1
|
Xu M, Jiang M, Wang Y, Su H, Huang Y, Peng X. Cooperative Spin Amplifier for Enhanced Quantum Sensing. PHYSICAL REVIEW LETTERS 2024; 133:133202. [PMID: 39392977 DOI: 10.1103/physrevlett.133.133202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/12/2024] [Indexed: 10/13/2024]
Abstract
Quantum sensing is crucial for precision measurements, yet quantum sensor sensitivity is often limited by the coherence time of the quantum system. Here, we demonstrate a method to enhance coherence time through cooperative spins. Using a tunable feedback circuit, we induce cooperation among noble-gas ^{129}Xe spins, resulting in an impressive 18-fold coherence enhancement. Moreover, we show that the cooperative ^{129}Xe spins can significantly amplify magnetic signals by at least 3 orders of magnitude. Magnetic field sensing assisted with such a cooperative spin amplifier realizes the sensitivity of 4 fT/Hz^{1/2} and surpasses the spin-projection noise of the embedded ^{87}Rb spin gas magnetometer. These results pave the way for a new class of "cooperative quantum sensors," and open up exciting prospects in fundamental physics.
Collapse
Affiliation(s)
- Minxiang Xu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Min Jiang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yuanhong Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Haowen Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Ying Huang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xinhua Peng
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Scientific Instrument Development and Application, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; and Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
2
|
Huang TS, Lunts P, Hafezi M. Nonbosonic Moiré Excitons. PHYSICAL REVIEW LETTERS 2024; 132:186202. [PMID: 38759194 DOI: 10.1103/physrevlett.132.186202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/09/2024] [Indexed: 05/19/2024]
Abstract
Optical excitations in moiré transition metal dichalcogenide bilayers lead to the creation of excitons, as electron-hole bound states, that are generically considered within a Bose-Hubbard framework. Here, we demonstrate that these composite particles obey an angular momentum commutation relation that is generally nonbosonic. This emergent spin description of excitons indicates a limitation to their occupancy on each site, which is substantial in the weak electron-hole binding regime. The effective exciton theory is accordingly a spin Hamiltonian, which further becomes a Hubbard model of emergent bosons subject to an occupancy constraint after a Holstein-Primakoff transformation. We apply our theory to three commonly studied bilayers (MoSe_{2}/WSe_{2}, WSe_{2}/WS_{2}, and WSe_{2}/MoS_{2}) and show that in the relevant parameter regimes their allowed occupancies never exceed three excitons. Our systematic theory provides guidelines for future research on the many-body physics of moiré excitons.
Collapse
Affiliation(s)
- Tsung-Sheng Huang
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Peter Lunts
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mohammad Hafezi
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
3
|
Tečer M, Di Liberto M, Silvi P, Montangero S, Romanato F, Calajó G. Strongly Interacting Photons in 2D Waveguide QED. PHYSICAL REVIEW LETTERS 2024; 132:163602. [PMID: 38701484 DOI: 10.1103/physrevlett.132.163602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 05/05/2024]
Abstract
One-dimensional confinement in waveguide quantum electrodynamics (QED) plays a crucial role to enhance light-matter interactions and to induce a strong quantum nonlinear optical response. In two or higher-dimensional settings, this response is reduced since photons can be emitted within a larger phase space, opening the question whether strong photon-photon interaction can be still achieved. In this study, we positively answer this question for the case of a 2D square array of atoms coupled to the light confined into a two-dimensional waveguide. More specifically, we demonstrate the occurrence of long-lived two-photon repulsive and bound states with genuine 2D features. Furthermore, we observe signatures of these effects also in free-space atomic arrays in the form of weakly subradiant in-band scattering resonances. Our findings provide a paradigmatic signature of the presence of strong photon-photon interactions in 2D waveguide QED.
Collapse
Affiliation(s)
- Matija Tečer
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
| | - Marco Di Liberto
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Pietro Silvi
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Simone Montangero
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| | - Filippo Romanato
- Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131 Padova, Italy
- Padua Quantum Technologies Research Center, Universitá degli Studi di Padova
- CNR-IOM Istituto Officina dei Materiali, Trieste, Italy
| | - Giuseppe Calajó
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, I-35131 Padova, Italy
| |
Collapse
|
4
|
Kim RM, Han JH, Lee SM, Kim H, Lim YC, Lee HE, Ahn HY, Lee YH, Ha IH, Nam KT. Chiral plasmonic sensing: From the perspective of light-matter interaction. J Chem Phys 2024; 160:061001. [PMID: 38341778 DOI: 10.1063/5.0178485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024] Open
Abstract
Molecular chirality is represented as broken mirror symmetry in the structural orientation of constituent atoms and plays a pivotal role at every scale of nature. Since the discovery of the chiroptic property of chiral molecules, the characterization of molecular chirality is important in the fields of biology, physics, and chemistry. Over the centuries, the field of optical chiral sensing was based on chiral light-matter interactions between chiral molecules and polarized light. Starting from simple optics-based sensing, the utilization of plasmonic materials that could control local chiral light-matter interactions by squeezing light into molecules successfully facilitated chiral sensing into noninvasive, ultrasensitive, and accurate detection. In this Review, the importance of plasmonic materials and their engineering in chiral sensing are discussed based on the principle of chiral light-matter interactions and the theory of optical chirality and chiral perturbation; thus, this Review can serve as a milestone for the proper design and utilization of plasmonic nanostructures for improved chiral sensing.
Collapse
Affiliation(s)
- Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Min Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Eun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Yong Ahn
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ho Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - In Han Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Uto T, Evrard B, Watanabe K, Taniguchi T, Kroner M, İmamoğlu A. Interaction-Induced ac Stark Shift of Exciton-Polaron Resonances. PHYSICAL REVIEW LETTERS 2024; 132:056901. [PMID: 38364159 DOI: 10.1103/physrevlett.132.056901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 02/18/2024]
Abstract
Laser-induced shift of atomic states due to the ac Stark effect has played a central role in cold-atom physics and facilitated their emergence as analog quantum simulators. Here, we explore this phenomenon in an atomically thin layer of semiconductor MoSe_{2}, which we embedded in a heterostructure enabling charge tunability. Shining an intense pump laser with a small detuning from the material resonances, we generate a large population of virtual collective excitations and achieve a regime where interactions with this background population are the leading contribution to the ac Stark shift. Using this technique we study how itinerant charges modify-and dramatically enhance-the interactions between optical excitations. In particular, our experiments show that the interaction between attractive polarons could be more than an order of magnitude stronger than those between bare excitons.
Collapse
Affiliation(s)
- T Uto
- Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - B Evrard
- Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - K Watanabe
- Research Center for Electronic and Optical Materials, NIMS, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- Research Center for Electronic and Optical Materials, NIMS, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - M Kroner
- Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - A İmamoğlu
- Institute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
6
|
Baßler NS, Aiello A, Schmidt KP, Genes C, Reitz M. Metasurface-Based Hybrid Optical Cavities for Chiral Sensing. PHYSICAL REVIEW LETTERS 2024; 132:043602. [PMID: 38335329 DOI: 10.1103/physrevlett.132.043602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
Quantum metasurfaces, i.e., two-dimensional subwavelength arrays of quantum emitters, can be employed as mirrors towards the design of hybrid cavities, where the optical response is given by the interplay of a cavity-confined field and the surface modes supported by the arrays. We show that stacked layers of quantum metasurfaces with orthogonal dipole orientation can serve as helicity-preserving cavities. These structures exhibit ultranarrow resonances and can enhance the intensity of the incoming field by orders of magnitude, while simultaneously preserving the handedness of the field circulating inside the resonator, as opposed to conventional cavities. The rapid phase shift in the cavity transmission around the resonance can be exploited for the sensitive detection of chiral scatterers passing through the cavity. We discuss possible applications of these resonators as sensors for the discrimination of chiral molecules. Our approach describes a new way of chiral sensing via the measurement of particle-induced phase shifts.
