding a good approximation to a continuous distribution, spatially synchronized temporal oscillations dominate the system. For the four-strategy game the system is always neutrally stable, but different regimes emerge, depending on the size of the system and the level of discretization.
Collapse
Affiliation(s)
- Ben Intoy
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| | - Michel Pleimling
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061-0435, USA
| |
Collapse
|
18
|
Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions. Sci Rep 2014; 4:7486. [PMID: 25501627 PMCID: PMC4265771 DOI: 10.1038/srep07486] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022] Open
Abstract
Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.
Collapse
|
19
|
Szolnoki A, Mobilia M, Jiang LL, Szczesny B, Rucklidge AM, Perc M. Cyclic dominance in evolutionary games: a review. J R Soc Interface 2014; 11:20140735. [PMID: 25232048 PMCID: PMC4191105 DOI: 10.1098/rsif.2014.0735] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/22/2014] [Indexed: 11/12/2022] Open
Abstract
Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock-paper-scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest, Hungary
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, 325035 Wenzhou, People's Republic of China
| | - Bartosz Szczesny
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
20
|
Bi Z, Zhou HJ. Optimal cooperation-trap strategies for the iterated rock-paper-scissors game. PLoS One 2014; 9:e111278. [PMID: 25354212 PMCID: PMC4213018 DOI: 10.1371/journal.pone.0111278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/26/2014] [Indexed: 11/18/2022] Open
Abstract
In an iterated non-cooperative game, if all the players act to maximize their individual accumulated payoff, the system as a whole usually converges to a Nash equilibrium that poorly benefits any player. Here we show that such an undesirable destiny is avoidable in an iterated Rock-Paper-Scissors (RPS) game involving two rational players, X and Y. Player X has the option of proactively adopting a cooperation-trap strategy, which enforces complete cooperation from the rational player Y and leads to a highly beneficial and maximally fair situation to both players. That maximal degree of cooperation is achievable in such a competitive system with cyclic dominance of actions may stimulate further theoretical and empirical studies on how to resolve conflicts and enhance cooperation in human societies.
Collapse
Affiliation(s)
- Zedong Bi
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
| | - Hai-Jun Zhou
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Szczesny B, Mobilia M, Rucklidge AM. Characterization of spiraling patterns in spatial rock-paper-scissors games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032704. [PMID: 25314470 DOI: 10.1103/physreve.90.032704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 06/04/2023]
Abstract
The spatiotemporal arrangement of interacting populations often influences the maintenance of species diversity and is a subject of intense research. Here, we study the spatiotemporal patterns arising from the cyclic competition between three species in two dimensions. Inspired by recent experiments, we consider a generic metapopulation model comprising "rock-paper-scissors" interactions via dominance removal and replacement, reproduction, mutations, pair exchange, and hopping of individuals. By combining analytical and numerical methods, we obtain the model's phase diagram near its Hopf bifurcation and quantitatively characterize the properties of the spiraling patterns arising in each phase. The phases characterizing the cyclic competition away from the Hopf bifurcation (at low mutation rate) are also investigated. Our analytical approach relies on the careful analysis of the properties of the complex Ginzburg-Landau equation derived through a controlled (perturbative) multiscale expansion around the model's Hopf bifurcation. Our results allow us to clarify when spatial "rock-paper-scissors" competition leads to stable spiral waves and under which circumstances they are influenced by nonlinear mobility.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
22
|
Szolnoki A, Vukov J, Perc M. From pairwise to group interactions in games of cyclic dominance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062125. [PMID: 25019743 DOI: 10.1103/physreve.89.062125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Indexed: 06/03/2023]
Abstract
We study the rock-paper-scissors game in structured populations, where the invasion rates determine individual payoffs that govern the process of strategy change. The traditional version of the game is recovered if the payoffs for each potential invasion stem from a single pairwise interaction. However, the transformation of invasion rates to payoffs also allows the usage of larger interaction ranges. In addition to the traditional pairwise interaction, we therefore consider simultaneous interactions with all nearest neighbors, as well as with all nearest and next-nearest neighbors, thus effectively going from single pair to group interactions in games of cyclic dominance. We show that differences in the interaction range affect not only the stationary fractions of strategies but also their relations of dominance. The transition from pairwise to group interactions can thus decelerate and even revert the direction of the invasion between the competing strategies. Like in evolutionary social dilemmas, in games of cyclic dominance, too, the indirect multipoint interactions that are due to group interactions hence play a pivotal role. Our results indicate that, in addition to the invasion rates, the interaction range is at least as important for the maintenance of biodiversity among cyclically competing strategies.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - Jeromos Vukov
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P. O. Box 49, H-1525 Budapest, Hungary
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
| |
Collapse
|
23
|
Ichinose G, Saito M, Sayama H, Wilson DS. Adaptive long-range migration promotes cooperation under tempting conditions. Sci Rep 2014; 3:2509. [PMID: 23974519 PMCID: PMC3752612 DOI: 10.1038/srep02509] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022] Open
Abstract
Migration is a fundamental trait in humans and animals. Recent studies investigated the effect of migration on the evolution of cooperation, showing that contingent migration favors cooperation in spatial structures. In those studies, only local migration to immediate neighbors was considered, while long-range migration has not been considered yet, partly because the long-range migration has been generally regarded as harmful for cooperation as it would bring the population to a well-mixed state that favors defection. Here, we studied the effects of adaptive long-range migration on the evolution of cooperation through agent-based simulations of a spatial Prisoner's Dilemma game where individuals can jump to a farther site if they are surrounded by more defectors. Our results show that adaptive long-range migration strongly promotes cooperation, especially under conditions where the temptation to defect is considerably high. These findings demonstrate the significance of adaptive long-range migration for the evolution of cooperation.
