1
|
Cooper JC, Brown CYZ, Kára J, Kirrander A. Photoexcited dynamics of the valence states of norbornadiene. J Chem Phys 2025; 162:094102. [PMID: 40029082 DOI: 10.1063/5.0246270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
The non-radiative decay of photoexcited norbornadiene, which together with its isomer quadricyclane forms a molecular photoswitch, is investigated using surface-hopping non-adiabatic dynamics. The simulations are performed using four levels of electronic structure theory: CASSCF(2,2), CASSCF(4,4), XMS-CASPT2(2,2), and XMS-CASPT2(4,4). These electronic structure models yield two distinct classes of excited-state reaction pathways, with different quantum yields for the isomerization. This illustrates the significance of the potential energy surfaces when simulating photoexcited dynamics. The nature of the two reaction pathways is related to topographical features on the surfaces, suggesting potential "design rules" for chemical modification via substituent groups. How the molecule approaches the conical intersection is also shown to play a decisive role in the reaction outcome.
Collapse
Affiliation(s)
- J C Cooper
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - C Y Z Brown
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - J Kára
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - A Kirrander
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
2
|
Mi X, Zhang M, Zhao L, Liang Z, Peng R, Guo Z, Bokarev SI, Li Z. Non-Resonant Magnetic X-ray Scattering as a Probe of Ultrafast Molecular Spin-State Dynamics: An Ab Initio Theory. J Chem Theory Comput 2025; 21:549-559. [PMID: 39744905 DOI: 10.1021/acs.jctc.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
With the advancement of high harmonic generation and X-ray free-electron lasers (XFELs) to the attosecond domain, the studies of the ultrafast electron and spin dynamics became possible. Yet, the methods for efficient control and measurement of the quantum state are to be further developed. In this publication, we propose using magnetic X-ray scattering (MXS) for resolving the molecular spin-state dynamics and establish a complete protocol to simulate MXS diffraction patterns in molecules with ab initio quantum chemistry based on the multiconfigurational method. The performance of the method is demonstrated for the simulation of the spin-flip dynamics in the TiCl4 molecule, initiated by an ultrashort X-ray pulse. The consistent variation of the electron population and the circular dichroic patterns show the capability of MXS to quantitatively detect the spin-state dynamics in real time quantitatively. We also conclude that the spatial shape and extent of the spin density can also be inferred by analyzing the diffraction patterns for randomly oriented and aligned molecules.
Collapse
Affiliation(s)
- Xiaoyu Mi
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Leshi Zhao
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhou Liang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Renxuan Peng
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhaoheng Guo
- Paul Scherrer Institutte, Villigen 5232, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Sergey I Bokarev
- Department of Chemistry, School of Natural Sciences, Technische Universität München, So Lichtenbergstr. 4, Garching bei, München 85748, Germany
- Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, Rostock 18059, Germany
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
3
|
Guo L, Shiohara K, Yamaguchi H, Wang G, Okabe Y, Nakatake M, Takakura S, Yamamoto M, Ogawa S, Takashima Y. Improved robustness of sequentially deposited potassium cesium antimonide photocathodes achieved by increasing the potassium content towards theoretical stoichiometry. Sci Rep 2025; 15:2900. [PMID: 39843967 PMCID: PMC11754747 DOI: 10.1038/s41598-025-87603-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
Alkali antimonide semiconductor photocathodes are promising candidates for high-brightness electron sources for advanced accelerators, including free-electron lasers (FEL), due to their high quantum efficiency (QE), low emittance, and high temporal resolution. Two challenges with these photocathodes are (1) the lack of a universal deposition recipe to achieve crystal stoichiometries and (2) their high susceptibility to vacuum contamination, which restricts their operation pressure to ultrahigh vacuums and leads to a short lifetime and low extraction charge. To resolve these issues, it is essential to understand the elemental compositions of deposited photocathodes and correlate them to robustness. Here, we report depth profiles for potassium cesium antimonide photocathodes, which were investigated using synchrotron radiation x-ray photoelectron spectroscopy, and the robustness of those photocathodes. We prepared two types of photocathodes with different potassium contents via sequential thermal evaporation. Depth profiles revealed that the photocathodes with a potassium deficit had excess cesium at the surface, while the ratio of potassium and cesium to antimony decreased rapidly within the film. In contrast, the photocathodes with sufficient potassium had close to the theoretical stoichiometry of K2CsSb at the surface and maintained that stoichiometry for over half the entire film thickness. Both photocathode types had a similar maximum QE at 532 nm; however, exposure to oxygen revealed that the photocathode with a crystalline stoichiometry of K2CsSb maintained QE at one order of magnitude higher pressure compared to its potassium-deficit counterpart. These results highlight the importance of synthesizing potassium cesium antimonide photocathodes with sufficient potassium to achieve the theoretical crystalline stoichiometry for both high QE and improved robustness.
Collapse
Affiliation(s)
- Lei Guo
- Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| | - Keisuke Shiohara
- Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Hisato Yamaguchi
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | - Gaoxue Wang
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | - Yuki Okabe
- Nihon University, 1-2-1 Izumi-Cho, Narashino-Shi, Chiba, 275-8575, Japan
| | - Masashi Nakatake
- Aichi Synchrotron Radiation Center, Aichi Science & Technology Foundation, Seto, Aichi, 489-0985, Japan
| | - Shoichi Takakura
- Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
- Aichi Synchrotron Radiation Center, Aichi Science & Technology Foundation, Seto, Aichi, 489-0985, Japan
| | - Masahiro Yamamoto
- High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Shuichi Ogawa
- Nihon University, 1-2-1 Izumi-Cho, Narashino-Shi, Chiba, 275-8575, Japan
| | | |
Collapse
|
4
|
Muvva SB, Liu Y, Chakraborty P, Nunes JPF, Attar AR, Bhattacharyya S, Borne K, Champenois EG, Goff N, Hegazy K, Hoffmann MC, Ji F, Lin MF, Luo D, Ma L, Odate A, Pathak S, Rolles D, Rudenko A, Saha SK, Shen X, Wang X, Ware MR, Weathersby S, Weber PM, Wilkin KJ, Wolf TJA, Xiong Y, Xu X, Yang J, Matsika S, Weinacht T, Centurion M. Ultrafast structural dynamics of UV photoexcited cis, cis-1,3-cyclooctadiene observed with time-resolved electron diffraction. Phys Chem Chem Phys 2024; 27:471-480. [PMID: 39652083 DOI: 10.1039/d4cp02785j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Conjugated diene molecules are highly reactive upon photoexcitation and can relax through multiple reaction channels that depend on the position of the double bonds and the degree of molecular rigidity. Understanding the photoinduced dynamics of these molecules is crucial for establishing general rules governing the relaxation and product formation. Here, we investigate the femtosecond time-resolved photoinduced excited-state structural dynamics of cis,cis-1,3-cyclooctadiene, a large-flexible cyclic conjugated diene molecule, upon excitation with 200 nm using mega-electron-volt ultrafast electron diffraction and trajectory surface hopping dynamics simulations. We tracked the photoinduced structural changes from the Franck-Condon region through the conical intersection seam to the ground state. Our findings revealed a novel primary reaction coordinate involving ring distortion, where the ring stretches along one axis and compresses along the perpendicular axis. The nuclear wavepacket remains compact along this reaction coordinate until it reaches the conical intersection seam, and it rapidly spreads as it approaches the ground state, where multiple products are formed.
Collapse
Affiliation(s)
- Sri Bhavya Muvva
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| | - Yusong Liu
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
| | - Pratip Chakraborty
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Andrew R Attar
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Surjendu Bhattacharyya
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - Kurtis Borne
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | | | - Nathan Goff
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Kareem Hegazy
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
- Department of Physics, Stanford University, Stanford, USA
| | | | - Fuhao Ji
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Duan Luo
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Lingyu Ma
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Asami Odate
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Shashank Pathak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - Artem Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas, USA
| | - Sajib Kumar Saha
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Matthew R Ware
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | | | - Peter M Weber
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Kyle J Wilkin
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| | - Thomas J A Wolf
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Yanwei Xiong
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| | - Xuan Xu
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
| | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
5
|
Jyde NK, Kristensen HH, Kranabetter L, Christensen JK, Hansen E, Carlsen MB, Stapelfeldt H. Time-resolved Coulomb explosion imaging of vibrational wave packets in alkali dimers on helium nanodroplets. J Chem Phys 2024; 161:224301. [PMID: 39651812 DOI: 10.1063/5.0239196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024] Open
Abstract
Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment. For both K2 and Rb2, P(R, t) exhibits a periodic oscillatory structure throughout the respective 300 and 100 ps observation times. The oscillatory structure is reflected in the time-dependent mean value of R, ⟨R⟩(t). The Fourier transformation of ⟨R⟩(t) shows that the wave packets are composed mainly of the vibrational ground state and the first excited vibrational state, in agreement with numerical simulations. In the case of K2, the oscillations are observed for 300 ps, corresponding to more than 180 vibrational periods with an amplitude that decreases gradually from 0.035 to 0.020 Å. Using time-resolved spectral analysis, we find that the decay time of the amplitude is ∼260 ps. The decrease is ascribed to the weak coupling between the vibrating dimers and the droplet.
