1
|
Hu W, Zhang Z, Liao Y, Li Q, Shi Y, Zhang H, Zhang X, Niu C, Wu Y, Yu W, Zhou X, Guo H, Wang W, Xiao J, Yin L, Liu Q, Shen J. Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing. Nat Commun 2023; 14:2562. [PMID: 37142614 PMCID: PMC10160026 DOI: 10.1038/s41467-023-38286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Artificial spin ice (ASI) consisting patterned array of nano-magnets with frustrated dipolar interactions offers an excellent platform to study frustrated physics using direct imaging methods. Moreover, ASI often hosts a large number of nearly degenerated and non-volatile spin states that can be used for multi-bit data storage and neuromorphic computing. The realization of the device potential of ASI, however, critically relies on the capability of transport characterization of ASI, which has not been demonstrated so far. Using a tri-axial ASI system as the model system, we demonstrate that transport measurements can be used to distinguish the different spin states of the ASI system. Specifically, by fabricating a tri-layer structure consisting a permalloy base layer, a Cu spacer layer and the tri-axial ASI layer, we clearly resolve different spin states in the tri-axial ASI system using lateral transport measurements. We have further demonstrated that the tri-axial ASI system has all necessary required properties for reservoir computing, including rich spin configurations to store input signals, nonlinear response to input signals, and fading memory effect. The successful transport characterization of ASI opens up the prospect for novel device applications of ASI in multi-bit data storage and neuromorphic computing.
Collapse
Affiliation(s)
- Wenjie Hu
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Zefeng Zhang
- Frontier Institute of Chip and System, Fudan University, Shanghai, China
- Research Institute of Intelligent Complex Systems and ISTBI, Fudan University, Shanghai, China
| | - Yanghui Liao
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Qiang Li
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Yang Shi
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Huanyu Zhang
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Xumeng Zhang
- Frontier Institute of Chip and System, Fudan University, Shanghai, China
| | - Chang Niu
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Yu Wu
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| | - Weichao Yu
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Xiaodong Zhou
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Hangwen Guo
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Wenbin Wang
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jiang Xiao
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Shanghai Research Center for Quantum Sciences, Shanghai, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
| | - Lifeng Yin
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China.
- Shanghai Qi Zhi Institute, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China.
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China.
| | - Qi Liu
- Frontier Institute of Chip and System, Fudan University, Shanghai, China.
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China.
| | - Jian Shen
- State Key Laboratory of Surface Physics, Institute for Nanoelectronic Devices and Quantum Computing, and Department of Physics, Fudan University, Shanghai, China.
- Shanghai Qi Zhi Institute, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China.
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai, China.
| |
Collapse
|
2
|
Aluru NR, Aydin F, Bazant MZ, Blankschtein D, Brozena AH, de Souza JP, Elimelech M, Faucher S, Fourkas JT, Koman VB, Kuehne M, Kulik HJ, Li HK, Li Y, Li Z, Majumdar A, Martis J, Misra RP, Noy A, Pham TA, Qu H, Rayabharam A, Reed MA, Ritt CL, Schwegler E, Siwy Z, Strano MS, Wang Y, Yao YC, Zhan C, Zhang Z. Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chem Rev 2023; 123:2737-2831. [PMID: 36898130 PMCID: PMC10037271 DOI: 10.1021/acs.chemrev.2c00155] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Confined fluids and electrolyte solutions in nanopores exhibit rich and surprising physics and chemistry that impact the mass transport and energy efficiency in many important natural systems and industrial applications. Existing theories often fail to predict the exotic effects observed in the narrowest of such pores, called single-digit nanopores (SDNs), which have diameters or conduit widths of less than 10 nm, and have only recently become accessible for experimental measurements. What SDNs reveal has been surprising, including a rapidly increasing number of examples such as extraordinarily fast water transport, distorted fluid-phase boundaries, strong ion-correlation and quantum effects, and dielectric anomalies that are not observed in larger pores. Exploiting these effects presents myriad opportunities in both basic and applied research that stand to impact a host of new technologies at the water-energy nexus, from new membranes for precise separations and water purification to new gas permeable materials for water electrolyzers and energy-storage devices. SDNs also present unique opportunities to achieve ultrasensitive and selective chemical sensing at the single-ion and single-molecule limit. In this review article, we summarize the progress on nanofluidics of SDNs, with a focus on the confinement effects that arise in these extremely narrow nanopores. The recent development of precision model systems, transformative experimental tools, and multiscale theories that have played enabling roles in advancing this frontier are reviewed. We also identify new knowledge gaps in our understanding of nanofluidic transport and provide an outlook for the future challenges and opportunities at this rapidly advancing frontier.
