1
|
Zhang Y, Li H, Wang J, Silvester DS, Warr GG, Atkin R. Potential-dependent superlubricity of stainless steel and Au(111) using a water-in-surface-active ionic liquid mixture. J Colloid Interface Sci 2025; 678:355-364. [PMID: 39208763 DOI: 10.1016/j.jcis.2024.08.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
HYPOTHESIS The friction and interfacial nanostructure of a water-in-surface-active ionic liquid mixture, 1.6 M 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate ([BMIm][AOT]), can be tuned by applying potential on Au(111) and stainless steel. EXPERIMENTAL Atomic force microscopy (AFM) was used to examine the friction and interfacial nanostructure of 1.6 M [BMIm][AOT] on Au(111) and stainless steel at different potentials. FINDINGS Superlubricity (vanishing friction) is observed for both surfaces at OCP+1.0 V up to a surface-dependent critical normal force due to [AOT]- bilayers adsorbing strongly to the positively charged surface thus allowing AFM tip to slide over solution-facing hydrated anion charged groups. High-resolution AFM imaging reveals ripple-like features within near-surface layers, with the smallest amplitudes at OCP+1 V, indicating the highest structural stability and resistance to thermal fluctuations due to highly ordered boundary [AOT]- bilayers templating robust near-surface layers. Exceeding the critical normal force at OCP+1.0 V causes the AFM tip to penetrate the hydrated [AOT]- layer and slide over alkyl chains, increasing friction. At OCP and OCP-1.0 V, higher friction correlates with more pronounced ripples, attributed to the rougher templating [BMIm]+ boundary layer. Kinetic experiments show that switching from OCP-1.0 V to OCP+1.0 V achieves superlubricity within 15 s, enabling real-time friction control.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| | - Jianan Wang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
2
|
Zhang X, Goodwin ZAH, Hoane AG, Deptula A, Markiewitz DM, Molinari N, Zheng Q, Li H, McEldrew M, Kozinsky B, Bazant MZ, Leal C, Atkin R, Gewirth AA, Rutland MW, Espinosa-Marzal RM. Long-Range Surface Forces in Salt-in-Ionic Liquids. ACS NANO 2024; 18:34007-34022. [PMID: 39641512 DOI: 10.1021/acsnano.4c09355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ionic liquids (ILs) are a promising class of electrolytes with a unique combination of properties, such as extremely low vapor pressures and nonflammability. Doping ILs with alkali metal salts creates an electrolyte that is of interest for battery technology. These salt-in-ionic liquids (SiILs) are a class of superconcentrated, strongly correlated, and asymmetric electrolytes. Notably, the transference numbers of the alkali metal cations have been found to be negative. Here, we investigate Na-based SiILs with a surface force apparatus, X-ray scattering, and atomic force microscopy. We find evidence of confinement-induced structural changes, giving rise to long-range interactions. Force curves also reveal an electrolyte structure consistent with our predictions from theory and simulations. The long-range steric interactions in SiILs reflect the high aspect ratio of compressible aggregates at the interfaces rather than the purely electrostatic origin predicted by the classical electrolyte theory. This conclusion is supported by the reported anomalous negative transference numbers, which can be explained within the same aggregation framework. The interfacial nanostructure should impact the formation of the solid electrolyte interphase in SiILs.
Collapse
Affiliation(s)
- Xuhui Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zachary A H Goodwin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Materials, Imperial College of London, South Kensington Campus, London SW7 2AZ, U.K
| | - Alexis G Hoane
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Alex Deptula
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel M Markiewitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nicola Molinari
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Robert Bosch LLC, Research and Technology Center, Cambridge, Massachusetts 02142, United States
| | - Qianlu Zheng
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Michael McEldrew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Robert Bosch LLC, Research and Technology Center, Cambridge, Massachusetts 02142, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mark W Rutland
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
- Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Lyon 69130, France
- Bioeconomy and Health, Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm 114 28, Sweden
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Li S, Hammond OS, Nelson A, de Campo L, Moir M, Recsei C, Shimpi MR, Glavatskih S, Pilkington GA, Mudring AV, Rutland MW. Anion Architecture Controls Structure and Electroresponsivity of Anhalogenous Ionic Liquids in a Sustainable Fluid. J Phys Chem B 2024; 128:4231-4242. [PMID: 38639329 DOI: 10.1021/acs.jpcb.3c08189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Three nonhalogenated ionic liquids (ILs) dissolved in 2-ethylhexyl laurate (2-EHL), a biodegradable oil, are investigated in terms of their bulk and electro-interfacial nanoscale structures using small-angle neutron scattering (SANS) and neutron reflectivity (NR). The ILs share the same trihexyl(tetradecyl)phosphonium ([P6,6,6,14]+) cation paired with different anions, bis(mandelato)borate ([BMB]-), bis(oxalato)borate ([BOB]-), and bis(salicylato)borate ([BScB]-). SANS shows a high aspect ratio tubular self-assembly structure characterized by an IL core of alternating cations and anions with a 2-EHL-rich shell or corona in the bulk, the geometry of which depends upon the anion structure and concentration. NR also reveals a solvent-rich interfacial corona layer. Their electro-responsive behavior, pertaining to the structuring and composition of the interfacial layers, is also influenced by the anion identity. [P6,6,6,14][BOB] exhibits distinct electroresponsiveness to applied potentials, suggesting an ion exchange behavior from cation-dominated to anion-rich. Conversely, [P6,6,6,14][BMB] and [P6,6,6,14][BScB] demonstrate minimal electroresponses across all studied potentials, related to their different dissociative and diffusive behavior. A mixed system is dominated by the least soluble IL but exhibits an increase in disorder. This work reveals the subtlety of anion architecture in tuning bulk and electro-interfacial properties, offering valuable molecular insights for deploying nonhalogenated ILs as additives in biodegradable lubricants and supercapacitors.
Collapse
Affiliation(s)
- Sichao Li
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Oliver S Hammond
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-114 18, Sweden
- intelligent Advanced Materials, Department of Biological & Chemical Engineering and iNANO, Aarhus University, Aarhus C 8000, Denmark
| | - Andrew Nelson
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Michael Moir
- National Deuteration Facility, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Carl Recsei
- National Deuteration Facility, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Manishkumar R Shimpi
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-114 18, Sweden
- Chemistry of Interfaces, Department of Civil and Environmental Engineering, Luleå University of Technology, Luleå SE-97187, Sweden
| | - Sergei Glavatskih
- System and Component Design, Department of Engineering Design, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Electromechanical, Systems and Metal Engineering, Ghent University, Ghent B-9052, Belgium
| | - Georgia A Pilkington
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
| | - Anja-Verena Mudring
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-114 18, Sweden
- intelligent Advanced Materials, Department of Biological & Chemical Engineering and iNANO, Aarhus University, Aarhus C 8000, Denmark
- Department of Physics, Umeå University, Umeå SE-901 87, Sweden
| | - Mark W Rutland
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm SE-100 44, Sweden
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Bioeconomy and Health Department Materials and Surface Design, RISE Research Institutes of Sweden, Stockholm SE-114 28, Sweden
- Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, Ecully Cedex 69134, France
| |
Collapse
|
4
|
An R, Wu N, Gao Q, Dong Y, Laaksonen A, Shah FU, Ji X, Fuchs H. Integrative studies of ionic liquid interface layers: bridging experiments, theoretical models and simulations. NANOSCALE HORIZONS 2024; 9:506-535. [PMID: 38356335 DOI: 10.1039/d4nh00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Ionic liquids (ILs) are a class of salts existing in the liquid state below 100 °C, possessing low volatility, high thermal stability as well as many highly attractive solvent and electrochemical capabilities, etc., making them highly tunable for a great variety of applications, such as lubricants, electrolytes, and soft functional materials. In many applications, ILs are first either physi- or chemisorbed on a solid surface to successively create more functional materials. The functions of ILs at solid surfaces can differ considerably from those of bulk ILs, mainly due to distinct interfacial layers with tunable structures resulting in new ionic liquid interface layer properties and enhanced performance. Due to an almost infinite number of possible combinations among the cations and anions to form ILs, the diversity of various solid surfaces, as well as different external conditions and stimuli, a detailed molecular-level understanding of their structure-property relationship is of utmost significance for a judicious design of IL-solid interfaces with appropriate properties for task-specific applications. Many experimental techniques, such as atomic force microscopy, surface force apparatus, and so on, have been used for studying the ion structuring of the IL interface layer. Molecular Dynamics simulations have been widely used to investigate the microscopic behavior of the IL interface layer. To interpret and clarify the IL structure and dynamics as well as to predict their properties, it is always beneficial to combine both experiments and simulations as close as possible. In another theoretical model development to bridge the structure and properties of the IL interface layer with performance, thermodynamic prediction & property modeling has been demonstrated as an effective tool to add the properties and function of the studied nanomaterials. Herein, we present recent findings from applying the multiscale triangle "experiment-simulation-thermodynamic modeling" in the studies of ion structuring of ILs in the vicinity of solid surfaces, as well as how it qualitatively and quantitatively correlates to the overall ILs properties, performance, and function. We introduce the most common techniques behind "experiment-simulation-thermodynamic modeling" and how they are applied for studying the IL interface layer structuring, and we highlight the possibilities of the IL interface layer structuring in applications such as lubrication and energy storage.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Nanhua Wu
- Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qingwei Gao
- College of Environmental and Chemical Engineering, Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
- Center of Advanced Research in Bionanoconjugates and Biopolymers, ''Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Harald Fuchs
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
- Center for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|
5
|
Zheng Q, Hawthorne N, Batteas JD, Espinosa-Marzal RM. Surface Curvature Enhances the Electrotunability of Ionic Liquid Lubrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38334102 DOI: 10.1021/acs.langmuir.3c03519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Ionic liquids (ILs) are a promising class of lubricants that allow dynamic friction control at electrified interfaces. In the real world, surfaces inevitably exhibit some degree of roughness, which can influence lubrication. In this work, we deposited single-layer graphene onto 20 nm silica nanoparticle films to investigate the effect of surface curvature and electrostatic potential on both the lubricious behavior and interfacial layering structure of 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide on graphene. Normal force and friction force measurements were conducted by atomic force microscopy using a sharp silicon tip. Our results reveal that the friction coefficient at the lubricated tip-graphene contacts significantly depends on surface curvature. Two friction coefficients are measured on graphene peaks and valleys with a higher coefficient measured at lower loads (pressures), whereas only one friction coefficient is measured on smooth graphene. Moreover, the electrotunability of the friction coefficient at low loads is observed to be significantly enhanced in peaks and valleys compared with smooth graphene. This is associated with the promoted overscreening of surface charge on convex interfaces and the steric hindrance at concave interfaces, which leads to more layers of ions (electrostatically) bound to the surface, i.e., thicker boundary films (electrical double layers). This work opens new avenues to control IL lubrication on the nanoscale by combining topographic features and an electric field.