Collapse
Affiliation(s)
- Nicolaj K Jyde
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik H Kristensen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Lorenz Kranabetter
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jeppe K Christensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Emil Hansen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Mads B Carlsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Pios SV, Zhang J, Gelin MF, Duan HG, Chen L. Tracking the Electron Density Changes in Excited States: A Computational Study of Pyrazine. J Phys Chem Lett 2024; 15:10609-10613. [PMID: 39405178 DOI: 10.1021/acs.jpclett.4c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The development of X-ray free-electron lasers has enabled ultrafast X-ray diffraction (XRD) experiments, which are capable of resolving electronic and vibrational transitions and structural changes in molecules or capturing molecular movies. While time-resolved XRD has attracted more attention, the extraction of information from signals is challenging and requires theoretical support. In this work, we combined X-ray scattering theory and a trajectory surface hopping approach to resolve dynamical changes in the electronic structure of photoexcited molecules by studying the time evolution of electron density changes between electronic excited states and ground state. Using the pyrazine molecule as an example, we show that key features of reaction pathways can be identified, enabling the capture of structural changes associated with electronic transitions for a photoexcited molecule.
Collapse
Affiliation(s)
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hong-Guang Duan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China
| | | |
Collapse
|
7
|
Tang Z, Jarupula R, Yong H. Pushing the limits of ultrafast diffraction: Imaging quantum coherences in isolated molecules. iScience 2024; 27:110705. [PMID: 39262780 PMCID: PMC11388184 DOI: 10.1016/j.isci.2024.110705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Quantum coherence governs the outcome and efficiency of photochemical reactions and ultrafast molecular dynamics. Recent ultrafast gas-phase X-ray scattering and electron diffraction have enabled the observation of femtosecond nuclear dynamics driven by vibrational coherence. However, probing attosecond electron dynamics and coupled electron-nuclear dynamics remains challenging. This article discusses advances in ultrafast X-ray scattering and electron diffraction, highlighting their potential to resolve attosecond charge migration and vibronic coupling at conical intersections. Novel techniques, such as X-ray scattering with orbital angular momentum beams and combined X-ray and electron diffraction, promise to selectively probe coherence contributions and visualize charge migration in real-space. These emerging methods could further our understanding of coherence effects in chemical reactions.
Collapse
Affiliation(s)
- Zilong Tang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ramesh Jarupula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haiwang Yong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Yang Y, Hu X, Wu L, Wang Z, Li X, Zhou S, Wang Z, Guo F, He L, Luo S, Zhang D, Wang J, Chen X, Wu Y, Wang C, Ding D. Extraction of Molecular-Frame Electron-Ion Differential Scattering Cross Sections Based on Elliptical Laser-Induced Electron Diffraction. PHYSICAL REVIEW LETTERS 2024; 133:113203. [PMID: 39331986 DOI: 10.1103/physrevlett.133.113203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2024] [Accepted: 08/06/2024] [Indexed: 09/29/2024]
Abstract
We extracted the molecular-frame elastic differential cross sections (MFDCSs) for electrons scattering from N_{2}^{+} based on elliptical laser-induced electron diffraction (ELIED), wherein the structural evolution is initialized by the same tunneling ionization and probed by incident angle-resolved laser-induced electron diffraction imaging. To establish ELIED, an intuitive interpretation of the ellipticity-dependent rescattering electron momentum distributions was first provided by analyzing the transverse momentum distribution. It was shown that the incident angle of the laser-induced returning electrons could be tuned within 20° by varying the ellipticity and handedness of the driving laser pulses. Accordingly, the incident angle-resolved DCSs of returning electrons for spherically symmetric targets (Xe^{+} and Ar^{+}) were successfully extracted as a proof-of-principle for ELIED. The MFDCSs for N_{2}^{+} were experimentally obtained at incident angles of 4° and 7°, which were well reproduced by the simulations. The ELIED approach is the only successful method so far for obtaining incident angle-resolved ionic MFDCS, which provides a new sensitive observable for the transient structure retrieval of N_{2}^{+}. Our results suggest that the ELIED has the potential to extract the structural tomographic information of polyatomic molecules with femtosecond and subangstrom spatiotemporal resolutions that can enable the visualization of the nuclear motions in complex chemical reactions as well as chiral recognition.
Collapse
|
9
|
Chirvi K, Biegert J. Laser-induced electron diffraction: Imaging of a single gas-phase molecular structure with one of its own electrons. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:041301. [PMID: 39221452 PMCID: PMC11365610 DOI: 10.1063/4.0000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Among the many methods to image molecular structure, laser-induced electron diffraction (LIED) can image a single gas-phase molecule by locating all of a molecule's atoms in space and time. The method is based on attosecond electron recollision driven by a laser field and can reach attosecond temporal resolution. Implementation with a mid-IR laser and cold-target recoil ion-momentum spectroscopy, single molecules are measured with picometer resolution due to the keV electron impact energy without ensemble averaging or the need for molecular orientation. Nowadays, the method has evolved to detect single complex and chiral molecular structures in 3D. The review will touch on the various methods to discuss the implementations of LIED toward single-molecule imaging and complement the discussions with noteworthy experimental findings in the field.
Collapse
Affiliation(s)
- K. Chirvi
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - J. Biegert
- Author to whom correspondence should be addressed:
| |
Collapse
|
10
|
Huang L, Bertram L, Ma L, Goff N, Crane SW, Odate A, Northey T, Carrascosa AM, Simmermacher M, Muvva SB, Geiser JD, Lueckheide MJ, Phelps Z, Liang M, Cheng X, Forbes R, Robinson JS, Hayes MJ, Allum F, Green AE, Lopata K, Rudenko A, Wolf TJA, Centurion M, Rolles D, Minitti MP, Kirrander A, Weber PM. The Ring-Closing Reaction of Cyclopentadiene Probed with Ultrafast X-ray Scattering. J Phys Chem A 2024; 128:4992-4998. [PMID: 38709555 PMCID: PMC11215772 DOI: 10.1021/acs.jpca.4c02509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
The dynamics of cyclopentadiene (CP) following optical excitation at 243 nm was investigated by time-resolved pump-probe X-ray scattering using 16.2 keV X-rays at the Linac Coherent Light Source (LCLS). We present the first ultrafast structural evidence that the reaction leads directly to the formation of bicyclo[2.1.0]pentene (BP), a strained molecule with three- and four-membered rings. The bicyclic compound decays via a thermal backreaction to the vibrationally hot CP with a time constant of 21 ± 3 ps. A minor channel leads to ring-opened structures on a subpicosecond time scale.
Collapse
Affiliation(s)
- Lisa Huang
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lauren Bertram
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United
Kingdom
| | - Lingyu Ma
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Nathan Goff
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Stuart W. Crane
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Asami Odate
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Thomas Northey
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Andrés Moreno Carrascosa
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United
Kingdom
| | - Mats Simmermacher
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United
Kingdom
| | - Sri Bhavya Muvva
- Department
of Physics and Astronomy, University of
Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph D. Geiser
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Matthew J. Lueckheide
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zane Phelps
- Department
of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mengning Liang
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xinxin Cheng
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ruaridh Forbes
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Joseph S. Robinson
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matthew J. Hayes
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Felix Allum
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alice E. Green
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
- European
XFEL, Schenefeld 22869, Germany
| | - Kenneth Lopata
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Artem Rudenko
- Department
of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Thomas J. A. Wolf
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Martin Centurion
- Department
of Physics and Astronomy, University of
Nebraska - Lincoln, Lincoln, Nebraska 68588, United States
| | - Daniel Rolles
- Department
of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Michael P. Minitti
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Adam Kirrander
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United
Kingdom
| | - Peter M. Weber
- Department
of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
11
|
Hutton L, Moreno Carrascosa A, Prentice AW, Simmermacher M, Runeson JE, Paterson MJ, Kirrander A. Using a multistate mapping approach to surface hopping to predict the ultrafast electron diffraction signal of gas-phase cyclobutanone. J Chem Phys 2024; 160:204307. [PMID: 38814011 DOI: 10.1063/5.0203667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024] Open
Abstract
Using the recently developed multistate mapping approach to surface hopping (multistate MASH) method combined with SA(3)-CASSCF(12,12)/aug-cc-pVDZ electronic structure calculations, the gas-phase isotropic ultrafast electron diffraction (UED) of cyclobutanone is predicted and analyzed. After excitation into the n-3s Rydberg state (S2), cyclobutanone can relax through two S2/S1 conical intersections, one characterized by compression of the CO bond and the other by dissociation of the α-CC bond. Subsequent transfer into the ground state (S0) is then achieved via two additional S1/S0 conical intersections that lead to three reaction pathways: α ring-opening, ethene/ketene production, and CO liberation. The isotropic gas-phase UED signal is predicted from the multistate MASH simulations, allowing for a direct comparison to the experimental data. This work, which is a contribution to the cyclobutanone prediction challenge, facilitates the identification of the main photoproducts in the UED signal and thereby emphasizes the importance of dynamics simulations for the interpretation of ultrafast experiments.
Collapse
Affiliation(s)
- Lewis Hutton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Andrés Moreno Carrascosa
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Andrew W Prentice
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Mats Simmermacher
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Johan E Runeson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Martin J Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
12
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
13
|
Eng J, Rankine CD, Penfold TJ. The photochemistry of Rydberg-excited cyclobutanone: Photoinduced processes and ground state dynamics. J Chem Phys 2024; 160:154301. [PMID: 38619456 DOI: 10.1063/5.0203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
Owing to ring strain, cyclic ketones exhibit complex excited state dynamics with multiple competing photochemical channels active on the ultrafast timescale. While the excited state dynamics of cyclobutanone after π* ← n excitation into the lowest-energy excited singlet (S1) state has been extensively studied, the dynamics following 3s ← n excitation into the higher-lying singlet Rydberg (S2) state are less well understood. Herein, we employ fully quantum multiconfigurational time-dependent Hartree (MCTDH) simulations using a model Hamiltonian as well as "on-the-fly" trajectory-based surface-hopping dynamics (TSHD) simulations to study the relaxation dynamics of cyclobutanone following 3s ← n excitation and to predict the ultrafast electron diffraction scattering signature of these relaxation dynamics. Our MCTDH and TSHD simulations indicate that relaxation from the initially-populated singlet Rydberg (S2) state occurs on the timescale of a few hundreds of femtoseconds to a picosecond, consistent with the symmetry-forbidden nature of the state-to-state transition involved. There is no obvious involvement of excited triplet states within the timeframe of our simulations (<2 ps). After non-radiative relaxation to the electronic ground state (S0), vibrationally hot cyclobutanone has sufficient internal energy to form multiple fragmented products including C2H4 + CH2CO (C2; 20%) and C3H6 + CO (C3; 2.5%). We discuss the limitations of our MCTDH and TSHD simulations, how these may influence the excited state dynamics we observe, and-ultimately-the predictive power of the simulated experimental observable.
