1
|
Eliasson H, Erni R. Localization and segmentation of atomic columns in supported nanoparticles for fast scanning transmission electron microscopy. NPJ COMPUTATIONAL MATERIALS 2024; 10:168. [PMID: 39104782 PMCID: PMC11297796 DOI: 10.1038/s41524-024-01360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
To accurately capture the dynamic behavior of small nanoparticles in scanning transmission electron microscopy, high-quality data and advanced data processing is needed. The fast scan rate required to observe structural dynamics inherently leads to very noisy data where machine learning tools are essential for unbiased analysis. In this study, we develop a workflow based on two U-Net architectures to automatically localize and classify atomic columns at particle-support interfaces. The model is trained on non-physical image simulations, achieves sub-pixel localization precision, high classification accuracy, and generalizes well to experimental data. We test our model on both in situ and ex situ experimental time series recorded at 5 frames per second of small Pt nanoparticles supported on CeO2(111). The processed movies show sub-second dynamics of the nanoparticles and reveal site-specific movement patterns of individual atomic columns.
Collapse
Affiliation(s)
- Henrik Eliasson
- Electron Microscopy Center, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
2
|
Lee J, Jo H, Jeong C, Lee T, Ryu S, Yang Y. Single-Atom Level Determination of 3-Dimensional Surface/Interface Atomic Structures via Deep Learning-Assisted Atomic Electron Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1384. [PMID: 37613584 DOI: 10.1093/micmic/ozad067.712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Juhyeok Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hyesung Jo
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Chaehwa Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Taegu Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
3
|
Horwath JP, Lehman-Chong C, Vojvodic A, Stach EA. Surface Rearrangement and Sublimation Kinetics of Supported Gold Nanoparticle Catalysts. ACS NANO 2023; 17:8098-8107. [PMID: 37084280 DOI: 10.1021/acsnano.2c10523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heterogeneous catalysts consisting of supported metallic nanoparticles typically derive exceptional catalytic activity from their large proportion of undercoordinated surface sites which promote adsorption of reactant molecules. Simultaneously, these high energy surface configurations are unstable, leading to nanoparticle growth or degradation and eventually a loss of catalytic activity. Surface morphology of catalytic nanoparticles is paramount to catalytic activity, selectivity, and degradation rates, however it is well-known that harsh reaction conditions can cause the surface structure to change. Still, limited research has focused on understanding the link between nanoparticle surface facets and degradation rates or mechanisms. Here, we study a model Au supported catalyst system over a range of temperatures using a combination of in situ transmission electron microscopy, kinetic Monte Carlo simulations, and density functional theory calculations to establish an atomistic picture of how variations in surface structures and atomic coordination environments lead to shifting evolution mechanisms as a function of temperature. By combining experimental results, which yield direct observation of dynamic shape changes and particle sublimation rates, with computational techniques, which enable understanding the fundamental thermodynamics and kinetics of nanoparticle evolution, we illustrate a two-step evolution mechanism in which mobile adatoms form through desorption from low-coordination facets and subsequently sublimate off the particle surface. By understanding the role of temperature in the competition between surface diffusion and sublimation, we are able to show how individual atomic movements lead to particle scale morphological changes and rationalize why sublimation rates vary between particles in a system of nearly identical nanoparticles.
