1
|
Pereda J, Milde Khatib C, Kezic S, Christensen MO, Yang S, Thyssen JP, Chu CY, Riethmüller C, Liao HS, Akhtar I, Ungar B, Guttman-Yassky E, Hædersdal M, Hwu ET. A Review of Atomic-Force Microscopy in Skin Barrier Function Assessment. J Invest Dermatol 2024:S0022-202X(24)00357-9. [PMID: 38888524 DOI: 10.1016/j.jid.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Skin barrier function (SBF) disorders are a class of pathologies that affect a significant portion of the world population. These disorders cause skin lesions with intense itch, impacting patients' physical and psychological well-being as well as their social functioning. It is in the interest of patients that their disorder be monitored closely while under treatment to evaluate the effectiveness of the ongoing therapy and any potential adverse reactions. Symptom-based assessment techniques are widely used by clinicians; however, they carry some limitations. Techniques to assess skin barrier impairment are critical for understanding the nature of the disease and for helping personalize treatment. This review recalls the anatomy of the skin barrier and describes an atomic-force microscopy approach to quantitatively monitor its disorders and their response to treatment. We review a panel of studies that show that this technique is highly relevant for SBF disorder research, and we aim to motivate its adoption into clinical settings.
Collapse
Affiliation(s)
- Jorge Pereda
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Milde Khatib
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Sanja Kezic
- Amsterdam UMC, Coronel Institute of Occupational Health, Amsterdam, The Netherlands
| | | | - Sara Yang
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Hsien-Shun Liao
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Imtisal Akhtar
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Benjamin Ungar
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- The Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Merete Hædersdal
- Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - En-Te Hwu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
2
|
Spirandelli I, Coles R, Friesecke G, Evans ME. Exotic self-assembly of hard spheres in a morphometric solvent. Proc Natl Acad Sci U S A 2024; 121:e2314959121. [PMID: 38573965 PMCID: PMC11009619 DOI: 10.1073/pnas.2314959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
The self-assembly of spheres into geometric structures, under various theoretical conditions, offers valuable insights into complex self-assembly processes in soft systems. Previous studies have utilized pair potentials between spheres to assemble maximum contact clusters in simulations and experiments. The morphometric approach to solvation free energy that we utilize here goes beyond pair potentials; it is a geometry-based theory that incorporates a weighted combination of geometric measures over the solvent accessible surface for solute configurations in a solvent. In this paper, we demonstrate that employing the morphometric model of solvation free energy in simulating the self-assembly of sphere clusters results, under most conditions, in the previously observed maximum contact clusters. Under other conditions, it unveils an assortment of extraordinary sphere configurations, such as double helices and rhombohedra. These exotic structures arise specifically under conditions where the interactions take multibody potentials into account. This investigation establishes a foundation for comprehending the diverse range of geometric forms in self-assembled structures, emphasizing the significance of the morphometric approach in this context.
Collapse
Affiliation(s)
- Ivan Spirandelli
- Institute for Mathematics, University of Potsdam, Potsdam14476, Germany
| | - Rhoslyn Coles
- Institute for Mathematics, Technical University Berlin, Berlin10623, Germany
- Faculty of Mathematics, Technical University Chemnitz, Chemnitz09107, Germany
| | - Gero Friesecke
- Department of Mathematics, Technische Universität München, Garching85748, Germany
| | - Myfanwy E. Evans
- Institute for Mathematics, University of Potsdam, Potsdam14476, Germany
| |
Collapse
|
3
|
Évora AS, Zhang Z, Johnson SA, Adams MJ. The effects of hydration on the topographical and mechanical properties of corneocytes. J Mech Behav Biomed Mater 2024; 150:106296. [PMID: 38141363 DOI: 10.1016/j.jmbbm.2023.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
It is well established that the biomechanical properties of the Stratum Corneum (SC) are influenced by both moisture-induced plasticization and the lipid content. This study employs Atomic Force Microscopy to investigate how hydration affects the surface topographical and elasto-viscoplastic characteristics of corneocytes from two anatomical sites. Volar forearm cells underwent swelling when immersed in water with a 50% increase in thickness and volume. Similarly, medial heel cells demonstrated significant swelling in volume, accompanied by increased cell area and reduced cell roughness. Furthermore, as the water activity was increased, they exhibited enhanced compliance, leading to a decreased Young's modulus, hardness, and relaxation times. Moreover, the swollen cells also displayed a greater tolerance to strain before experiencing permanent deformation. Despite the greater predominance of immature cornified envelopes in plantar skin, the comparable Young's modulus of medial heel and forearm corneocytes suggests that cell stiffness primarily relies on the keratin matrix rather than on the cornified envelope. The Young's moduli of the cells in distilled water are similar to those reported for the SC, which suggests that the corneodesmosomes and intercellular lamellae lipids junctions that connect the corneocytes are able to accommodate the mechanical deformations of the SC.