Collapse
Affiliation(s)
- Qianlu Zheng
- Department of Civil and Environmental Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| | - Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Rosa M Espinosa-Marzal
- Department of Civil and Environmental Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana─Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Li S, Pilkington GA, Mehler F, Hammond OS, Boudier A, Vorobiev A, Glavatskih S, Rutland MW. Tuneable interphase transitions in ionic liquid/carrier systems via voltage control. J Colloid Interface Sci 2023; 652:1240-1249. [PMID: 37657223 DOI: 10.1016/j.jcis.2023.08.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
The structure and interaction of ionic liquids (ILs) influence their interfacial composition, and their arrangement (i.e., electric double-layer (EDL) structure), can be controlled by an electric field. Here, we employed a quartz crystal microbalance (QCM) to study the electrical response of two non-halogenated phosphonium orthoborate ILs, dissolved in a polar solvent at the interface. The response is influenced by the applied voltage, the structure of the ions, and the solvent polarizability. One IL showed anomalous electro-responsivity, suggesting a self-assembly bilayer structure of the IL cation at the gold interface, which transitions to a typical EDL structure at higher positive potential. Neutron reflectivity (NR) confirmed this interfacial structuring and compositional changes at the electrified gold surface. A cation-dominated self-assembly structure is observed for negative and neutral voltages, which abruptly transitions to an anion-rich interfacial layer at positive voltages. An interphase transition explains the electro-responsive behaviour of self-assembling IL/carrier systems, pertinent for ILs in advanced tribological and electrochemical contexts.
Collapse
Affiliation(s)
- Sichao Li
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Georgia A Pilkington
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Filip Mehler
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Oliver S Hammond
- Department of Materials and Environmental Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden; Department of Biological and Chemical Engineering, Aarhus University, Aarhus C 8000 Denmark
| | - Anthony Boudier
- Department of Materials and Environmental Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Alexei Vorobiev
- Department of Physics and Astronomy, Division of Materials Physics, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Sergei Glavatskih
- System and Component Design, Department of Engineering Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; Department of Electromechanical, Systems and Metal Engineering, Ghent University, B-9052 Ghent, Belgium
| | - Mark W Rutland
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; Bioeconomy and Health Department Materials and Surface Design, RISE Research Institutes of Sweden, SE-114 28 Stockholm, Sweden; Laboratoire de Tribologie et Dynamique des Systèmes, École Centrale de Lyon, 69134 Ecully Cedex, France.
| |
Collapse
|
7
|
Bou Tannous L, Simoes Santos M, Gong Z, Haumesser PH, Benayad A, Padua AAH, Steinberger A. Effect of Surface Chemistry on the Electrical Double Layer in a Long-Chain Ionic Liquid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16785-16796. [PMID: 37970757 DOI: 10.1021/acs.langmuir.3c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Room temperature ionic liquids (ILs) can create a strong accumulation of charges at solid interfaces by forming a very thin and dense electrical double layer (EDL). The structure of this EDL has important consequences in numerous applications involving ILs, for example, in supercapacitors, sensors, and lubricants, by impacting the interfacial capacitance, the charge carrier density of semiconductors, as well as the frictional properties of the interfaces. We have studied the interfacial structure of a long chain imidazolium-based IL (1-octyl-3-methylimidazolium dicyanamide) on several substrates: mica, silica, silicon, and molybdenum disulfide (MoS2), using atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. We have observed 3 types of interfacial structures for the same IL, depending on the chemistry of the substrate and the water content, showing that the EDL structure is not an intrinsic property of the IL. We evidenced that at a low water content, neutral and apolar (thus hydrophobic) substrates promote a thin layer structure, where the ions are oriented parallel to the substrate and cations and anions are mixed in each layer. In contrast, a strongly charged (thus hydrophilic) substrate yields an extended structuration into several bilayers, while a heterogeneous layering with loose bilayer regions was observed on an intermediate polar and weakly charged substrate and on an apolar one at a high bulk water content. In the latter case, water contamination favors the formation of bilayer patches by promoting the segregation of the long chain IL into polar and apolar domains.
Collapse
Affiliation(s)
- Layla Bou Tannous
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
- CEA, Leti, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | | | - Zheng Gong
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
| | | | - Anass Benayad
- CEA, Liten, Univ. Grenoble Alpes, F-38000 Grenoble, France
| | - Agilio A H Padua
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, 69364 Lyon, France
| | - Audrey Steinberger
- Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
8
|
Hausen F. Relaxation Times of Ionic Liquids under Electrochemical Conditions Probed by Friction Force Microscopy. SMALL METHODS 2023; 7:e2300250. [PMID: 37551063 DOI: 10.1002/smtd.202300250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/14/2023] [Indexed: 08/09/2023]
Abstract
Ionic liquids (ILs) represent an important class of liquids considered for a broad range of applications such as lubrication, catalysis, or as electrolytes in batteries. It is well-known that in the case of charged surfaces, ILs form a pronounced layer structure that can be easily triggered by an externally applied electrode potential. Information about the time required to form a stable interface under varying electrode potentials is of utmost importance in many applications. For the first time, probing of relaxation times of ILs by friction force microscopy is demonstrated. The friction force is extremely sensitive to even subtle changes in the interfacial configuration of ILs. Various relaxation processes with different time scales are observed. A significant difference dependent on the direction of switching the applied potential, i.e., from a more cation-rich to a more anion-rich interface or vice versa, is found. Furthermore, variations in height immediately after the potential step and the presence of trace amounts of water are discussed as well.
Collapse
Affiliation(s)
- Florian Hausen
- Forschungszentrum Jülich, Institute of Energy and Climate Research, IEK-9, 52425, Jülich, Germany
- RWTH Aachen University, Institute of Physical Chemistry, 52074, Aachen, Germany
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Jülich-Aachen Research Alliance, Section: JARA-Energy, 52425, Jülich, Germany
| |
Collapse
|
9
|
Zhang X, Han M, Espinosa-Marzal RM. Thin-Film Rheology and Tribology of Imidazolium Ionic Liquids. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45485-45497. [PMID: 37721996 PMCID: PMC10540134 DOI: 10.1021/acsami.3c10018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Ionic liquids (ILs) are organic molten salts with low-temperature melting points that hold promise as next-generation environmentally friendly boundary lubricants. This work examines the relationship between tribological and rheological behavior of thin films of five imidazolium ILs using a surface force apparatus to elucidate lubrication mechanisms. When confined to films of a few nanometers, the rheological properties change drastically as a function of the number of confined ion layers; not only the viscosity increases by several orders of magnitude but ILs can also undergo a transition from Newtonian to viscoelastic fluid and to an elastic solid. This behavior can be justified by the confinement-induced formation of supramolecular clusters with long relaxation times. The quantized friction coefficient is explained from the perspective of the strain relaxation via diffusion of these supramolecular clusters, where higher friction correlates with longer relaxation times. A deviation from this behavior is observed only for 1-ethyl-3-methylimidazolium ethylsulfate ([C2C1Im][EtSO4]), characterized by strong hydrogen bonding; this is hypothesized to restrict the reorganization of the confined IL into clusters and hinder (visco)elastic behavior, which is consistent with the smallest friction coefficient measured for this IL. We also investigate the contrasting influence of traces of water on the thin-film rheology and tribology of a hydrophobic IL, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C2C1Im][FAP], and a hydrophilic IL, [C2C1Im][EtSO4]. [C2C1Im][EtSO4] remains Newtonian under both dry and humid conditions and provides the best lubrication, while [C2C1Im][FAP], characterized by a prominent solid-like behavior under both conditions, is a poor lubricant. The results of this study may inspire molecular designs to enable efficient IL lubrication.
