1
|
Ranjan R, Koffel T, Klausmeier CA. The three-species problem: Incorporating competitive asymmetry and intransitivity in modern coexistence theory. Ecol Lett 2024; 27:e14426. [PMID: 38603592 DOI: 10.1111/ele.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
While natural communities can contain hundreds of species, modern coexistence theory focuses primarily on species pairs. Alternatively, the structural stability approach considers the feasibility of equilibria, gaining scalability to larger communities but sacrificing information about dynamic stability. Three-species competitive communities are a bridge to more-diverse communities. They display novel phenomena while remaining amenable to mathematical analysis, but remain incompletely understood. Here, we combine these approaches to identify the key quantities that determine three-species competition outcomes. We show that pairwise niche overlap and fitness differences are insufficient to completely characterize competitive outcomes, which requires a strictly triplet-wise quantity: cyclic asymmetry, which underlies intransitivity. Low pairwise niche overlap stabilizes the triplet, while high fitness differences promote competitive exclusion. The effect of cyclic asymmetry on stability is complex and depends on pairwise niche overlap. In summary, we elucidate how pairwise niche overlap, fitness differences and cyclic asymmetry determine three-species competition outcomes.
Collapse
Affiliation(s)
- Ravi Ranjan
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Thomas Koffel
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Christopher A Klausmeier
- W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| |
Collapse
|
2
|
Domínguez-Garcia V, Molina FP, Godoy O, Bartomeus I. Interaction network structure explains species' temporal persistence in empirical plant-pollinator communities. Nat Ecol Evol 2024; 8:423-429. [PMID: 38302580 DOI: 10.1038/s41559-023-02314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024]
Abstract
Despite clear evidence that some pollinator populations are declining, our ability to predict pollinator communities prone to collapse or species at risk of local extinction is remarkably poor. Here, we develop a model grounded in the structuralist approach that allows us to draw sound predictions regarding the temporal persistence of species in mutualistic networks. Using high-resolution data from a six-year study following 12 independent plant-pollinator communities, we confirm that pollinator species with more persistent populations in the field are theoretically predicted to tolerate a larger range of environmental changes. Persistent communities are not necessarily more diverse, but are generally located in larger habitat patches, and present a distinctive combination of generalist and specialist species resulting in a more nested structure, as predicted by previous theoretical work. Hence, pollinator interactions directly inform about their ability to persist, opening the door to use theoretically informed models to predict species' fate within the ongoing global change.
Collapse
Affiliation(s)
| | | | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Ciencias del Mar (INMAR), Universidad de Cádiz, Puerto Real, Spain
| | | |
Collapse
|
3
|
Allen-Perkins A, García-Callejas D, Bartomeus I, Godoy O. Structural asymmetry in biotic interactions as a tool to understand and predict ecological persistence. Ecol Lett 2023; 26:1647-1662. [PMID: 37515408 DOI: 10.1111/ele.14291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
A universal feature of ecological systems is that species do not interact with others with the same sign and strength. Yet, the consequences of this asymmetry in biotic interactions for the short- and long-term persistence of individual species and entire communities remains unclear. Here, we develop a set of metrics to evaluate how asymmetric interactions among species translate to asymmetries in their individual vulnerability to extinction under changing environmental conditions. These metrics, which solve previous limitations of how to independently quantify the size from the shape of the so-called feasibility domain, provide rigorous advances to understand simultaneously why some species and communities present more opportunities to persist than others. We further demonstrate that our shape-related metrics are useful to predict short-term changes in species' relative abundances during 7 years in a Mediterranean grassland. Our approach is designed to be applied to any ecological system regardless of the number of species and type of interactions. With it, we show that is possible to obtain both mechanistic and predictive information on ecological persistence for individual species and entire communities, paving the way for a stronger integration of theoretical and empirical research.