Collapse
Affiliation(s)
- Nico S Baßler
- Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91058 Erlangen, Germany
| | - Andrea Aiello
- Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany
| | - Kai P Schmidt
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91058 Erlangen, Germany
| | - Claudiu Genes
- Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91058 Erlangen, Germany
| | - Michael Reitz
- Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
7
|
Sundar B, Barberena D, Rey AM, Orioli AP. Squeezing Multilevel Atoms in Dark States via Cavity Superradiance. PHYSICAL REVIEW LETTERS 2024; 132:033601. [PMID: 38307070 DOI: 10.1103/physrevlett.132.033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/13/2023] [Accepted: 09/19/2023] [Indexed: 02/04/2024]
Abstract
We describe a method to create and store scalable and long-lived entangled spin-squeezed states within a manifold of many-body cavity dark states using collective emission of light from multilevel atoms inside an optical cavity. We show that the system can be tuned to generate squeezing in a dark state where it will be immune to superradiance. We also show more generically that squeezing can be generated using a combination of superradiance and coherent driving in a bright state, and subsequently be transferred via single-particle rotations to a dark state where squeezing can be stored. Our findings, readily testable in current optical cavity experiments with alkaline-earth-like atoms, can open a path for dissipative generation and storage of metrologically useful states in optical transitions.
Collapse
Affiliation(s)
- Bhuvanesh Sundar
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Asier Piñeiro Orioli
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
8
|
Bloch D, Hofer B, Cohen SR, Browaeys A, Ferrier-Barbut I. Trapping and Imaging Single Dysprosium Atoms in Optical Tweezer Arrays. PHYSICAL REVIEW LETTERS 2023; 131:203401. [PMID: 38039457 DOI: 10.1103/physrevlett.131.203401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 12/03/2023]
Abstract
We report the preparation and observation of single atoms of dysprosium in arrays of optical tweezers with a wavelength of 532 nm, imaged on the intercombination line at 626 nm. We use the anisotropic light shift specific to lanthanides and in particular a large difference in tensor and vector polarizabilities between the ground and excited states to tune the differential light shift and produce tweezers in near-magic or magic polarization. This allows us to find a regime where single atoms can be trapped and imaged. Using the tweezer array toolbox to manipulate lanthanides will open new research directions for quantum physics studies by taking advantage of their rich spectrum, large spin, and magnetic dipole moment.
Collapse
Affiliation(s)
- Damien Bloch
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
| | - Britton Hofer
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
| | - Sam R Cohen
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
| | - Antoine Browaeys
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
| | - Igor Ferrier-Barbut
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
| |
Collapse
|
9
|
Shi X, Kurman Y, Shentcis M, Wong LJ, García de Abajo FJ, Kaminer I. Free-electron interactions with van der Waals heterostructures: a source of focused X-ray radiation. LIGHT, SCIENCE & APPLICATIONS 2023; 12:148. [PMID: 37321995 DOI: 10.1038/s41377-023-01141-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 06/17/2023]
Abstract
The science and technology of X-ray optics have come far, enabling the focusing of X-rays for applications in high-resolution X-ray spectroscopy, imaging, and irradiation. In spite of this, many forms of tailoring waves that had substantial impact on applications in the optical regime have remained out of reach in the X-ray regime. This disparity fundamentally arises from the tendency of refractive indices of all materials to approach unity at high frequencies, making X-ray-optical components such as lenses and mirrors much harder to create and often less efficient. Here, we propose a new concept for X-ray focusing based on inducing a curved wavefront into the X-ray generation process, resulting in the intrinsic focusing of X-ray waves. This concept can be seen as effectively integrating the optics to be part of the emission mechanism, thus bypassing the efficiency limits imposed by X-ray optical components, enabling the creation of nanobeams with nanoscale focal spot sizes and micrometer-scale focal lengths. Specifically, we implement this concept by designing aperiodic vdW heterostructures that shape X-rays when driven by free electrons. The parameters of the focused hotspot, such as lateral size and focal depth, are tunable as a function of an interlayer spacing chirp and electron energy. Looking forward, ongoing advances in the creation of many-layer vdW heterostructures open unprecedented horizons of focusing and arbitrary shaping of X-ray nanobeams.
Collapse
Affiliation(s)
- Xihang Shi
- Solid State Institute and Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Yaniv Kurman
- Solid State Institute and Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Michael Shentcis
- Solid State Institute and Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Liang Jie Wong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Ido Kaminer
- Solid State Institute and Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
10
|
Scheil V, Holzinger R, Moreno-Cardoner M, Ritsch H. Optical Properties of Concentric Nanorings of Quantum Emitters. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050851. [PMID: 36903728 PMCID: PMC10005549 DOI: 10.3390/nano13050851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/04/2023]
Abstract
A ring of sub-wavelength spaced dipole-coupled quantum emitters features extraordinary optical properties when compared to a one-dimensional chain or a random collection of emitters. One finds the emergence of extremely subradiant collective eigenmodes similar to an optical resonator, which features strong 3D sub-wavelength field confinement near the ring. Motivated by structures commonly appearing in natural light-harvesting complexes (LHCs), we extend these studies to stacked multi-ring geometries. We predict that using double rings allows us to engineer significantly darker and better confined collective excitations over a broader energy band compared to the single-ring case. These enhance weak field absorption and low-loss excitation energy transport. For the specific geometry of the three rings appearing in the natural LH2 light-harvesting antenna, we show that the coupling between the lower double-ring structure and the higher energy blue-shifted single ring is very close to a critical value for the actual size of the molecule. This creates collective excitations with contributions from all three rings, which is a vital ingredient for efficient and fast coherent inter-ring transport. This geometry thus should also prove useful for the design of sub-wavelength weak field antennae.
Collapse
Affiliation(s)
- Verena Scheil
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
| | - Raphael Holzinger
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
| | - Maria Moreno-Cardoner
- Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstr. 21a, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
11
|
Baßler NS, Reitz M, Schmidt KP, Genes C. Linear optical elements based on cooperative subwavelength emitter arrays. OPTICS EXPRESS 2023; 31:6003-6026. [PMID: 36823868 DOI: 10.1364/oe.476830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 06/18/2023]
Abstract
We describe applications of two-dimensional subwavelength quantum emitter arrays as efficient optical elements in the linear regime. For normally incident light, the cooperative optical response, stemming from emitter-emitter dipole exchanges, allows the control of the array's transmission, its resonance frequency, and bandwidth. Operations on fully polarized incident light, such as generic linear and circular polarizers as well as phase retarders can be engineered and described in terms of Jones matrices. Our analytical approach and accompanying numerical simulations identify optimal regimes for such operations and reveal the importance of adjusting the array geometry and of the careful tuning of the external magnetic fields amplitude and direction.
Collapse
|
12
|
Vadia S, Scherzer J, Watanabe K, Taniguchi T, Högele A. Magneto-Optical Chirality in a Coherently Coupled Exciton-Plasmon System. NANO LETTERS 2023; 23:614-618. [PMID: 36617344 PMCID: PMC9881169 DOI: 10.1021/acs.nanolett.2c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Chirality is a fundamental asymmetry phenomenon, with chiral optical elements exhibiting asymmetric response in reflection or absorption of circularly polarized light. Recent realizations of such elements include nanoplasmonic systems with broken-mirror symmetry and polarization-contrasting optical absorption known as circular dichroism. An alternative route to circular dichroism is provided by spin-valley polarized excitons in atomically thin semiconductors. In the presence of magnetic fields, they exhibit an imbalanced coupling to circularly polarized photons and thus circular dichroism. Here, we demonstrate that polarization-contrasting optical transitions associated with excitons in monolayer WSe2 can be transferred to proximal plasmonic nanodisks by coherent coupling. The coupled exciton-plasmon system exhibits magneto-induced circular dichroism in a spectrally narrow window of Fano interference, which we model in a master equation framework. Our work motivates the use of exciton-plasmon interfaces as building blocks of chiral metasurfaces for applications in information processing, nonlinear optics, and sensing.