Collapse
Affiliation(s)
- Ana S Évora
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Simon A Johnson
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| | - Michael J Adams
- School of Chemical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Sleiman JL, Burton RH, Caraglio M, Gutierrez Fosado YA, Michieletto D. Geometric Predictors of Knotted and Linked Arcs. ACS POLYMERS AU 2022; 2:341-350. [PMID: 36254317 PMCID: PMC9562465 DOI: 10.1021/acspolymersau.2c00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Inspired by how certain proteins “sense”
knots and
entanglements in DNA molecules, here, we ask if local geometric features
that may be used as a readout of the underlying topology of generic
polymers exist. We perform molecular simulations of knotted and linked
semiflexible polymers and study four geometric measures to predict
topological entanglements: local curvature, local density, local 1D
writhe, and nonlocal 3D writhe. We discover that local curvature is
a poor predictor of entanglements. In contrast, segments with maximum
local density or writhe correlate as much as 90% of the time with
the shortest knotted and linked arcs. We find that this accuracy is
preserved across different knot types and also under significant spherical
confinement, which is known to delocalize essential crossings in knotted
polymers. We further discover that nonlocal 3D writhe is the best
geometric readout of the knot location. Finally, we discuss how these
geometric features may be used to computationally analyze entanglements
in generic polymer melts and gels.
Collapse
Affiliation(s)
- Joseph L. Sleiman
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Robin H. Burton
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Yair Augusto Gutierrez Fosado
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
5
|
Hain TM, Bykowski M, Saba M, Evans ME, Schröder-Turk GE, Kowalewska Ł. SPIRE-a software tool for bicontinuous phase recognition: application for plastid cubic membranes. PLANT PHYSIOLOGY 2022; 188:81-96. [PMID: 34662407 PMCID: PMC8774748 DOI: 10.1093/plphys/kiab476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Bicontinuous membranes in cell organelles epitomize nature's ability to create complex functional nanostructures. Like their synthetic counterparts, these membranes are characterized by continuous membrane sheets draped onto topologically complex saddle-shaped surfaces with a periodic network-like structure. Their structure sizes, (around 50-500 nm), and fluid nature make transmission electron microscopy (TEM) the analysis method of choice to decipher their nanostructural features. Here we present a tool, Surface Projection Image Recognition Environment (SPIRE), to identify bicontinuous structures from TEM sections through interactive identification by comparison to mathematical "nodal surface" models. The prolamellar body (PLB) of plant etioplasts is a bicontinuous membrane structure with a key physiological role in chloroplast biogenesis. However, the determination of its spatial structural features has been held back by the lack of tools enabling the identification and quantitative analysis of symmetric membrane conformations. Using our SPIRE tool, we achieved a robust identification of the bicontinuous diamond surface as the dominant PLB geometry in angiosperm etioplasts in contrast to earlier long-standing assertions in the literature. Our data also provide insights into membrane storage capacities of PLBs with different volume proportions and hint at the limited role of a plastid ribosome localization directly inside the PLB grid for its proper functioning. This represents an important step in understanding their as yet elusive structure-function relationship.