Collapse
Affiliation(s)
- Alfonso Allen-Perkins
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, ETSIDI, Technical University of Madrid, Madrid, Spain
| | - David García-Callejas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Landcare Research, Lincoln, New Zealand
| | | | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Ciencias del Mar (INMAR), Universidad de Cádiz, Puerto Real, Spain
| |
Collapse
|
4
|
Shibasaki S, Mitri S. A spatially structured mathematical model of the gut microbiome reveals factors that increase community stability. iScience 2023; 26:107499. [PMID: 37670791 PMCID: PMC10475486 DOI: 10.1016/j.isci.2023.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 09/07/2023] Open
Abstract
Given the importance of gut microbial communities for human health, we may want to ensure their stability in terms of species composition and function. Here, we built a mathematical model of a simplified gut composed of two connected patches where species and metabolites can flow from an upstream patch, allowing upstream species to affect downstream species' growth. First, we found that communities in our model are more stable if they assemble through species invasion over time compared to combining a set of species from the start. Second, downstream communities are more stable when species invade the downstream patch less frequently than the upstream patch. Finally, upstream species that have positive effects on downstream species can further increase downstream community stability. Despite it being quite abstract, our model may inform future research on designing more stable microbial communities or increasing the stability of existing ones.
Collapse
Affiliation(s)
- Shota Shibasaki
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sara Mitri
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Song C, Simmons BI, Fortin MJ, Gonzalez A, Kaiser-Bunbury CN, Saavedra S. Rapid monitoring of ecological persistence. Proc Natl Acad Sci U S A 2023; 120:e2211288120. [PMID: 37155860 PMCID: PMC10194002 DOI: 10.1073/pnas.2211288120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Effective conservation of ecological communities requires accurate and up-to-date information about whether species are persisting or declining to extinction. The persistence of an ecological community is supported by its underlying network of species interactions. While the persistence of the network supporting the whole community is the most relevant scale for conservation, in practice, only small subsets of these networks can be monitored. There is therefore an urgent need to establish links between the small snapshots of data conservationists can collect, and the "big picture" conclusions about ecosystem health demanded by policymakers, scientists, and societies. Here, we show that the persistence of small subnetworks (motifs) in isolation-that is, their persistence when considered separately from the larger network of which they are a part-is a reliable probabilistic indicator of the persistence of the network as a whole. Our methods show that it is easier to detect if an ecological community is not persistent than if it is persistent, allowing for rapid detection of extinction risk in endangered systems. Our results also justify the common practice of predicting ecological persistence from incomplete surveys by simulating the population dynamics of sampled subnetworks. Empirically, we show that our theoretical predictions are supported by data on invaded networks in restored and unrestored areas, even in the presence of environmental variability. Our work suggests that coordinated action to aggregate information from incomplete sampling can provide a means to rapidly assess the persistence of entire ecological networks and the expected success of restoration strategies.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, QCH3A 0G4, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 3B2, Canada
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Benno I. Simmons
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, PenrynTR10 9FE, United Kingdom
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 3B2, Canada
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, QCH3A 0G4, Canada
| | | | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02138
| |
Collapse
|
6
|
García-Callejas D, Godoy O, Buche L, Hurtado M, Lanuza JB, Allen-Perkins A, Bartomeus I. Non-random interactions within and across guilds shape the potential to coexist in multi-trophic ecological communities. Ecol Lett 2023; 26:831-842. [PMID: 36972904 DOI: 10.1111/ele.14206] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 03/29/2023]
Abstract
Theory posits that the persistence of species in ecological communities is shaped by their interactions within and across trophic guilds. However, we lack empirical evaluations of how the structure, strength and sign of biotic interactions drive the potential to coexist in diverse multi-trophic communities. Here, we model community feasibility domains, a theoretically informed measure of multi-species coexistence probability, from grassland communities comprising more than 45 species on average from three trophic guilds (plants, pollinators and herbivores). Contrary to our hypothesis, increasing community complexity, measured either as the number of guilds or community richness, did not decrease community feasibility. Rather, we observed that high degrees of species self-regulation and niche partitioning allow for maintaining larger levels of community feasibility and higher species persistence in more diverse communities. Our results show that biotic interactions within and across guilds are not random in nature and both structures significantly contribute to maintaining multi-trophic diversity.