Collapse
Affiliation(s)
- Narayana R Aluru
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Fikret Aydin
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Alexandra H Brozena
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - J Pedro de Souza
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Samuel Faucher
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John T Fourkas
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Matthias Kuehne
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Hao-Kun Li
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Yuhao Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zhongwu Li
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Arun Majumdar
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Joel Martis
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| | - Rahul Prasanna Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Tuan Anh Pham
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
| | - Archith Rayabharam
- Oden Institute for Computational Engineering and Sciences, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, 78712TexasUnited States
| | - Mark A Reed
- Department of Electrical Engineering, Yale University, 15 Prospect Street, New Haven, Connecticut06520, United States
| | - Cody L Ritt
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut06520-8286, United States
| | - Eric Schwegler
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Zuzanna Siwy
- Department of Physics and Astronomy, Department of Chemistry, Department of Biomedical Engineering, University of California, Irvine, Irvine92697, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland20742, United States
- Maryland NanoCenter, University of Maryland, College Park, Maryland20742, United States
| | - Yun-Chiao Yao
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
- School of Natural Sciences, University of California Merced, Merced, California95344, United States
| | - Cheng Zhan
- Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Ze Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California94305, United States
| |
Collapse
|
3
|
Paterson GW, Macauley GM, Macêdo R. Field‐Driven Reversal Models in Artificial Spin Ice. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gary W. Paterson
- SUPA, School of Physics and Astronomy University of Glasgow Glasgow G12 8QQ UK
- James Watt School of Engineering Electronics and Nanoscale Engineering Division University of Glasgow Glasgow G12 8QQ UK
| | - Gavin M. Macauley
- SUPA, School of Physics and Astronomy University of Glasgow Glasgow G12 8QQ UK
| | - Rair Macêdo
- James Watt School of Engineering Electronics and Nanoscale Engineering Division University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
4
|
Schánilec V, Canals B, Uhlíř V, Flajšman L, Sadílek J, Šikola T, Rougemaille N. Bypassing Dynamical Freezing in Artificial Kagome Ice. PHYSICAL REVIEW LETTERS 2020; 125:057203. [PMID: 32794868 DOI: 10.1103/physrevlett.125.057203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Spin liquids are correlated, disordered states of matter that fluctuate even at low temperatures. Experimentally, the extensive degeneracy characterizing their low-energy manifold is expected to be lifted, for example, because of dipolar interactions, leading to an ordered ground state at absolute zero. However, this is not what is usually observed, and many systems, whether they are chemically synthesized or nanofabricated, dynamically freeze before magnetic ordering sets in. In artificial realizations of highly frustrated magnets, ground state configurations, and even low-energy manifolds, thus remain out of reach for practical reasons. Here, we show how dynamical freezing can be bypassed in an artificial kagome ice. We illustrate the efficiency of our method by demonstrating that the a priori dynamically inaccessible ordered ground state and fragmented spin liquid configurations can be obtained reproducibly, imaged in real space at room temperature, and studied conveniently. We then identify the mechanism by which dynamical freezing occurs in the dipolar kagome ice.
Collapse
Affiliation(s)
- V Schánilec
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - B Canals
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| | - V Uhlíř
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - L Flajšman
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - J Sadílek
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
| | - T Šikola
- Central European Institute of Technology, CEITEC BUT, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, Brno, 616 69, Czech Republic
| | - N Rougemaille
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut NEEL, 38000 Grenoble, France
| |
Collapse
|
5
|
Di Pietro Martínez M, Buceta RC. Energetic analysis of disorder effects in an artificial spin ice with dipolar interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:285801. [PMID: 32155604 DOI: 10.1088/1361-648x/ab7e58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the effect of quenched disorder in square artificial spin ice by means of numerical simulations. We introduce disorder in the length of magnetic islands using two kinds of distributions: Gaussian and uniform. As the system behavior depends on its geometrical parameters, we focus on studying it in the proximity of the ice regime which is quite difficult to thermalize both in experiments and simulations. We show how length disorder affect the antiferromagnetic and (locally) ferromagnetic ordering, by inducing the system, in the case of weak disorder, to intermediate or mix states. Moreover, in the case of strong disorder, ferromagnetic plaquettes prevail regardless of whether the mean length of the islands corresponds to an antiferromagnetic ordering.