Collapse
Affiliation(s)
- Tobias M Hain
- Institute of Mathematics, University of Potsdam, Potsdam D-14476, Germany
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, Murdoch WA 6150, Australia
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund 22100, Sweden
| | - Michał Bykowski
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Matthias Saba
- Adolphe Merkle Institute, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Myfanwy E Evans
- Institute of Mathematics, University of Potsdam, Potsdam D-14476, Germany
| | - Gerd E Schröder-Turk
- College of Science, Health, Engineering and Education, Mathematics and Statistics, Murdoch University, Murdoch WA 6150, Australia
- Department of Applied Mathematics, The Australian National University, Research School of Physics, Canberra 2601, Australia
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Oster M, Dias MA, de Wolff T, Evans ME. Reentrant tensegrity: A three-periodic, chiral, tensegrity structure that is auxetic. SCIENCE ADVANCES 2021; 7:eabj6737. [PMID: 34890240 PMCID: PMC8664249 DOI: 10.1126/sciadv.abj6737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
We present a three-periodic, chiral, tensegrity structure and demonstrate that it is auxetic. Our tensegrity structure is constructed using the chiral symmetry Π+ cylinder packing, transforming cylinders to elastic elements and cylinder contacts to incompressible rods. The resulting structure displays local reentrant geometry at its vertices and is shown to be auxetic when modeled as an equilibrium configuration of spatial constraints subject to a quasi-static deformation. When the structure is subsequently modeled as a lattice material with elastic elements, the auxetic behavior is again confirmed through finite element modeling. The cubic symmetry of the original structure means that the auxetic behavior is observed in both perpendicular directions and is close to isotropic in magnitude. This structure could be the simplest three-dimensional analog to the two-dimensional reentrant honeycomb. This, alongside the chirality of the structure, makes it an interesting design target for multifunctional materials.
Collapse
Affiliation(s)
- Mathias Oster
- Institut für Mathematik, Technische Universität Berlin, Germany
| | - Marcelo A. Dias
- Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, EH9 3FG Scotland, UK
| | - Timo de Wolff
- Institut für Analysis und Algebra, AG Algebra, Technische Universität Braunschweig, Universitätsplatz 2, 38106 Braunschweig, Germany
| | | |
Collapse
|
7
|
Schröder-Turk GE. Quo vadis biophotonics? Wearing serendipity and slow science as a badge of pride, and embracing biology. Faraday Discuss 2020; 223:307-323. [PMID: 33034598 DOI: 10.1039/d0fd00108b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article is a reflection on the themes of the Faraday Discussion meeting on 'Biological and bio-inspired optics' held from 20 to 22 July 2020. It is a personal perspective on the nature of this field as a broad and interdisciplinary field that has led to a sound understanding of the material properties of biological nanostructured and optical materials. The article describes how the nature of the field and the themes of the conference are reflected in particular in work on the 3D bicontinuous biophotonic nanostructures known as single gyroids and in bicontinuous structures more broadly. Such single gyroid materials are found for example in the butterfly Thecla opisena, where the questions of biophotonic response, of bio-inspired optics, of the relationship between structure and function, and of the relationship between natural and synthetic realisations are closely interlinked. This multitude of facets of research on single gyroid structures reflects the beauty of the broader field of biophotonics, namely as a field that lives through embracing the serendipitous discovery of the biophotonic marvels that nature offers to us as seeds for in-depth analysis and understanding. The meandering nature of its discoveries, and the need to accept the slowness that comes from exploration of intellectually new or foreign territory, mean that the field shares some traits with biological evolution itself. Looking into the future, I consider that a closer engagement with living tissue and with the biological questions of function and formation, rather than with the materials science of biological materials, will help ensure the continuing great success of this field.