Collapse
Affiliation(s)
- David García-Callejas
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
- School of Biological Sciences, University of Canterbury, 8140, Christchurch, Private Bag 4800, New Zealand
| | - Oscar Godoy
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - Lisa Buche
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - María Hurtado
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Instituto Universitario de Ciencias del Mar (INMAR), Departamento de Biología, Universidad de Cádiz, E-11510, Puerto Real, Spain
| | - Jose B Lanuza
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Alfonso Allen-Perkins
- Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
- Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, ETSIDI, Technical University of Madrid, 28040, Madrid, Spain
| | | |
Collapse
|
7
|
Abstract
There is growing awareness of pollinator declines worldwide. Conservation efforts have mainly focused on finding the direct causes, while paying less attention to building a systemic understanding of the fragility of these communities of pollinators. To fill this gap, we need operational measures of network resilience that integrate two different approaches in theoretical ecology. First, we should consider the range of conditions compatible with the stable coexistence of all of the species in a community. Second, we should address the rate and shape of network collapse once this safe operational space is exited. In this review, we describe this integrative approach and consider several mechanisms that may enhance the resilience of pollinator communities, chiefly rewiring the network of interactions, increasing heterogeneity, allowing variance, and enhancing coevolution. The most pressing need is to develop ways to reduce the gap between these theoretical recommendations and practical applications. This perspective shifts the emphasis from traditional approaches focusing on the equilibrium states to strategies that allow pollination networks to cope with global environmental change.
Collapse
Affiliation(s)
- Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland;
| | - Marten Scheffer
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
8
|
Deng J, Taylor W, Saavedra S. Understanding the impact of third-party species on pairwise coexistence. PLoS Comput Biol 2022; 18:e1010630. [PMID: 36279302 PMCID: PMC9632822 DOI: 10.1371/journal.pcbi.1010630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/03/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The persistence of virtually every single species depends on both the presence of other species and the specific environmental conditions in a given location. Because in natural settings many of these conditions are unknown, research has been centered on finding the fraction of possible conditions (probability) leading to species coexistence. The focus has been on the persistence probability of an entire multispecies community (formed of either two or more species). However, the methodological and philosophical question has always been whether we can observe the entire community and, if not, what the conditions are under which an observed subset of the community can persist as part of a larger multispecies system. Here, we derive long-term (using analytical calculations) and short-term (using simulations and experimental data) system-level indicators of the effect of third-party species on the coexistence probability of a pair (or subset) of species under unknown environmental conditions. We demonstrate that the fraction of conditions incompatible with the possible coexistence of a pair of species tends to become vanishingly small within systems of increasing numbers of species. Yet, the probability of pairwise coexistence in isolation remains approximately the expected probability of pairwise coexistence in more diverse assemblages. In addition, we found that when third-party species tend to reduce (resp. increase) the coexistence probability of a pair, they tend to exhibit slower (resp. faster) rates of competitive exclusion. Long-term and short-term effects of the remaining third-party species on all possible specific pairs in a system are not equally distributed, but these differences can be mapped and anticipated under environmental uncertainty.
Collapse
Affiliation(s)
- Jie Deng
- Department of Civil and Environmental Engineering, MIT, Cambridge, Massachusetts, United States of America
| | - Washington Taylor
- Center for Theoretical Physics, MIT, Cambridge, Cambridge, Massachusetts, United States of America
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
9
|
Song C, Uricchio LH, Mordecai EA, Saavedra S. Understanding the emergence of contingent and deterministic exclusion in multispecies communities. Ecol Lett 2021; 24:2155-2168. [PMID: 34288350 DOI: 10.1111/ele.13846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Competitive exclusion can be classified as deterministic or as historically contingent. While competitive exclusion is common in nature, it has remained unclear when multispecies communities formed by more than two species should be dominated by deterministic or contingent exclusion. Here, we take a fully parameterised model of an empirical competitive system between invasive annual and native perennial plant species to explain both the emergence and sources of competitive exclusion in multispecies communities. Using a structural approach to understand the range of parameters promoting deterministic and contingent exclusions, we then find heuristic theoretical support for the following three general conclusions. First, we find that the life-history of perennial species increases the probability of observing contingent exclusion by increasing their effective intrinsic growth rates. Second, we find that the probability of observing contingent exclusion increases with weaker intraspecific competition, and not with the level of hierarchical competition. Third, we find a shift from contingent exclusion to deterministic exclusion with increasing numbers of competing species. Our work provides a heuristic framework to increase our understanding about the predictability of species persistence within multispecies communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.,Department of Biology, McGill University, Montreal, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| |