Collapse
Affiliation(s)
- Xuhui Zhang
- Department
of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Mengwei Han
- Department
of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Rosa M. Espinosa-Marzal
- Department
of Civil and Environmental Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- Department
of Materials Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
10
|
Su Y, Wang T, Zhang F, Huang J, Zhu Z, Shah FU, Xu F, An R. Effect of Electrode Surface Chemistry on Ion Structuring of Imidazolium Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37289976 DOI: 10.1021/acs.langmuir.3c00710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface chemistry plays a critical role in the ion structuring of ionic liquids (ILs) at the interfaces of electrodes and controls the overall energy storage performance of the system. Herein, we functionalized the gold (Au) colloid probe of an atomic force microscope with -COOH and -NH2 groups to explore the effect of different surface chemical properties on the ion structuring of an IL. Aided by colloid-probe atomic force microscopy (AFM), the ion structuring of an imidazolium IL, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6], abbreviated as BP hereafter), on the Au electrode surface and the ion response to the change in the surface chemistry are investigated. AFM morphologies, contact angles, and approaching force-distance curves of the BP IL on the functionalized Au surfaces exhibited that the IL forms a more obvious layering structure on the -COOH-terminated Au surface (Au-COOH), while it forms heterogeneous and aggregating droplets on the -NH2 surface (Au-NH2). The formed uniform and aggregation-free ion layers in the vicinity of the Au-COOH surface are due to the π-π+ stacking interaction between the delocalized π+ electrons from the imidazolium ring in the IL [BMIM]+ cation and the localized π electrons from the sp2 carbon on the -COOH group. The in situ observation of nano-friction and torsional resonance frequency at the IL-electrode interfaces further demonstrated the ion structuring of the IL at Au-COOH, which results in a more sensitive electrochemical response associated with a faster capacitive process.
Collapse
Affiliation(s)
- Yiqun Su
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Wang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fan Zhang
- Department of Engineering and Design, School of Engineering and Information, University of Sussex, Brighton BN1 9RH, U.K
| | - Junsen Huang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhehang Zhu
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Feng Xu
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rong An
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
11
|
Kondrat S, Feng G, Bresme F, Urbakh M, Kornyshev AA. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem Rev 2023; 123:6668-6715. [PMID: 37163447 PMCID: PMC10214387 DOI: 10.1021/acs.chemrev.2c00728] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 05/12/2023]
Abstract
Room-temperature ionic liquids (RTILs) have exciting properties such as nonvolatility, large electrochemical windows, and remarkable variety, drawing much interest in energy storage, gating, electrocatalysis, tunable lubrication, and other applications. Confined RTILs appear in various situations, for instance, in pores of nanostructured electrodes of supercapacitors and batteries, as such electrodes increase the contact area with RTILs and enhance the total capacitance and stored energy, between crossed cylinders in surface force balance experiments, between a tip and a sample in atomic force microscopy, and between sliding surfaces in tribology experiments, where RTILs act as lubricants. The properties and functioning of RTILs in confinement, especially nanoconfinement, result in fascinating structural and dynamic phenomena, including layering, overscreening and crowding, nanoscale capillary freezing, quantized and electrotunable friction, and superionic state. This review offers a comprehensive analysis of the fundamental physical phenomena controlling the properties of such systems and the current state-of-the-art theoretical and simulation approaches developed for their description. We discuss these approaches sequentially by increasing atomistic complexity, paying particular attention to new physical phenomena emerging in nanoscale confinement. This review covers theoretical models, most of which are based on mapping the problems on pertinent statistical mechanics models with exact analytical solutions, allowing systematic analysis and new physical insights to develop more easily. We also describe a classical density functional theory, which offers a reliable and computationally inexpensive tool to account for some microscopic details and correlations that simplified models often fail to consider. Molecular simulations play a vital role in studying confined ionic liquids, enabling deep microscopic insights otherwise unavailable to researchers. We describe the basics of various simulation approaches and discuss their challenges and applicability to specific problems, focusing on RTIL structure in cylindrical and slit confinement and how it relates to friction and capacitive and dynamic properties of confined ions.
Collapse
Affiliation(s)
- Svyatoslav Kondrat
- Institute
of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute
for Computational Physics, University of
Stuttgart, Stuttgart 70569, Germany
| | - Guang Feng
- State
Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Nano
Interface Centre for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- London
Centre for Nanotechnology, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Michael Urbakh
- School
of Chemistry and the Sackler Center for Computational Molecular and
Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexei A. Kornyshev
- Department
of Chemistry, Molecular Sciences Research
Hub, White City Campus, London W12 0BZ,United Kingdom
- Thomas Young
Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Reddy AB, Pilkington GA, Rutland MW, Glavatskih S. Tribotronic control of an ionic boundary layer in operando extends the limits of lubrication. Sci Rep 2022; 12:20479. [PMID: 36443307 PMCID: PMC9705526 DOI: 10.1038/s41598-022-22504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
The effect of electric potential on the lubrication of a non-halogenated phosphonium orthoborate ionic liquid used as an additive in a biodegradable oil was studied. An in-house tribotronic system was built around an instrument designed to measure lubricant film thickness between a rolling steel ball and a rotating silica-coated glass disc. The application of an electric field between the steel ball and a set of customized counter-electrodes clearly induced changes in the thickness of the lubricant film: a marked decrease at negative potentials and an increase at positive potentials. Complementary neutron reflectivity studies demonstrated the intrinsic electroresponsivity of the adsorbate: this was performed on a gold-coated silicon block and made possible in the same lubricant system by deuterating the oil. The results indicate that the anions, acting as anchors for the adsorbed film on the steel surface, are instrumental in the formation of thick and robust lubricating ionic boundary films. The application of a high positive potential, outside the electrochemical window, resulted in an enormous boost to film thickness, implicating the formation of ionic multi-layers and demonstrating the plausibility of remote control of failing contacts in inaccessible machinery, such as offshore wind and wave power installations.
Collapse
Affiliation(s)
- Akepati Bhaskar Reddy
- System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Georgia A Pilkington
- Division of Surface Chemistry and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Mark W Rutland
- Division of Surface Chemistry and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
- Laboratoire de Tribologie et de Dynamique des Systèmes, Ecole Centrale de Lyon, 69134, Ecully, France.
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Sergei Glavatskih
- System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia.
- Department of Electromechanical, Systems and Metal Engineering, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
13
|
Xia G, Tuo W, Li X, Liu X. Study on the Performance of Liquid-Solid Contact Resistance Based on Magnetohydrodynamic Micro-Angular Vibration Sensor. SENSORS (BASEL, SWITZERLAND) 2022; 22:9204. [PMID: 36501905 PMCID: PMC9741128 DOI: 10.3390/s22239204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this paper, the influence of the contact resistance between the conductive fluid and the metal electrode on the output characteristics of the magnetic fluid micro-angular vibration sensor (MHD sensor) is theoretically analyzed. The contact resistance models based on the solid-solid electric contact theory are established based on the resistivity, temperature, pressure and angular vibration of the materials between the conductive fluid and the metal electrode. The contact resistance was tested by setting up an experimental platform and making conductive fluid rings with electrode materials of Ag, Cu and Ti. The results show that the static contact resistance between the conductive fluid and the metal electrode is positively correlated with the material resistivity and temperature, and negatively correlated with the surface roughness and contact pressure of the metal electrode. The dynamic contact resistance fluctuation is proportional to the amplitude of the input voltage of the angle shaker and inversely proportional to the square of the input frequency. At the same time, reducing contact resistance can improve the MHD sensor's performance.
Collapse
Affiliation(s)
- Ganmin Xia
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Weixiao Tuo
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
- Taihu Laboratory of Deepsea Technological Science, Wuxi 214000, China
| | - Xingfei Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
- Taihu Laboratory of Deepsea Technological Science, Wuxi 214000, China
| | - Xinyu Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Wang R, Sun C, Yan X, Guo T, Xiang W, Yang Z, Yu Q, Yu B, Cai M, Zhou F. Influence of the molecular structure on the tribological properties of choline-based ionic liquids as water-based additives under current-carrying lubrication. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Lu Y, Wang Y, Huo F, Chen W, Ma M, Ding WL, He H, Zhang S. Ultralow Friction and High Robustness of Monolayer Ionic Liquids. ACS NANO 2022; 16:16471-16480. [PMID: 36222622 DOI: 10.1021/acsnano.2c05779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultralow friction between interacting surfaces in relative motion is of vital importance in many pure and applied sciences. We found that surfaces bearing ordered monolayer ionic liquids (ILs) can have friction coefficient μ values as low as 0.001 at pressures up to 78 MPa and exhibit good structure recoverability. This extreme lubrication is attributed primarily to the ordered striped structure driven by the "atomic-locking" effect between carbon atoms on the alkyl chain of ILs and graphite. The longer alkyl chain has lower μ values, and the stripe periodicity is decisive in reducing energy dissipation during the sliding process. In combination with simulation, the alternate atomic-scale ordered and disordered ionic regions were recognized, whose ratio fundamentally determines the μ values and lubrication mechanism. This finding is an important step toward the practical utilization of ILs with negligible vapor pressure as superlubricating materials in future technological applications operating under extreme conditions.