Collapse
Affiliation(s)
- Samarth Vadia
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz
1, 80539 München, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingtr. 4, 80799 München, Germany
- attocube
systems AG, Eglfinger
Weg 2, 85540 Haar, Germany
| | - Johannes Scherzer
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz
1, 80539 München, Germany
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander Högele
- Fakultät
für Physik, Munich Quantum Center, and Center for NanoScience
(CeNS), Ludwig-Maximilians-Universität
München, Geschwister-Scholl-Platz
1, 80539 München, Germany
- Munich
Center for Quantum Science and Technology (MCQST), Schellingtr. 4, 80799 München, Germany
| |
Collapse
|
13
|
Kim RM, Huh JH, Yoo S, Kim TG, Kim C, Kim H, Han JH, Cho NH, Lim YC, Im SW, Im E, Jeong JR, Lee MH, Yoon TY, Lee HY, Park QH, Lee S, Nam KT. Enantioselective sensing by collective circular dichroism. Nature 2022; 612:470-476. [PMID: 36517715 DOI: 10.1038/s41586-022-05353-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/15/2022] [Indexed: 12/23/2022]
Abstract
Quantitative determination and in situ monitoring of molecular chirality at extremely low concentrations is still challenging with simple optics because of the molecular-scale mismatch with the incident light wavelength. Advances in spectroscopy1-4 and nanophotonics have successfully lowered the detection limit in enantioselective sensing, as it can bring the microscopic chiral characteristics of molecules into the macroscopic scale5-7 or squeeze the chiral light into the subwavelength scale8-17. Conventional nanophotonic approaches depend mainly on the optical helicity density8,9 by localized resonances within an individual structure, such as localized surface plasmon resonances (LSPRs)10-16 or dielectric Mie resonances17. These approaches use the local chiral hotspots in the immediate vicinity of the structure, whereas the handedness of these hotspots varies spatially. As such, these localized resonance modes tend to be error-prone to the stochasticity of the target molecular orientations, vibrations and local concentrations18,19. Here we identified enantioselective characteristics of collective resonances (CRs)20 arising from assembled 2D crystals of isotropic, 432-symmetric chiral gold nanoparticles (helicoids)21,22. The CRs exhibit a strong and uniform chiral near field over a large volume above the 2D crystal plane, resulting from the collectively spinning, optically induced dipoles at each helicoid. Thus, energy redistribution by molecular back action on the chiral near field shifts the CRs in opposite directions, depending on the handedness of the analyte, maximizing the modulation of the collective circular dichroism (CD).
Collapse
Affiliation(s)
- Ryeong Myeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - SeokJae Yoo
- Department of Physics, Inha University, Incheon, Republic of Korea
| | - Tae Gyun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Changwon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyeohn Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jeong Hyun Han
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Nam Heon Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Yae-Chan Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - EunJi Im
- Department of Biomicrosystem Technology, Korea University, Seoul, Republic of Korea
| | - Jae Ryeol Jeong
- Department of Applied Chemistry, Kyung Hee University, Seoul, Republic of Korea
| | - Min Hyung Lee
- Department of Applied Chemistry, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Young Yoon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Q-Han Park
- Department of Physics, Korea University, Seoul, Republic of Korea.
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea. .,Department of Biomicrosystem Technology, Korea University, Seoul, Republic of Korea. .,Department of Integrative Energy Engineering, Korea University, Seoul, Republic of Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Zundel L, Deop-Ruano JR, Martinez-Herrero R, Manjavacas A. Lattice Resonances Excited by Finite-Width Light Beams. ACS OMEGA 2022; 7:31431-31441. [PMID: 36092601 PMCID: PMC9453969 DOI: 10.1021/acsomega.2c03847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 05/25/2023]
Abstract
Periodic arrays of metallic nanostructures support collective lattice resonances, which give rise to optical responses that are, at the same time, stronger and more spectrally narrow than those of the localized plasmons of the individual nanostructures. Despite the extensive research effort devoted to investigating the optical properties of lattice resonances, the majority of theoretical studies have analyzed them under plane-wave excitation conditions. Such analysis not only constitutes an approximation to realistic experimental conditions, which require the use of finite-width light beams, but also misses a rich variety of interesting behaviors. Here, we provide a comprehensive study of the response of periodic arrays of metallic nanostructures when excited by finite-width light beams under both paraxial and nonparaxial conditions. We show how as the width of the light beam increases, the response of the array becomes more collective and converges to the plane-wave limit. Furthermore, we analyze the spatial extent of the lattice resonance and identify the optimum values of the light beam width to achieve the strongest optical responses. We also investigate the impact that the combination of finite-size effects in the array and the finite width of the light beam has on the response of the system. Our results provide a solid theoretical framework to understand the excitation of lattice resonances by finite-width light beams and uncover a set of behaviors that do not take place under plane-wave excitation.
Collapse
Affiliation(s)
- Lauren Zundel
- Department
of Physics and Astronomy, University of
New Mexico, Albuquerque, New Mexico 87106, United States
| | - Juan R. Deop-Ruano
- Instituto
de Óptica (IO-CSIC), Consejo Superior de Investigaciones
Científicas, 28006 Madrid, Spain
| | | | - Alejandro Manjavacas
- Department
of Physics and Astronomy, University of
New Mexico, Albuquerque, New Mexico 87106, United States
- Instituto
de Óptica (IO-CSIC), Consejo Superior de Investigaciones
Científicas, 28006 Madrid, Spain
| |
Collapse
|
15
|
Wang YC, You JS, Jen HH. A non-Hermitian optical atomic mirror. Nat Commun 2022; 13:4598. [PMID: 35933514 PMCID: PMC9357005 DOI: 10.1038/s41467-022-32372-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Explorations of symmetry and topology have led to important breakthroughs in quantum optics, but much richer behaviors arise from the non-Hermitian nature of light-matter interactions. A high-reflectivity, non-Hermitian optical mirror can be realized by a two-dimensional subwavelength array of neutral atoms near the cooperative resonance associated with the collective dipole modes. Here we show that exceptional points develop from a nondefective degeneracy by lowering the crystal symmetry of a square atomic lattice, and dispersive bulk Fermi arcs that originate from exceptional points are truncated by the light cone. From its nontrivial energy spectra topology, we demonstrate that the geometry-dependent non-Hermitian skin effect emerges in a ribbon geometry. Furthermore, skin modes localized at a boundary show a scale-free behavior that stems from the long-range interaction and whose mechanism goes beyond the framework of non-Bloch band theory. Our work opens the door to the study of the interplay among non-Hermiticity, topology, and long-range interaction.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan. .,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
| | - Jhih-Shih You
- Department of Physics, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - H H Jen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
| |
Collapse
|
16
|
Beam steering at the nanosecond time scale with an atomically thin reflector. Nat Commun 2022; 13:3431. [PMID: 35701395 PMCID: PMC9198240 DOI: 10.1038/s41467-022-29976-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/11/2022] [Indexed: 01/22/2023] Open
Abstract
Techniques to mold the flow of light on subwavelength scales enable fundamentally new optical systems and device applications. The realization of programmable, active optical systems with fast, tunable components is among the outstanding challenges in the field. Here, we experimentally demonstrate a few-pixel beam steering device based on electrostatic gate control of excitons in an atomically thin semiconductor with strong light-matter interactions. By combining the high reflectivity of a MoSe2 monolayer with a graphene split-gate geometry, we shape the wavefront phase profile to achieve continuously tunable beam deflection with a range of 10°, two-dimensional beam steering, and switching times down to 1.6 nanoseconds. Our approach opens the door for a new class of atomically thin optical systems, such as rapidly switchable beam arrays and quantum metasurfaces operating at their fundamental thickness limit. Andersen et al. have demonstrated a new type of beam steering device based on the excitonic response of an atomically thin semiconductor. Using electrostatic gates, the authors achieved tunable steering with switching times on the nanosecond scale.