Collapse
|
10
|
Deng J, Angulo MT, Saavedra S. Generalizing game-changing species across microbial communities. ISME COMMUNICATIONS 2021; 1:22. [PMID: 36737668 PMCID: PMC9723773 DOI: 10.1038/s43705-021-00022-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Microbes form multispecies communities that play essential roles in our environment and health. Not surprisingly, there is an increasing need for understanding if certain invader species will modify a given microbial community, producing either a desired or undesired change in the observed collection of resident species. However, the complex interactions that species can establish between each other and the diverse external factors underlying their dynamics have made constructing such understanding context-specific. Here we integrate tractable theoretical systems with tractable experimental systems to find general conditions under which non-resident species can change the collection of resident communities-game-changing species. We show that non-resident colonizers are more likely to be game-changers than transients, whereas game-changers are more likely to suppress than to promote resident species. Importantly, we find general heuristic rules for game-changers under controlled environments by integrating mutual invasibility theory with in vitro experimental systems, and general heuristic rules under changing environments by integrating structuralist theory with in vivo experimental systems. Despite the strong context-dependency of microbial communities, our work shows that under an appropriate integration of tractable theoretical and experimental systems, it is possible to unveil regularities that can then be potentially extended to understand the behavior of complex natural communities.
Collapse
Affiliation(s)
- Jie Deng
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Marco Tulio Angulo
- CONACyT - Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, México.
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
11
|
Zhao N, Saavedra S, Liu YY. Impact of colonization history on the composition of ecological systems. Phys Rev E 2021; 103:052403. [PMID: 34134331 PMCID: PMC8217719 DOI: 10.1103/physreve.103.052403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/21/2021] [Indexed: 11/07/2022]
Abstract
Observational studies of ecological systems have shown that different species compositions can arise from distinct species arrival orders during community assembly-also known as colonization history. The presence of multiple interior equilibria in the positive orthant of the state space of the population dynamics will naturally lead to history dependency of the final state. However, it is still unclear whether and under which conditions colonization history will dominate community composition in the absence of multiple interior equilibria. Here, by considering that only one species can invade at a time and there are no recurrent invasions, we show clear evidence that the colonization history can have a big impact on the composition of ecological systems even in the absence of multiple interior equilibria. In particular, we first derive two simple rules to determine whether the composition of a community will depend on its colonization history in the absence of multiple interior equilibria and recurrent invasions. Then we apply them to communities governed by generalized Lotka-Volterra (gLV) dynamics and propose a numerical scheme to measure the probability of colonization history dependence. Finally, we show, via numerical simulations, that for gLV dynamics with a single interior equilibrium, the probability that community composition is dominated by colonization history increases monotonically with community size, network connectivity, and the variation of intrinsic growth rates across species. These results reveal that in the absence of multiple interior equilibria and recurrent invasions, community composition is a probabilistic process mediated by ecological dynamics via the interspecific variation and the size of regional pools.
Collapse
Affiliation(s)
- Nannan Zhao
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, 710129, China
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Center for Cancer Systems Biology, Dana Farber Cancer Institute, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Song C, Saavedra S. Bridging parametric and nonparametric measures of species interactions unveils new insights of non‐equilibrium dynamics. OIKOS 2021. [DOI: 10.1111/oik.08060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuliang Song
- Dept of Biology, McGill Univ. Montreal Canada
- Dept of Ecology and Evolutionary Biology, Univ. of Toronto Toronto Canada
| | - Serguei Saavedra
- Dept of Civil and Environmental Engineering, MIT Cambridge MA USA
| |
Collapse
|
13
|
Medeiros LP, Song C, Saavedra S. Merging dynamical and structural indicators to measure resilience in multispecies systems. J Anim Ecol 2021; 90:2027-2040. [PMID: 33448053 DOI: 10.1111/1365-2656.13421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/09/2020] [Indexed: 11/30/2022]
Abstract
