1
|
Turchi M, Galmarini S, Lunati I. Learning Adsorption Patterns on Amorphous Surfaces. J Chem Theory Comput 2024; 20:7597-7610. [PMID: 39186282 PMCID: PMC11391580 DOI: 10.1021/acs.jctc.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The physicochemical heterogeneity found on amorphous surfaces leads to a complex interaction of adsorbate molecules with topological and undercoordinated defects, which enhance the adsorption capacity and can participate in catalytic reactions. The identification and analysis of the adsorption structure observed on amorphous surfaces require novel tools that allow the segmentation of the surfaces into complex-shaped regions that contrast with the periodic patterns found on crystalline surfaces. We propose a Random Forest (RF) classifier that segments the surface into regions that can then be further analyzed and classified to reveal the dynamics of the interaction with the adsorbate. The RF segmentation is applied to the surface density map of the adsorbed molecules and employs multiple features (intensity, gradient, and the eigenvalues of the Hessian matrix) which are nonlocal and allow a better identification of the adsorption structures. The segmentation depends on a set of parameters that specify the training set and can be tailored to serve the specific purpose of the segmentation. Here, we consider an example in which we aim to separate highly heterogeneous regions from weakly heterogeneous regions. We demonstrate that the RF segmentation is able to separate the surface into a fully connected weakly heterogeneous region (whose behavior is somehow similar to crystalline surfaces and has an exponential distribution of the residence time) and a very heterogeneous region characterized by a complex residence-time distribution, which is generated by the undercoordinated defects and is responsible for the peculiar characteristics of the amorphous surface.
Collapse
Affiliation(s)
- Mattia Turchi
- Laboratory for Computational Engineering, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Sandra Galmarini
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ivan Lunati
- Laboratory for Computational Engineering, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
2
|
Zhao H, Bresme F. Melting Point and Crystal Growth Kinetics of Metals and Metal Oxides Using Reactive Force Fields: The Case of Aluminum and Alumina. J Chem Theory Comput 2024; 20. [PMID: 39235996 PMCID: PMC11428160 DOI: 10.1021/acs.jctc.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Alumina and aluminum are strategic materials employed in energy applications, with metal aluminum being interesting in phase change material applications. Therefore, the theoretical description of the thermophysical properties of these materials represents an important objective. Here, we investigate the liquid-solid coexistence properties of aluminum and alumina using a state-of-the-art reactive force field (ReaxFF) and molecular dynamics simulations. Aluminum features ultrafast crystal growth, which enables the direct determination of its melting temperature via direct coexistence simulations (858 ± 2 K). However, at standard pressure, alumina is easily trapped in a glass state, preventing the application of the direct coexistence method. We demonstrate that direct coexistence can be used at high pressures above 2 GPa, where alumina features a higher melting temperature, and the liquid-solid interface exhibits enhanced dynamics. Our approach opens a route to obtain the melting temperature of ReaxFF alumina at standard pressure (1670 ± 10 K) and, more generally, a viable method for calculating the melting point of metal oxides via direct coexistence simulations. We further investigated the dynamics of crystal growth of the solid-liquid aluminum and alumina interfaces.
Collapse
Affiliation(s)
- Hao Zhao
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College, London W12 0BZ, U.K.
- State
Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College, London W12 0BZ, U.K.
| |
Collapse
|
3
|
Zheng L, Liu S, Ji F, Tong L, Xu S. Structural Causes of Brittleness Changes in Aluminosilicate Glasses with Different Cooling Rates. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1595. [PMID: 38612109 PMCID: PMC11012692 DOI: 10.3390/ma17071595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Numerous sources have already demonstrated that varying annealing rates can result in distinct toughness and brittleness in glass. To determine the underlying mechanisms driving this phenomenon, molecular dynamic (MD) simulations were employed to investigate the microstructure of aluminosilicate glasses under different cooling rates, and then uniaxial stretching was performed on them under controlled conditions. Results indicated that compared with short-range structure, cooling rate has a greater influence on the medium-range structure in glass, and it remarkably affects the volume of voids. Both factors play a crucial role in determining the brittleness of the glass. The former adjusts network connectivity to influence force transmission by manipulating the levels of bridging oxygen (BO) and non-bridging oxygen (NBO), and the latter accomplishes the objective of influencing brittleness by modifying the environmental conditions that affect the changes in BO and NBO content. The variation in the void environment results in differences in the strategies of the changes in BO and NBO content during glass stress. These findings stem from the excellent response of BO and NBO to the characteristic points of stress-strain curves during stretching. This paper holds importance in understanding the reasons behind the effect of cooling rates on glass brittleness and in enhancing our understanding of the ductile/brittle transition (DTB) in glass.