Collapse
|
6
|
Loehr J, Ortiz-Ambriz A, Tierno P. Defect Dynamics in Artificial Colloidal Ice: Real-Time Observation, Manipulation, and Logic Gate. PHYSICAL REVIEW LETTERS 2016; 117:168001. [PMID: 27792372 DOI: 10.1103/physrevlett.117.168001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 06/06/2023]
Abstract
We study the defect dynamics in a colloidal spin ice system realized by filling a square lattice of topographic double well islands with repulsively interacting magnetic colloids. We focus on the contraction of defects in the ground state, and contraction or expansion in a metastable biased state. Combining real-time experiments with simulations, we prove that these defects behave like emergent topological monopoles obeying a Coulomb law with an additional line tension. We further show how to realize a completely resettable "nor" gate, which provides guidelines for fabrication of nanoscale logic devices based on the motion of topological magnetic monopoles.
Collapse
Affiliation(s)
- Johannes Loehr
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Physikalisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Antonio Ortiz-Ambriz
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
7
|
Zeissler K, Chadha M, Lovell E, Cohen LF, Branford WR. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology. Sci Rep 2016; 6:30218. [PMID: 27443523 PMCID: PMC4957146 DOI: 10.1038/srep30218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 06/30/2016] [Indexed: 11/09/2022] Open
Abstract
Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.
Collapse
Affiliation(s)
- Katharina Zeissler
- Blackett Laboratory, Imperial College, Prince Consort Road, SW7 2AZ, London, UK
| | - Megha Chadha
- Blackett Laboratory, Imperial College, Prince Consort Road, SW7 2AZ, London, UK
| | - Edmund Lovell
- Blackett Laboratory, Imperial College, Prince Consort Road, SW7 2AZ, London, UK
| | - Lesley F. Cohen
- Blackett Laboratory, Imperial College, Prince Consort Road, SW7 2AZ, London, UK
| | - Will R. Branford
- Blackett Laboratory, Imperial College, Prince Consort Road, SW7 2AZ, London, UK
| |
Collapse
|
8
|
Kang SH, Shan S, Košmrlj A, Noorduin WL, Shian S, Weaver JC, Clarke DR, Bertoldi K. Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. PHYSICAL REVIEW LETTERS 2014; 112:098701. [PMID: 24655285 DOI: 10.1103/physrevlett.112.098701] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Geometrical frustration arises when a local order cannot propagate throughout the space because of geometrical constraints. This phenomenon plays a major role in many systems leading to disordered ground-state configurations. Here, we report a theoretical and experimental study on the behavior of buckling-induced geometrically frustrated triangular cellular structures. To our surprise, we find that buckling induces complex ordered patterns which can be tuned by controlling the porosity of the structures. Our analysis reveals that the connected geometry of the cellular structure plays a crucial role in the generation of ordered states in this frustrated system.
Collapse
Affiliation(s)
- Sung Hoon Kang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sicong Shan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Andrej Košmrlj
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Wim L Noorduin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Samuel Shian
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David R Clarke
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Katia Bertoldi
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA and Kavli Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
9
|
Latimer ML, Berdiyorov GR, Xiao ZL, Peeters FM, Kwok WK. Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures. PHYSICAL REVIEW LETTERS 2013; 111:067001. [PMID: 23971602 DOI: 10.1103/physrevlett.111.067001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Indexed: 06/02/2023]
Abstract
We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.
Collapse
Affiliation(s)
- M L Latimer
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | | | | | | | | |
Collapse
|
10
|
Riahi H, Montaigne F, Rougemaille N, Canals B, Lacour D, Hehn M. Energy levels of interacting curved nanomagnets in a frustrated geometry: increasing accuracy when using finite difference methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:296001. [PMID: 23803392 DOI: 10.1088/0953-8984/25/29/296001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The accuracy of finite difference methods is related to the mesh choice and cell size. Concerning the micromagnetism of nano-objects, we show here that discretization issues can drastically affect the symmetry of the problem and therefore the resulting computed properties of lattices of interacting curved nanomagnets. In this paper, we detail these effects for the multi-axis kagome lattice. Using the OOMMF finite difference method, we propose an alternative way of discretizing the nanomagnet shape via a variable moment per cell scheme. This method is shown to be efficient in reducing discretization effects.
Collapse
Affiliation(s)
- H Riahi
- Institut Jean Lamour, CNRS-Université de Lorraine, boulevard des aiguillettes, BP 70239, F-54506 Vandoeuvre lès Nancy, France
| | | | | | | | | | | |
Collapse
|
11
|
Pollard SD, Zhu Y. The Aharanov-Bohm effect, magnetic monopoles and reversal in spin-ice lattices. Microscopy (Oxf) 2013; 62 Suppl 1:S55-64. [PMID: 23549453 DOI: 10.1093/jmicro/dft017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The proof of the Aharonov-Bohm (AB) effect has been one of the most important experiments of the last century and used as essential evidence for the theory of gauge fields. In this article, we look at its fundamental relation to the Dirac monopole and string. Despite the Dirac string being invisible to the AB effect, it can be used to study emergent quasiparticles in condensed matter settings that behave similar to the fundamental monopoles and strings between them. We utilize phase-imaging method based on the AB effect to study the ordering in a one-model system - that of frustrated spin ice - to understand the ordering processes that occur during a magnetic field reversal cycle. The reversal is linked to the propagation of monopole defects linked by flux channels, reminiscent of Dirac strings. Monopole interactions govern the defect densities within the lattice. Furthermore, we exploit these interactions to propose a new ordering method in which high degrees of ground-state ordering can be achieved in a frustrated system.