Resilience is broadly understood as the ability of an ecological system to resist and recover from perturbations acting on species abundances and on the system's structure. However, one of the main problems in assessing resilience is to understand the extent to which measures of recovery and resistance provide complementary information about a system. While recovery from abundance perturbations has a strong tradition under the analysis of dynamical stability, it is unclear whether this same formalism can be used to measure resistance to structural perturbations (e.g. perturbations to model parameters). Here, we provide a framework grounded on dynamical and structural stability in Lotka-Volterra systems to link recovery from small perturbations on species abundances (i.e. dynamical indicators) with resistance to parameter perturbations of any magnitude (i.e. structural indicators). We use theoretical and experimental multispecies systems to show that the faster the recovery from abundance perturbations, the higher the resistance to parameter perturbations. We first use theoretical systems to show that the return rate along the slowest direction after a small random abundance perturbation (what we call full recovery) is negatively correlated with the largest random parameter perturbation that a system can withstand before losing any species (what we call full resistance). We also show that the return rate along the second fastest direction after a small random abundance perturbation (what we call partial recovery) is negatively correlated with the largest random parameter perturbation that a system can withstand before at most one species survives (what we call partial resistance). Then, we use a dataset of experimental microbial systems to confirm our theoretical expectations and to demonstrate that full and partial components of resilience are complementary. Our findings reveal that we can obtain the same level of information about resilience by measuring either a dynamical (i.e. recovery) or a structural (i.e. resistance) indicator. Irrespective of the chosen indicator (dynamical or structural), our results show that we can obtain additional information by separating the indicator into its full and partial components. We believe these results can motivate new theoretical approaches and empirical analyses to increase our understanding about risk in ecological systems.
Collapse
Affiliation(s)
- Lucas P Medeiros
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chuliang Song
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Quebec, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Medeiros LP, Boege K, Del-Val E, Zaldívar-Riverón A, Saavedra S. Observed Ecological Communities Are Formed by Species Combinations That Are among the Most Likely to Persist under Changing Environments. Am Nat 2021; 197:E17-E29. [PMID: 33417517 DOI: 10.1086/711663] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDespite the rich biodiversity found in nature, it is unclear to what extent some combinations of interacting species, while conceivable in a given place and time, may never be realized. Yet solving this problem is important for understanding the role of randomness and predictability in the assembly of ecological communities. Here we show that the specific combinations of interacting species that emerge from the ecological dynamics within regional species pools are not all equally likely to be seen; rather, they are among the most likely to persist under changing environments. First, we use niche-based competition matrices and Lotka-Volterra models to demonstrate that realized combinations of interacting species are more likely to persist under random parameter perturbations than the majority of potential combinations with the same number of species that could have been formed from the regional pool. We then corroborate our theoretical results using a 10-year observational study, recording 88 plant-herbivore communities across three different forest successional stages. By inferring and validating plant-mediated communities of competing herbivore species, we find that observed combinations of herbivores have an expected probability of species persistence higher than half of all potential combinations. Our findings open up the opportunity to establish a formal probabilistic and predictive understanding of the composition of ecological communities.
Collapse
|
15
|
AlAdwani M, Saavedra S. Ecological models: higher complexity in, higher feasibility out. J R Soc Interface 2020; 17:20200607. [PMID: 33202176 PMCID: PMC7729046 DOI: 10.1098/rsif.2020.0607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
Finding a compromise between tractability and realism has always been at the core of ecological modelling. The introduction of nonlinear functional responses in two-species models has reconciled part of this compromise. However, it remains unclear whether this compromise can be extended to multispecies models. Yet, answering this question is necessary in order to differentiate whether the explanatory power of a model comes from the general form of its polynomial or from a more realistic description of multispecies systems. Here, we study the probability of feasibility (the existence of at least one positive real equilibrium) in complex models by adding higher-order interactions and nonlinear functional responses to the linear Lotka-Volterra model. We characterize complexity by the number of free-equilibrium points generated by a model, which is a function of the polynomial degree and system's dimension. We show that the probability of generating a feasible system in a model is an increasing function of its complexity, regardless of the specific mechanism invoked. Furthermore, we find that the probability of feasibility in a model will exceed that of the linear Lotka-Volterra model when a minimum level of complexity is reached. Importantly, this minimum level is modulated by parameter restrictions, but can always be exceeded via increasing the polynomial degree or system's dimension. Our results reveal that conclusions regarding the relevance of mechanisms embedded in complex models must be evaluated in relation to the expected explanatory power of their polynomial forms.