Collapse
Affiliation(s)
- J Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - C D Rankine
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - T J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
14
|
Borne KD, Cooper JC, Ashfold MNR, Bachmann J, Bhattacharyya S, Boll R, Bonanomi M, Bosch M, Callegari C, Centurion M, Coreno M, Curchod BFE, Danailov MB, Demidovich A, Di Fraia M, Erk B, Faccialà D, Feifel R, Forbes RJG, Hansen CS, Holland DMP, Ingle RA, Lindh R, Ma L, McGhee HG, Muvva SB, Nunes JPF, Odate A, Pathak S, Plekan O, Prince KC, Rebernik P, Rouzée A, Rudenko A, Simoncig A, Squibb RJ, Venkatachalam AS, Vozzi C, Weber PM, Kirrander A, Rolles D. Ultrafast electronic relaxation pathways of the molecular photoswitch quadricyclane. Nat Chem 2024; 16:499-505. [PMID: 38307994 PMCID: PMC10997510 DOI: 10.1038/s41557-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/11/2023] [Indexed: 02/04/2024]
Abstract
The light-induced ultrafast switching between molecular isomers norbornadiene and quadricyclane can reversibly store and release a substantial amount of chemical energy. Prior work observed signatures of ultrafast molecular dynamics in both isomers upon ultraviolet excitation but could not follow the electronic relaxation all the way back to the ground state experimentally. Here we study the electronic relaxation of quadricyclane after exciting in the ultraviolet (201 nanometres) using time-resolved gas-phase extreme ultraviolet photoelectron spectroscopy combined with non-adiabatic molecular dynamics simulations. We identify two competing pathways by which electronically excited quadricyclane molecules relax to the electronic ground state. The fast pathway (<100 femtoseconds) is distinguished by effective coupling to valence electronic states, while the slow pathway involves initial motions across Rydberg states and takes several hundred femtoseconds. Both pathways facilitate interconversion between the two isomers, albeit on different timescales, and we predict that the branching ratio of norbornadiene/quadricyclane products immediately after returning to the electronic ground state is approximately 3:2.
Collapse
Affiliation(s)
- Kurtis D Borne
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Joseph C Cooper
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Julien Bachmann
- Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Surjendu Bhattacharyya
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | | | - Matteo Bonanomi
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
- Dipartimento di Fisica, Politecnico di Milano, Milano, Italy
| | - Michael Bosch
- Chemistry of Thin Film Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marcello Coreno
- Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy
- Istituto di Struttura della Materia (ISM-CNR), CNR, Trieste, Italy
| | | | | | | | | | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Davide Faccialà
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ruaridh J G Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Christopher S Hansen
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Rebecca A Ingle
- Department of Chemistry, University College London, London, UK
| | - Roland Lindh
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Lingyu Ma
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Henry G McGhee
- Department of Chemistry, University College London, London, UK
| | - Sri Bhavya Muvva
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Asami Odate
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Shashank Pathak
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | - Oksana Plekan
- Elettra - Sincrotrone Trieste S.C.p.A., Trieste, Italy
| | | | | | | | - Artem Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA
| | | | - Richard J Squibb
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | | - Caterina Vozzi
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), CNR, Milano, Italy
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Daniel Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
15
|
Northey T, Kirrander A, Weber PM. Extracting the electronic structure signal from X-ray and electron scattering in the gas phase. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:303-311. [PMID: 38385277 PMCID: PMC10914165 DOI: 10.1107/s1600577524000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/03/2024] [Indexed: 02/23/2024]
Abstract
X-ray and electron scattering from free gas-phase molecules is examined using the independent atom model (IAM) and ab initio electronic structure calculations. The IAM describes the effect of the molecular geometry on the scattering, but does not account for the redistribution of valence electrons due to, for instance, chemical bonding. By examining the total, i.e. energy-integrated, scattering from three molecules, fluoroform (CHF3), 1,3-cyclohexadiene (C6H8) and naphthalene (C10H8), the effect of electron redistribution is found to predominantly reside at small-to-medium values of the momentum transfer (q ≤ 8 Å-1) in the scattering signal, with a maximum percent difference contribution at 2 ≤ q ≤ 3 Å-1. A procedure to determine the molecular geometry from the large-q scattering is demonstrated, making it possible to more clearly identify the deviation of the scattering from the IAM approximation at small and intermediate q and to provide a measure of the effect of valence electronic structure on the scattering signal.
Collapse
Affiliation(s)
- Thomas Northey
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Peter M. Weber
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
16
|
Kuraoka T, Goto S, Kanno M, Díaz-Tendero S, Reino-González J, Trinter F, Pier A, Sommerlad L, Melzer N, McGinnis OD, Kruse J, Wenzel T, Jahnke T, Xue H, Kishimoto N, Yoshikawa K, Tamura Y, Ota F, Hatada K, Ueda K, Martín F. Tracing Photoinduced Hydrogen Migration in Alcohol Dications from Time-Resolved Molecular-Frame Photoelectron Angular Distributions. J Phys Chem A 2024; 128:1241-1249. [PMID: 38324399 PMCID: PMC10895665 DOI: 10.1021/acs.jpca.3c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space. Although visualization of this dynamics is more straightforward in the smaller systems, methanol and ethanol, one can still recognize the signature of that motion in propanol and isopropyl alcohol and assign a tentative path to it. A possible pathway for a corresponding experiment requires an angularly resolved detection of photoelectrons in coincidence with molecular fragment ions used to define a molecular frame of reference. Such studies have become, in principle, possible since the first XFELs with sufficiently high repetition rates have emerged. To further support our findings, we provide experimental evidence of H migration in ethanol-OD from ion-ion coincidence measurements performed with synchrotron radiation.
Collapse
Affiliation(s)
- T. Kuraoka
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - S. Goto
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - M. Kanno
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - S. Díaz-Tendero
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - J. Reino-González
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| | - F. Trinter
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - A. Pier
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - L. Sommerlad
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - N. Melzer
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - O. D. McGinnis
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - J. Kruse
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Wenzel
- Institut
für Kernphysik, Goethe-Universität
Frankfurt, Max-von-Laue-Straβe 1, Frankfurt am
Main 60438, Germany
| | - T. Jahnke
- Max-Planck-Institut
für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- European
XFEL, Holzkoppel
4, Schenefeld 22869, Germany
| | - H. Xue
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - N. Kishimoto
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - K. Yoshikawa
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Y. Tamura
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Ota
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Hatada
- Department
of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Ueda
- Department
of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - F. Martín
- Departamento
de Química, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
17
|
Figueira Nunes JP, Ibele LM, Pathak S, Attar AR, Bhattacharyya S, Boll R, Borne K, Centurion M, Erk B, Lin MF, Forbes RJG, Goff N, Hansen CS, Hoffmann M, Holland DMP, Ingle RA, Luo D, Muvva SB, Reid AH, Rouzée A, Rudenko A, Saha SK, Shen X, Venkatachalam AS, Wang X, Ware MR, Weathersby SP, Wilkin K, Wolf TJA, Xiong Y, Yang J, Ashfold MNR, Rolles D, Curchod BFE. Monitoring the Evolution of Relative Product Populations at Early Times during a Photochemical Reaction. J Am Chem Soc 2024; 146:4134-4143. [PMID: 38317439 PMCID: PMC10870701 DOI: 10.1021/jacs.3c13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.
Collapse
Affiliation(s)
| | - Lea Maria Ibele
- CNRS,
Institut de Chimie Physique UMR8000, Université
Paris-Saclay, Orsay, 9140, France
| | - Shashank Pathak
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Andrew R. Attar
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Surjendu Bhattacharyya
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Kurtis Borne
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Martin Centurion
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Benjamin Erk
- Deutsches
Elektronen Synchrotron DESY, Hamburg, 22607, Germany
| | - Ming-Fu Lin
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ruaridh J. G. Forbes
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Nathan Goff
- Brown University, Providence, Rhode Island 02912, United States
| | | | - Matthias Hoffmann
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Rebecca A. Ingle
- Department
of Chemistry, University College London, London, WC1H 0AJ, U.K.
| | - Duan Luo
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sri Bhavya Muvva
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexander H. Reid
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Artem Rudenko
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sajib Kumar Saha
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Xiaozhe Shen
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Anbu Selvam Venkatachalam
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | - Xijie Wang
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Matt R. Ware
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Kyle Wilkin
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Thomas J. A. Wolf
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
- Stanford
PULSE Institute, SLAC National Accelerator
Laboratory, Menlo
Park, California 94025, United States
| | - Yanwei Xiong
- University
of Nebraska−Lincoln, Lincoln, Nebraska 68588, United States
| | - Jie Yang
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Daniel Rolles
- J.R.
Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506, United States
| | | |
Collapse
|
18
|
Champenois EG, List NH, Ware M, Britton M, Bucksbaum PH, Cheng X, Centurion M, Cryan JP, Forbes R, Gabalski I, Hegazy K, Hoffmann MC, Howard AJ, Ji F, Lin MF, Nunes JPF, Shen X, Yang J, Wang X, Martinez TJ, Wolf TJA. Femtosecond Electronic and Hydrogen Structural Dynamics in Ammonia Imaged with Ultrafast Electron Diffraction. PHYSICAL REVIEW LETTERS 2023; 131:143001. [PMID: 37862660 DOI: 10.1103/physrevlett.131.143001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/06/2023] [Accepted: 08/12/2023] [Indexed: 10/22/2023]
Abstract
Directly imaging structural dynamics involving hydrogen atoms by ultrafast diffraction methods is complicated by their low scattering cross sections. Here we demonstrate that megaelectronvolt ultrafast electron diffraction is sufficiently sensitive to follow hydrogen dynamics in isolated molecules. In a study of the photodissociation of gas phase ammonia, we simultaneously observe signatures of the nuclear and corresponding electronic structure changes resulting from the dissociation dynamics in the time-dependent diffraction. Both assignments are confirmed by ab initio simulations of the photochemical dynamics and the resulting diffraction observable. While the temporal resolution of the experiment is insufficient to resolve the dissociation in time, our results represent an important step towards the observation of proton dynamics in real space and time.
Collapse
Affiliation(s)
- Elio G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nanna H List
- Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Matthew Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mathew Britton
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Xinxin Cheng
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ruaridh Forbes
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ian Gabalski
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Kareem Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | | | - Andrew J Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Fuhao Ji
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J Pedro F Nunes
- Department of Physics and Astronomy, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Todd J Martinez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
19
|
Acheson K, Kirrander A. Automatic Clustering of Excited-State Trajectories: Application to Photoexcited Dynamics. J Chem Theory Comput 2023; 19:6126-6138. [PMID: 37703098 PMCID: PMC10536988 DOI: 10.1021/acs.jctc.3c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 09/14/2023]
Abstract
We introduce automatic clustering as a computationally efficient tool for classifying and interpreting trajectories from simulations of photo-excited dynamics. Trajectories are treated as time-series data, with the features for clustering selected by variance mapping of normalized data. The L2-norm and dynamic time warping are proposed as suitable similarity measures for calculating the distance matrices, and these are clustered using the unsupervised density-based DBSCAN algorithm. The silhouette coefficient and the number of trajectories classified as noise are used as quality measures for the clustering. The ability of clustering to provide rapid overview of large and complex trajectory data sets, and its utility for extracting chemical and physical insight, is demonstrated on trajectories corresponding to the photochemical ring-opening reaction of 1,3-cyclohexadiene, noting that the clustering can be used to generate reduced dimensionality representations in an unbiased manner.
Collapse
Affiliation(s)
- Kyle Acheson
- EaStCHEM,
School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Adam Kirrander
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
20
|
Kurta RP, van Driel TB, Dohn AO, Berberich TB, Nelson S, Zaluzhnyy IA, Mukharamova N, Lapkin D, Zederkof DB, Seaberg M, Pedersen KS, Kjær KS, Rippy GI, Biasin E, Møller KB, Gelisio L, Haldrup K, Vartanyants IA, Nielsen MM. Exploring fingerprints of ultrafast structural dynamics in molecular solutions with an X-ray laser. Phys Chem Chem Phys 2023; 25:23417-23434. [PMID: 37486006 DOI: 10.1039/d3cp01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir2(dimen)4]2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir2(dimen)4]2+ molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir2(dimen)4]2+ with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.
Collapse
Affiliation(s)
- Ruslan P Kurta
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
| | - Tim B van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Asmus O Dohn
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107 Reykjavík, Iceland
| | | | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A Zaluzhnyy
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Diana B Zederkof
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Kasper S Kjær
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Geoffery Ian Rippy
- Department of Materials Science and Engineering, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| |
Collapse
|
21
|
Wang Z, Hu X, Xue X, Zhou S, Li X, Yang Y, Zhou J, Shu Z, Zhao B, Yu X, Gong M, Wang Z, Ma P, Wu Y, Chen X, Wang J, Ren X, Wang C, Ding D. Directly imaging excited state-resolved transient structures of water induced by valence and inner-shell ionisation. Nat Commun 2023; 14:5420. [PMID: 37669964 PMCID: PMC10480213 DOI: 10.1038/s41467-023-41204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
Real-time imaging of transient structure of the electronic excited state is fundamentally critical to understand and control ultrafast molecular dynamics. The ejection of electrons from the inner-shell and valence level can lead to the population of different excited states, which trigger manifold ultrafast relaxation processes, however, the accurate imaging of such electronic state-dependent structural evolutions is still lacking. Here, by developing the laser-induced electron recollision-assisted Coulomb explosion imaging approach and molecular dynamics simulations, snapshots of the vibrational wave-packets of the excited (A) and ground states (X) of D2O+ are captured simultaneously with sub-10 picometre and few-femtosecond precision. We visualise that θDOD and ROD are significantly increased by around 50∘ and 10 pm, respectively, within approximately 8 fs after initial ionisation for the A state, and the ROD further extends 9 pm within 2 fs along the ground state of the dication in the present condition. Moreover, the ROD can stretch more than 50 pm within 5 fs along autoionisation state of dication. The accuracies of the results are limited by the simulations. These results provide comprehensive structural information for studying the fascinating molecular dynamics of water, and pave the way towards to make a movie of excited state-resolved ultrafast molecular dynamics and light-induced chemical reaction.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xiaoqing Hu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Shengpeng Zhou
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xiaokai Li
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Yizhang Yang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Zheng Shu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Banchi Zhao
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xitao Yu
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Maomao Gong
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi' an, China
| | - Zhenpeng Wang
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
| | - Pan Ma
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Yong Wu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China.
- HEDPS, Center of Applied Physics and Technology, Peking University, 100871, Beijing, China.
| | - Xiangjun Chen
- Hefei National Research Center for Physical Sciences at Microscale and Department of Modern Physic, University of Science and Technology of China, 230026, Hefei, China
| | - Jianguo Wang
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, 710049, Xi'an, China.
| | - Chuncheng Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| | - Dajun Ding
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| |
Collapse
|
22
|
Bertram L, Weber PM, Kirrander A. Mapping the photochemistry of cyclopentadiene: from theory to ultrafast X-ray scattering. Faraday Discuss 2023; 244:269-293. [PMID: 37132432 DOI: 10.1039/d2fd00176d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The photoinduced ring-conversion reaction when cyclopentadiene (CP) is excited at 5.10 eV is simulated using surface-hopping semiclassical trajectories with XMS(3)-CASPT2(4,4)/cc-pVDZ electronic structure theory. In addition, PBE0/def2-SV(P) is employed for ground state propagation of the trajectories. The dynamics is propagated for 10 ps, mapping both the nonadiabatic short-time dynamics (<300 fs) and the increasingly statistical dynamics on the electronic ground state. The short-time dynamics yields a mixture of hot CP and bicyclo[2.1.0]pentene (BP), with the two products reached via different regions of the same conical intersection seam. On the ground state, we observe slow conversion from BP to CP which is modelled by RRKM theory with a transition state determined using PBE0/def2-TZVP. The CP products are furthermore associated with ground state hydrogen shifts and some H-atom dissociation. Finally, the prospects for detailed experimental mapping using novel ultrafast X-ray scattering experiments are discussed and observables for such experiments are predicted. In particular, we assess the possibility of retrieving electronic states and their populations alongside the structural dynamics.
Collapse
Affiliation(s)
- Lauren Bertram
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Adam Kirrander
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
| |
Collapse
|
23
|
Liu Y, Sanchez DM, Ware MR, Champenois EG, Yang J, Nunes JPF, Attar A, Centurion M, Cryan JP, Forbes R, Hegazy K, Hoffmann MC, Ji F, Lin MF, Luo D, Saha SK, Shen X, Wang XJ, Martínez TJ, Wolf TJA. Rehybridization dynamics into the pericyclic minimum of an electrocyclic reaction imaged in real-time. Nat Commun 2023; 14:2795. [PMID: 37202402 DOI: 10.1038/s41467-023-38513-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Electrocyclic reactions are characterized by the concerted formation and cleavage of both σ and π bonds through a cyclic structure. This structure is known as a pericyclic transition state for thermal reactions and a pericyclic minimum in the excited state for photochemical reactions. However, the structure of the pericyclic geometry has yet to be observed experimentally. We use a combination of ultrafast electron diffraction and excited state wavepacket simulations to image structural dynamics through the pericyclic minimum of a photochemical electrocyclic ring-opening reaction in the molecule α-terpinene. The structural motion into the pericyclic minimum is dominated by rehybridization of two carbon atoms, which is required for the transformation from two to three conjugated π bonds. The σ bond dissociation largely happens after internal conversion from the pericyclic minimum to the electronic ground state. These findings may be transferrable to electrocyclic reactions in general.