Collapse
Affiliation(s)
- James P Horwath
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin Lehman-Chong
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aleksandra Vojvodic
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Yamashita S, Inatomi Y, Inaba Y, Tanabe M, Nishi T, Kudo Y. Atomic-Scale Dynamics at Solid-Liquid Nanointerfaces Induced by Electron-Beam Irradiation. NANO LETTERS 2022; 22:10073-10079. [PMID: 36512517 DOI: 10.1021/acs.nanolett.2c03838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We report electron-beam induced dynamics at PbS-Pb solid-liquid interfaces. We fabricated PbS-Pb solid-liquid nanointerfaces by heating PbS nanocrystals under vacuum to observe the entire process of structural evolution at the atomic scale. We investigated the dynamics using time-resolved high-angle annular dark-field imaging. Electron-beam irradiation caused layer-by-layer dissolution of PbS at the interface, resulting in the formation of the Pb nanodroplet. Ordered liquid layers were observed adjacent to the interface even under continuous electron-beam irradiation and followed the movement of the interface. Instantaneous epitaxial growth of PbS was observed as a reverse process of the dissolution. The resultant Pb nanodroplet provides indisputable evidence for selective sputtering of sulfur atoms via electron-beam irradiation. This paper demonstrates atomic resolution in situ observations of selective and complete sputtering. The observed dynamics can be explained by the intermittent phase transition via nonequilibrium states of the solid-liquid nanointerface triggered by selective sputtering.
Collapse
Affiliation(s)
- Shunsuke Yamashita
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Yuya Inatomi
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Yuta Inaba
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Mamoru Tanabe
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Toshio Nishi
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| | - Yoshihiro Kudo
- R&D Center, Sony Group Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa243-0014, Japan
| |
Collapse
|
5
|
Zhang Y, Yang X, Zhao SN, Zhai Y, Pang X, Lin J. Recent Developments of Microscopic Study for Lanthanide and Manganese Doped Luminescent Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205014. [PMID: 36310419 DOI: 10.1002/smll.202205014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Luminescent materials are indispensable for applications in lighting, displays and photovoltaics, which can transfer, absorb, store and utilize light energy. Their performance is closely related with their size and morphologies, exact atomic arrangement, and local configuration about photofunctional centers. Advanced electron microscopy-based techniques have enabled the possibility to study nanostructures with atomic resolution. Especially, with the advanced micro-electro-mechanical systems, it is able to characterize the luminescent materials at the atomic scale under various environments, providing a deep understanding of the luminescent mechanism. Accordingly, this review summarizes the recent achievements of microscopic study to directly image the microstructure and local environment of activators in lanthanide and manganese (Ln/Mn2+ )-doped luminescent materials, including: 1) bulk materials, the typical systems are nitride/oxynitride phosphors; and 2) nanomaterials, such as nanocrystals (hexagonal-phase NaLnF4 and perovskite) and 2D nanosheets (Ca2 Ta3 O10 and MoS2 ). Finally, the challenges and limitations are highlighted, and some possible solutions to facilitate the developments of advanced luminescent materials are provided.
Collapse
Affiliation(s)
- Yang Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuewei Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shu-Na Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yalong Zhai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
6
|
Probing atom dynamics of excited Co-Mo-S nanocrystals in 3D. Nat Commun 2021; 12:5007. [PMID: 34408156 PMCID: PMC8373969 DOI: 10.1038/s41467-021-24857-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022] Open
Abstract
Advances in electron microscopy have enabled visualizations of the three-dimensional (3D) atom arrangements in nano-scale objects. The observations are, however, prone to electron-beam-induced object alterations, so tracking of single atoms in space and time becomes key to unravel inherent structures and properties. Here, we introduce an analytical approach to quantitatively account for atom dynamics in 3D atomic-resolution imaging. The approach is showcased for a Co-Mo-S nanocrystal by analysis of time-resolved in-line holograms achieving ~1.5 Å resolution in 3D. The analysis reveals a decay of phase image contrast towards the nanocrystal edges and meta-stable edge motifs with crystallographic dependence. These findings are explained by beam-stimulated vibrations that exceed Debye-Waller factors and cause chemical transformations at catalytically relevant edges. This ability to simultaneously probe atom vibrations and displacements enables a recovery of the pristine Co-Mo-S structure and establishes, in turn, a foundation to understand heterogeneous chemical functionality of nanostructures, surfaces and molecules. The authors introduce an analytical approach for quantitative analysis of 3D atom dynamics during electron microscopy. They image a Co-Mo-S nanocrystal with 1.5 Å resolution, and observe chemical transformations caused by beam-stimulated vibrations.
