1
|
Liu H, Liu Z, Yang B, Lopez Morales J, Nash MA. Optimal Sacrificial Domains in Mechanical Polyproteins: S. epidermidis Adhesins Are Tuned for Work Dissipation. JACS AU 2022; 2:1417-1427. [PMID: 35783175 PMCID: PMC9241160 DOI: 10.1021/jacsau.2c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The opportunistic pathogen Staphylococcus epidermidis utilizes a multidomain surface adhesin protein to bind host components and adhere to tissues. While it is known that the interaction between the SdrG receptor and its fibrinopeptide target (FgB) is exceptionally mechanostable (∼2 nN), the influence of downstream B domains (B1 and B2) is unclear. Here, we studied the mechanical relationships between folded B domains and the SdrG receptor bound to FgB. We used protein engineering, single-molecule force spectroscopy (SMFS) with an atomic force microscope (AFM), and Monte Carlo simulations to understand how the mechanical properties of folded sacrificial domains, in general, can be optimally tuned to match the stability of a receptor-ligand complex. Analogous to macroscopic suspension systems, sacrificial shock absorber domains should neither be too weak nor too strong to optimally dissipate mechanical energy. We built artificial molecular shock absorber systems based on the nanobody (VHH) scaffold and studied the competition between domain unfolding and receptor unbinding. We quantitatively determined the optimal stability of shock absorbers that maximizes work dissipation on average for a given receptor and found that natural sacrificial domains from pathogenic S. epidermidis and Clostridium perfringens adhesins exhibit stabilities at or near this optimum within a specific range of loading rates. These findings demonstrate how tuning the stability of sacrificial domains in adhesive polyproteins can be used to maximize mechanical work dissipation and serve as an adhesion strategy by bacteria.
Collapse
Affiliation(s)
- Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Byeongseon Yang
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Joanan Lopez Morales
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
2
|
Yang B, Liu H, Liu Z, Doenen R, Nash MA. Influence of Fluorination on Single-Molecule Unfolding and Rupture Pathways of a Mechanostable Protein Adhesion Complex. NANO LETTERS 2020; 20:8940-8950. [PMID: 33191756 PMCID: PMC7729889 DOI: 10.1021/acs.nanolett.0c04178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/08/2020] [Indexed: 05/25/2023]
Abstract
We investigated the influence of fluorination on unfolding and unbinding reaction pathways of a mechanostable protein complex comprising the tandem dyad XModule-Dockerin bound to Cohesin. Using single-molecule atomic force spectroscopy, we mapped the energy landscapes governing the unfolding and unbinding reactions. We then used sense codon suppression to substitute trifluoroleucine in place of canonical leucine globally in XMod-Doc. Although TFL substitution thermally destabilized XMod-Doc, it had little effect on XMod-Doc:Coh binding affinity at equilibrium. When we mechanically dissociated global TFL-substituted XMod-Doc from Coh, we observed the emergence of a new unbinding pathway with a lower energy barrier. Counterintuitively, when fluorination was restricted to Doc, we observed mechano-stabilization of the non-fluorinated neighboring XMod domain. This suggests that intramolecular deformation is modulated by fluorination and highlights the differences between equilibrium thermostability and non-equilibrium mechanostability. Future work is poised to investigate fluorination as a means to modulate mechanical properties of synthetic proteins and hydrogels.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Zhaowei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Regina Doenen
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Liu Z, Liu H, Vera AM, Bernardi RC, Tinnefeld P, Nash MA. High force catch bond mechanism of bacterial adhesion in the human gut. Nat Commun 2020; 11:4321. [PMID: 32859904 PMCID: PMC7456326 DOI: 10.1038/s41467-020-18063-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Bacterial colonization of the human intestine requires firm adhesion of bacteria to insoluble substrates under hydrodynamic flow. Here we report the molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. Using single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations, we resolve two binding modes and three unbinding reaction pathways of a mechanically ultrastable R. champanellensis (Rc) Dockerin:Cohesin (Doc:Coh) complex. The complex assembles in two discrete binding modes with significantly different mechanical properties, with one breaking at ~500 pN and the other at ~200 pN at loading rates from 1-100 nN s-1. A neighboring X-module domain allosterically regulates the binding interaction and inhibits one of the low-force pathways at high loading rates, giving rise to a catch bonding mechanism that manifests under force ramp protocols. Multi-state Monte Carlo simulations show strong agreement with experimental results, validating the proposed kinetic scheme. These results explain mechanistically how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery and catch bonds.
Collapse
Affiliation(s)
- Zhaowei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Haipei Liu
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
| | - Andrés M Vera
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rafael C Bernardi
- NIH Center for Macromolecular Modeling and Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, Urbana, IL, USA
- Department of Physics, Auburn University, 36849, Auburn, AL, USA
| | - Philip Tinnefeld
- Faculty of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael A Nash
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, 4058, Basel, Switzerland.