Collapse
Affiliation(s)
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
16
|
Saavedra S, Medeiros LP, AlAdwani M. Structural forecasting of species persistence under changing environments. Ecol Lett 2020; 23:1511-1521. [PMID: 32776667 DOI: 10.1111/ele.13582] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/07/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
The persistence of a species in a given place not only depends on its intrinsic capacity to consume and transform resources into offspring, but also on how changing environmental conditions affect its growth rate. However, the complexity of factors has typically taken us to choose between understanding and predicting the persistence of species. To tackle this limitation, we propose a probabilistic approach rooted on the statistical concepts of ensemble theory applied to statistical mechanics and on the mathematical concepts of structural stability applied to population dynamics models - what we call structural forecasting. We show how this new approach allows us to estimate a probability of persistence for single species in local communities; to understand and interpret this probability conditional on the information we have concerning a system; and to provide out-of-sample predictions of species persistence as good as the best experimental approaches without the need of extensive amounts of data.
Collapse
Affiliation(s)
- Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av, 02139, Cambridge, MA, USA
| | - Lucas P Medeiros
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av, 02139, Cambridge, MA, USA
| | - Mohammad AlAdwani
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av, 02139, Cambridge, MA, USA
| |
Collapse
|
17
|
Tabi A, Pennekamp F, Altermatt F, Alther R, Fronhofer EA, Horgan K, Mächler E, Pontarp M, Petchey OL, Saavedra S. Species multidimensional effects explain idiosyncratic responses of communities to environmental change. Nat Ecol Evol 2020; 4:1036-1043. [PMID: 32572220 DOI: 10.1038/s41559-020-1206-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/15/2020] [Indexed: 01/30/2023]
Abstract
Environmental change can alter species' abundances within communities consistently; for example, increasing all abundances by the same percentage, or more idiosyncratically. Here, we show how comparing effects of temperature on species grown in isolation and when grown together helps our understanding of how ecological communities more generally respond to environmental change. In particular, we find that the shape of the feasibility domain (the parameter space of carrying capacities compatible with positive species' abundances) helps to explain the composition of experimental microbial communities under changing environmental conditions. First, we introduce a measure to quantify the asymmetry of a community's feasibility domain using the column vectors of the corresponding interaction matrix. These column vectors describe the effects each species has on all other species in the community (hereafter referred to as species' multidimensional effects). We show that as the asymmetry of the feasibility domain increases the relationship between species' abundance when grown together and when grown in isolation weakens. We then show that microbial communities experiencing different temperature environments exhibit patterns consistent with this theory. Specifically, communities at warmer temperatures show relatively more asymmetry; thus, the idiosyncrasy of responses is higher compared with that in communities at cooler temperatures. These results suggest that while species' interactions are typically defined at the pairwise level, multispecies dynamics can be better understood by focusing on the effects of these interactions at the community level.
Collapse
Affiliation(s)
- Andrea Tabi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Roman Alther
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Katherine Horgan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Elvira Mächler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mikael Pontarp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Song C, Von Ahn S, Rohr RP, Saavedra S. Towards a Probabilistic Understanding About the Context-Dependency of Species Interactions. Trends Ecol Evol 2020; 35:384-396. [PMID: 32007296 DOI: 10.1016/j.tree.2019.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023]
Abstract
Observational and experimental studies have shown that an interaction class between two species (be it mutualistic, competitive, antagonistic, or neutral) may switch to a different class, depending on the biotic and abiotic factors within which species are observed. This complexity arising from the evidence of context-dependencies has underscored a difficulty in establishing a systematic analysis about the extent to which species interactions are expected to switch in nature and experiments. Here, we propose an overarching theoretical framework, by integrating probabilistic and structural approaches, to establish null expectations about switches of interaction classes across environmental contexts. This integration provides a systematic platform upon which it is possible to establish new hypotheses, clear predictions, and quantifiable expectations about the context-dependency of species interactions.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA
| | - Sarah Von Ahn
- Department of Mathematics, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA
| | - Rudolf P Rohr
- Department of Biology - Ecology and Evolution, University of Fribourg Chemin du Musée 10, Fribourg CH-1700, Switzerland
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Av., Cambridge 02139, MA, USA.