Collapse
Affiliation(s)
- Y Liu
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11790, USA
| | - D M Sanchez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA
- Design Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - M R Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - J Yang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Center of Basic Molecular Science, Department of Chemistry, Mong Man Wai Building of Science and Technology, S-1027 Tsinghua University, Beijing, China
| | - J P F Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
- Diamond Light Source, Harwell Science Campus, Fermi Ave, Didcot, OX11 0DE, UK
| | - A Attar
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
| | - J P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R Forbes
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - K Hegazy
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M C Hoffmann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - F Ji
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M-F Lin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - D Luo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - S K Saha
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Theodore Jorgensen Hall 208, 855 N 16th Street, Lincoln, NE, 68588, USA
| | - X Shen
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - T J Martínez
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, CA, 94305, USA.
| | - T J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| |
Collapse
|
24
|
Middleton C, Rankine CD, Penfold TJ. An on-the-fly deep neural network for simulating time-resolved spectroscopy: predicting the ultrafast ring opening dynamics of 1,2-dithiane. Phys Chem Chem Phys 2023; 25:13325-13334. [PMID: 37139551 DOI: 10.1039/d3cp00510k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Revolutionary developments in ultrafast light source technology are enabling experimental spectroscopists to probe the structural dynamics of molecules and materials on the femtosecond timescale. The capacity to investigate ultrafast processes afforded by these resources accordingly inspires theoreticians to carry out high-level simulations which facilitate the interpretation of the underlying dynamics probed during these ultrafast experiments. In this Article, we implement a deep neural network (DNN) to convert excited-state molecular dynamics simulations into time-resolved spectroscopic signals. Our DNN is trained on-the-fly from first-principles theoretical data obtained from a set of time-evolving molecular dynamics. The train-test process iterates for each time-step of the dynamics data until the network can predict spectra with sufficient accuracy to replace the computationally intensive quantum chemistry calculations required to produce them, at which point it simulates the time-resolved spectra for longer timescales. The potential of this approach is demonstrated by probing dynamics of the ring opening of 1,2-dithiane using sulphur K-edge X-ray absorption spectroscopy. The benefits of this strategy will be more markedly apparent for simulations of larger systems which will exhibit a more notable computational burden, making this approach applicable to the study of a diverse range of complex chemical dynamics.
Collapse
Affiliation(s)
- Clelia Middleton
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Conor D Rankine
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Thomas J Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
25
|
Acheson K, Kirrander A. Robust Inversion of Time-Resolved Data via Forward-Optimization in a Trajectory Basis. J Chem Theory Comput 2023; 19:2721-2734. [PMID: 37129988 DOI: 10.1021/acs.jctc.2c01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An inversion method for time-resolved data from ultrafast experiments is introduced, based on forward-optimization in a trajectory basis. The method is applied to experimental data from X-ray scattering of the photochemical ring-opening reaction of 1,3-cyclohexadiene and electron diffraction of the photodissociation of CS2. In each case, inversion yields a model that reproduces the experimental data, identifies the main dynamic motifs, and agrees with independent experimental observations. Notably, the method explicitly accounts for continuity constraints and is robust even for noisy data.
Collapse
Affiliation(s)
- Kyle Acheson
- EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
26
|
Howard AJ, Britton M, Streeter ZL, Cheng C, Forbes R, Reynolds JL, Allum F, McCracken GA, Gabalski I, Lucchese RR, McCurdy CW, Weinacht T, Bucksbaum PH. Filming enhanced ionization in an ultrafast triatomic slingshot. Commun Chem 2023; 6:81. [PMID: 37106058 PMCID: PMC10140156 DOI: 10.1038/s42004-023-00882-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Filming atomic motion within molecules is an active pursuit of molecular physics and quantum chemistry. A promising method is laser-induced Coulomb Explosion Imaging (CEI) where a laser pulse rapidly ionizes many electrons from a molecule, causing the remaining ions to undergo Coulomb repulsion. The ion momenta are used to reconstruct the molecular geometry which is tracked over time (i.e., filmed) by ionizing at an adjustable delay with respect to the start of interatomic motion. Results are distorted, however, by ultrafast motion during the ionizing pulse. We studied this effect in water and filmed the rapid "slingshot" motion that enhances ionization and distorts CEI results. Our investigation uncovered both the geometry and mechanism of the enhancement which may inform CEI experiments in many other polyatomic molecules.
Collapse
Affiliation(s)
- Andrew J Howard
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Mathew Britton
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | - Zachary L Streeter
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Joshua L Reynolds
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - Felix Allum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Gregory A McCracken
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Ian Gabalski
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Robert R Lucchese
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - C William McCurdy
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Philip H Bucksbaum
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
- Department of Physics, Stanford University, Stanford, CA, 94305, USA.
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.
| |
Collapse
|
27
|
Keefer D, Cavaletto SM, Rouxel JR, Garavelli M, Yong H, Mukamel S. Ultrafast X-Ray Probes of Elementary Molecular Events. Annu Rev Phys Chem 2023; 74:73-97. [PMID: 37093660 DOI: 10.1146/annurev-physchem-062322-051532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Elementary events that determine photochemical outcomes and molecular functionalities happen on the femtosecond and subfemtosecond timescales. Among the most ubiquitous events are the nonadiabatic dynamics taking place at conical intersections. These facilitate ultrafast, nonradiative transitions between electronic states in molecules that can outcompete slower relaxation mechanisms such as fluorescence. The rise of ultrafast X-ray sources, which provide intense light pulses with ever-shorter durations and larger observation bandwidths, has fundamentally revolutionized our spectroscopic capabilities to detect conical intersections. Recent theoretical studies have demonstrated an entirely new signature emerging once a molecule traverses a conical intersection, giving detailed insights into the coupled nuclear and electronic motions that underlie, facilitate, and ultimately determine the ultrafast molecular dynamics. Following a summary of current sources and experiments, we survey these techniques and provide a unified overview of their capabilities. We discuss their potential to dramatically increase our understanding of ultrafast photochemistry.
Collapse
Affiliation(s)
- Daniel Keefer
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Stefano M Cavaletto
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
- Current affiliation: Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, IOGS, Laboratoire Hubert Curien, UMR CNRS 5516, Saint-Etienne, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Bologna, Italy
| | - Haiwang Yong
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California, USA; ,
| |
Collapse
|
28
|
Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T. Real-time observation of the Woodward-Hoffmann rule for 1,3-cyclohexadiene by femtosecond soft X-ray transient absorption. Phys Chem Chem Phys 2023; 25:8497-8506. [PMID: 36883468 DOI: 10.1039/d2cp05268g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The stereochemistry of pericyclic reactions is explained by orbital symmetry conservation, referred to as the Woodward-Hoffmann (WH) rule. Although this rule has been verified using the structures of reactants and products, the temporal evolution of the orbital symmetry during the reaction has not been clarified. Herein, we used femtosecond soft X-ray transient absorption spectroscopy to elucidate the thermal pericyclic reaction of 1,3-cyclohexadiene (CHD) molecules, i.e., their isomerization to 1,3,5-hexatriene. In the present experimental scheme, the ring-opening reaction is driven by the thermal vibrational energy induced by photoexcitation to the Rydberg states at 6.2 eV and subsequent femtosecond relaxation to the ground state of CHD molecules. The direction of the ring opening, which can be conrotatory or disrotatory, was the primary focus, and the WH rule predicts the disrotatory pathway in the thermal process. We observed the shifts in K-edge absorption of the carbon atom from the 1s orbital to vacant molecular orbitals around 285 eV at a delay between 340 and 600 fs. Furthermore, a theoretical investigation predicts that the shifts depend on the molecular structures along the reaction pathways and the observed shifts in induced absorption are attributed to the structural change in the disrotatory pathway. This confirms that the orbital symmetry is dynamically conserved in the ring-opening reaction of CHD molecules as predicted using the WH rule.
Collapse
Affiliation(s)
- Taro Sekikawa
- Department of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Nariyuki Saito
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Yutaro Kurimoto
- Department of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Nobuhisa Ishii
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kizugawa 619-0215, Japan
| | - Tomoya Mizuno
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Teruto Kanai
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Jiro Itatani
- Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Kenichiro Saita
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
29
|
Nam Y, Song H, Freixas VM, Keefer D, Fernandez-Alberti S, Lee JY, Garavelli M, Tretiak S, Mukamel S. Monitoring vibronic coherences and molecular aromaticity in photoexcited cyclooctatetraene with an X-ray probe: a simulation study. Chem Sci 2023; 14:2971-2982. [PMID: 36937575 PMCID: PMC10016608 DOI: 10.1039/d2sc04335a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding conical intersection (CI) dynamics and subsequent conformational changes is key for exploring and controlling photo-reactions in aromatic molecules. Monitoring of their time-resolved dynamics remains a formidable experimental challenge. In this study, we simulate the photoinduced S3 to S1 non-adiabatic dynamics of cyclooctatetraene (COT), involving multiple CIs with relaxation times in good agreement with experiment. We further investigate the possibility to directly probe the CI passages in COT by off-resonant X-ray Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). We find that these signals sensitively monitor key chemical features during the ultrafast dynamics. First, we distinguish two CIs by using TRUECARS signals with their appearances at different Raman shifts. Second, we demonstrate that TRXD, where X-ray photons scatter off electron densities, can resolve ultrafast changes in the aromaticity of COT. It can further distinguish between planar and non-planar geometries explored during the dynamics, as e.g. two different tetraradical-type CIs. The knowledge gained from these measurements can give unique insight into fundamental chemical properties that dynamically change during non-adiabatic passages.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari,", Universita' degli Studi di Bologna I-40136 Bologna Italy
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Shaul Mukamel
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| |
Collapse
|
30
|
Hydrogen migration in inner-shell ionized halogenated cyclic hydrocarbons. Sci Rep 2023; 13:2107. [PMID: 36747068 PMCID: PMC9902455 DOI: 10.1038/s41598-023-28694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3d) and C(1s) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH3+ fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CHx+ fragments (with x = 0, …, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations.