Collapse
Affiliation(s)
- Yumiao Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Chen
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Ming Ma
- Department of Mechanical Engineering, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wei-Lu Ding
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
16
|
Effects of current-carrying conditions on lubrication and tribological performance of ionic liquid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
An R, Laaksonen A, Wu M, Zhu Y, Shah FU, Lu X, Ji X. Atomic force microscopy probing interactions and microstructures of ionic liquids at solid surfaces. NANOSCALE 2022; 14:11098-11128. [PMID: 35876154 DOI: 10.1039/d2nr02812c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ionic liquids (ILs) are room temperature molten salts that possess preeminent physicochemical properties and have shown great potential in many applications. However, the use of ILs in surface-dependent processes, e.g. energy storage, is hindered by the lack of a systematic understanding of the IL interfacial microstructure. ILs on the solid surface display rich ordering, arising from coulombic, van der Waals, solvophobic interactions, etc., all giving near-surface ILs distinct microstructures. Therefore, it is highly important to clarify the interactions of ILs with solid surfaces at the nanoscale to understand the microstructure and mechanism, providing quantitative structure-property relationships. Atomic force microscopy (AFM) opens a surface-sensitive way to probe the interaction force of ILs with solid surfaces in the layers from sub-nanometers to micrometers. Herein, this review showcases the recent progress of AFM in probing interactions and microstructures of ILs at solid interfaces, and the influence of IL characteristics, surface properties and external stimuli is thereafter discussed. Finally, a summary and perspectives are established, in which, the necessities of the quantification of IL-solid interactions at the molecular level, the development of in situ techniques closely coupled with AFM for probing IL-solid interfaces, and the combination of experiments and simulations are argued.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi 700469, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Muqiu Wu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yudan Zhu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Luleå University of Technology, 97187 Luleå, Sweden
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
18
|
Lang H, Zou K, Chen R, Huang Y, Peng Y. Role of Interfacial Water in the Tribological Behavior of Graphene in an Electric Field. NANO LETTERS 2022; 22:6055-6061. [PMID: 35868008 DOI: 10.1021/acs.nanolett.2c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Friction properties in the electric field are important for the application of graphene as a solid lubricant in graphene-based micro/nanoelectromechanical systems. The studies based on conductive atomic force microscopy show that interfacial water between graphene and the SiO2/Si substrate affects the friction of graphene in the electric field. Friction without applying voltage remains low because the interfacial water retains a stable ice-like network. However, friction after applying voltage increases because the polar water molecules are attracted by the electric field and gather around the tip. The gathered interfacial water not only increases the deformation of graphene but is also pushed by the tip during frictional sliding, which results in the increased friction. These studies provide beneficial guidelines for the applications of graphene as a solid lubricant in the electric field.
Collapse
Affiliation(s)
- Haojie Lang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Kun Zou
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
| | - Ruling Chen
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Yao Huang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Yitian Peng
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
19
|
Bresme F, Kornyshev AA, Perkin S, Urbakh M. Electrotunable friction with ionic liquid lubricants. NATURE MATERIALS 2022; 21:848-858. [PMID: 35761059 DOI: 10.1038/s41563-022-01273-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature ionic liquids and their mixtures with organic solvents as lubricants open a route to control lubricity at the nanoscale via electrical polarization of the sliding surfaces. Electronanotribology is an emerging field that has a potential to realize in situ control of friction-that is, turning the friction on and off on demand. However, fulfilling its promise needs more research. Here we provide an overview of this emerging research area, from its birth to the current state, reviewing the main achievements in non-equilibrium molecular dynamics simulations and experiments using atomic force microscopes and surface force apparatus. We also present a discussion of the challenges that need to be solved for future applications of electrotunable friction.
Collapse
Affiliation(s)
- Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK.
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Michael Urbakh
- Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
Shen G, Zhang D, Hu Y, Zhang X, Zhou F, Qian Y, Lu X, Ji X. Effect of surface roughness on partition of ionic liquids in nanopores by a perturbed-chain SAFT density functional theory. J Chem Phys 2022; 157:014701. [DOI: 10.1063/5.0098924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, the distribution and partition behavior of ionic liquids (ILs) in nanopores with rough surfaces are investigated by a two-dimensional (2D) classical density functional theory (DFT) model. The model is consistent with the equation of state (EoS) that combines the perturbed-chain statistical associating fluid theory (PC-SAFT) and the mean spherical approximation (MSA) theory for bulk fluid. Its performance is verified by comparing the theoretical predictions to the results from molecular simulations. The fast Fourier transform (FFT) and a hybrid iteration method of Picard iteration and Anderson mixing are used to efficiently obtain the solution of density profile for the sizeable 2D system. The molecular parameters for IL-ions are obtained by fitting to experimental densities of bulk ILs. The model is applied to study the structure and partition of the ILs in nanopores. The results show that the peak of the density profile of counterions near a rough surface is much higher than that near a smooth surface. The adsorption of counterion and removal of coions are enhanced by surface roughness. Thus the nanopore with rough surfaces can store more charge. At low absolute surface potential, the partition coefficient for ions on rough surfaces is lower than that on smooth surfaces. At high absolute surface potential, increasing surface roughness leads to an increase in partition coefficient for counterions and a decrease in partition coefficient for coions.
Collapse
Affiliation(s)
| | - Di Zhang
- Huaiyin Institute of Technology, China
| | - Yongke Hu
- Huaiyin Institute of Technology, China
| | | | - Feng Zhou
- Huaiyin Institute of Technology, China
| | | | - Xiaohua Lu
- Department of Chemical Engineering, Nanjing University of Technology, China
| | | |
Collapse
|
21
|
Park I, Hausen F, Baltruschat H. Friction on I‐modified Au(111) in a Tetraglyme Electrolyte. ChemElectroChem 2022. [DOI: 10.1002/celc.202101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Inhee Park
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institute of Physical and Theoretical Chemistry 53117 Bonn GERMANY
| | - Florian Hausen
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Physical Chemistry 52425 Jülich GERMANY
| | - Helmut Baltruschat
- University of Bonn Inst. f. Physikalische u.Theoret. Chemie R�merstra�e 164-Abteilung Elektrochemie- 53117 Bonn GERMANY
| |
Collapse
|
22
|
Zhang Y, Marlow JB, Millar W, Aman ZM, Silvester DS, Warr GG, Atkin R, Li H. Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P 6,6,6,14] [AOT]. J Colloid Interface Sci 2022; 608:2120-2130. [PMID: 34752982 DOI: 10.1016/j.jcis.2021.10.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS A catanionic surface-active ionic liquid (SAIL) trihexyltetradecylphosphonium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate ([P6,6,6,14] [AOT]) is nanostructured in the bulk and at the interface. The interfacial nanostructure and lubricity may be changed by applying a potential. EXPERIMENTS The bulk structure and viscosity have been investigated using small angle X-ray scattering (SAXS) and rheometry. The interfacial structure and lubricity as a function of potential have been investigated using atomic force microscopy (AFM). The electrochemistry has been investigated using cyclic voltammetry. FINDINGS [P6,6,6,14] [AOT] shows sponge-like bulk nanostructure with distinct interdigitation of cation-anion alkyl chains. Shear-thinning occurs at 293 K and below, but becomes less obvious on heating up to 313 K. Voltammetric analysis reveals that the electrochemical window of [P6,6,6,14] [AOT] on a gold micro disk electrode exceeds the potential range of the AFM experiments and that negligible redox activity occurs in this range. The interfacial layered structure of [P6,6,6,14] [AOT] is weaker than conventional ILs and SAILs, whereas lubricity is better, confirming the inverse correlation between the near-surface structure and lubricity. The adhesive forces of [P6,6,6,14] [AOT] are lower at -1.0 V than at open circuit potential and +1.0 V, likely due to reduced electrostatic interactions caused by shielding of charge centres via long alkyl chains.