| |
Collapse
|
19
|
AlAdwani M, Saavedra S. Is the addition of higher-order interactions in ecological models increasing the understanding of ecological dynamics? Math Biosci 2019; 315:108222. [PMID: 31260670 DOI: 10.1016/j.mbs.2019.108222] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 11/19/2022]
Abstract
Recent work has shown that higher-order terms in population dynamics models can increase the stability, promote the diversity, and better explain the dynamics of ecological systems. While it is known that these perceived benefits come from an increasing number of alternative solutions given by the nature of multivariate polynomials, this mathematical advantage has not been formally quantified. Here, we develop a general method to quantify the mathematical advantage of adding higher-order interactions in ecological models based on the number of free-equilibrium points that can emerge in a system (i.e., equilibria that can be feasible or unfeasible as a function of model parameters). We apply this method to calculate the number of free-equilibrium points in Lotka-Volterra dynamics. While it is known that Lotka-Volterra models without higher-order interactions only have one free-equilibrium point regardless of the number of parameters, we find that by adding higher-order terms this number increases exponentially with the dimension of the system. Hence, the number of free-equilibrium points can be used to compare more fairly between ecological models. Our results suggest that while adding higher-order interactions in ecological models may be good for prediction purposes, they cannot provide additional explanatory power of ecological dynamics if model parameters are not ecologically restricted.
Collapse
Affiliation(s)
- Mohammad AlAdwani
- Department of Civil and Environmental Engineering, MIT 77 Massachusetts Avenue, Cambridge 02139, MA, USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT 77 Massachusetts Avenue, Cambridge 02139, MA, USA.
| |
Collapse
|
20
|
Non-parametric estimation of the structural stability of non-equilibrium community dynamics. Nat Ecol Evol 2019; 3:912-918. [PMID: 31036898 DOI: 10.1038/s41559-019-0879-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022]
Abstract
Environmental factors are important drivers of community dynamics. Yet, despite extensive research, it is still extremely challenging to predict the effect of environmental changes on the dynamics of ecological communities. Equilibrium- and model-based approaches have provided a theoretical framework with which to investigate this problem systematically. However, the applicability of this framework to empirical data has been limited because equilibrium dynamics of populations within communities are seldom observed in nature and exact equations for community dynamics are rarely known. To overcome these limitations, here we develop a data-driven non-parametric framework to estimate the tolerance of non-equilibrium community dynamics to environmental perturbations (that is, their structural stability). Following our approach, we show that in non-equilibrium systems, structural stability can vary significantly across time. As a case study, we investigate the structural stability of a rocky intertidal community with dynamics at the edge of chaos. The structural stability of the community as a whole exhibited a clear seasonal pattern, despite the persistent chaotic dynamics of individual populations. Importantly, we show that this seasonal pattern of structural stability is causally driven by sea temperature. Overall, our approach provides novel opportunities for estimating the tolerance of ecological communities to environmental changes within a non-parametric framework.
Collapse
|
21
|
Cenci S, Sugihara G, Saavedra S. Regularized S‐map for inference and forecasting with noisy ecological time series. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13150] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Cenci
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| | - George Sugihara
- Scripps Institution of Oceanography University of California San Diego La Jolla California
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering Massachusetts Institute of Technology Cambridge Massachusetts
| |
Collapse
|
22
|
Letten AD, Stouffer DB. The mechanistic basis for higher-order interactions and non-additivity in competitive communities. Ecol Lett 2019; 22:423-436. [PMID: 30675983 DOI: 10.1111/ele.13211] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 11/27/2022]
Abstract
Motivated by both analytical tractability and empirical practicality, community ecologists have long treated the species pair as the fundamental unit of study. This notwithstanding, the challenge of understanding more complex systems has repeatedly generated interest in the role of so-called higher-order interactions (HOIs) imposed by species beyond the focal pair. Here we argue that HOIs - defined as non-additive effects of density on per capita growth - are best interpreted as emergent properties of phenomenological models (e.g. Lotka-Volterra competition) rather than as distinct 'ecological processes' in their own right. Using simulations of consumer-resource models, we explore the mechanisms and system properties that give rise to HOIs in observational data. We demonstrate that HOIs emerge under all but the most restrictive of assumptions, and that incorporating non-additivity into phenomenological models improves the quantitative and qualitative accuracy of model predictions. Notably, we also observe that HOIs derive primarily from mechanisms and system properties that apply equally to single-species or pairwise systems as they do to more diverse communities. Consequently, there exists a strong mandate for further recognition of non-additive effects in both theoretical and empirical research.