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
| |
Collapse
|
4
|
Chetrit E, Meroz Y, Klausner Z, Berkovich R. Correlations within polyprotein forced unfolding dwell-times introduce sequential dependency. J Struct Biol 2020; 210:107495. [PMID: 32173465 DOI: 10.1016/j.jsb.2020.107495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/15/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Polyproteins, comprised from proteins arrayed in tandem, respond to mechanical loads through partial unfolding and extension. This response to tension that enables their physiological function is related to the ability to dynamically regulate their elasticity. The unique arrangement of their individual mechanical components (proteins and polymeric linkers), and the interactions between them eventually determines their performance. The sequential unfolding-times within a polyprotein are inherently assumed to be independent and identically distributed (iid), thus expected to follow an exponential distribution. Nevertheless, a large body of literature using single molecule force spectroscopy (SMFS) provides evidence that forced unfolding-times of N proteins within a polyprotein do not follow the exponential distribution. Here we use SMFS with Atomic Force Microscopy to measure the unfolding kinetics of Poly-(I91)8 at 180 pN. The unfolding time-intervals were statistically analysed using three common approaches, all exhibiting an N-effect: hierarchical behavior with non-identical unfolding time distributions. Using continuous time random walk approach indicates that the unfolding times display subdiffusive features. Put together with free-energy reconstruction of the whole unfolding polyprotein, we provide physical explanation for this nontrivial behavior, according to which the elongating polypeptide chain with each unfolding event intervenes with the sequential unfolding probabilities and correlates them.
Collapse
Affiliation(s)
- Einat Chetrit
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yasmine Meroz
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ziv Klausner
- Department of Applied Mathematics, Israel Institute for Biological Research, P.O. Box 19, Ness-Ziona 7410001, Israel
| | - Ronen Berkovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; The Ilze Katz Institute for Nanoscience and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
5
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
6
|
Kluger C, Braun L, Sedlak SM, Pippig DA, Bauer MS, Miller K, Milles LF, Gaub HE, Vogel V. Different Vinculin Binding Sites Use the Same Mechanism to Regulate Directional Force Transduction. Biophys J 2020; 118:1344-1356. [PMID: 32109366 PMCID: PMC7091509 DOI: 10.1016/j.bpj.2019.12.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/17/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Vinculin is a universal adaptor protein that transiently reinforces the mechanical stability of adhesion complexes. It stabilizes mechanical connections that cells establish between the actomyosin cytoskeleton and the extracellular matrix via integrins or to neighboring cells via cadherins, yet little is known regarding its mechanical design. Vinculin binding sites (VBSs) from different nonhomologous actin-binding proteins use conserved helical motifs to associate with the vinculin head domain. We studied the mechanical stability of such complexes by pulling VBS peptides derived from talin, α-actinin, and Shigella IpaA out of the vinculin head domain. Experimental data from atomic force microscopy single-molecule force spectroscopy and steered molecular dynamics (SMD) simulations both revealed greater mechanical stability of the complex for shear-like than for zipper-like pulling configurations. This suggests that reinforcement occurs along preferential force directions, thus stabilizing those cytoskeletal filament architectures that result in shear-like pulling geometries. Large force-induced conformational changes in the vinculin head domain, as well as protein-specific fine-tuning of the VBS sequence, including sequence inversion, allow for an even more nuanced force response.
Collapse
Affiliation(s)
- Carleen Kluger
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas Braun
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Steffen M Sedlak
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diana A Pippig
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Magnus S Bauer
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ken Miller
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Extreme mechanical stability in protein complexes. Curr Opin Struct Biol 2020; 60:124-130. [DOI: 10.1016/j.sbi.2019.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
|
8
|
Liu H, Schittny V, Nash MA. Removal of a Conserved Disulfide Bond Does Not Compromise Mechanical Stability of a VHH Antibody Complex. NANO LETTERS 2019; 19:5524-5529. [PMID: 31257893 PMCID: PMC6975629 DOI: 10.1021/acs.nanolett.9b02062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/28/2019] [Indexed: 05/28/2023]
Abstract
Single-domain VHH antibodies are promising reagents for medical therapy. A conserved disulfide bond within the VHH framework region is known to be critical for thermal stability, however, no prior studies have investigated its influence on the stability of VHH antibody-antigen complexes under mechanical load. Here, we used single-molecule force spectroscopy to test the influence of a VHH domain's conserved disulfide bond on the mechanical strength of the interaction with its antigen mCherry. We found that although removal of the disulfide bond through cysteine-to-alanine mutagenesis significantly lowered VHH domain denaturation temperature, it had no significant impact on the mechanical strength of the VHH:mCherry interaction with complex rupture occurring at ∼60 pN at 103-104 pN/sec regardless of disulfide bond state. These results demonstrate that mechanostable binding interactions can be built on molecular scaffolds that may be thermodynamically compromised at equilibrium.
Collapse
Affiliation(s)
- Haipei Liu
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Valentin Schittny
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Department
of Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Engel MC, Smith DM, Jobst MA, Sajfutdinow M, Liedl T, Romano F, Rovigatti L, Louis AA, Doye JPK. Force-Induced Unravelling of DNA Origami. ACS NANO 2018; 12:6734-6747. [PMID: 29851456 DOI: 10.1021/acsnano.8b01844] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently proposed origami biosensor, whose function takes advantage of origami behavior under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inward for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces and what design principles can be applied to enhance stability.