Collapse
Affiliation(s)
- Liqiang Zheng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (L.Z.); (L.T.)
| | - Shimin Liu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (L.Z.); (L.T.)
| | - Fushun Ji
- Hebei Building Materials Vocational and Technical College, Qinhuangdao 066004, China;
| | - Lianjie Tong
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (L.Z.); (L.T.)
| | - Shiqing Xu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; (L.Z.); (L.T.)
| |
Collapse
|
4
|
Bertani M, Charpentier T, Faglioni F, Pedone A. Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses. J Chem Theory Comput 2024. [PMID: 38217496 DOI: 10.1021/acs.jctc.3c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
An accurate and transferable machine learning (ML) potential for the simulation of binary sodium silicate glasses over a wide range of compositions (from 0 to 50% Na2O) was developed. The potential energy surface is approximated by the sum of atomic energy contributions mapped by a neural network algorithm from the local geometry comprising information on atomic distances and angles with neighboring atoms using the DeePMD code [Wang, H. Comput. Phys. Commun. 2018, 228, 178-184]. Our model was trained on a large data set of total energies and atomic forces computed at the density functional theory level on structures extracted from classical molecular dynamics (MD) simulations performed at several temperatures from 300 to 3000 K. This allows for the generation of a robust and transferable ML potential applicable over the full compositional range of glass formability at different temperatures that outperforms the empirical potentials available in the literature in reproducing structures and properties such as bond angle distribution, total distribution functions, and vibrational density of state. The generality of the approach enables the future training of a potential with other or more elements allowing for simulations of structures, properties, and behavior of ternary and multicomponent oxide glasses with nearly ab initio accuracy at a fraction of the computational cost.
Collapse
Affiliation(s)
- Marco Bertani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Francesco Faglioni
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Alfonso Pedone
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
5
|
Christie JK. Review: understanding the properties of amorphous materials with high-performance computing methods. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220251. [PMID: 37211037 DOI: 10.1098/rsta.2022.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/20/2023] [Indexed: 05/23/2023]
Abstract
Amorphous materials have no long-range order in their atomic structure. This makes much of the formalism for the study of crystalline materials irrelevant, and so elucidating their structure and properties is challenging. The use of computational methods is a powerful complement to experimental studies, and in this paper we review the use of high-performance computing methods in the simulation of amorphous materials. Five case studies are presented to showcase the wide range of materials and computational methods available to practitioners in this field. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.
Collapse
Affiliation(s)
- J K Christie
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
6
|
Li P, Xu X, Zhao J, Awasthi P, Qiao X, Du J, Fan X, Qian G. Lanthanide doped fluorosilicate glass-ceramics: A review on experimental and theoretical progresses. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhou Q, Shi Y, Deng B, Neuefeind J, Bauchy M. Experimental method to quantify the ring size distribution in silicate glasses and simulation validation thereof. SCIENCE ADVANCES 2021; 7:7/28/eabh1761. [PMID: 34233881 PMCID: PMC8262800 DOI: 10.1126/sciadv.abh1761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Silicate glasses have no long-range order and exhibit a short-range order that is often fairly similar to that of their crystalline counterparts. Hence, the out-of-equilibrium nature of glasses is largely encoded in their medium-range order. However, the ring size distribution-the key feature of silicate glasses' medium-range structure-remains invisible to conventional experiments and, hence, is largely unknown. Here, by combining neutron diffraction experiments and force-enhanced atomic refinement simulations for two archetypical silicate glasses, we show that rings of different sizes exhibit a distinct contribution to the first sharp diffraction peak in the structure factor. On the basis of these results, we demonstrate that the ring size distribution of silicate glasses can be determined solely from neutron diffraction patterns, by analyzing the shape of the first sharp diffraction peak. This method makes it possible to uncover the nature of silicate glasses' medium-range order.