Collapse
Affiliation(s)
- Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Joshua B Marlow
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wade Millar
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Zachary M Aman
- Fluid Science and Resources Division, School of Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth 6845, Western Australia, Australia
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
23
|
Li H, Zhang Y, Jones S, Segalman R, Warr GG, Atkin R. Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at Au(111) electrode interface. J Colloid Interface Sci 2022; 606:1170-1178. [PMID: 34487936 DOI: 10.1016/j.jcis.2021.08.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
HYPOTHESIS The polymeric cations of polymeric ionic liquids (PILs) can adsorb from the bulk of a conventional ionic liquid (IL) to the Au(111) electrode interface and form a boundary layer. The interfacial properties of the PIL boundary layer may be tuned by potential. EXPERIMENTS Atomic force microscopy has been used to investigate the changes of surface morphology, normal and lateral forces of a 5 wt% PIL/IL mixture as a function of potential. FINDINGS Polymeric cations adsorb strongly to Au(111) and form a polymeric cation-enriched boundary layer at -1.0 V. This boundary layer binds less strongly to the surface at open circuit potential (OCP) and weakly at + 1.0 V. The polymeric cation chains are compressed at -1.0 V and OCP owing to electrical attractions with the electrode surface, but fully stretched at + 1.0 V due to electrical repulsions. The lateral forces of the 5 wt% PIL/IL mixture at -1.0 V and OCP are higher than at + 1.0 V as the polymeric cation-enriched boundary layer is rougher and has stronger interactions with the AFM probe; at + 1.0 V, the lateral force is low and comparable to pure conventional IL due to displacement of polymeric cations with conventional anions in the boundary layer.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia.
| | - Yunxiao Zhang
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Seamus Jones
- Department of Chemical Engineering and Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Rachel Segalman
- Department of Chemical Engineering and Materials Department, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Gregory G Warr
- School of Chemistry and Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
24
|
Yuan J, Yang R, Zhang G. Structural superlubricity in 2D van der Waals heterojunctions. NANOTECHNOLOGY 2021; 33:102002. [PMID: 34229304 DOI: 10.1088/1361-6528/ac1197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Structural superlubricity is a fundamentally important research topic in the area of tribology. Van der Waals heterojunctions of 2D materials are an ideal system for achieving structural superlubricity and possessing potentially a wide range of applications in the future due to their ultra-flat and incommensurate crystal interfaces. Here we briefly introduce the origin and mechanism of structural superlubricity and summarize the representative experimental results, in which the coefficient of friction has achieved the order of 10-5. Furthermore, we analyze the factors affecting structural superlubricity of 2D materials, including dynamic reconstruction of interfaces, edge effects, interfacial adsorption, etc, and give a perspective on how to realize the macroscopic expansion and where it can be applied in practice.
Collapse
Affiliation(s)
- Jiahao Yuan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rong Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
25
|
Microscopic origin of the effect of substrate metallicity on interfacial free energies. Proc Natl Acad Sci U S A 2021; 118:2108769118. [PMID: 34876519 DOI: 10.1073/pnas.2108769118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
We investigate the effect of the metallic character of solid substrates on solid-liquid interfacial thermodynamics using molecular simulations. Building on the recent development of a semiclassical Thomas-Fermi model to tune the metallicity in classical molecular dynamics simulations, we introduce a thermodynamic integration framework to compute the evolution of the interfacial free energy as a function of the Thomas-Fermi screening length. We validate this approach against analytical results for empty capacitors and by comparing the predictions in the presence of an electrolyte with values determined from the contact angle of droplets on the surface. The general expression derived in this work highlights the role of the charge distribution within the metal. We further propose a simple model to interpret the evolution of the interfacial free energy with voltage and Thomas-Fermi length, which allows us to identify the charge correlations within the metal as the microscopic origin of the evolution of the interfacial free energy with the metallic character of the substrate. This methodology opens the door to the molecular-scale study of the effect of the metallic character of the substrate on confinement-induced transitions in ionic systems, as reported in recent atomic force microscopy and surface force apparatus experiments.
Collapse
|
26
|
The Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy. Int J Mol Sci 2021; 22:ijms222312653. [PMID: 34884462 PMCID: PMC8658030 DOI: 10.3390/ijms222312653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/05/2022] Open
Abstract
Protic ionic liquids are promising electrolytes for fuel cell applications. They would allow for an increase in operation temperatures to more than 100 °C, facilitating water and heat management and, thus, increasing overall efficiency. As ionic liquids consist of bulky charged molecules, the structure of the electric double layer significantly differs from that of aqueous electrolytes. In order to elucidate the nanoscale structure of the electrolyte–electrode interface, we employ atomic force spectroscopy, in conjunction with theoretical modeling using molecular dynamics. Investigations of the low-acidic protic ionic liquid diethylmethylammonium triflate, in contact with a platinum (100) single crystal, reveal a layered structure consisting of alternating anion and cation layers at the interface, as already described for aprotic ionic liquids. The structured double layer depends on the applied electrode potential and extends several nanometers into the liquid, whereby the stiffness decreases with increasing distance from the interface. The presence of water distorts the layering, which, in turn, significantly changes the system’s electrochemical performance. Our results indicate that for low-acidic ionic liquids, a careful adjustment of the water content is needed in order to enhance the proton transport to and from the catalytic electrode.
Collapse
|
27
|
Di Lecce S, Kornyshev AA, Urbakh M, Bresme F. Structural effects in nanotribology of nanoscale films of ionic liquids confined between metallic surfaces. Phys Chem Chem Phys 2021; 23:22174-22183. [PMID: 34581331 DOI: 10.1039/d1cp03345j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room Temperature Ionic Liquids (RTILs) attract significant interest in nanotribology. However, their microscopic lubrication mechanism is still under debate. Here, using non-equilibrium molecular dynamics simulations, we investigate the lubrication performance of ultra-thin (<2 nm) films of [C2MIM]+ [NTf2]- confined between plane-parallel neutral surfaces of Au(111) or Au(100). We find that films consisting of tri-layers or bilayers, form ordered structures with a flat orientation of the imidazolium rings with respect to the gold surface plane. Tri-layers are unstable against loads >0.5 GPa, while bi-layers sustain pressures in the 1-2 GPa range. The compression of these films results in monolayers that can sustain loads of several GPa without significant loss in their lubrication performance. Surprisingly, in such ultra-thin films the imidazolium rings show higher orientational in-plane disorder, with and the rings adopting a tilted orientation with respect to the gold surface. The friction force and friction coefficient of the monolayers depends strongly on the structure of the gold plates, with the friction coefficient being four times higher for monolayers confined between Au(100) surfaces than for more compact Au(111) surfaces. We show that the general behaviour described here is independent of whether the metallic surfaces are modelled as polarizable or non-polarizable surfaces and speculate on the nature of this unexpected conclusion.
Collapse
Affiliation(s)
- Silvia Di Lecce
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College, London, W12 0BZ London, UK.
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College, London, W12 0BZ London, UK.
| | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials, Science, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College, London, W12 0BZ London, UK.
| |
Collapse
|
28
|
Wang H, Gao Y, Jia X, Liu Q. Properties and mechanism of a poly(ionic liquid) inhibitor contained bi‐functional groups for bentonite hydration. J Appl Polym Sci 2021. [DOI: 10.1002/app.51253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Wang
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| | - Yihang Gao
- College of Marxism Civil Aviation Flight University of China Guanghan China
| | - Xuhong Jia
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| | - Quanyi Liu
- College of Civil Aviation Safety Engineering Civil Aviation Flight University of China Guanghan China
| |
Collapse
|
29
|
Haimov E, Chapman A, Bresme F, Holmes AS, Reddyhoff T, Urbakh M, Kornyshev AA. Theoretical demonstration of a capacitive rotor for generation of alternating current from mechanical motion. Nat Commun 2021; 12:3678. [PMID: 34135333 PMCID: PMC8209174 DOI: 10.1038/s41467-021-23891-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 05/14/2021] [Indexed: 02/03/2023] Open
Abstract
Innovative concepts and materials are enabling energy harvesters for slower motion, particularly for personal wearables or portable small-scale applications, hence contributing to a future sustainable economy. Here we propose a principle for a capacitive rotor device and analyze its operation. This device is based on a rotor containing many capacitors in parallel. The rotation of the rotor causes periodic capacitance changes and, when connected to a reservoir-of-charge capacitor, induces alternating current. The properties of this device depend on the lubricating liquid situated between the capacitor's electrodes, be it a highly polar liquid, organic electrolyte, or ionic liquid - we consider all these scenarios. An advantage of the capacitive rotor is its scalability. Such a lightweight device, weighing tens of grams, can be implemented in a shoe sole, generating a significant power output of the order of Watts. Scaled up, such systems can be used in portable wind or water turbines.
Collapse
Affiliation(s)
- Ehud Haimov
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Aidan Chapman
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK
| | - Fernando Bresme
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London, UK
| | - Andrew S Holmes
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Tom Reddyhoff
- Department of Mechanical Engineering, Faculty of Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Michael Urbakh
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | - Alexei A Kornyshev
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK.
- Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
30
|
Perez-Martinez CS, Groves TS, Perkin S. Controlling adhesion using AC electric fields across fluid films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:31LT02. [PMID: 34020441 DOI: 10.1088/1361-648x/ac03d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate reversible and switchable actuation using AC electric fields to bring two surfaces separated by a thin film of ionic fluid in and out of adhesive contact. Using a surface force balance we apply electric fields normal to a crossed-cylinder contact and measure directly the adhesive force and surface separation with sub-molecular resolution. Taking advantage of the oscillatory structural force acting between the surfaces across the fluid, which we show to be unaffected by the AC field, we pick between the distinct (quantized) adhesive states through precise tuning of the field. This proof-of-concept indicates exquisite control of surface interactions using an external field.