Collapse
|
31
|
Zhang L, Shu Y, Bhaumik S, Chen X, Sun S, Huang Y, Truhlar DG. Nonadiabatic Dynamics of 1,3-Cyclohexadiene by Curvature-Driven Coherent Switching with Decay of Mixing. J Chem Theory Comput 2022; 18:7073-7081. [PMID: 36350795 DOI: 10.1021/acs.jctc.2c00801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The photoinduced ring-opening reaction of 1,3-cyclohexadiene to produce 1,3,5-hexatriene is a classic electrocyclic reaction and is also a prototype for many reactions of biological and synthetic importance. Here, we simulate the ultrafast nonadiabatic dynamics of the reaction in the manifold of the three lowest valence electronic states by using extended multistate complete-active-space second-order perturbation theory (XMS-CASPT2) combined with the curvature-driven coherent switching with decay of mixing (κCSDM) dynamical method. We obtain an excited-state lifetime of 79 fs, and a product quantum yield of 40% from the 500 trajectories initiated in the S1 excited state. The obtained lifetime and quantum yield values are very close to previously reported experimental and computed values, showing the capability of performing a reasonable nonadiabatic ring-opening dynamics with the κCSDM method that does not require nonadiabatic coupling vectors, time derivatives, or diabatization. In addition, we study the ring-opening reaction by initiating the trajectories in the dark state S2. We also optimize the S0/S1 and S1/S2 minimum-energy conical intersections (MECIs) by XMS-CASPT2; for S1/S2, we optimized both an inner and an outer local-minimum-energy conical intersections (LMECIs). We provide the potential energy profile along the ring-opening coordinate by joining selected critical points via linear synchronous transit paths. We find the inner S1/S2 LMECI to be more crucial than the outer one.
Collapse
Affiliation(s)
- Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Suman Bhaumik
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
32
|
Travnikova O, Piteša T, Ponzi A, Sapunar M, Squibb RJ, Richter R, Finetti P, Di Fraia M, De Fanis A, Mahne N, Manfredda M, Zhaunerchyk V, Marchenko T, Guillemin R, Journel L, Prince KC, Callegari C, Simon M, Feifel R, Decleva P, Došlić N, Piancastelli MN. Photochemical Ring-Opening Reaction of 1,3-Cyclohexadiene: Identifying the True Reactive State. J Am Chem Soc 2022; 144:21878-21886. [PMID: 36444673 PMCID: PMC9732879 DOI: 10.1021/jacs.2c06296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation-deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction.
Collapse
Affiliation(s)
- Oksana Travnikova
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | | | - Aurora Ponzi
- Institut
Rud̵er Bošković, ZagrebHR-10000, Croatia
| | | | | | | | | | | | | | - Nicola Mahne
- IOM-CNR, S.S. 14 km 163.5 in Area Science
Park, Trieste34149, Italy
| | | | - Vitali Zhaunerchyk
- Department
of Physics, University of Gothenburg, GothenburgSE-412 96, Sweden
| | - Tatiana Marchenko
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Renaud Guillemin
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Loic Journel
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | | | | | - Marc Simon
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France
| | - Raimund Feifel
- Department
of Physics, University of Gothenburg, GothenburgSE-412 96, Sweden
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, TriesteI-34127, Italy
| | - Nad̵a Došlić
- Institut
Rud̵er Bošković, ZagrebHR-10000, Croatia,
| | - Maria Novella Piancastelli
- Sorbonne
Université, CNRS, Laboratoire de Chimie Physique-Matière
et Rayonnement, LCPMR, ParisF-75005, France,Department
of Physics and Astronomy, Uppsala University, UppsalaSE-751 20, Sweden,
| |
Collapse
|
33
|
Gabalski I, Sere M, Acheson K, Allum F, Boutet S, Dixit G, Forbes R, Glownia JM, Goff N, Hegazy K, Howard AJ, Liang M, Minitti MP, Minns RS, Natan A, Peard N, Rasmus WO, Sension RJ, Ware MR, Weber PM, Werby N, Wolf TJA, Kirrander A, Bucksbaum PH. Transient vibration and product formation of photoexcited CS 2 measured by time-resolved x-ray scattering. J Chem Phys 2022; 157:164305. [PMID: 36319419 PMCID: PMC9625835 DOI: 10.1063/5.0113079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/14/2022] Open
Abstract
We have observed details of the internal motion and dissociation channels in photoexcited carbon disulfide (CS2) using time-resolved x-ray scattering (TRXS). Photoexcitation of gas-phase CS2 with a 200 nm laser pulse launches oscillatory bending and stretching motion, leading to dissociation of atomic sulfur in under a picosecond. During the first 300 fs following excitation, we observe significant changes in the vibrational frequency as well as some dissociation of the C-S bond, leading to atomic sulfur in the both 1D and 3P states. Beyond 1400 fs, the dissociation is consistent with primarily 3P atomic sulfur dissociation. This channel-resolved measurement of the dissociation time is based on our analysis of the time-windowed dissociation radial velocity distribution, which is measured using the temporal Fourier transform of the TRXS data aided by a Hough transform that extracts the slopes of linear features in an image. The relative strength of the two dissociation channels reflects both their branching ratio and differences in the spread of their dissociation times. Measuring the time-resolved dissociation radial velocity distribution aids the resolution of discrepancies between models for dissociation proposed by prior photoelectron spectroscopy work.
Collapse
Affiliation(s)
- Ian Gabalski
- Author to whom correspondence should be addressed:
| | | | - Kyle Acheson
- School of Chemistry, University of Edinburgh, Edinburgh EH8 9YL, United Kingdom
| | | | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - James M. Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nathan Goff
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michael P. Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Russell S. Minns
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Adi Natan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Nolan Peard
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Weronika O. Rasmus
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Roseanne J. Sension
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Matthew R. Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Peter M. Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | - Adam Kirrander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, OX1 3QX Oxford, United Kingdom
| | | |
Collapse
|
34
|
Gregory M, Neville S, Schuurman M, Makhija V. A laboratory frame density matrix for ultrafast quantum molecular dynamics. J Chem Phys 2022; 157:164301. [DOI: 10.1063/5.0109607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In most cases, the ultrafast dynamics of resonantly excited molecules are considered and almost always computed in the molecular frame, while experiments are carried out in the laboratory frame. Here, we provide a formalism in terms of a lab frame density matrix, which connects quantum dynamics in the molecular frame to those in the laboratory frame, providing a transparent link between computation and measurement. The formalism reveals that in any such experiment, the molecular frame dynamics vary for molecules in different orientations and that certain coherences, which are potentially experimentally accessible, are rejected by the orientation-averaged reduced vibronic density matrix. Instead, molecular angular distribution moments are introduced as a more accurate representation of experimentally accessible information. Furthermore, the formalism provides a clear definition of a molecular frame quantum tomography and specifies the requirements to perform such a measurement enabling the experimental imaging of molecular frame vibronic dynamics. Successful completion of such a measurement fully characterizes the molecular frame quantum dynamics for a molecule at any orientation in the laboratory frame.
Collapse
Affiliation(s)
- Margaret Gregory
- Department of Chemistry and Physics, University of Mary Washington, 1301 College Avenue, Fredericksburg, Virginia 22401, USA
| | - Simon Neville
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Michael Schuurman
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Varun Makhija
- Department of Chemistry and Physics, University of Mary Washington, 1301 College Avenue, Fredericksburg, Virginia 22401, USA
| |
Collapse
|
35
|
Yong H, Rouxel JR, Keefer D, Mukamel S. Direct Monitoring of Conical Intersection Passage via Electronic Coherences in Twisted X-Ray Diffraction. PHYSICAL REVIEW LETTERS 2022; 129:103001. [PMID: 36112435 DOI: 10.1103/physrevlett.129.103001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Quantum coherences in electronic motions play a critical role in determining the pathways and outcomes of virtually all photophysical and photochemical molecular processes. However, the direct observation of electronic coherences in the vicinity of conical intersections remains a formidable challenge. We propose a novel time-resolved twisted x-ray diffraction technique that can directly monitor the electronic coherences created as the molecule passes through a conical intersection. We show that the contribution of electronic populations to this signal is canceled out when using twisted x-ray beams that carry a light orbital angular momentum, providing a direct measurement of transient electronic coherences in gas-phase molecules.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Jérémy R Rouxel
- University Lyon, UJM-Saint-Étienne, CNRS, Graduate School Optics Institute, Laboratoire Hubert Curien UMR 5516, Saint-Étienne 42023, France
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
36
|
Razmus WO, Acheson K, Bucksbaum P, Centurion M, Champenois E, Gabalski I, Hoffman MC, Howard A, Lin MF, Liu Y, Nunes P, Saha S, Shen X, Ware M, Warne EM, Weinacht T, Wilkin K, Yang J, Wolf TJA, Kirrander A, Minns RS, Forbes R. Multichannel photodissociation dynamics in CS 2 studied by ultrafast electron diffraction. Phys Chem Chem Phys 2022; 24:15416-15427. [PMID: 35707953 DOI: 10.1039/d2cp01268e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural dynamics of photoexcited gas-phase carbon disulfide (CS2) molecules are investigated using ultrafast electron diffraction. The dynamics were triggered by excitation of the optically bright 1B2(1Σu+) state by an ultraviolet femtosecond laser pulse centred at 200 nm. In accordance with previous studies, rapid vibrational motion facilitates a combination of internal conversion and intersystem crossing to lower-lying electronic states. Photodissociation via these electronic manifolds results in the production of CS fragments in the electronic ground state and dissociated singlet and triplet sulphur atoms. The structural dynamics are extracted from the experiment using a trajectory-fitting filtering approach, revealing the main characteristics of the singlet and triplet dissociation pathways. Finally, the effect of the time-resolution on the experimental signal is considered and an outlook to future experiments provided.