Collapse
Affiliation(s)
- Shawn D Pollard
- Department of Condensed Matter Physics, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|
12
|
The non-random walk of chiral magnetic charge carriers in artificial spin ice. Sci Rep 2013; 3:1252. [PMID: 23409243 PMCID: PMC3570775 DOI: 10.1038/srep01252] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 12/02/2022] Open
Abstract
The flow of magnetic charge carriers (dubbed magnetic monopoles) through frustrated spin ice lattices, governed simply by Coulombic forces, represents a new direction in electromagnetism. Artificial spin ice nanoarrays realise this effect at room temperature, where the magnetic charge is carried by domain walls. Control of domain wall path is one important element of utilizing this new medium. By imaging the transit of domain walls across different connected 2D honeycomb structures we contribute an important aspect which will enable that control to be realized. Although apparently equivalent paths are presented to a domain wall as it approaches a Y-shaped vertex from a bar parallel to the field, we observe a stark non-random path distribution, which we attribute to the chirality of the magnetic charges. These observations are supported by detailed statistical modelling and micromagnetic simulations. The identification of chiral control to magnetic charge path selectivity invites analogy with spintronics.
Collapse
|
13
|
O'Brien L, Beguivin A, Petit D, Fernandez-Pacheco A, Read D, Cowburn RP. Domain wall interactions at a cross-shaped vertex. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2012; 370:5794-5805. [PMID: 23166381 DOI: 10.1098/rsta.2012.0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interaction of two domain walls (DWs) at a cross-shaped vertex fabricated from two ferromagnetic nanowires has been experimentally investigated. Both magnetostatically repulsive and attractive interactions have been probed. It is found that in the repulsive case, a passing DW may directly induce the depinning of another that is already pinned at a vertex. This effect can be qualitatively described by considering only simple, magnetostatic-charge-based arguments. In the attractive case, however, asymmetric pinning is found, with complete suppression of depinning possible. This observed effect is contrary to simple charge-based arguments and highlights the need for full micromagnetic characterization of the DW interactions in more complex systems.
Collapse
Affiliation(s)
- L O'Brien
- Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Zhang S, Li J, Gilbert I, Bartell J, Erickson MJ, Pan Y, Lammert PE, Nisoli C, Kohli KK, Misra R, Crespi VH, Samarth N, Leighton C, Schiffer P. Perpendicular magnetization and generic realization of the Ising model in artificial spin ice. PHYSICAL REVIEW LETTERS 2012; 109:087201. [PMID: 23002770 DOI: 10.1103/physrevlett.109.087201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Indexed: 06/01/2023]
Abstract
We have studied frustrated kagome arrays and unfrustrated honeycomb arrays of magnetostatically interacting single-domain ferromagnetic islands with magnetization normal to the plane. The measured pairwise spin correlations of both lattices can be reproduced by models based solely on nearest-neighbor correlations. The kagome array has qualitatively different magnetostatics but identical lattice topology to previously studied artificial spin ice systems composed of in-plane moments. The two systems show striking similarities in the development of moment pair correlations, demonstrating a universality in artificial spin ice behavior independent of specific realization in a particular material system.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Physics and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Budrikis Z, Morgan JP, Akerman J, Stein A, Politi P, Langridge S, Marrows CH, Stamps RL. Disorder strength and field-driven ground state domain formation in artificial spin ice: experiment, simulation, and theory. PHYSICAL REVIEW LETTERS 2012; 109:037203. [PMID: 22861890 DOI: 10.1103/physrevlett.109.037203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Indexed: 06/01/2023]
Abstract
Quenched disorder affects how nonequilibrium systems respond to driving. In the context of artificial spin ice, an athermal system comprised of geometrically frustrated classical Ising spins with a twofold degenerate ground state, we give experimental and numerical evidence of how such disorder washes out edge effects and provide an estimate of disorder strength in the experimental system. We prove analytically that a sequence of applied fields with fixed amplitude is unable to drive the system to its ground state from a saturated state. These results should be relevant for other systems where disorder does not change the nature of the ground state.
Collapse
Affiliation(s)
- Zoe Budrikis
- School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia.
| | | | | | | | | | | | | | | |
Collapse
|