Collapse
Affiliation(s)
- Carla S Perez-Martinez
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Timothy S Groves
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
31
|
Marion S, Vučemilović-Alagić N, Špadina M, Radenović A, Smith AS. From Water Solutions to Ionic Liquids with Solid State Nanopores as a Perspective to Study Transport and Translocation Phenomena. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100777. [PMID: 33955694 DOI: 10.1002/smll.202100777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Solid state nanopores are single-molecular devices governed by nanoscale physics with a broad potential for technological applications. However, the control of translocation speed in these systems is still limited. Ionic liquids are molten salts which are commonly used as alternate solvents enabling the regulation of the chemical and physical interactions on solid-liquid interfaces. While their combination can be challenging to the understanding of nanoscopic processes, there has been limited attempts on bringing these two together. While summarizing the state of the art and open questions in these fields, several major advances are presented with a perspective on the next steps in the investigations of ionic-liquid filled nanopores, both from a theoretical and experimental standpoint. By analogy to aqueous solutions, it is argued that ionic liquids and nanopores can be combined to provide new nanofluidic functionalities, as well as to help resolve some of the pertinent problems in understanding transport phenomena in confined ionic liquids and providing better control of the speed of translocating analytes.
Collapse
Affiliation(s)
- Sanjin Marion
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Nataša Vučemilović-Alagić
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Mario Špadina
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
| | - Aleksandra Radenović
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015, Lausanne, Switzerland
| | - Ana-Sunčana Smith
- Group for Computational Life Sciences, Ruđer Bošković Institute, Division of Physical Chemistry, 10000, Zagreb, Croatia
- PULS Group, Physics Department, Interdisciplinary Center for Nanostructured Films, FAU Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
32
|
Gao Q, Tsai W, Balke N. In situ and operando force‐based atomic force microscopy for probing local functionality in energy storage materials. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Qiang Gao
- Department of Chemistry University of Wisconsin‐Madison Madison Wisconsin USA
| | - Wan‐Yu Tsai
- Chemical Science Division Oak Ridge National Laboratory Oak Ridge Tennessee USA
| | - Nina Balke
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee USA
| |
Collapse
|
33
|
Tivony R, Zhang Y, Klein J. Modulating Interfacial Energy Dissipation via Potential-Controlled Ion Trapping. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:3616-3622. [PMID: 33633817 PMCID: PMC7898939 DOI: 10.1021/acs.jpcc.0c11264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Indexed: 06/12/2023]
Abstract
As a metal (gold) surface at a given, but variable potential slides past a dielectric (mica) surface at a fixed charge, across aqueous salt solutions, two distinct dissipation regimes may be identified. In regime I, when the gold potential is such that counterions are expelled from between the surfaces, which then come to adhesive contact, the frictional dissipation is high, with coefficient of friction μ ≈ 0.8-0.9. In regime II, when hydrated counterions are trapped between the compressed surfaces, hydration lubrication is active and friction is much lower, μ = 0.05 ± 0.03. Moreover, the dissipation regime as the surfaces contact is largely retained even when the metal potential changes to the other regime, attributed to the slow kinetics of counterion expulsion from or penetration into the subnanometer intersurface gap. Our results indicate how frictional dissipation between such a conducting/nonconducting couple may be modulated by the potential applied to the metal.
Collapse
|
34
|
Lu Y, Chen W, Wang Y, Huo F, Dong Y, Wei L, He H. Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Pilkington GA, Welbourn R, Oleshkevych A, Watanabe S, Pedraz P, Radiom M, Glavatskih S, Rutland MW. Effect of water on the electroresponsive structuring and friction in dilute and concentrated ionic liquid lubricant mixtures. Phys Chem Chem Phys 2020; 22:28191-28201. [PMID: 33295339 DOI: 10.1039/d0cp05110a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of water on the electroactive structuring of a tribologically relevant ionic liquid (IL) when dispersed in a polar solvent has been investigated at a gold electrode interface using neutron reflectivity (NR). For all solutions studied, the addition of small amounts of water led to clear changes in electroactive structuring of the IL at the electrode interface, which was largely determined by the bulk IL concentration. At a dilute IL concentration, the presence of water gave rise to a swollen interfacial structuring, which exhibited a greater degree of electroresponsivity with applied potential compared to an equivalent dry solution. Conversely, for a concentrated IL solution, the presence of water led to an overall thinning of the interfacial region and a crowding-like structuring, within which the composition of the inner layer IL layers varied systematically with applied potential. Complementary nanotribotronic atomic force microscopy (AFM) measurements performed for the same IL concentration, in dry and ambient conditions, show that the presence of water reduces the lubricity of the IL boundary layers. However, consistent with the observed changes in the IL layers observed by NR, reversible and systematic control of the friction coefficient with applied potential was still achievable. Combined, these measurements provide valuable insight into the implications of water on the interfacial properties of ILs at electrified interfaces, which inevitably will determine their applicability in tribotronic and electrochemical contexts.
Collapse
Affiliation(s)
- Georgia A Pilkington
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Di Lecce S, Kornyshev AA, Urbakh M, Bresme F. Lateral Ordering in Nanoscale Ionic Liquid Films between Charged Surfaces Enhances Lubricity. ACS NANO 2020; 14:13256-13267. [PMID: 33054180 DOI: 10.1021/acsnano.0c05043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electric fields modify the structural and dynamical properties of room temperature ionic liquids (RTILs) providing a physical principle to develop tunable lubrication devices. Using nonequilibrium molecular dynamics atomistic simulations, we investigate the impact of the composition of imidazolium RTILs on the in-plane ordering of ionic layers in nanogaps. We consider imidazolium cations and widely used anions featuring different molecular structures, spherical ([BF4]-), elongated surfactant-like ([C2SO4]-), and elongated with a more delocalized charge ([NTf2]-). The interplay of surface charge, surface polarity, and anion geometry enables the formation of crystal-like structures in [BF4]- and [NTf2]- nanofilms, while [C2SO4]- nanofilms form disordered layers. We study how the ordering of the ionic liquid lubricant in the nanogap affects friction. Counterintuitively, we find that the friction force decreases with the ability of the RTILs to form crystal-like structures in the confined region. The crystallization can be activated or inhibited by changing the polarity of the surface, providing a mechanism to tune friction with electric fields.
Collapse
Affiliation(s)
- Silvia Di Lecce
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, U.K
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, U.K
| | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, U.K
| |
Collapse
|
37
|
Towards programmable friction: control of lubrication with ionic liquid mixtures by automated electrical regulation. Sci Rep 2020; 10:17634. [PMID: 33077844 PMCID: PMC7572367 DOI: 10.1038/s41598-020-74709-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/06/2020] [Indexed: 11/12/2022] Open
Abstract
For mechanical systems in relative motion it would be fascinating if a non-mechanical stimulus could be used to directly control friction conditions. Therefore, different combinations of lubricants and external triggers for tribological influence have already been investigated. We show that when two metallic friction partners are lubricated with ionic liquid mixtures (ILM), consisting of long-chain cation and two different high charge/mass ratio anion containing ILs, the application of an electric impulse induces a permanent change of the frictional response. Such mixtures are able to alter the coefficient of friction (COF) to a greater extent, more accurately and faster than the respective single-component ILs. This change in the frictional properties is presumably due to changes in the externally induced electrical polarization at the surface, which influences the molecular adsorption, the exchange of adsorbed ions and their molecular orientation. The correlation between surface charges and friction can be used to control friction. This is achieved by implementing an electric tribo-controller which can adjust preset friction values over time. Programming friction in this way is a first step towards tribosystems that automatically adapt to changing conditions.
Collapse
|
38
|
Hallett JE, Hayler HJ, Perkin S. Nanolubrication in deep eutectic solvents. Phys Chem Chem Phys 2020; 22:20253-20264. [PMID: 32966447 DOI: 10.1039/d0cp03787g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report surface force balance measurements of the normal surface force and friction between two mica surfaces separated by a nanofilm of the deep eutectic solvent ethaline. Ethaline, a 1 : 2 mixture of choline chloride and ethylene glycol, was studied under dry conditions, under ambient conditions and with added water, revealing surface structural layers and quantised frictional response highly sensitive to water content, including regions of super-lubric behaviour under dry conditions and with added water. We also report exceptionally long-ranged electrostatic repulsion far in excess of that predicted by Debye-Hückel theory for a system with such high electrolyte content, consistent with previously reported observations of "underscreening" in ionic liquid and concentrated aqueous electrolyte systems [Smith et al., J. Phys. Chem. Lett., 2016, 7(12), 2157].
Collapse
Affiliation(s)
- James E Hallett
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Hannah J Hayler
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Susan Perkin
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
39
|
Vanossi A, Bechinger C, Urbakh M. Structural lubricity in soft and hard matter systems. Nat Commun 2020; 11:4657. [PMID: 32938930 PMCID: PMC7495432 DOI: 10.1038/s41467-020-18429-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022] Open
Abstract
Over the recent decades there has been tremendous progress in understanding and controlling friction between surfaces in relative motion. However the complex nature of the involved processes has forced most of this work to be of rather empirical nature. Two very distinctive physical systems, hard two-dimensional layered materials and soft microscopic systems, such as optically or topographically trapped colloids, have recently opened novel rationally designed lines of research in the field of tribology, leading to a number of new discoveries. Here, we provide an overview of these emerging directions of research, and discuss how the interplay between hard and soft matter promotes our understanding of frictional phenomena. Structural lubricity is one of the most interesting concepts in modern tribology, which promises to achieve ultra-low friction over a wide range of length-scales. Here the authors highlight novel research lines in this area achievable by combining theoretical and experimental efforts on hard two-dimensional materials and soft colloidal and cold ion systems.