Collapse
|
17
|
Moreno-Cardoner M, Holzinger R, Ritsch H. Efficient nano-photonic antennas based on dark states in quantum emitter rings. OPTICS EXPRESS 2022; 30:10779-10791. [PMID: 35473037 DOI: 10.1364/oe.437396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Nanoscopic arrays of quantum emitters can feature highly sub-radiant collective excitations with a lifetime exponentially growing with emitter number. Adding an absorptive impurity as an energy dump in the center of a ring shaped polygon allows to exploit this feature to create highly efficient single photon antennas. Here among regular polygons with an identical center absorbing emitter, a nonagon exhibits a distinct optimum of the absorption efficiency. This special enhancement originates from the unique emergence of a subradiant eigenstate with dominant center occupation. Only for nine emitters the sum of coupling strengths of each emitter to all others matches the center to the ring coupling. Analogous to a parabolic mirror the antenna ring then concentrates incoming radiation at its center without being significantly excited itself. Similar large efficiency enhancements, which even prevail for broadband excitation, can also be engineered for other antenna sizes by tailoring the frequency and magnitude of the central absorber. Interestingly, for very small structures a quantum treatment predicts an even stronger enhancement for the single photon absorption enhancement than a classical dipole model. As natural light harvesting structures are often based on ring shaped structures, the underlying principle might be exploited there as well.
Collapse
|
18
|
Fernández-Fernández D, González-Tudela A. Tunable Directional Emission and Collective Dissipation with Quantum Metasurfaces. PHYSICAL REVIEW LETTERS 2022; 128:113601. [PMID: 35363033 DOI: 10.1103/physrevlett.128.113601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Subwavelength atomic arrays, recently labeled as quantum metamaterials, have emerged as an exciting platform for obtaining novel quantum optical phenomena. The strong interference effects in these systems generate subradiant excitations that propagate through the atomic array with very long lifetimes. Here, we demonstrate that one can harness these excitations to obtain tunable directional emission patterns and collective dissipative couplings when placing judiciously additional atoms nearby the atomic array. For doing that, we first characterize the optimal square array geometry to obtain directional emission patterns. Then, we characterize the best atomic positions to couple efficiently to the subradiant metasurface excitations and provide several improvement strategies based on entangled atomic clusters or bilayers. Afterward, we also show how the directionality of the emission pattern can be controlled through the relative dipole orientation between the auxiliary atoms and the one of the array. Finally, we benchmark how these directional emission patterns translate into to collective, anisotropic dissipative couplings between the auxiliary atoms by studying the lifetime modification of atomic entangled states.
Collapse
Affiliation(s)
- D Fernández-Fernández
- Institute of Fundamental Physics IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, 28049 Madrid, Spain
| | - A González-Tudela
- Institute of Fundamental Physics IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain
| |
Collapse
|
19
|
Moreno-Cardoner M, Goncalves D, Chang DE. Quantum Nonlinear Optics Based on Two-Dimensional Rydberg Atom Arrays. PHYSICAL REVIEW LETTERS 2021; 127:263602. [PMID: 35029476 DOI: 10.1103/physrevlett.127.263602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
We propose the combination of subwavelength, two-dimensional atomic arrays and Rydberg interactions as a powerful platform to realize strong, coherent interactions between individual photons with high fidelity. The atomic spatial ordering guarantees efficient atom-light interactions without the possibility of scattering light into unwanted directions, allowing the array to act as a perfect mirror for individual photons. In turn, Rydberg interactions enable single photons to alter the optical response of the array within a potentially large blockade radius R_{b}, which can effectively punch a large "hole" for subsequent photons. We show that such a system enables a coherent photon-photon gate or switch, with a significantly better error scaling (∼R_{b}^{-4}) than in a disordered ensemble. We also investigate the optical properties of the system in the limit of strong input intensities and show that this many-body quantum driven dissipative system can be modeled well by a semiclassical model based on holes punched in a classical mirror.
Collapse
Affiliation(s)
- M Moreno-Cardoner
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 21a, A-6020 Innsbruck, Austria
- Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain
| | - D Goncalves
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - D E Chang
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| |
Collapse
|
20
|
Xu X, Martin ZO, Sychev D, Lagutchev AS, Chen YP, Taniguchi T, Watanabe K, Shalaev VM, Boltasseva A. Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates. NANO LETTERS 2021; 21:8182-8189. [PMID: 34606291 DOI: 10.1021/acs.nanolett.1c02640] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional hexagonal boron nitride (hBN) that hosts room-temperature single-photon emitters (SPEs) is promising for quantum information applications. An important step toward the practical application of hBN is the on-demand, position-controlled generation of SPEs. Strategies reported for deterministic creation of hBN SPEs either rely on substrate nanopatterning that is not compatible with integrated photonics or utilize radiation sources that might introduce unpredictable damage or contamination to hBN. Here, we report a radiation- and lithography-free route to deterministically activate hBN SPEs by nanoindentation with atomic force microscopy (AFM). The method applies to hBN flakes on flat silicon dioxide-silicon substrates that can be readily integrated into on-chip photonic devices. The achieved SPE yields are above 30% for multiple indent sizes, and a maximum yield of 36% is demonstrated for indents around 400 nm. Our results mark an important step toward the deterministic creation and integration of hBN SPEs with photonic and plasmonic devices.
Collapse
Affiliation(s)
- Xiaohui Xu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zachariah O Martin
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Demid Sychev
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Alexei S Lagutchev
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Yong P Chen
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Physics and Astronomy, Aarhus University, Aarhus 8000, Denmark
| | - Takashi Taniguchi
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Vladimir M Shalaev
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Alexandra Boltasseva
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
21
|
Patti TL, Wild DS, Shahmoon E, Lukin MD, Yelin SF. Controlling Interactions between Quantum Emitters Using Atom Arrays. PHYSICAL REVIEW LETTERS 2021; 126:223602. [PMID: 34152159 DOI: 10.1103/physrevlett.126.223602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
We investigate the potential for two-dimensional atom arrays to modify the radiation and interaction of individual quantum emitters. Specifically, we demonstrate that control over the emission linewidths, resonant frequency shifts, and local driving field enhancement in impurity atoms is possible due to strong dipole-dipole interactions within ordered, subwavelength atom array configurations. We demonstrate that these effects can be used to dramatically enhance coherent dipole-dipole interactions between distant impurity atoms within an atom array. Possible experimental realizations and potential applications are discussed.
Collapse
Affiliation(s)
- Taylor L Patti
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dominik S Wild
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ephraim Shahmoon
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Susanne F Yelin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
22
|
Iversen OA, Pohl T. Strongly Correlated States of Light and Repulsive Photons in Chiral Chains of Three-Level Quantum Emitters. PHYSICAL REVIEW LETTERS 2021; 126:083605. [PMID: 33709742 DOI: 10.1103/physrevlett.126.083605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
We study the correlated transport of photons through a chain of three-level emitters that are coupled chirally to a photonic mode of a waveguide. It is found that this system can transfer a weak classical input into a strongly correlated state of light in a unitary manner. Our analysis reveals two-photon scattering eigenstates, that are akin to Fano resonances or shape resonances in particle collisions and facilitate the emergence of antibunched light with long-range correlations upon crossing a critical length of the chain. By operating close to conditions of electromagnetically induced transparency of the three-level medium, a high degree of antibunching and photon transmission can be maintained in the presence of moderate losses. These features suggest a promising mechanism for single-photon generation and may open the door to exploring correlated quantum many-body states of light with repulsively interacting photons.
Collapse
Affiliation(s)
- Ole A Iversen
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Thomas Pohl
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Masson SJ, Ferrier-Barbut I, Orozco LA, Browaeys A, Asenjo-Garcia A. Many-Body Signatures of Collective Decay in Atomic Chains. PHYSICAL REVIEW LETTERS 2020; 125:263601. [PMID: 33449783 DOI: 10.1103/physrevlett.125.263601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Fully inverted atoms placed at exactly the same location synchronize as they deexcite, and light is emitted in a burst (known as "Dicke's superradiance"). We investigate the role of finite interatomic separation on correlated decay in mesoscopic chains and provide an understanding in terms of collective jump operators. We show that the superradiant burst survives at small distances, despite Hamiltonian dipole-dipole interactions. However, for larger separations, competition between different jump operators leads to dephasing, suppressing superradiance. Collective effects are still significant for arrays with lattice constants of the order of a wavelength, and lead to a photon emission rate that decays nonexponentially in time. We calculate the two-photon correlation function and demonstrate that emission is correlated and directional, as well as sensitive to small changes in the interatomic distance. These features can be measured in current experimental setups, and are robust to realistic imperfections.