Collapse
Affiliation(s)
- Weronika O Razmus
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Kyle Acheson
- EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Philip Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Elio Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ian Gabalski
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthias C Hoffman
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | - Andrew Howard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ming-Fu Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| | - Yusong Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Pedro Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Sajib Saha
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Matthew Ware
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Emily M Warne
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Kyle Wilkin
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adam Kirrander
- EaStCHEM, School of Chemistry and Centre for Science at Extreme Conditions, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Russell S Minns
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| | - Ruaridh Forbes
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
| |
Collapse
|
37
|
Freixas VM, Keefer D, Tretiak S, Fernandez-Alberti S, Mukamel S. Ultrafast coherent photoexcited dynamics in a trimeric dendrimer probed by X-ray stimulated-Raman signals. Chem Sci 2022; 13:6373-6384. [PMID: 35733898 PMCID: PMC9159119 DOI: 10.1039/d2sc00601d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals. The nitrogencentered system ensures strong interchromophore interactions and, thus, the presence of coherences. Nevertheless, the multitude of non-deterministic photoinduced pathways during the ultrafast inter-branch migration of the excitation results in random confinement on some branches and, therefore, spatial exciton scrambling and loss of phase information at long times. We show that the vibronic coherence dynamics evolving into the incoherent scrambling mechanism on ultrafast 50 fs timescale, is accurately probed by the TRUECARS X-ray stimulated Raman signal. In combination with previous results, where the technique has revealed long-lived coherences in a rigid heterodimer, the signal is most valuable for detecting ultrafast molecular coherences or their absence. We demonstrate that X-ray Raman spectroscopy is a useful tool in the chemical design of functional molecular building blocks. The photoinduced ultrafast coherent inter-chromophore energy redistribution in a triarylamine trimer is explored using nonadiabatic excited state molecular dynamics followed by simulations of X-ray Raman signals.![]()
Collapse
Affiliation(s)
- Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | | | - Shaul Mukamel
- Department of Chemistry and Physics and Astronomy, University of California Irvine California 92697-2025 USA
| |
Collapse
|
38
|
Biró L, Csehi A. Tracing the vibrational dynamics of sodium iodide via the spectrum of emitted photofragments. Phys Chem Chem Phys 2022; 24:13234-13244. [PMID: 35603791 DOI: 10.1039/d2cp00901c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We study by real-time wave packet simulations the ultrafast photodissociation dynamics of the sodium iodide molecule with the aim to trace molecular vibrational motion in a bound electronic state. Applying a few-cycle infrared pump laser pulse, a nuclear wave packet is created in the ground electronic state via the dynamic Stark shift of the potential energy curves of the molecule. To probe this coherent motion in the ground state, we propose to use a series of ultrashort laser pulses with different photon energies that resonantly promote the spread-out wave packet to the repulsive excited state. As the kinetic energy release (KER) spectrum of the dissociating photofragments is sensitive to the shape of the vibrational wave packet, in our pump-probe scheme, KER-delay spectrograms generated for different probe photon energies are used to monitor the molecular motion in the bound state. In our numerical analysis supported by a simple analytical model, we show that for sufficiently long probe pulses the proposed mapping scheme reaches its limits as nuclear wave packet interferences wash out the observed images. The appearance of these interferences is attributed to nuclear wave packet amplitudes that are generated at the first and second half of the probe pulse with the same energy but with a certain time delay. In our detailed numerical survey on the laser parameter dependence of the presented scheme, we find that resonant probe pulses with a few femtosecond duration are suitable for a qualitative mapping of the bound-state molecular motion.
Collapse
Affiliation(s)
- László Biró
- Department of Theoretical Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, H-4002 Debrecen, Hungary.
| | - András Csehi
- Department of Theoretical Physics, Faculty of Science and Technology, University of Debrecen, PO Box 400, H-4002 Debrecen, Hungary.
| |
Collapse
|
39
|
Ashfold MNR, Kim SK. Non-Born-Oppenheimer effects in molecular photochemistry: an experimental perspective. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200376. [PMID: 35341307 DOI: 10.1098/rsta.2020.0376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 06/14/2023]
Abstract
Non-adiabatic couplings between Born-Oppenheimer (BO)-derived potential energy surfaces are now recognized as pivotal in describing the non-radiative decay of electronically excited molecules following photon absorption. This opinion piece illustrates how non-BO effects provide photostability to many biomolecules when exposed to ultraviolet radiation, yet in many other cases are key to facilitating 'reactive' outcomes like isomerization and bond fission. The examples are presented in order of decreasing molecular complexity, spanning studies of organic sunscreen molecules in solution, through two families of heteroatom containing aromatic molecules and culminating with studies of isolated gas phase H2O molecules that afford some of the most detailed insights yet available into the cascade of non-adiabatic couplings that enable the evolution from photoexcited molecule to eventual products. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Abstract
SignificanceExcitation of molecules by an ultrashort laser pulse creates rotational wave packets that lead to transient alignment of the molecules along the laser polarization direction. Here, we show that a train of ultrashort laser pulses can be used to enhance the degree of alignment to a high level such that the diffraction from precisely timed ultrashort electron beams may be used to reconstruct the structure of the isolated molecules with atomic resolution through a coherent diffraction imaging technique. Our results mark a great step toward imaging noncrystallized molecules with atomic resolution and pave the way for creation of three-dimensional "molecular movies" at the femtosecond time scale and atomic spatial scale.
Collapse
|
41
|
Zhang M, Guo Z, Mi X, Li Z, Liu Y. Ultrafast Imaging of Molecular Dynamics Using Ultrafast Low-Frequency Lasers, X-ray Free Electron Lasers, and Electron Pulses. J Phys Chem Lett 2022; 13:1668-1680. [PMID: 35147438 DOI: 10.1021/acs.jpclett.1c03916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The requirement of high space-time resolution and brightness is a great challenge for imaging atomic motion and making molecular movies. Important breakthroughs in ultrabright tabletop laser, X-ray, and electron sources have enabled the direct imaging of evolving molecular structures in chemical processes, and recent experimental advances in preparing ultrafast laser and electron pulses resulted in molecular imaging with femtosecond time resolution. This Perspective presents an overview of the versatile imaging methods of molecular dynamics. High-order harmonic generation imaging and photoelectron diffraction imaging are based on laser-induced ionization and rescattering processes. Coulomb explosion imaging retrieves molecular structural information by detecting the momentum vectors of fragmented ions. Diffraction imaging encodes molecular structural and electronic information in reciprocal space. We also present various applications of these ultrafast imaging methods in resolving laser-induced nuclear and electronic dynamics.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zhengning Guo
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Xiaoyu Mi
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
42
|
Moreno Carrascosa A, Coe JP, Simmermacher M, Paterson MJ, Kirrander A. Towards high-resolution X-ray scattering as a probe of electron correlation. Phys Chem Chem Phys 2022; 24:24542-24552. [DOI: 10.1039/d2cp02933b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We demonstrate that X-ray scattering can be used as a probe of electron–electron correlation.
Collapse
Affiliation(s)
- Andrés Moreno Carrascosa
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jeremy P. Coe
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Mats Simmermacher
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Martin J. Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
43
|
Kastirke G, Ota F, Rezvan DV, Schöffler MS, Weller M, Rist J, Boll R, Anders N, Baumann TM, Eckart S, Erk B, De Fanis A, Fehre K, Gatton A, Grundmann S, Grychtol P, Hartung A, Hofmann M, Ilchen M, Janke C, Kircher M, Kunitski M, Li X, Mazza T, Melzer N, Montano J, Music V, Nalin G, Ovcharenko Y, Pier A, Rennhack N, Rivas DE, Dörner R, Rolles D, Rudenko A, Schmidt P, Siebert J, Strenger N, Trabert D, Vela-Perez I, Wagner R, Weber T, Williams JB, Ziolkowski P, Schmidt LPH, Czasch A, Tamura Y, Hara N, Yamazaki K, Hatada K, Trinter F, Meyer M, Ueda K, Demekhin PV, Jahnke T. Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses. Phys Chem Chem Phys 2022; 24:27121-27127. [DOI: 10.1039/d2cp02408j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The X-ray-induced charge-up and fragmentation process of a small molecule is examined in great detail by measuring the molecular-frame photoelectron interference pattern in conjunction with other observables in coincidence.
Collapse
Affiliation(s)
- G. Kastirke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - F. Ota
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - D. V. Rezvan
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - M. S. Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Weller
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - J. Rist
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - R. Boll
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N. Anders
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - T. M. Baumann
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - S. Eckart
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - B. Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A. De Fanis
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Fehre
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - A. Gatton
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S. Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - P. Grychtol
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A. Hartung
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Hofmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Ilchen
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - C. Janke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Kircher
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - M. Kunitski
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - X. Li
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - T. Mazza
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - N. Melzer
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - J. Montano
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - V. Music
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - G. Nalin
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Y. Ovcharenko
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - A. Pier
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N. Rennhack
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - D. E. Rivas
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - R. Dörner
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - D. Rolles
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - A. Rudenko
- J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ph. Schmidt
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - J. Siebert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - N. Strenger
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - D. Trabert
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - I. Vela-Perez
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - R. Wagner
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Th. Weber
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
| | - J. B. Williams
- Department of Physics, University of Nevada, Reno, Nevada 89557, USA
| | - P. Ziolkowski
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - L. Ph. H. Schmidt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - A. Czasch
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Y. Tamura
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - N. Hara
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - K. Yamazaki
- RIKEN Center for Advanced Photonics, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - K. Hatada
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - F. Trinter
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - M. Meyer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - K. Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Ph. V. Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - T. Jahnke
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
44
|
Du W, Gao Y, Stankus B, Xu X, Yong H, Weber PM. Ultrafast conformational dynamics of Rydberg-excited N-methyl piperidine. Phys Chem Chem Phys 2021; 23:27417-27427. [PMID: 34860225 DOI: 10.1039/d1cp04236j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have observed the ultrafast conformational dynamics of electronically excited N-methyl piperidine (NMP) using time-resolved Rydberg fingerprint spectroscopy. Optical excitation at various wavelengths ranging from 212 nm to 229 nm leads to the 3s or 3p Rydberg states and induces coherent oscillatory motions with periods of about 700 fs. These coherent motions survive the internal conversion from 3p to 3s but then dephase on a time scale of a few oscillations. Intramolecular vibrational energy redistribution on a picosecond time scale leads to an equilibrium between two conformeric structures that are separated in binding energy by 0.09 eV. Model calculations using the DFT-SIC method are in excellent agreement with the experiments and identify the conformers as the chair and twist structures of NMP. The analysis of the equilibrium parameters at long time delays as a function of excitation wavelength allows for the extraction of thermodynamic parameters for the conformeric transformation. We derive an enthalpy of the chair to twist reaction in the 3s excited state of 62 meV with an entropy of 19.70 J mol-1 K-1. An activation energy of 276 meV is also obtained with a kinetic model.