Collapse
Affiliation(s)
- Genki Ichinose
- Anan National College of Technology 265 Aoki Minobayashi, Anan, Tokushima 774-0017, Japan
| | | | | | | |
Collapse
|
24
|
Vukov J, Szolnoki A, Szabó G. Diverging fluctuations in a spatial five-species cyclic dominance game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022123. [PMID: 24032791 DOI: 10.1103/physreve.88.022123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 06/02/2023]
Abstract
A five-species predator-prey model is studied on a square lattice where each species has two prey and two predators on the analogy to the rock-paper-scissors-lizard-Spock game. The evolution of the spatial distribution of species is governed by site exchange and invasion between the neighboring predator-prey pairs, where the cyclic symmetry can be characterized by two different invasion rates. The mean-field analysis has indicated periodic oscillations in the species densities with a frequency becoming zero for a specific ratio of invasion rates. When varying the ratio of invasion rates, the appearance of this zero-eigenvalue mode is accompanied by neutrality between the species associations. Monte Carlo simulations of the spatial system reveal diverging fluctuations at a specific invasion rate, which can be related to the vanishing dominance between all pairs of species associations.
Collapse
Affiliation(s)
- Jeromos Vukov
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | |
Collapse
|
25
|
Guisoni NC, Loscar ES, Girardi M. Phase diagram of a cyclic predator-prey model with neutral-pair exchange. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022133. [PMID: 24032801 DOI: 10.1103/physreve.88.022133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 06/02/2023]
Abstract
In this paper we obtain the phase diagram of a four-species predator-prey lattice model by using the proposed gradient method. We consider cyclic transitions between consecutive states, representing invasion or predation, and allowed the exchange between neighboring neutral pairs. By applying a gradient in the invasion rate parameter one can see, in the same simulation, the presence of two symmetric absorbing phases, composed by neutral pairs, and an active phase that includes all four species. In this sense, the study of a single-valued interface and its fluctuations give the critical point of the irreversible phase transition and the corresponding universality classes. Also, the consideration of a multivalued interface and its fluctuations bring the percolation threshold. We show that the model presents two lines of irreversible first-order phase transition between the two absorbing phases and the active phase. Depending on the value of the system parameters, these lines can converge into a triple point, which is the beginning of a first-order irreversible line between the two absorbing phases, or end in two critical points belonging to the directed percolation universality class. Standard simulations for some characteristic values of the parameters confirm the order of the transitions as determined by the gradient method. Besides, below the triple point the model presents two standard percolation lines in the active phase and above a first-order percolation transition as already found in other similar models.
Collapse
Affiliation(s)
- Nara C Guisoni
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), Universidad Nacional de La Plata, CONICET CCT-La Plata, Calle 59-789 (1900) La Plata, Argentina
| | | | | |
Collapse
|
26
|
deForest R, Belmonte A. Spatial pattern dynamics due to the fitness gradient flux in evolutionary games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062138. [PMID: 23848658 DOI: 10.1103/physreve.87.062138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 12/12/2012] [Indexed: 06/02/2023]
Abstract
We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.
Collapse
Affiliation(s)
- Russ deForest
- The W. G. Pritchard Laboratories, Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
27
|
Rulands S, Zielinski A, Frey E. Global attractors and extinction dynamics of cyclically competing species. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052710. [PMID: 23767569 DOI: 10.1103/physreve.87.052710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Indexed: 06/02/2023]
Abstract
Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.
Collapse
Affiliation(s)
- Steffen Rulands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Physics Department, Ludwig-Maximilians-Universität München, Theresienstrasse 33, D-80333 München, Germany
| | | | | |
Collapse
|
28
|
Juul J, Sneppen K, Mathiesen J. Labyrinthine clustering in a spatial rock-paper-scissors ecosystem. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042702. [PMID: 23679446 DOI: 10.1103/physreve.87.042702] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Indexed: 06/02/2023]
Abstract
The spatial rock-paper-scissors ecosystem, where three species interact cyclically, is a model example of how spatial structure can maintain biodiversity. We here consider such a system for a broad range of interaction rates. When one species grows very slowly, this species and its prey dominate the system by self-organizing into a labyrinthine configuration in which the third species propagates. The cluster size distributions of the two dominating species have heavy tails and the configuration is stabilized through a complex spatial feedback loop. We introduce a statistical measure that quantifies the amount of clustering in the spatial system by comparison with its mean-field approximation. Hereby, we are able to quantitatively explain how the labyrinthine configuration slows down the dynamics and stabilizes the system.
Collapse
Affiliation(s)
- Jeppe Juul
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Lütz AF, Risau-Gusman S, Arenzon JJ. Intransitivity and coexistence in four species cyclic games. J Theor Biol 2013; 317:286-92. [DOI: 10.1016/j.jtbi.2012.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/06/2012] [Accepted: 10/18/2012] [Indexed: 11/29/2022]
|