Collapse
Affiliation(s)
- Stuart J Masson
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Igor Ferrier-Barbut
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Paris, France
| | - Luis A Orozco
- Joint Quantum Institute, Department of Physics and NIST, University of Maryland, College Park, Maryland 20742, USA
| | - Antoine Browaeys
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Paris, France
| | - Ana Asenjo-Garcia
- Department of Physics, Columbia University, New York, New York 10027, USA
| |
Collapse
|
24
|
Zhang YX, Mølmer K. Subradiant Emission from Regular Atomic Arrays: Universal Scaling of Decay Rates from the Generalized Bloch Theorem. PHYSICAL REVIEW LETTERS 2020; 125:253601. [PMID: 33416345 DOI: 10.1103/physrevlett.125.253601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The Hermitian part of the field-mediated dipole-dipole interaction in infinite periodic arrays of two-level atoms yields an energy band of the singly excited states. In this Letter, we show that a dispersion relation, ω_{k}-ω_{k_{ex}}∝(k-k_{ex})^{s}, near the band edge of the infinite system leads to the existence of subradiant states of finite one-dimensional arrays of N atoms with decay rates scaling as N^{-(s+1)}. This explains the recently discovered N^{-3} scaling and it leads to the prediction of power law scaling with higher power for special values of the lattice period. For the quantum optical implementation of the Su-Schrieffer-Heeger topological model in a dimerized emitter array, the band gap closing inherent to topological transitions changes the value of s in the dispersion relation and alters the decay rates of the subradiant states by many orders of magnitude.
Collapse
Affiliation(s)
- Yu-Xiang Zhang
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark
| | - Klaus Mølmer
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
25
|
He Y, Ji L, Wang Y, Qiu L, Zhao J, Ma Y, Huang X, Wu S, Chang DE. Geometric Control of Collective Spontaneous Emission. PHYSICAL REVIEW LETTERS 2020; 125:213602. [PMID: 33275003 DOI: 10.1103/physrevlett.125.213602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Dipole spin-wave states of atomic ensembles with wave vector k(ω) mismatched from the dispersion relation of light are difficult to access by far-field excitation but may support rich phenomena beyond the traditional phase-matched scenario in quantum optics. We propose and demonstrate an optical technique to efficiently access these states. In particular, subnanosecond laser pulses shaped by a home-developed wideband modulation method are applied to shift the spin wave in k space with state-dependent geometric phase patterning, in an error-resilient fashion and on timescales much faster than spontaneous emission. We verify this control through the redirection, switch off, and recall of collectively enhanced emission from a ^{87}Rb gas with ∼75% single-step efficiency. Our work represents a first step toward efficient control of electric dipole spin waves for studying many-body dissipative dynamics of excited gases, as well as for numerous quantum optical applications.
Collapse
Affiliation(s)
- Yizun He
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Lingjing Ji
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yuzhuo Wang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Liyang Qiu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Jian Zhao
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Yudi Ma
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Xing Huang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Saijun Wu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Darrick E Chang
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain and ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| |
Collapse
|
26
|
Ballantine KE, Ruostekoski J. Optical Magnetism and Huygens' Surfaces in Arrays of Atoms Induced by Cooperative Responses. PHYSICAL REVIEW LETTERS 2020; 125:143604. [PMID: 33064535 DOI: 10.1103/physrevlett.125.143604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
By utilizing strong optical resonant interactions in arrays of atoms with electric dipole transitions, we show how to synthesize collective optical responses that correspond to those formed by arrays of magnetic dipoles and other multipoles. Optically active magnetism with the strength comparable with that of electric dipole transitions is achieved in collective excitation eigenmodes of the array. By controlling the atomic level shifts, an array of spectrally overlapping, crossed electric and magnetic dipoles can be excited, providing a physical realization of a nearly reflectionless quantum Huygens' surface with the full 2π phase control of the transmitted light that allows for extreme wavefront engineering even at a single photon level. We illustrate this by creating a superposition of two different orbital angular momentum states of light from an ordinary input state that has no orbital angular momentum.
Collapse
Affiliation(s)
- K E Ballantine
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - J Ruostekoski
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
27
|
Zhang J, Hong Q, Zou J, Meng Q, Qin S, Zhu Z. Ultra-narrowband visible light absorption in a monolayer MoS 2 based resonant nanostructure. OPTICS EXPRESS 2020; 28:27608-27614. [PMID: 32988051 DOI: 10.1364/oe.405050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Enhance light absorption in two-dimensional (2D) materials are of great importance for the development of many optoelectronic devices such as photodetectors, modulators and thermal emitters. In this paper, a resonant nanostructure based on subwavelength gratings of monolayer molybdenum disulphide (MoS2) is proposed. It is shown numerically that the excitation of guided modes in the proposed structure leads to perfect absorption in the visible range. The linewidth of the absorption spectrum can be narrow down to 0.1 nm. The resonance wavelength exhibits an almost linear dependence on the incidence angle. The proposed structure provides a method to design ultra-narrowband absorbers and similar designs can be applied to other 2D materials. It may find applications for optical filters, directional thermal emitters, 2D materials based lasers and others.
Collapse
|
28
|
Alaee R, Gurlek B, Albooyeh M, Martín-Cano D, Sandoghdar V. Quantum Metamaterials with Magnetic Response at Optical Frequencies. PHYSICAL REVIEW LETTERS 2020; 125:063601. [PMID: 32845673 DOI: 10.1103/physrevlett.125.063601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
We propose novel quantum antennas and metamaterials with a strong magnetic response at optical frequencies. Our design is based on the arrangement of natural quantum emitters with only electric dipole transition moments at distances smaller than a wavelength of light but much larger than their physical size. In particular, we show that an atomic dimer can serve as a magnetic antenna at its antisymmetric mode to enhance the decay rate of a magnetic transition in its vicinity by several orders of magnitude. Furthermore, we study metasurfaces composed of atomic bilayers with and without cavities and show that they can fully reflect the electric and magnetic fields of light, thus, forming nearly perfect electric or magnetic mirrors. The proposed metamaterials will embody the intrinsic quantum functionalities of natural emitters such as atoms, ions, color center, or molecules and can be fabricated with available state-of-the-art technologies, promising several applications both in classical optics and quantum engineering.
Collapse
Affiliation(s)
- Rasoul Alaee
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
- Department of Physics, University of Ottawa, Ottawa Q1N 6N5, Canada
| | - Burak Gurlek
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
- Department of Physics, Friedrich Alexander University Erlangen-Nuremberg, D-91052 Erlangen, Germany
| | - Mohammad Albooyeh
- Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92617, USA
| | - Diego Martín-Cano
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen 91058, Germany
- Department of Physics, Friedrich Alexander University Erlangen-Nuremberg, D-91052 Erlangen, Germany
| |
Collapse
|
29
|
Ballantine KE, Ruostekoski J. Radiative Toroidal Dipole and Anapole Excitations in Collectively Responding Arrays of Atoms. PHYSICAL REVIEW LETTERS 2020; 125:063201. [PMID: 32845681 DOI: 10.1103/physrevlett.125.063201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
A toroidal dipole represents an often overlooked electromagnetic excitation distinct from the standard electric and magnetic multipole expansion. We show how a simple arrangement of strongly radiatively coupled atoms can be used to synthesize a toroidal dipole where the toroidal topology is generated by radiative transitions forming an effective poloidal electric current wound around a torus. We extend the protocol for methods to prepare a delocalized collective excitation mode consisting of a synthetic lattice of such toroidal dipoles and a nonradiating, yet oscillating charge-current configuration, dynamic anapole, for which the far-field radiation of a toroidal dipole is identically canceled by an electric dipole.