Collapse
Affiliation(s)
- Wenpeng Du
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Yan Gao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Brian Stankus
- Department of Chemistry and Biochemistry, Western Connecticut State University, Danbury, Connecticut 06810, USA
| | - Xuan Xu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Haiwang Yong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
45
|
Solling TI. Nonstatistical Photoinduced Processes in Gaseous Organic Molecules. ACS OMEGA 2021; 6:29325-29344. [PMID: 34778606 PMCID: PMC8581993 DOI: 10.1021/acsomega.1c04035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 05/26/2023]
Abstract
Processes that proceed in femtoseconds are usually referred to as being ultrafast, and they are investigated in experiments that involve laser pulses with femtosecond duration in so-called pump probe schemes, where a light pulse triggers a molecular process and a second light pulse interrogates the temporal evolution of the molecular population. The focus of this review is on the reactivity patterns that arise when energy is not equally distributed on all the available degrees of freedom as a consequence of the very short time scale in play and on how the localization of internal energy in a specific mode can be thought of as directing a process toward (or away from) a certain outcome. The nonstatistical aspects are illustrated with examples from photophysics and photochemistry for a range of organic molecules. The processes are initiated by a variety of nuclear motions that are all governed by the energy gradients in the Franck-Condon region. Essentially, the molecules will start to adapt to the new electronic environment on the excited state to eventually reach the equilibrium structure. It is this structural change that is enabling an ultrafast electronic transition in cases where the nuclear motion leads to a transition point with significant coupling between to electronic states and to ultrafast reaction if there is a coupling to a reactive mode at the transition point between the involved states. With the knowledge of the relation between electronic excitation and equilibrium structure, it is possible to predict how the nuclei move after excitation and often whether an ultrafast (and inherently nonstatistical) electronic transition or even a bond breakage will take place. In addition to the understanding of how nonstatistical photoinduced processes proceed from a given excited state, it has been found that randomization of the energy does not even always take place when the molecule takes part in processes that are normally considered statistical, such as for example nonradiative transitions between excited states. This means that energy can be localized in a specific degree of freedom on a state other than the one that is initially prepared. This is a finding that could kickoff the ultimate dream in applied photochemistry; namely light excitation that leads to the rupture of a specific bond.
Collapse
Affiliation(s)
- Theis I. Solling
- Center for Integrative Petroleum
Research, King Fahd University of Petroleum
& Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
46
|
Liu X, Amini K, Sanchez A, Belsa B, Steinle T, Biegert J. Machine learning for laser-induced electron diffraction imaging of molecular structures. Commun Chem 2021; 4:154. [PMID: 36697668 PMCID: PMC9814146 DOI: 10.1038/s42004-021-00594-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023] Open
Abstract
Ultrafast diffraction imaging is a powerful tool to retrieve the geometric structure of gas-phase molecules with combined picometre spatial and attosecond temporal resolution. However, structural retrieval becomes progressively difficult with increasing structural complexity, given that a global extremum must be found in a multi-dimensional solution space. Worse, pre-calculating many thousands of molecular configurations for all orientations becomes simply intractable. As a remedy, here, we propose a machine learning algorithm with a convolutional neural network which can be trained with a limited set of molecular configurations. We demonstrate structural retrieval of a complex and large molecule, Fenchone (C10H16O), from laser-induced electron diffraction (LIED) data without fitting algorithms or ab initio calculations. Retrieval of such a large molecular structure is not possible with other variants of LIED or ultrafast electron diffraction. Combining electron diffraction with machine learning presents new opportunities to image complex and larger molecules in static and time-resolved studies.
Collapse
Affiliation(s)
- Xinyao Liu
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Kasra Amini
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Aurelien Sanchez
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Blanca Belsa
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Tobias Steinle
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jens Biegert
- grid.473715.30000 0004 6475 7299ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain ,grid.425902.80000 0000 9601 989XICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
47
|
Abstract
Photoexcited molecules convert light into chemical and mechanical energy through changes in electronic and nuclear structure that take place on femtosecond timescales. Gas phase ultrafast electron diffraction (GUED) is an ideal tool to probe the nuclear geometry evolution of the molecules and complements spectroscopic methods that are mostly sensitive to the electronic state. GUED is a passive probing tool that does not alter the molecular properties during the probing process and is sensitive to the spatial distribution of charge in the molecule, including both electrons and nuclei. Improvements in temporal resolution have enabled GUED to capture coherent nuclear motions in molecules in the excited and ground electronic states with femtosecond and subangstrom resolution. Here we present the basic theory of GUED and explain what information is encoded in the diffraction signal, review how GUED has been used to observe coherent structural dynamics in recent experiments, and discuss the advantages and limitations of the method. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Martin Centurion
- Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska, USA;
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California, USA;
| | - Jie Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, China;
| |
Collapse
|
48
|
Yong H, Cavaletto SM, Mukamel S. Ultrafast Valence-Electron Dynamics in Oxazole Monitored by X-ray Diffraction Following a Stimulated X-ray Raman Excitation. J Phys Chem Lett 2021; 12:9800-9806. [PMID: 34606289 DOI: 10.1021/acs.jpclett.1c02740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct imaging of the ultrafast quantum motion of valence electrons in molecules is essential for understanding many elementary chemical and physical processes. We present a simulation study of valence-electron dynamics of oxazole. A valence-state electronic wavepacket is prepared with an attosecond soft X-ray pulse through a stimulated resonant X-ray Raman process and then probed with time-resolved off-resonant single-molecule X-ray diffraction. We find that the time dependent diffraction signal originates solely from the electronic coherences and can be detected by existing experimental techniques. We thus provide a feasible way of imaging electron dynamics in molecules. Moreover, the created electronic coherences and subsequent electron dynamics can be manipulated by the resonant X-ray Raman excitation tuned to different core-excited states.
Collapse
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Stefano M Cavaletto
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
| |
Collapse
|
49
|
Ota F, Abe S, Hatada K, Ueda K, Díaz-Tendero S, Martín F. Imaging intramolecular hydrogen migration with time- and momentum-resolved photoelectron diffraction. Phys Chem Chem Phys 2021; 23:20174-20182. [PMID: 34473148 DOI: 10.1039/d1cp02055b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging ultrafast hydrogen migration with few- or sub-femtosecond time resolution is a challenge for ultrafast spectroscopy due to the lightness and small scattering cross-section of the moving hydrogen atom. Here we propose time- and momentum-resolved photoelectron diffraction (TMR-PED) as a way to overcome limitations of existing methodologies and illustrate its performance in the ethanol molecule. By combining different theoretical methods, namely molecular dynamics and electron scattering methods, we show that TMR-PED, along with a judicious choice of the reference frame for multi-coincidence detection, allows for direct imaging of single and double hydrogen migration in doubly-charged ethanol with both few-fs and Å resolutions, all the way from its birth to the very end. It also provides hints of proton extraction following H2 roaming. The signature of hydrogen dynamics shows up in polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) as moving features that allow for a straightforward visualization in space.
Collapse
Affiliation(s)
- Fukiko Ota
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Shigeru Abe
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Keisuke Hatada
- Department of Physics, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| | - Kiyoshi Ueda
- Department of Chemistry, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain. .,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, EU, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049 Madrid, EU, Spain
| |
Collapse
|
50
|
Sofferman DL, Konar A, Mastron JN, Spears KG, Cisneros C, Smith AC, Tapavicza E, Sension RJ. Probing the Formation and Conformational Relaxation of Previtamin D 3 and Analogues in Solution and in Lipid Bilayers. J Phys Chem B 2021; 125:10085-10096. [PMID: 34473504 DOI: 10.1021/acs.jpcb.1c04376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photosynthesis of vitamin D3 in mammalian skin results from UV-B irradiation of provitamin D3 (7-dehydrocholesterol, DHC) at ca. 290 nm. Upon return to the ground state, the hexatriene product, previtamin D3, undergoes a conformational equilibration between helical gZg and more planar tZg and tZt forms. The helical gZg forms provide a pathway for the formation of vitamin D3 via a [1,7]-sigmatropic hydrogen shift. Steady state photolysis and UV transient absorption spectroscopy are combined to explore the conformational relaxation of previtamin D3 formed from DHC in isotropic solution and confined to lipid bilayers chosen to model the biological cell membrane. The results are compared with measurements for two analogues: previtamin D2 formed from ergosterol (provitamin D2) and previtamin D3 acetate formed from DHC acetate. The resulting spectral dynamics are interpreted in the context of simulations of optical excitation energy and oscillator strength as a function of conformation. In solution, the relaxation dynamics and steady state product distributions of the three compounds are nearly identical, favoring tZg forms. When confined to lipid bilayers, the heterogeneity and packing forces alter the conformational distributions and enhance the population of a gZg conformer capable of vitamin D formation.
Collapse
Affiliation(s)
- Danielle L Sofferman
- Program in Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Joseph N Mastron
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Cecilia Cisneros
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Adam C Smith
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840-9507, United States
| | - Roseanne J Sension
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|