Collapse
Affiliation(s)
- Gerd E Schröder-Turk
- Murdoch University, College of Science, Health, Engineering & Education, 90 South St, Murdoch, WA 6150, Australia.
| |
Collapse
|
8
|
Riethmüller C. Assessing the skin barrier via corneocyte morphometry. Exp Dermatol 2018; 27:923-930. [DOI: 10.1111/exd.13741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/28/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
|
9
|
Abstract
We derive a general closed expression for the local pressure exerted onto the corrugated walls of a channel confining a fluid medium. When the fluid medium is at equilibrium, the local pressure is a functional of the shape of the walls. It is shown that, due to the intrinsic nonlocal character of the interactions among the particles forming the fluid, the applicability of approximate schemes such as the concept of a surface of tension or morphometric thermodynamics is limited to wall curvatures that are small compared to the range of particle-particle interactions.
Collapse
Affiliation(s)
- Paolo Malgaretti
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany and Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Markus Bier
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany and Institute for Theoretical Physics IV, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Ousey K, Cutting KF, Rogers AA, Rippon MG. The importance of hydration in wound healing: reinvigorating the clinical perspective. J Wound Care 2016; 25:122, 124-30. [PMID: 26947692 DOI: 10.12968/jowc.2016.25.3.122] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Balancing skin hydration levels is important as any disruption in skin integrity will result in disturbance of the dermal water balance. The discovery that a moist environment actively supports the healing response when compared with a dry environment highlights the importance of water and good hydration levels for optimal healing. The benefits of 'wet' or 'hyper-hydrated' wound healing appear similar to those offered by moist over a dry environment. This suggests that the presence of free water may not be detrimental to healing, but any adverse effects of wound fluid on tissues is more likely related to the biological components contained within chronic wound exudate, for example elevated protease levels. Appropriate dressings applied to wounds must not only be able to absorb the exudate, but also retain this excess fluid together with its protease solutes, while concurrently preventing desiccation. This is particularly important in the case of chronic wounds where peri-wound skin barrier properties are compromised and there is increased permeation across the injured skin. This review discusses the importance of appropriate levels of hydration in skin, with a particular focus on the need for optimal hydration levels for effective healing. Declaration of interest: This paper was supported by Paul Hartmann Ltd. The authors have provided consultative services to Paul Hartmann Ltd.
Collapse
Affiliation(s)
- K Ousey
- School of Human and Health Sciences, Institute of Skin Integrity and Infection Prevention. University of Huddersfield, Queensgate, Huddersfield
| | | | | | - M G Rippon
- School of Human and Health Sciences, Institute of Skin Integrity and Infection Prevention. University of Huddersfield, Queensgate, Huddersfield
| |
Collapse
|
11
|
Rippon M, Ousey K, Cutting K. Wound healing and hyper-hydration: a counterintuitive model. J Wound Care 2016; 25:68, 70-5. [DOI: 10.12968/jowc.2016.25.2.68] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- M.G. Rippon
- School of Human and Health Sciences, Institute of Skin Integrity and Infection Prevention. University of Huddersfield, Queensgate, Huddersfield
| | - K. Ousey
- School of Human and Health Sciences, Institute of Skin Integrity and Infection Prevention. University of Huddersfield, Queensgate, Huddersfield
| | | |
Collapse
|
12
|
Wu L, Zhang W, Zhang D. Engineering Gyroid-Structured Functional Materials via Templates Discovered in Nature and in the Lab. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5004-5022. [PMID: 26291063 DOI: 10.1002/smll.201500812] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/28/2015] [Indexed: 06/04/2023]
Abstract
In search of optimal structures for functional materials fabrication, the gyroid (G) structure has emerged as a promising subject of widespread research due to its distinct symmetry, 3D interconnected networks, and inherent chiral helices. In the past two decades, researchers have made great progress fabricating G-structured functional materials (GSFMs) based on G templates discovered both in nature and in the lab. The GSFMs demonstrate extraordinary resonance when interacting with light and matter. The superior properties of GSFMs can be divided into two categories based on the dominant structural properties, namely, dramatic optical performances dominated by short-range symmetry and well-defined texture, and effective matter transport due to long-range 3D interconnections and high integrity. In this review, G templates suitable for fabrication of GSFMs are summarized and classified. State-of-the-art optical applications of GSFMs, including photonic bandgap materials, chiral devices, plasmonic materials, and matamaterials, are systematically discussed. Applications of GSFMs involved in effective electron transport and mass transport, including electronic devices, ultrafiltration, and catalysis, are highlighted. Existing challenges that may hinder the final application of GSFMS together with possible solutions are also presented.