Collapse
Affiliation(s)
- Andrea Vanossi
- CNR-IOM Democritos National Simulation Center, Trieste, Italy. .,International School for Advanced Studies (SISSA), Trieste, Italy.
| | | | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
40
|
Pilkington GA, Oleshkevych A, Pedraz P, Watanabe S, Radiom M, Reddy AB, Vorobiev A, Glavatskih S, Rutland MW. Electroresponsive structuring and friction of a non-halogenated ionic liquid in a polar solvent: effect of concentration. Phys Chem Chem Phys 2020; 22:19162-19171. [PMID: 32812565 DOI: 10.1039/d0cp02736g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutron reflectivity (NR) measurements have been employed to study the interfacial structuring and composition of electroresponsive boundary layers formed by an ionic liquid (IL) lubricant at an electrified gold interface when dispersed in a polar solvent. The results reveal that both the composition and extent of the IL boundary layers intricately depend on the bulk IL concentration and the applied surface potential. At the lowest concentration (5% w/w), a preferential adsorption of the IL cation at the gold electrode is observed, which hinders the ability to electro-induce changes in the boundary layers. In contrast, at higher IL bulk concentrations (10 and 20% w/w), the NR results reveal a significantly larger concentration of the IL ions at the gold interface that exhibit significantly greater electroresponsivity, with clear changes in the layer composition and layer thickness observed for different potentials. In complementary atomic force microscopy (AFM) measurements on an electrified gold surface, such IL boundary layers are demonstrated to provide excellent friction reduction and electroactive friction (known as tribotronics). In agreement with the NR results obtained, clear concentration effects are also observed. Together such results provide valuable molecular insight into the electroactive structuring of ILs in solvent mixtures, as well as provide mechanistic understanding of their tribotronic behaviours.
Collapse
Affiliation(s)
- Georgia A Pilkington
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Anna Oleshkevych
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Patricia Pedraz
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Seiya Watanabe
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Milad Radiom
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Akepati Bhaskar Reddy
- System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Alexei Vorobiev
- Department of Physics and Astronomy, Division of Materials Physics, Uppsala University, Uppsala, Sweden
| | - Sergei Glavatskih
- System and Component Design, Department of Machine Design, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden and Department of Electromechanical, Systems and Metal Engineering, Ghent University, B-9052 Ghent, Belgium
| | - Mark W Rutland
- Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. and Surfaces, Processes and Formulation, RISE Research Institutes of Sweden, SE-100 44 Stockholm, Sweden
| |
Collapse
|
41
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
42
|
Li H, Niemann T, Ludwig R, Atkin R. Effect of Hydrogen Bonding between Ions of Like Charge on the Boundary Layer Friction of Hydroxy-Functionalized Ionic Liquids. J Phys Chem Lett 2020; 11:3905-3910. [PMID: 32338913 DOI: 10.1021/acs.jpclett.0c00689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy has been used to measure the lubricity of a series of ionic liquids (ILs) at mica surfaces in the boundary friction regime. A previously unreported cation bilayer structure is detected at the IL-mica interface due to the formation of H-bonds between the hydroxy-functionalized cations [(c-c) H-bonds], which enhances the ordering of the ions in the boundary layer and improves the lubrication. The strength of the cation bilayer structure is controlled by altering the strength of (c-c) H-bonding via changes in the hydroxyalkyl chain length, the cation charge polarizability, and the coordination strength of the anions. This reveals a new means of controlling IL boundary nanostructure via H-bonding between ions of the same charge, which can impact diverse applications, including surface catalysis, particle stability, electrochemistry, etc.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Thomas Niemann
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Strasse 25, 18059 Rostock, Germany
| | - Ralf Ludwig
- Universität Rostock, Institut für Chemie, Abteilung für Physikalische Chemie, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
- Department LL&M, University of Rostock, Albert-Einstein-Strasse 25, 18059 Rostock, Germany
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
43
|
Li H, Choi YS, Rutland MW, Atkin R. Nanotribology of hydrogels with similar stiffness but different polymer and crosslinker concentrations. J Colloid Interface Sci 2020; 563:347-353. [PMID: 31887698 DOI: 10.1016/j.jcis.2019.12.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The stiffness has been found to regulate hydrogel performances and applications. However, the key interfacial properties of hydrogels, like friction and adhesion are not controlled by the stiffness, but are altered by the structure and composition of hydrogels, like polymer volume fraction and crosslinking degree. EXPERIMENTS Colloidal probe atomic force microscopy has been use to investigate the relationship between tribological properties (friction and adhesion) and composition of hydrogels with similar stiffness, but different polymer volume fractions and crosslinking degrees. FINDINGS The interfacial normal and lateral (friction) forces of hydrogels are not directly correlated to the stiffness, but altered by the hydrogel structure and composition. For normal force measurements, the adhesion increases with polymer volume fraction but decreases with crosslinking degree. For lateral force measurements, friction increases with polymer volume fraction, but decreases with crosslinking degree. In the low normal force regime, friction is mainly adhesion-controlled and increases significantly with the adhesion and polymer volume fraction. In the high normal force regime, friction is predominantly load-controlled and shows slow increase with normal force.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Mark W Rutland
- School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE100 44, Sweden; Surfaces, Processes and Formulation, RISE Research Institutes of Sweden, SE114 86 Stockholm, Sweden
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
44
|
Di Lecce S, Kornyshev AA, Urbakh M, Bresme F. Electrotunable Lubrication with Ionic Liquids: the Effects of Cation Chain Length and Substrate Polarity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4105-4113. [PMID: 31875392 DOI: 10.1021/acsami.9b19283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrotunable lubrication with ionic liquids (ILs) provides dynamic control of friction with the prospect to achieve superlubrication. We investigate the dependence of the frictional and structural forces with 1-n,2-methyl-imidazolium tetrafluoroborate [CnMIM]+[BF4]- (n = 2, 4, 6) ILs as a lubricant on the molecular structure of the liquid, normal load, and polarity of the electrodes. Using non-equilibrium molecular dynamics simulations and coarse-grained force-fields, we show that the friction force depends significantly on the chain length of the cation. ILs containing cations with shorter aliphatic chains show lower friction forces, ∼40% for n = 2 as compared to the n = 6 case, and more resistance to squeeze-out by external loads. The normal load defines the dynamic regime of friction, and it determines maxima in the friction force at specific surface charges. At relatively low normal loads, ∼10 MPa, the velocity profile in the confined region resembles a Couette type flow, whereas at high loads, >200 MPa, the motion of the ions is highly correlated and the velocity profile resembles a "plug" flow. Different dynamic regimes result in distinctive slippage planes, located either at the IL-electrode interface or in the interior of the film, which ultimately lead, at high loads, to the observation of maxima in the friction force at specific surface charge densities. Instead, at low loads the maxima are not observed, and the friction is found to monotonously increase with the surface charge. Friction with [CnMIM]+[BF4]- as a lubricant is reduced when the liquid is confined between positively charged electrodes. This is due to better lubricating properties and enhanced resistance to squeeze out when the anion [BF4]- is in direct contact with the electrode.
Collapse
Affiliation(s)
- Silvia Di Lecce
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College , W12 0BZ London , U.K
| | - Alexei A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College , W12 0BZ London , U.K
| | - Michael Urbakh
- School of Chemistry and The Sackler Center for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub , Imperial College , W12 0BZ London , U.K
| |
Collapse
|
45
|
Lhermerout R, Perkin S. A new methodology for a detailed investigation of quantized friction in ionic liquids. Phys Chem Chem Phys 2020; 22:455-466. [PMID: 31781711 DOI: 10.1039/c9cp05422g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When confined at the nanoscale between smooth surfaces, an ionic liquid forms a structured film responding to shear in a quantized way, i.e., with a friction coefficient indexed by the number of layers in the gap. So far, only a few experiments have been performed to study this phenomenon, because of the delicate nature of the measurements. We propose a new methodology to measure friction with a surface force balance, based on the simultaneous application of normal and lateral motions to the surfaces, allowing for a more precise, comprehensive and rapid determination of the friction response. We report on proof-of-concept experiments with an ionic liquid confined between mica surfaces in dry or wet conditions, showing the phenomenon of quantized friction with an unprecedented resolution. First, we show that the variation of the kinetic friction force with the applied load for a given layer is not linear, but can be quantitatively described by two additive contributions that are respectively proportional to the load and to the contact area. Then, we find that humidity improves the resistance of the layers to be squeezed-out and extends the range of loads in which the liquid behaves as a superlubricant, interpreted by an enhanced dissolution of the potassium ions on the mica leading to a larger surface charge. There, we note a liquid-like friction behavior, and observe in certain conditions a clear variation of the kinetic friction force over two decades of shearing velocities, that does not obey a simple Arrhenius dynamics.