Collapse
Affiliation(s)
- Megan C Engel
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - David M Smith
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Perlickstraβe 1 , 04103 Leipzig , Germany
| | - Markus A Jobst
- Department für Physik , Ludwig-Maximilians-Universität Amalienstrasse 54 80799 München , Germany
| | - Martin Sajfutdinow
- Fraunhofer Institute for Cell Therapy and Immunology IZI , Perlickstraβe 1 , 04103 Leipzig , Germany
| | - Tim Liedl
- Department für Physik , Ludwig-Maximilians-Universität Amalienstrasse 54 80799 München , Germany
| | - Flavio Romano
- Dipartimento di Scienze Molecolari e Nanosistemi , Università Ca' Foscari di Venezia , Via Torino 155 , 30172 Venezia Mestre , Italy
| | - Lorenzo Rovigatti
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
- CNR-ISC , Uos Sapienza, Piazzale A. Moro 2 , 00185 Roma , Italy
- Dipartimento di Fisica , Sapienza Università di Roma , Piazzale A. Moro 2 , 00185 Roma , Italy
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics , University of Oxford , 1 Keble Road , Oxford OX1 3NP , United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| |
Collapse
|
10
|
Bano F, Tammi MI, Kang DW, Harris EN, Richter RP. Single-Molecule Unbinding Forces between the Polysaccharide Hyaluronan and Its Binding Proteins. Biophys J 2018; 114:2910-2922. [PMID: 29925027 PMCID: PMC6026378 DOI: 10.1016/j.bpj.2018.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
The extracellular polysaccharide hyaluronan (HA) is ubiquitous in all vertebrate tissues, where its various functions are encoded in the supramolecular complexes and matrices that it forms with HA-binding proteins (hyaladherins). In tissues, these supramolecular architectures are frequently subjected to mechanical stress, yet how this affects the intermolecular bonding is largely unknown. Here, we used a recently developed single-molecule force spectroscopy platform to analyze and compare the mechanical strength of bonds between HA and a panel of hyaladherins from the Link module superfamily, namely the complex of the proteoglycan aggrecan and cartilage link protein, the proteoglycan versican, the inflammation-associated protein TSG-6, the HA receptor for endocytosis (stabilin-2/HARE), and the HA receptor CD44. We find that the resistance to tensile stress for these hyaladherins correlates with the size of the HA-binding domain. The lowest mean rupture forces are observed for members of the type A subgroup (i.e., with the shortest HA-binding domains; TSG-6 and HARE). In contrast, the mechanical stability of the bond formed by aggrecan in complex with cartilage link protein (two members of the type C subgroup, i.e., with the longest HA-binding domains) and HA is equal or even superior to the high affinity streptavidin⋅biotin bond. Implications for the molecular mechanism of unbinding of HA⋅hyaladherin bonds under force are discussed, which underpin the mechanical properties of HA⋅hyaladherin complexes and HA-rich extracellular matrices.
Collapse
Affiliation(s)
- Fouzia Bano
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; CIC biomaGUNE, Biosurfaces Laboratory, Donostia-San Sebastian, Spain
| | - Markku I Tammi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - David W Kang
- Halozyme Therapeutics Inc., San Diego, California
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Mathematics and Physical Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom; CIC biomaGUNE, Biosurfaces Laboratory, Donostia-San Sebastian, Spain.
| |
Collapse
|
11
|
Milles LF, Bayer EA, Nash MA, Gaub HE. Mechanical Stability of a High-Affinity Toxin Anchor from the Pathogen Clostridium perfringens. J Phys Chem B 2016; 121:3620-3625. [PMID: 27991799 DOI: 10.1021/acs.jpcb.6b09593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Clostridium perfringens assembles its toxins and carbohydrate-active enzymes by the high-affinity cohesin-dockerin (Coh-Doc) interaction. Coh-Doc interactions characterized previously have shown considerable resilience toward mechanical stress. Here, we aimed to determine the mechanics of this interaction from C. perfringens in the context of a pathogen. Using atomic force microscopy based single-molecule force spectroscopy (AFM-SMFS) we probed the mechanical properties of the interaction of a dockerin from the μ-toxin with the GH84C X82 cohesin domain of C. perfringens. Most probable complex rupture forces were found to be approximately 60 pN and an estimate of the binding potential width was performed. The dockerin was expressed with its adjacent FIVAR (found in various architectures) domain, whose mechanostability we determined to be very similar to the complex. Additionally, fast refolding of this domain was observed. The Coh-Doc interaction from C. perfringens is the mechanically weakest observed to date. Our results establish the relevant force range of toxin assembly mechanics in pathogenic Clostridia.
Collapse
Affiliation(s)
- Lukas F Milles
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University , Amalienstr. 54, 80799 Munich, Germany
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science , Rehovot 76100, Israel
| | - Michael A Nash
- Department of Chemistry, University of Basel , Klingelbergstr. 80, 4056 Basel, Switzerland.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH-Zürich) , Mattenstr. 26, 4058 Basel, Switzerland
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-University , Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|