Collapse
Affiliation(s)
- Liping Wu
- State Key Lab of Metal Matrix Composite, Shanghai Jiao Tong University, 800# Dongchuan Rd., Shanghai, 200240, China
| | - Wang Zhang
- State Key Lab of Metal Matrix Composite, Shanghai Jiao Tong University, 800# Dongchuan Rd., Shanghai, 200240, China
| | - Di Zhang
- State Key Lab of Metal Matrix Composite, Shanghai Jiao Tong University, 800# Dongchuan Rd., Shanghai, 200240, China
| |
Collapse
|
13
|
Abstract
Three-dimensional entanglements, including knots, knotted graphs, periodic arrays of woven filaments and interpenetrating nets, form an integral part of structure analysis because they influence various physical properties. Ideal embeddings of these entanglements give insight into identification and classification of the geometry and physically relevant configurations
in vivo
. This paper introduces an algorithm for the tightening of finite, periodic and branched entanglements to a least energy form. Our algorithm draws inspiration from the Shrink-On-No-Overlaps (SONO) (Pieranski 1998 In
Ideal knots
(eds A Stasiak, V Katritch, LH Kauffman), vol. 19, pp. 20–41.) algorithm for the tightening of knots and links: we call it Periodic-Branched Shrink-On-No-Overlaps (PB-SONO). We reproduce published results for ideal configurations of knots using PB-SONO. We then examine ideal geometry for finite entangled graphs, including
θ
-graphs and entangled tetrahedron- and cube-graphs. Finally, we compute ideal conformations of periodic weavings and entangled nets. The resulting ideal geometry is intriguing: we see spontaneous symmetrisation in some cases, breaking of symmetry in others, as well as configurations reminiscent of biological and chemical structures in nature.
Collapse
Affiliation(s)
- Myfanwy E. Evans
- Department of Mathematics, TU Berlin, Str. des 17. Juni 136, Berlin 10623, Germany
| | - Vanessa Robins
- Department of Applied Mathematics, Research School of Physics and Engineering, 60 Mills Road, The Australian National University, Acton ACT 2601, Australia
| | - Stephen T. Hyde
- Department of Applied Mathematics, Research School of Physics and Engineering, 60 Mills Road, The Australian National University, Acton ACT 2601, Australia
| |
Collapse
|
14
|
Reindl A, Bier M, Dietrich S. Implications of interface conventions for morphometric thermodynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022406. [PMID: 25768517 DOI: 10.1103/physreve.91.022406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 06/04/2023]
Abstract
Several model fluids in contact with planar, spherical, and cylindrical walls are investigated for small number densities within density functional theory. The dependence of the solid-fluid interfacial tension on the curvature of spherical and cylindrical walls is examined and compared with the corresponding expression derived within the framework of morphometric thermodynamics. Particular attention is paid to the implications of the choice of the interface location, which underlies the definition of the interfacial tension. We find that morphometric thermodynamics is never exact for the considered systems and that its quality as an approximation depends sensitively on the choice of the interface location.
Collapse
Affiliation(s)
- Andreas Reindl
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Markus Bier
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Evans ME, Roth R. Solvation of a sponge-like geometry. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-5027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Periodic entanglements of filaments and networks, which resemble sponge-like materials, are often found as self-assembled materials. The interaction between the geometry of the assembly and a solvent in its interstices can dictate the geometric configuration of the structure as well as influence macroscopic properties such as swelling and mechanics. In this paper, we show the calculation of the solvation free energy as a function of the solute–solvent interaction from hydrophilic to hydrophobic, for a candidate entanglement of filaments. We do this using the morphometric approach to solvation free energy, a method that disentangles geometric properties from thermodynamic coefficients, which we compute via density functional theory.
Collapse
Affiliation(s)
| | - Roland Roth
- Institut für Theoretische Physik, Universität Tübingen, Germany
| |
Collapse
|