Collapse
|
7
|
Kaatz FH, Murzin DY, Bultheel A. Coordination-Dependent Kinetics in the Catalysis of Gold Nanoclusters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Forrest H. Kaatz
- Institutional Research, Mesalands Community College, 911 South 10th Street, Tucumcari, New Mexico 88401, United States
| | - Dmitry Yu. Murzin
- Industrial Chemistry and Reaction Engineering, Abo Akademi University, Biskopsgatan 8, Turku 20500, Finland
| | - Adhemar Bultheel
- Department Computer Sci., KU Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium
| |
Collapse
|
8
|
Kalinin SV, Zhang S, Valleti M, Pyles H, Baker D, De Yoreo JJ, Ziatdinov M. Disentangling Rotational Dynamics and Ordering Transitions in a System of Self-Organizing Protein Nanorods via Rotationally Invariant Latent Representations. ACS NANO 2021; 15:6471-6480. [PMID: 33861068 DOI: 10.1021/acsnano.0c08914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dynamics of complex ordering systems with active rotational degrees of freedom exemplified by protein self-assembly is explored using a machine learning workflow that combines deep learning-based semantic segmentation and rotationally invariant variational autoencoder-based analysis of orientation and shape evolution. The latter allows for disentanglement of the particle orientation from other degrees of freedom and compensates for lateral shifts. The disentangled representations in the latent space encode the rich spectrum of local transitions that can now be visualized and explored via continuous variables. The time dependence of ensemble averages allows insight into the time dynamics of the system and, in particular, illustrates the presence of the potential ordering transition. Finally, analysis of the latent variables along the single-particle trajectory allows tracing these parameters on a single-particle level. The proposed approach is expected to be universally applicable for the description of the imaging data in optical, scanning probe, and electron microscopy seeking to understand the dynamics of complex systems where rotations are a significant part of the process.
Collapse
Affiliation(s)
- Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuai Zhang
- Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mani Valleti
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
9
|
MacArthur KE, Clement A, Heggen M, Dunin-Borkowski RE. Combining quantitative ADF STEM with SiN x membrane-based MEMS devices: A simulation study with Pt nanoparticles. Ultramicroscopy 2021; 231:113270. [PMID: 33888359 DOI: 10.1016/j.ultramic.2021.113270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Computer simulations are used to assess the influence of a 20-nm-thick SiNx membrane on the quantification of atomic-resolution annular dark-field (ADF) scanning transmission electron microscopy images of Pt nanoparticles. The discussions include the effect of different nanoparticle/membrane arrangements, accelerating voltage, nanoparticle thickness and the presence of adjacent atomic columns on the accuracy with which the number of Pt atoms in each atom column can be counted. The results, which are based on the use of ADF scattering cross-sections, show that an accuracy of better than a single atom is attainable at 200 and 300 kV. At 80kV, the scattering in a typical SiNx membrane is sufficiently strong that the best possible atom counting accuracy is reduced to +/- 2 atoms. The implications of the work for quantitative studies of Pt nanoparticles imaged through SiNx membranes are discussed.