Collapse
Affiliation(s)
- K E Ballantine
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - J Ruostekoski
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
30
|
A subradiant optical mirror formed by a single structured atomic layer. Nature 2020; 583:369-374. [DOI: 10.1038/s41586-020-2463-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/06/2020] [Indexed: 11/09/2022]
|
31
|
Glicenstein A, Ferioli G, Šibalić N, Brossard L, Ferrier-Barbut I, Browaeys A. Collective Shift in Resonant Light Scattering by a One-Dimensional Atomic Chain. PHYSICAL REVIEW LETTERS 2020; 124:253602. [PMID: 32639788 DOI: 10.1103/physrevlett.124.253602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
We experimentally study resonant light scattering by a one-dimensional randomly filled chain of cold two-level atoms. By a local measurement of the light scattered along the chain, we observe constructive interferences in light-induced dipole-dipole interactions between the atoms. They lead to a shift of the collective resonance despite the average interatomic distance being larger than the wavelength of the light. This result demonstrates that strong collective effects can be enhanced by structuring the geometrical arrangement of the ensemble. We also explore the high intensity regime where atoms cannot be described classically. We compare our measurement to a mean-field, nonlinear coupled-dipole model accounting for the saturation of the response of a single atom.
Collapse
Affiliation(s)
- Antoine Glicenstein
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Giovanni Ferioli
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Nikola Šibalić
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Ludovic Brossard
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Igor Ferrier-Barbut
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Antoine Browaeys
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| |
Collapse
|
32
|
Yoo SM, Javanainen J. Light reflection and transmission in planar lattices of cold atoms. OPTICS EXPRESS 2020; 28:9764-9776. [PMID: 32225577 DOI: 10.1364/oe.389570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Manipulation of light using atoms plays a fundamental and important role in emerging technologies such as integrated photonics, information storage, and quantum sensors. Specifically, there have been intense theoretical efforts involving large samples of cold neutral atoms for coherent control of light. Here we present a theoretical scheme that enables efficient computation of collective optical responses of mono- and bi-layer planar square lattices of dense, cold two-level atoms using classical electrodynamics of coupled dipoles in the limit of low laser intensity. The steady-state transmissivity and reflectivity are obtained at a field point far away from the atomic lattices in the regime with no Bragg reflection. While our earlier method was based on exact solution of the electrodynamics for a small-scale lattice, here we calculate the dipole moments assuming that they are the same at all lattice sites, as for an infinite lattice. Atomic lattices with effectively over one hundred times more sites than in our earlier exact computations can then be simulated numerically with fewer computational resources. We have implemented an automatic selection of the number of sites under the given convergence criteria. We compare the numerical results from both computational schemes. We also find similarities and differences of a stack of two atomic lattices from a two-atom sample. Such aspects may be exploited to engineer a stack for potential applications.
Collapse
|
33
|
Perczel J, Borregaard J, Chang DE, Yelin SF, Lukin MD. Topological Quantum Optics Using Atomlike Emitter Arrays Coupled to Photonic Crystals. PHYSICAL REVIEW LETTERS 2020; 124:083603. [PMID: 32167350 DOI: 10.1103/physrevlett.124.083603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
We propose an experimentally feasible nanophotonic platform for exploring many-body physics in topological quantum optics. Our system is composed of a two-dimensional lattice of nonlinear quantum emitters with optical transitions embedded in a photonic crystal slab. The emitters interact through the guided modes of the photonic crystal, and a uniform magnetic field gives rise to large topological band gaps, robust edge states, and a nearly flat band with a nonzero Chern number. The presence of a topologically nontrivial nearly flat band paves the way for the realization of fractional quantum Hall states and fractional topological insulators in a topological quantum optical setting.
Collapse
Affiliation(s)
- J Perczel
- Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
| | - J Borregaard
- Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
- QMATH, Department of Mathematical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - D E Chang
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| | - S F Yelin
- Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - M D Lukin
- Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
34
|
Schilder NJ, Sauvan C, Sortais YRP, Browaeys A, Greffet JJ. Near-Resonant Light Scattering by a Subwavelength Ensemble of Identical Atoms. PHYSICAL REVIEW LETTERS 2020; 124:073403. [PMID: 32142324 DOI: 10.1103/physrevlett.124.073403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
We study theoretically the scattering of light by an ensemble of N resonant atoms in a subwavelength volume. We consider the low intensity regime so that each atom responds linearly to the field. While N noninteracting atoms would scatter N^{2} more than a single atom, we find that N interacting atoms scatter less than a single atom near resonance. In addition, the scattered power presents strong fluctuations, either from one realization to another or when varying the excitation frequency. We analyze this counterintuitive behavior in terms of collective modes resulting from the light-induced dipole-dipole interactions. We find that for small samples and sufficiently large atom number, their properties are governed only by their volume.
Collapse
Affiliation(s)
- N J Schilder
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, F-91127 Palaiseau, France
| | - C Sauvan
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, F-91127 Palaiseau, France
| | - Y R P Sortais
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, F-91127 Palaiseau, France
| | - A Browaeys
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, F-91127 Palaiseau, France
| | - J-J Greffet
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, F-91127 Palaiseau, France
| |
Collapse
|
35
|
Lin KT, Hsu T, Lee CY, Hoi IC, Lin GD. Scalable collective Lamb shift of a 1D superconducting qubit array in front of a mirror. Sci Rep 2019; 9:19175. [PMID: 31844102 PMCID: PMC6915749 DOI: 10.1038/s41598-019-55545-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/30/2019] [Indexed: 11/11/2022] Open
Abstract
We theoretically investigate resonant dipole-dipole interaction (RDDI) between artificial atoms in a 1D geometry, implemented by N transmon qubits coupled through a transmission line. Similar to the atomic cases, RDDI comes from exchange of virtual photons of the continuous modes, and causes the so-called collective Lamb shift (CLS). To probe the shift, we effectively set one end of the transmission line as a mirror, and examine the reflection spectrum of the probe field from the other end. Our calculation shows that when a qubit is placed at the node of the standing wave formed by the incident and reflected waves, even though it is considered to be decoupled from the field, it results in large energy splitting in the spectral profile of a resonant qubit located at an antinode. This directly implies the interplay of virtual photon processes and explicitly signals the CLS. We further derive a master equation to describe the system, which can take into account mismatch of participating qubits and dephasing effects. Our calculation also demonstrates the superradiant and subradiant nature of the atomic states, and how the CLS scales when more qubits are involved.
Collapse
Affiliation(s)
- Kuan-Ting Lin
- Centre for Quantum Science and Engineering, Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Ting Hsu
- Centre for Quantum Science and Engineering, Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Chen-Yu Lee
- Centre for Quantum Science and Engineering, Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - Io-Chun Hoi
- Centre for Quantum Technology and Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Guin-Dar Lin
- Centre for Quantum Science and Engineering, Department of Physics, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
36
|
Hong Q, Chen X, Zhang J, Zhu Z, Qin S, Yuan X. Remarkably high-Q resonant nanostructures based on atomically thin two-dimensional materials. NANOSCALE 2019; 11:23149-23155. [PMID: 31573588 DOI: 10.1039/c9nr06192d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Planar optical resonant structures with high quality (Q) factors play a crucial role in modern photonic technologies. In this paper, a type of remarkably high-Q resonant nanostructure based on atomically thin two-dimensional (2D) materials is proposed. It is shown theoretically and numerically that with the excitation of leaky modes in the proposed structures, guided mode resonant (GMR) gratings, can achieve resonances with extremely narrow linewidths down to 0.0005 nm and high Q-factors up to millions in the telecom range. The thickness of 2D materials and thus the high-Q resonances can be precisely controlled by changing the layer number of 2D materials, providing a versatile platform for strong light-matter interactions. As an example, dramatic nonlinear reflectance can be realized around the resonance at a power level of a few kW cm-2 with the Kerr effect. This new type of 2D material resonant nanostructure can be employed for a variety of applications ranging from lasers, filters and polarizers to nonlinear optical devices.