Collapse
Affiliation(s)
- Qi Zhou
- Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| | - Ying Shi
- Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| | - Binghui Deng
- Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
| | - Jörg Neuefeind
- Neutron Scattering Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Liu C, Chu J, Chen X, Xiao J, Xu J. Molecular dynamics simulation on structure evolution of silica glass in nano-cutting at high temperature. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1791860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Changlin Liu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jianning Chu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xiao Chen
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Junfeng Xiao
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jianfeng Xu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
9
|
Urata S. An efficient computational procedure to obtain a more stable glass structure. J Chem Phys 2019; 151:224502. [DOI: 10.1063/1.5133413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Shingo Urata
- Innovative Technology Laboratories, AGC Inc., 1150 Hazawa-cho Kanagawa-ku, Yokohama 221-8755, Kanagawa, Japan
| |
Collapse
|
10
|
Larin SV, Nazarychev VM, Dobrovskiy AY, Lyulin AV, Lyulin SV. Structural Ordering in SWCNT-Polyimide Nanocomposites and Its Influence on Their Mechanical Properties. Polymers (Basel) 2018; 10:E1245. [PMID: 30961170 PMCID: PMC6401868 DOI: 10.3390/polym10111245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/01/2022] Open
Abstract
Using fully-atomistic models, tens-microseconds-long molecular-dynamic modelling was carried out for the first time to simulate the kinetics of polyimides ordering induced by the presence of single-walled carbon nanotube (SWCNT) nanofillers. Three polyimides (PI) were considered with different dianhydride fragments, namely 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,3',3,4'-biphenyltetracarboxylic dianhydride (aBPDA), and 3,3',4,4'-oxidiphthalic dianhydride (ODPA) and same diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (diamine P3). Both crystallizable PI BPDA-P3 and two amorphous polyimides ODPA-P3 and aBPDA-P3 reinforced by SWCNTs were studied. The structural properties of the nanocomposites at temperature close to the bulk polymer melting point were studied. The mechanical properties were determined for the nanocomposites cooled down to the glassy state. It was found that the SWCNT nanofiller initiates' structural ordering not only in the crystallizable BPDA-P3 but also in the amorphous ODPA-P3 samples were in agreement with previously obtained experimental results. Two stages of the structural ordering were detected in the presence of SWCNTs, namely the orientation of the planar moieties followed by the elongation of whole polymer chains. The first type of local ordering was observed on the microsecond time scale and did not lead to the change of the mechanical properties of a polymer binder in considered nanocomposites. At the end of the second stage, both BPDA-P3 and ODPA-P3 PI chains extended completely along the SWCNT surface, which in turn led to enhanced mechanical characteristics in their glassy state.
Collapse
Affiliation(s)
- Sergey V Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
| | - Victor M Nazarychev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
| | - Alexey Yu Dobrovskiy
- Faculty of Physics, St. Petersburg State University, Petrodvorets, St. Petersburg 198504, Russia.
| | - Alexey V Lyulin
- Theory of Polymers and Soft Matter Group and Center for Computational Energy Research, Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Sergey V Lyulin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia.
- Faculty of Physics, St. Petersburg State University, Petrodvorets, St. Petersburg 198504, Russia.
| |
Collapse
|
11
|
Xu Q, Engquist B. A mathematical model for fitting and predicting relaxation modulus and simulating viscoelastic responses. Proc Math Phys Eng Sci 2018; 474:20170540. [PMID: 29887741 PMCID: PMC5990701 DOI: 10.1098/rspa.2017.0540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 03/06/2018] [Indexed: 11/12/2022] Open
Abstract
We propose a mathematical model for relaxation modulus and its numerical solution. The model formula is extended from sigmoidal function considering nonlinear strain hardening. Its physical meaning can be interpreted by a macroscale elastic network-viscous medium model with only five model parameters in a simpler format than the molecular-chain-based polymer models to represent general solid materials. We also developed a finite-element (FE) framework and robust numerical algorithm to implement this model for simulating responses under both static and dynamic loadings. We validated the model through both experimental data and numerical simulations on a variety of materials including asphalt concrete, polymer, spider silk, hydrogel, agar and bone. By satisfying the second law of thermodynamics in the form of Calusius-Duhem inequality, the model is able to simulate creep and sinusoidal deformation as well as energy dissipation. Compared to the Prony series, the widely used model with a large number of model parameters, the proposed model has improved accuracy in fitting experimental data and prediction stability outside of the experimental range with competitive numerical stability and computation speed. We also present simulation results of nonlinear stress-strain relationships of spider silk and hydrogels, and dynamic responses of a multilayer structure.