Collapse
Affiliation(s)
- Katherine E MacArthur
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Antoine Clement
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany; Ecole Nationale Supérieure des Mines de Nancy, Campus Artem, BP 14234, 92 rue du Sergent Blandan, 54042 Nancy cedex, France
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
10
|
Lee J, Jeong C, Yang Y. Single-atom level determination of 3-dimensional surface atomic structure via neural network-assisted atomic electron tomography. Nat Commun 2021; 12:1962. [PMID: 33785754 PMCID: PMC8009920 DOI: 10.1038/s41467-021-22204-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/26/2021] [Indexed: 11/11/2022] Open
Abstract
Functional properties of nanomaterials strongly depend on their surface atomic structures, but they often become largely different from their bulk structures, exhibiting surface reconstructions and relaxations. However, most of the surface characterization methods are either limited to 2D measurements or not reaching to true 3D atomic-scale resolution, and single-atom level determination of the 3D surface atomic structure for general 3D nanomaterials still remains elusive. Here we demonstrate the measurement of 3D atomic structure at 15 pm precision using a Pt nanoparticle as a model system. Aided by a deep learning-based missing data retrieval combined with atomic electron tomography, the surface atomic structure was reliably measured. We found that <\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$100$$\end{document}100> and <\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$111$$\end{document}111> facets contribute differently to the surface strain, resulting in anisotropic strain distribution as well as compressive support boundary effect. The capability of single-atom level surface characterization will not only deepen our understanding of the functional properties of nanomaterials but also open a new door for fine tailoring of their performance. Precise determination of surface atomic structure of metallic nanoparticles is key to unlock their surface/interface properties. Here the authors introduce a neural network-assisted atomic electron tomography approach that provides a three-dimensional reconstruction of metallic nanoparticles at individual atom level.
Collapse
Affiliation(s)
- Juhyeok Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Chaehwa Jeong
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yongsoo Yang
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
11
|
Albrecht W, Van Aert S, Bals S. Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope. Acc Chem Res 2021; 54:1189-1199. [PMID: 33566587 DOI: 10.1021/acs.accounts.0c00711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ConspectusThree-dimensional (3D) morphology and composition govern the properties of nanoparticles (NPs). However, due to their high surface-to-volume ratio, the morphology and composition of nanomaterials are not as static as those for their bulk counterparts. One major influence is the increase in relative contribution of surface diffusion, which underlines rapid reshaping of NPs in response to changes in their environment. If not accounted for, these effects might affect the robustness of prospective NPs in practically relevant conditions, such as elevated temperatures, intense light illumination, or changing chemical environments. In situ techniques are promising tools to study NP transformations under relevant conditions. Among those tools, in situ transmission electron microscopy (TEM) provides an elegant platform to directly visualize NP changes down to the atomic scale. By the use of specialized holders or microscopes, external stimuli, such as heat, or environments, such as gas and liquids, can be controllably introduced inside the TEM. In addition, TEM is also a valuable tool to determine NP transformations upon ex situ stimuli such as laser excitation. However, standard TEM yields two-dimensional (2D) projection images of 3D objects. With the growing complexity of NP shapes and compositions, the information that is obtained in this manner is often insufficient to understand intricate diffusion dynamics.In this Account, we describe recent progress on measuring NP transformations in 3D inside the electron microscope. First, we discuss existing possibilities to obtain 3D information using either tomographic methods or the so-called atom counting technique, which utilizes single projection images. Next, we show how these techniques can be combined with in situ holders to quantify diffusion processes on a single nanoparticle level. Specifically, we focus on anisotropic metal NPs at elevated temperatures and in varying gas environments. Anisotropic metal NPs are important for plasmonic applications, because sharp tips and edges result in strong electromagnetic field enhancements. By electron tomography, surface diffusion as well as elemental diffusion can be tracked in monometallic and bimetallic NPs, which can then be directly related to changes in plasmonic properties of these systems. By atom counting, it has furthermore become possible to monitor the evolution of crystalline facets of metal NPs under gas and heat treatments, a change that influences catalytic properties. Next to in situ processes, we also demonstrate the value of electron tomography to assess external laser-induced NP transformations, making it viable to detect structural changes with atomic resolution. The application of the proposed methodologies is by far not limited to metal nanoparticles. In the final section, we therefore outline future material research that can benefit from tracking NP transformations from 3D techniques.