Collapse
Affiliation(s)
- Romain Lhermerout
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK.
| | | |
Collapse
|
46
|
Watanabe S, Pilkington GA, Oleshkevych A, Pedraz P, Radiom M, Welbourn R, Glavatskih S, Rutland MW. Interfacial structuring of non-halogenated imidazolium ionic liquids at charged surfaces: effect of alkyl chain length. Phys Chem Chem Phys 2020; 22:8450-8460. [DOI: 10.1039/d0cp00360c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of the interfacial structures of ionic liquids (ILs) at charged interfaces is important to many of their applications, including in energy storage solutions, sensors and advanced lubrication technologies utilising electric fields.
Collapse
Affiliation(s)
- Seiya Watanabe
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Georgia A. Pilkington
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Anna Oleshkevych
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Patricia Pedraz
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Milad Radiom
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| | - Rebecca Welbourn
- ISIS Neutron & Muon Source
- Rutherford Appleton Laboratory
- STFC
- Didcot
- UK
| | - Sergei Glavatskih
- System and Component Design
- Department of Machine Design
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
- Sweden
| | - Mark W. Rutland
- Division of Surface and Corrosion Science
- School of Engineering Sciences in Chemistry
- Biotechnology and Health
- KTH Royal Institute of Technology
- SE-100 44 Stockholm
| |
Collapse
|
47
|
Cai M, Yu Q, Liu W, Zhou F. Ionic liquid lubricants: when chemistry meets tribology. Chem Soc Rev 2020; 49:7753-7818. [PMID: 33135717 DOI: 10.1039/d0cs00126k] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ionic liquids (ILs) have emerged as potential lubricants in 2001. Subsequently, there has been tremendous research interest in ILs from the tribology society since their discovery as novel synthetic lubricating materials. This also expands the research area of ILs. Consistent with the requirement of searching for alternative and eco-friendly lubricants, IL lubrication will experience further development in the coming years. Herein, we review the research progress of IL lubricants. Generally, the tribological properties of IL lubricants as lubricating oils, additives and thin films are reviewed in detail and their lubrication mechanisms discussed. Considering their actual applications, the flexible design of ILs allows the synthesis of task-specific and tribologically interesting ILs to overcome the drawbacks of the application of ILs, such as high cost, poor compatibility with traditional oils, thermal oxidization and corrosion. Nowadays, increasing research is focused on halogen-free ILs, green ILs, synthesis-free ILs and functional ILs. In addition to their macroscopic properties, the nanoscopic performance of ILs on a small scale and in small gaps is also important in revealing their tribological mechanisms. It has been shown that when sliding surfaces are compressed, in comparison with a less polar molecular lubricant, ion pairs resist "squeeze out" due to the strong interaction between the ions of ILs and oppositely charged surfaces, resulting in a film that remains in place at higher shear forces. Thus, the lubricity of ILs can be externally controlled in situ by applying electric potentials. In summary, ILs demonstrate sufficient design versatility as a type of model lubricant for meeting the requirements of mechanical engineering. Accordingly, their perspectives and future development are discussed in this review.
Collapse
Affiliation(s)
- Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China. and State Key Laboratory of Solidification Processing, College of Materials Science and Technology, Northwestern Polytechnical University, 127 YouyiXi Road, Xi an 710072, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
48
|
An R, Wu M, Li J, Qiu X, Shah FU, Li J. On the ionic liquid films 'pinned' by core-shell structured Fe 3O 4@carbon nanoparticles and their tribological properties. Phys Chem Chem Phys 2019; 21:26387-26398. [PMID: 31793566 DOI: 10.1039/c9cp05905a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A strongly 'pinned' ionic liquid (IL, [BMIM][PF6]) film on a silicon (Si) surface via carbon capsuled Fe3O4 core-shell (Fe3O4@C) nanoparticles is achieved, revealing excellent friction-reducing ability at a high load. The adhesion force is measured to be ∼198 nN at the Fe3O4@C-Si interface by the Fe3O4@C colloidal AFM tip, which is stronger than that at both Fe3O4@C-Fe3O4@C (∼60 nN) and IL-Si (∼10 nN) interfaces, indicating a strong 'normal pin-force' towards the Si substrate. The resulting strengthened force enables the formation of lateral IL networks via the dipole-dipole attractions among Fe3O4 cores. The observed blue shift of the characteristic band related to the IL anion in the ATR-FTIR spectra confirmed the enhanced interaction. The N-Si, P-O chemical bonds formed as a result of the IL interactions with the Si substrate confirmed by XPS spectroscopy suggested that the IL lay on the Si plane. This orientation is favorable for Fe3O4@C nanoparticles to exert 'normal pin-force' and press the IL film strongly onto surfaces. The IL ions/clusters are thus anchored by these Fe3O4@C 'pins' onto the substrate to form a dense film, resulting in a smaller interaction size parameter, which is responsible for the reduced friction coefficient μ.
Collapse
Affiliation(s)
- Rong An
- Herbert Gleiter Institute of Nanoscience, Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | | | | | | | | | | |
Collapse
|
49
|
Hjalmarsson N, Bergendal E, Wang YL, Munavirov B, Wallinder D, Glavatskih S, Aastrup T, Atkin R, Furó I, Rutland MW. Electro-Responsive Surface Composition and Kinetics of an Ionic Liquid in a Polar Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15692-15700. [PMID: 31581771 DOI: 10.1021/acs.langmuir.9b02119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The quartz crystal microbalance (QCM) has been used to study how the interfacial layer of an ionic liquid dissolved in a polar oil at low weight percentages responds to changes in applied potential. The changes in surface composition at the QCM gold surface depend on both the magnitude and sign of the applied potential. The time-resolved response indicates that the relaxation kinetics are limited by the diffusion of ions in the interfacial region and not in the bulk, since there is no concentration dependence. The measured mass changes cannot be explained only in terms of simple ion exchange; the relative molecular volumes of the ions and the density changes in response to ion exclusion must be considered. The relaxation behavior of the potential between the electrodes upon disconnecting the applied potential is more complex than that observed for pure ionic liquids, but a measure of the surface charge can be extracted from the exponential decay when the rapid initial potential drop is accounted for. The adsorbed film at the gold surface consists predominantly of ionic liquid despite the low concentration, which is unsurprising given the surtactant-like structures of (some of) the ionic liquid ions. Changes in response to potential correspond to changes in the relative numbers of cations and anions, rather than a change in the oil composition. No evidence for an electric field induced change in viscosity is observed. This work shows conclusively that electric potentials can be used to control the surface composition, even in an oil-based system, and paves the way for other ion solvent studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergei Glavatskih
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems , Ghent University , B-9000 , Ghent , Belgium
| | | | - Rob Atkin
- School of Molecular Sciences , University of Western Australia , 6009 Perth , Australia
| | | | - Mark W Rutland
- Surfaces, Processes and Formulation , RISE Research Institutes of Sweden , SE-50115 Stockholm , Sweden
| |
Collapse
|
50
|
Pivnic K, Bresme F, Kornyshev AA, Urbakh M. Structural Forces in Mixtures of Ionic Liquids with Organic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15410-15420. [PMID: 31657581 DOI: 10.1021/acs.langmuir.9b02121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using molecular dynamics simulations, we study the impact of electrode charging and addition of solvent (acetonitrile, ACN) on structural forces of the BMIM PF6 ionic liquid (IL) confined by surfaces at nanometer separations. We establish relationships between the structural forces and the microscopic structure of the confined liquid. Depending on the structural arrangements of cations and anions across the nanofilm, the load-induced squeeze-out of liquid layers occurs via one-layer or bilayer steps. The cations confined between charged plates orient with their aliphatic chain perpendicular to the surface planes and link two adjacent IL layers. These structures facilitate the squeeze-out of single layers. For both pure IL and IL-ACN mixtures, we observe a strong dependence of nanofilm structure on the surface charge density, which affects the simulated pressure-displacement curves. Addition of solvent to the IL modifies the layering in the confined film. At high electrode charges and high dilution of IL (below 10% molar fraction), the layered structure of the nanofilm is less well defined. We predict a change in the squeeze-out mechanism under pressure, from a discontinuous squeeze-out (for high IL concentrations) to an almost continuous one (for low IL concentrations). Importantly, our simulations show that charged electrodes are coated with ions even at low IL concentrations. These ion-rich layers adjacent to the charged plate surfaces are not squeezed out even under very high normal pressures of ∼5 GPa. Hence, we demonstrate the high performance of IL-solvent mixtures to protect surfaces from wear and to provide lubrication at high loads.
Collapse
Affiliation(s)
- Karina Pivnic
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Fernando Bresme
- Department of Chemistry , Molecular Sciences Research Hub, Imperial College London , W12 0BZ 2AZ London , United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Alexei A Kornyshev
- Department of Chemistry , Molecular Sciences Research Hub, Imperial College London , W12 0BZ 2AZ London , United Kingdom
- Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Michael Urbakh
- School of Chemistry, The Sackler Center for Computational Molecular and Materials Science , Tel Aviv University , Tel Aviv 6997801 , Israel
| |
Collapse
|