Collapse
Affiliation(s)
- Qinwu Xu
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Björn Engquist
- Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Yu Y, Krishnan NMA, Smedskjaer MM, Sant G, Bauchy M. The hydrophilic-to-hydrophobic transition in glassy silica is driven by the atomic topology of its surface. J Chem Phys 2018; 148:074503. [DOI: 10.1063/1.5010934] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yingtian Yu
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - N. M. Anoop Krishnan
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - Morten M. Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
- California Nanosystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
13
|
Deng L, Du J. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations. J Chem Phys 2018; 148:024504. [DOI: 10.1063/1.5007083] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lu Deng
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, USA
| |
Collapse
|
14
|
Ren M, Lu X, Deng L, Kuo PH, Du J. B2O3/SiO2 substitution effect on structure and properties of Na2O–CaO–SrO–P2O5–SiO2 bioactive glasses from molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:14090-14104. [DOI: 10.1039/c7cp08358k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of B2O3/SiO2 substitution in SrO-containing 55S4.3 bioactive glasses on glass structure and properties, such as ionic diffusion and glass transition temperature, was investigated by combining experiments and molecular dynamics simulations with newly developed potentials.
Collapse
Affiliation(s)
- Mengguo Ren
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Xiaonan Lu
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Lu Deng
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Po-Hsuen Kuo
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Jincheng Du
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| |
Collapse
|
15
|
Li X, Song W, Yang K, Krishnan NMA, Wang B, Smedskjaer MM, Mauro JC, Sant G, Balonis M, Bauchy M. Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments. J Chem Phys 2017; 147:074501. [DOI: 10.1063/1.4998611] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xin Li
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), University of California, Los Angeles, California 90095-1593, USA
| | - Weiying Song
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), University of California, Los Angeles, California 90095-1593, USA
| | - Kai Yang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), University of California, Los Angeles, California 90095-1593, USA
| | - N. M. Anoop Krishnan
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), University of California, Los Angeles, California 90095-1593, USA
| | - Bu Wang
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), University of California, Los Angeles, California 90095-1593, USA
| | - Morten M. Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - John C. Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials, University of California, Los Angeles, California 90095-1593, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095-1593, USA
- Institute for Technology Advancement, University of California, Los Angeles, California 90095-1593, USA
| | - Magdalena Balonis
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095-1593, USA
- Institute for Technology Advancement, University of California, Los Angeles, California 90095-1593, USA
| | - Mathieu Bauchy
- Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), University of California, Los Angeles, California 90095-1593, USA
| |
Collapse
|
16
|
Tian Y, Du J, Han W, Zu X, Yuan X, Zheng W. Thermal conductivity of vitreous silica from molecular dynamics simulations: The effects of force field, heat flux and system size. J Chem Phys 2017; 146:054504. [DOI: 10.1063/1.4975162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ye Tian
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Jincheng Du
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203, USA
| | - Wei Han
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaotao Zu
- Institute for Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiaodong Yuan
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| | - Wanguo Zheng
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
17
|
Vollmayr-Lee K, Gorman CH, Castillo HE. Universal scaling in the aging of the strong glass former SiO2. J Chem Phys 2016; 144:234510. [PMID: 27334182 DOI: 10.1063/1.4953911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the aging dynamics of a strong glass former displays a strikingly simple scaling behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heterogeneities. We perform molecular dynamics simulations of SiO2 with van Beest-Kramer-van Santen interactions, quenching the system from high to low temperature, and study the evolution of the system as a function of the waiting time tw measured from the instant of the quench. We find that both the aging behavior of the dynamic susceptibility χ4 and the aging behavior of the probability distribution P(fs,r) of the local incoherent intermediate scattering function fs,r can be described by simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling forms are the same that have been found to describe the aging of several fragile glass formers and that, in the case of P(fs,r), have been also predicted theoretically. A thorough study of the length scales involved highlights the importance of intermediate length scales. We also analyze directly the scaling dependence on particle type and on wavevector q and find that both the average and the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not only independent of the wavevector q, but is also the same for O and Si atoms.
Collapse
Affiliation(s)
- Katharina Vollmayr-Lee
- Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
| | - Christopher H Gorman
- Department of Mathematics, University of California, Santa Barbara, California 93106, USA
| | - Horacio E Castillo
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
18
|
Smedskjaer MM, Bauchy M, Mauro JC, Rzoska SJ, Bockowski M. Unique effects of thermal and pressure histories on glass hardness: Structural and topological origin. J Chem Phys 2015; 143:164505. [DOI: 10.1063/1.4934540] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Morten M. Smedskjaer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Mathieu Bauchy
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, USA
| | - John C. Mauro
- Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Sylwester J. Rzoska
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw 01-142, Poland
- Institute of Physics, University of Silesia, Chorzow 41-500, Poland
| | - Michal Bockowski
- Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw 01-142, Poland
| |
Collapse
|