Collapse
Affiliation(s)
- Wiebke Albrecht
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| | - Sandra Van Aert
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| | - Sara Bals
- EMAT and NANOlab Center of Excellence, University of Antwerp, B-2020 Antwerp, Belgium
| |
Collapse
|
12
|
Liu P, Arslan Irmak E, De Backer A, De Wael A, Lobato I, Béché A, Van Aert S, Bals S. Three-dimensional atomic structure of supported Au nanoparticles at high temperature. NANOSCALE 2021; 13:1770-1776. [PMID: 33432963 DOI: 10.1039/d0nr08664a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Au nanoparticles (NPs) deposited on CeO2 are extensively used as thermal catalysts since the morphology of the NPs is expected to be stable at elevated temperatures. Although it is well known that the activity of Au NPs depends on their size and surface structure, their three-dimensional (3D) structure at the atomic scale has not been completely characterized as a function of temperature. In this paper, we overcome the limitations of conventional electron tomography by combining atom counting applied to aberration-corrected scanning transmission electron microscopy images and molecular dynamics relaxation. In this manner, we are able to perform an atomic resolution 3D investigation of supported Au NPs. Our results enable us to characterize the 3D equilibrium structure of single NPs as a function of temperature. Moreover, the dynamic 3D structural evolution of the NPs at high temperatures, including surface layer jumping and crystalline transformations, has been studied.
Collapse
Affiliation(s)
- Pei Liu
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kim S, Kwag J, Machello C, Kang S, Heo J, Reboul CF, Kang D, Kang S, Shim S, Park SJ, Kim BH, Hyeon T, Ercius P, Elmlund H, Park J. Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. NANO LETTERS 2021; 21:1175-1183. [PMID: 33416334 DOI: 10.1021/acs.nanolett.0c04873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Active sites and catalytic activity of heterogeneous catalysts is determined by their surface atomic structures. However, probing the surface structure at an atomic resolution is difficult, especially for solution ensembles of catalytic nanocrystals, which consist of heterogeneous particles with irregular shapes and surfaces. Here, we constructed 3D maps of the coordination number (CN) and generalized CN (CN_) for individual surface atoms of sub-3 nm Pt nanocrystals. Our results reveal that the synthesized Pt nanocrystals are enclosed by islands of atoms with nonuniform shapes that lead to complex surface structures, including a high ratio of low-coordination surface atoms, reduced domain size of low-index facets, and various types of exposed high-index facets. 3D maps of CN_ are directly correlated to catalytic activities assigned to individual surface atoms with distinct local coordination structures, which explains the origin of high catalytic performance of small Pt nanocrystals in important reactions such as oxygen reduction reactions and CO electro-oxidation.
Collapse
Affiliation(s)
- Sungin Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jimin Kwag
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiara Machello
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Sungsu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junyoung Heo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hans Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence for Advanced Molecular Imaging, Clayton, Victoria 3800, Australia
| | - Jungwon Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Liu X, Ao C, Shen X, Wang L, Wang S, Cao L, Zhang W, Dong J, Bao J, Ding T, Zhang L, Yao T. Dynamic Surface Reconstruction of Single-Atom Bimetallic Alloy under Operando Electrochemical Conditions. NANO LETTERS 2020; 20:8319-8325. [PMID: 33090809 DOI: 10.1021/acs.nanolett.0c03475] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The atomic-level understanding of the dynamic evolution of the surface structure of bimetallic nanoparticles under industrially relevant operando conditions provides a key guide for improving their catalytic performance. Here, we exploit operando X-ray absorption fine structure spectroscopy to determine the dynamic surface reconstruction of Cu/Au bimetallic alloy where single-atom Cu was embedded on the Au nanoparticle, under electrocatalytic conditions. We identify the migration of isolated Cu atoms from the vertex position of the Au nanoparticle to the stable (100) plane of the Au first atom layer, when the reduction potential is applied. Density functional theory calculations reveal that the surface atom migration would significantly modulate the Au electronic structure, thus serving as the real active site for the catalytic performance. These findings demonstrate the real structural change under electrochemical conditions and provide guidance for the rational design of high-activity bimetallic nanocatalysts.
Collapse
Affiliation(s)
- Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Chengcheng Ao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Lan Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
- School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Sicong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Wei Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jingjing Dong
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Tao Ding
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Lidong Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|