Collapse
Affiliation(s)
- Qilin Hong
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, China.
| | | | | | | | | | | |
Collapse
|
37
|
Piñeiro Orioli A, Rey AM. Dark States of Multilevel Fermionic Atoms in Doubly Filled Optical Lattices. PHYSICAL REVIEW LETTERS 2019; 123:223601. [PMID: 31868417 DOI: 10.1103/physrevlett.123.223601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We propose to use fermionic atoms with degenerate ground and excited internal levels (F_{g}→F_{e}), loaded into the motional ground state of an optical lattice with two atoms per lattice site, to realize dark states with no radiative decay. The physical mechanism behind the dark states is an interplay of Pauli blocking and multilevel dipolar interactions. The dark states are independent of lattice geometry, can support an extensive number of excitations, and can be coherently prepared using a Raman scheme taking advantage of the quantum Zeno effect. These attributes make them appealing for atomic clocks, quantum memories, and quantum information on decoherence free subspaces.
Collapse
Affiliation(s)
- A Piñeiro Orioli
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - A M Rey
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
38
|
Abstract
The optical properties of subwavelength arrays of atoms or other quantum emitters have attracted significant interest recently. For example, the strong constructive or destructive interference of emitted light enables arrays to function as nearly perfect mirrors, support topological edge states, and allow for exponentially better quantum memories. In these proposals, the assumed atomic structure was simple, consisting of a unique electronic ground state. Within linear optics, the system is then equivalent to a periodic array of classical dielectric particles, whose periodicity supports the emergence of guided modes. However, it has not been known whether such phenomena persist in the presence of hyperfine structure, as exhibited by most quantum emitters. Here, we show that waveguiding can arise from rich atomic entanglement as a quantum many-body effect and elucidate the necessary conditions. Our work represents a significant step forward in understanding collective effects in arrays of atoms with realistic electronic structure.
Collapse
|
39
|
Manjavacas A, Zundel L, Sanders S. Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays. ACS NANO 2019; 13:10682-10693. [PMID: 31487460 DOI: 10.1021/acsnano.9b05031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Periodic arrays are an exceptionally interesting arrangement for metallic nanostructures because of their ability to support collective lattice resonances. These modes, which arise from the coherent multiple scattering enabled by the lattice periodicity, give rise to very strong and spectrally narrow optical responses. Here, we investigate the enhancement of the near-field produced by the lattice resonances of arrays of metallic nanoparticles when illuminated with a plane wave. We find that, for infinite arrays, this enhancement can be made arbitrarily large by appropriately designing the geometrical characteristics of the array. On the other hand, in the case of finite arrays, the near-field enhancement is limited by the number of elements of the array that interact coherently. Furthermore, we show that, as the near-field enhancement increases, the length scale over which it extends above and below the array becomes larger and its spectral linewidth narrows. We also analyze the impact that material losses have on these behaviors. As a direct application of our results, we investigate the interaction between a nanoparticle array and a dielectric slab placed a certain distance above it and show that the extraordinary near-field enhancement produced by the lattice resonance can lead to very strong interactions, even at significantly large separations. This work provides a detailed characterization of the limits of the near-field produced by lattice resonances and, therefore, advances our knowledge of the optical response of periodic arrays of nanostructures, which can be used to design and develop applications exploiting the extraordinary properties of these systems.
Collapse
Affiliation(s)
- Alejandro Manjavacas
- Department of Physics and Astronomy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Lauren Zundel
- Department of Physics and Astronomy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Stephen Sanders
- Department of Physics and Astronomy , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
40
|
Yang Y, Gao W, Xia L, Cheng H, Jia H, Xiang Y, Zhang S. Spontaneous Emission and Resonant Scattering in Transition from Type I to Type II Photonic Weyl Systems. PHYSICAL REVIEW LETTERS 2019; 123:033901. [PMID: 31386439 DOI: 10.1103/physrevlett.123.033901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/10/2023]
Abstract
Spontaneous emission and scattering behavior of an emitter or a resonant scatterer strongly depend on the density of states of the surrounding medium. It has been shown that the resonant scattering cross section (RSC) may diverge at the Weyl frequency of a type I Weyl system due to the diminishing density of states. Here we study the spontaneous emission (SE) and RSC in a photonic metacrystal across the critical transition between type I and type II Weyl systems. Theoretical results show that the SE rate of an emitter in a type I Weyl system diminishes to zero at the Weyl frequency. When the system is tuned towards the transition point between type I and type II Weyl point, the dip in the SE spectrum at the Weyl frequency becomes infinitely sharp. The dip vanishes at the critical transition, and transforms into a peak when the system changes into a type II Weyl system. We further show that the resonant scattering cross section also exhibits dramatically different spectral features across the transition. Our study demonstrates the ability to tune SE and RSC through altering the dispersion of the Weyl medium between type I and type II, which provides a fundamentally new route in manipulating light-matter interactions.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wenlong Gao
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lingbo Xia
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hua Cheng
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Hongwei Jia
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Yuanjiang Xiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuang Zhang
- School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
41
|
Černotík O, Dantan A, Genes C. Cavity Quantum Electrodynamics with Frequency-Dependent Reflectors. PHYSICAL REVIEW LETTERS 2019; 122:243601. [PMID: 31322406 DOI: 10.1103/physrevlett.122.243601] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 06/10/2023]
Abstract
We present a general framework for cavity quantum electrodynamics with strongly frequency-dependent mirrors. The method is applicable to a variety of reflectors exhibiting sharp internal resonances as can be realized, for example, with photonic-crystal mirrors or with two-dimensional atomic arrays around subradiant points. Our approach is based on a modification of the standard input-output formalism to explicitly include the dynamics of the mirror's internal resonance. We show how to directly extract the interaction parameters from the comparison with classical transfer matrix theory and how to treat the non-Markovian dynamics of the cavity field mode introduced by the mirror's internal resonance. As an application within optomechanics, we illustrate how a non-Markovian Fano-resonance cavity with a flexible photonic-crystal mirror can provide both sideband resolution as well as strong heating suppression in optomechanical cooling. This approach, amenable to a wide range of systems, opens up possibilities for using hybrid frequency-dependent reflectors in cavity quantum electrodynamics for engineering novel forms of light-matter interactions.
Collapse
Affiliation(s)
- Ondřej Černotík
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| | - Aurélien Dantan
- Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Claudiu Genes
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| |
Collapse
|
42
|
González-Tudela A, Muñoz CS, Cirac JI. Engineering and Harnessing Giant Atoms in High-Dimensional Baths: A Proposal for Implementation with Cold Atoms. PHYSICAL REVIEW LETTERS 2019; 122:203603. [PMID: 31172782 DOI: 10.1103/physrevlett.122.203603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Emitters coupled simultaneously to distant positions of a photonic bath, the so-called giant atoms, represent a new paradigm in quantum optics. When coupled to one-dimensional baths, as recently implemented with transmission lines or SAW waveguides, they lead to striking effects such as chiral emission or decoherence-free atomic interactions. Here, we show how to create giant atoms in dynamical state-dependent optical lattices, which offers the possibility of coupling them to structured baths in arbitrary dimensions. This opens up new avenues to a variety of phenomena and opportunities for quantum simulation. In particular, we show how to engineer unconventional radiation patterns, like multidirectional chiral emission, as well as collective interactions that can be used to simulate nonequilibrium many-body dynamics with no analog in other setups. Additionally, the recipes we provide to harness giant atoms in high dimensions can be exported to other platforms where such nonlocal couplings can be engineered.