Collapse
Affiliation(s)
- Andrew D Letten
- Centre for Integrative Ecology, University of Canterbury, Christchurch, 8140, New Zealand.,Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Daniel B Stouffer
- Centre for Integrative Ecology, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
23
|
Song C, Rohr RP, Saavedra S. A guideline to study the feasibility domain of multi-trophic and changing ecological communities. J Theor Biol 2018; 450:30-36. [DOI: 10.1016/j.jtbi.2018.04.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
|
24
|
Cenci S, Song C, Saavedra S. Rethinking the importance of the structure of ecological networks under an environment-dependent framework. Ecol Evol 2018; 8:6852-6859. [PMID: 30073049 PMCID: PMC6065350 DOI: 10.1002/ece3.4252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/21/2018] [Accepted: 04/24/2018] [Indexed: 12/25/2022] Open
Abstract
A major quest in network and community ecology has been centered on understanding the importance of structural patterns in species interaction networks-the synthesis of who interacts with whom in a given location and time. In the past decades, much effort has been devoted to infer the importance of a particular structure by its capacity to tolerate an external perturbation on its structure or dynamics. Here, we demonstrate that such a perspective leads to inconsistent conclusions. That is, the importance of a network structure changes as a function of the external perturbations acting on a community at any given point in time. Thus, we discuss a research agenda to investigate the relative importance of the structure of ecological networks under an environment-dependent framework. We hypothesize that only by studying systematically the link between network structure and community dynamics under an environment-dependent framework, we can uncover the limits at which communities can tolerate environmental changes.
Collapse
Affiliation(s)
- Simone Cenci
- Department of Civil and Environmental EngineeringMITCambridgeMassachusetts
| | - Chuliang Song
- Department of Civil and Environmental EngineeringMITCambridgeMassachusetts
| | - Serguei Saavedra
- Department of Civil and Environmental EngineeringMITCambridgeMassachusetts
| |
Collapse
|
25
|
Song C, Saavedra S. Structural stability as a consistent predictor of phenological events. Proc Biol Sci 2018; 285:20180767. [PMID: 29899073 PMCID: PMC6015855 DOI: 10.1098/rspb.2018.0767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/22/2018] [Indexed: 11/12/2022] Open
Abstract
The timing of the first and last seasonal appearance of a species in a community typically follows a pattern that is governed by temporal factors. While it has been shown that changes in the environment are linked to phenological changes, the direction of this link appears elusive and context-dependent. Thus, finding consistent predictors of phenological events is of central importance for a better assessment of expected changes in the temporal dynamics of ecological communities. Here we introduce a measure of structural stability derived from species interaction networks as an estimator of the expected range of environmental conditions compatible with the existence of a community. We test this measure as a predictor of changes in species richness recorded on a daily basis in a high-arctic plant-pollinator community during two spring seasons. We find that our measure of structural stability is the only consistent predictor of changes in species richness among different ecological and environmental variables. Our findings suggest that measures based on the notion of structural stability can synthesize the expected variation of environmental conditions tolerated by a community, and explain more consistently the phenological changes observed in ecological communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, 02139 Cambridge, MA, USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, 02139 Cambridge, MA, USA
| |
Collapse
|
26
|
Song C, Altermatt F, Pearse I, Saavedra S. Structural changes within trophic levels are constrained by within-family assembly rules at lower trophic levels. Ecol Lett 2018; 21:1221-1228. [DOI: 10.1111/ele.13091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/10/2018] [Accepted: 04/23/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering; MIT; 77 Massachusetts Av. Cambridge MA 02139 USA
| | - Florian Altermatt
- Department of Aquatic Ecology; EAWAG; Überlandstrasse 133 CH-8600 Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies; University of Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Ian Pearse
- U.S. Geological Survey; Collins Science Center; 2150 Centre Ave #C Ft Collins CO 80526 USA
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering; MIT; 77 Massachusetts Av. Cambridge MA 02139 USA
| |
Collapse
|