Collapse
Affiliation(s)
- A González-Tudela
- Instituto de Física Fundamental IFF-CSIC, Calle Serrano 113b, Madrid 28006, Spain
| | - C Sánchez Muñoz
- Clarendon Laboratory, University of Oxford, Oxford OX13PU, United Kingdom
| | - J I Cirac
- Max-Planck-Institut für Quantenoptik Hans-Kopfermann-Str. 1. 85748 Garching, Germany
| |
Collapse
|
43
|
Jen HH. Super- and sub-radiance from two-dimensional resonant dipole-dipole interactions. Sci Rep 2019; 9:5804. [PMID: 30967605 PMCID: PMC6456626 DOI: 10.1038/s41598-019-42285-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
We theoretically investigate the super- and sub-radiance from the resonant dipole-dipole interactions (RDDI) in a confined two-dimensional (2D) reservoir. The distinctive feature of 2D RDDI shows qualitatively and quantitatively different long-range behavior from RDDI in free space. We investigate the collective radiation properties of the singly-excited symmetric state under this 2D RDDI. This state also allows subradiant decays in much longer distances than the transition wavelength, showing longrange atom-atom correlations. We further study the dynamics of the subradiant states which can be accessed by imprinting spatially dependent phases on the atomic arrays. Our results demonstrate rich opportunities in engineering light-matter interactions in a confined 2D reservoir, and hold promise in applications of quantum light storage and single-excitation state manipulations.
Collapse
Affiliation(s)
- H H Jen
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
44
|
Guimond PO, Grankin A, Vasilyev DV, Vermersch B, Zoller P. Subradiant Bell States in Distant Atomic Arrays. PHYSICAL REVIEW LETTERS 2019; 122:093601. [PMID: 30932531 DOI: 10.1103/physrevlett.122.093601] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Indexed: 06/09/2023]
Abstract
We study collective "free-space" radiation properties of two distant single-layer arrays of quantum emitters as two-level atoms. We show that this system can support a long-lived Bell superposition state of atomic excitations exhibiting strong subradiance, which corresponds to a nonlocal excitation of the two arrays. We describe the preparation of these states and their application in quantum information as a resource of nonlocal entanglement, including deterministic quantum state transfer with high fidelity between the arrays representing quantum memories. We discuss experimental realizations using cold atoms in optical trap arrays with subwavelength spacing, and analyze the role of imperfections.
Collapse
Affiliation(s)
- P-O Guimond
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - A Grankin
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - D V Vasilyev
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - B Vermersch
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - P Zoller
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck A-6020, Austria
| |
Collapse
|
45
|
Mkhitaryan V, Meng L, Marini A, de Abajo FJG. Lasing and Amplification from Two-Dimensional Atom Arrays. PHYSICAL REVIEW LETTERS 2018; 121:163602. [PMID: 30387662 DOI: 10.1103/physrevlett.121.163602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 06/08/2023]
Abstract
We explore the ability of two-dimensional periodic atom arrays to produce light amplification and generate laser emission when gain is introduced through external optical pumping. Specifically, we predict that lasing can take place for arbitrarily weak atomic scatterers assisted by cooperative interaction among atoms in a 2D lattice. We base this conclusion on analytical theory for three-level scatterers, which additionally reveals a rich interplay between lattice and atomic resonances. Our results provide a general background to understand light amplification and lasing in periodic atomic arrays, with promising applications in the generation, manipulation, and control of coherent photon states at the nanoscale.
Collapse
Affiliation(s)
- Vahagn Mkhitaryan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Lijun Meng
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China
| | - Andrea Marini
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
46
|
Wild DS, Shahmoon E, Yelin SF, Lukin MD. Quantum Nonlinear Optics in Atomically Thin Materials. PHYSICAL REVIEW LETTERS 2018; 121:123606. [PMID: 30296123 DOI: 10.1103/physrevlett.121.123606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 06/08/2023]
Abstract
We show that a nonlinear optical response associated with a resonant, atomically thin material can be dramatically enhanced by placing it in front of a partially reflecting mirror, rendering otherwise weakly nonlinear systems suitable for experiments and applications involving quantum nonlinear optics. Our approach exploits the nonlinear response of long-lived polariton resonances that arise at particular distances between the material and the mirror. The scheme is entirely based on free-space optics, eliminating the need for cavities or complex nanophotonic structures. We analyze a specific implementation based on exciton-polariton resonances in two-dimensional semiconductors and discuss the role of imperfections and loss.
Collapse
Affiliation(s)
- Dominik S Wild
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Ephraim Shahmoon
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Susanne F Yelin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
47
|
Cooperative light scattering from helical-phase-imprinted atomic rings. Sci Rep 2018; 8:9570. [PMID: 29934557 PMCID: PMC6015022 DOI: 10.1038/s41598-018-27888-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 11/08/2022] Open
Abstract
We theoretically investigate the light scattering of super- and subradiant states of an atomic ring prepared by single excitation with a photon which carries an orbital angular momentum (OAM). For excitations with linear polarizations, the helical phase imprinted (HPI) atomic ring presents a discrete C4 rotational symmetry when number of atoms N = 4n with integers n, while for circular polarizations with arbitrary N, the continuous and CN symmetries emerge for the super- and subradiant modes, respectively. The HPI superradiant modes predominantly scatter photons in the forward-backward direction, and the forward scattering can be further enhanced as atomic rings are stacked along the excitation direction. The HPI subradiant modes then preferentially scatter photons in the transversal directions, and when rings are stacked concentrically and on a plane, crossover from sub- to superradiance is observed which leads to splitting and localization of the far-field scattering patterns in the polar angle. The HPI super- and subradiant states are thus detectable through measuring the far-field radiation patterns, which further allow quantum storage and detection of a single photon with an OAM.
Collapse
|
48
|
Peyrot T, Sortais YRP, Browaeys A, Sargsyan A, Sarkisyan D, Keaveney J, Hughes IG, Adams CS. Collective Lamb Shift of a Nanoscale Atomic Vapor Layer within a Sapphire Cavity. PHYSICAL REVIEW LETTERS 2018; 120:243401. [PMID: 29956978 DOI: 10.1103/physrevlett.120.243401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/17/2018] [Indexed: 06/08/2023]
Abstract
We measure the near-resonant transmission of light through a dense medium of potassium vapor confined in a cell with nanometer thickness in order to investigate the origin and validity of the collective Lamb shift. A complete model including the multiple reflections in the nanocell reproduces accurately the observed line shape. It allows the extraction of a density-dependent shift and width of the bulk atomic medium resonance, deconvolved from the cavity effect. We observe an additional, unexpected dependence of the shift with the thickness of the medium. This extra dependence demands further experimental and theoretical investigations.
Collapse
Affiliation(s)
- T Peyrot
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, F-91127 Palaiseau Cedex, France
| | - Y R P Sortais
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, F-91127 Palaiseau Cedex, France
| | - A Browaeys
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, F-91127 Palaiseau Cedex, France
| | - A Sargsyan
- Institute for Physical Research, National Academy of Sciences, Ashtarak 2, 0203, Armenia
| | - D Sarkisyan
- Institute for Physical Research, National Academy of Sciences, Ashtarak 2, 0203, Armenia
| | - J Keaveney
- Department of Physics, Rochester Building, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - I G Hughes
- Department of Physics, Rochester Building, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - C S Adams
- Department of Physics, Rochester Building, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
49
|
Directional subradiance from helical-phase-imprinted multiphoton states. Sci Rep 2018; 8:7163. [PMID: 29740163 PMCID: PMC5940866 DOI: 10.1038/s41598-018-25592-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/23/2018] [Indexed: 11/08/2022] Open
Abstract
We theoretically investigate the far-field scattering properties of multiphoton super- and subradiant states which can be prepared by multiphoton excitations with orbital angular momentum (OAM). Due to multiphoton interference, the far-field patterns of the subradiant modes show directional scattering along the excitation direction or transverse scattering with number of peaks equal to the number of atoms. When more atoms are involved, we consider structures of stacked and concentric rings, which respectively show enhanced directional scattering and smoothed emission patterns. Our scheme gives insights to prepare many-body subradiant states, and is potentially applicable to quantum storage of multiphoton with OAM. By designing atomic spatial distributions, these cooperative states can tailor the far-field emission properties, which is useful for light collections and quantum information manipulations.
Collapse
|
50
|
|