1
|
Rickhaus P, Pylypovskyi OV, Seniutinas G, Borras V, Lehmann P, Wagner K, Žaper L, Prusik PJ, Makushko P, Veremchuk I, Kosub T, Hübner R, Sheka DD, Maletinsky P, Makarov D. Antiferromagnetic Nanoscale Bit Arrays of Magnetoelectric Cr 2O 3 Thin Films. NANO LETTERS 2024; 24:13172-13178. [PMID: 39387710 PMCID: PMC11503818 DOI: 10.1021/acs.nanolett.4c03044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Magnetism of oxide antiferromagnets (AFMs) has been studied in single crystals and extended thin films. The properties of AFM nanostructures still remain underexplored. Here, we report on the fabrication and magnetic imaging of granular 100 nm-thick magnetoelectric Cr2O3 films patterned in circular bits with diameters ranging from 500 down to 100 nm. With the change of the lateral size, the domain structure evolves from a multidomain state for larger bits to a single domain state for the smallest bits. Based on spin-lattice simulations, we show that the physics of the domain pattern formation in granular AFM bits is primarily determined by the energy dissipation upon cooling, which results in motion and expelling of AFM domain walls of the bit. Our results provide a way toward the fabrication of single domain AFM-bit-patterned memory devices and the exploration of the interplay between AFM nanostructures and their geometric shape.
Collapse
Affiliation(s)
- Peter Rickhaus
- Qnami
AG, Hofackerstrasse 40
B, CH-4132 Muttenz, Switzerland
| | - Oleksandr V. Pylypovskyi
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, 01328 Dresden, Germany
- Kyiv
Academic University, Kyiv 03142, Ukraine
| | | | - Vicent Borras
- Qnami
AG, Hofackerstrasse 40
B, CH-4132 Muttenz, Switzerland
| | - Paul Lehmann
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Kai Wagner
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Liza Žaper
- Qnami
AG, Hofackerstrasse 40
B, CH-4132 Muttenz, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Paulina J. Prusik
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Pavlo Makushko
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Igor Veremchuk
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Tobias Kosub
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, 01328 Dresden, Germany
| | - Denis D. Sheka
- Taras
Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Patrick Maletinsky
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Denys Makarov
- Helmholtz-Zentrum
Dresden-Rossendorf e.V., Institute of Ion
Beam Physics and Materials Research, 01328 Dresden, Germany
| |
Collapse
|
2
|
González-Hernández R, Ritzinger P, Výborný K, Železný J, Manchon A. Non-relativistic torque and Edelstein effect in non-collinear magnets. Nat Commun 2024; 15:7663. [PMID: 39227571 PMCID: PMC11372084 DOI: 10.1038/s41467-024-51565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
The Edelstein effect is the origin of the spin-orbit torque: a current-induced torque that is used for the electrical control of ferromagnetic and antiferromagnetic materials. This effect originates from the relativistic spin-orbit coupling, which necessitates utilizing materials with heavy elements. Here, we show that in magnetic materials with non-collinear magnetic order, the Edelstein effect and, consequently, a current-induced torque can exist even in the absence of the spin-orbit coupling. Using group symmetry analysis, model calculations, and realistic simulations on selected compounds, we identify large classes of non-collinear magnet candidates and demonstrate that the current-driven torque is of similar magnitude as the celebrated spin-orbit torque in conventional transition metal structures. We also show that this torque can exist in an insulating material, which could allow for highly efficient electrical control of magnetic order.
Collapse
Affiliation(s)
- Rafael González-Hernández
- Grupó de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla, Colombia.
| | - Philipp Ritzinger
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic
| | - Karel Výborný
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic
| | - Jakub Železný
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00, Praha 6, Czech Republic.
| | | |
Collapse
|
3
|
Chen H, Liu L, Zhou X, Meng Z, Wang X, Duan Z, Zhao G, Yan H, Qin P, Liu Z. Emerging Antiferromagnets for Spintronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310379. [PMID: 38183310 DOI: 10.1002/adma.202310379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Antiferromagnets constitute promising contender materials for next-generation spintronic devices with superior stability, scalability, and dynamics. Nevertheless, the perception of well-established ferromagnetic spintronics underpinned by spontaneous magnetization seemed to indicate the inadequacy of antiferromagnets for spintronics-their compensated magnetization has been perceived to result in uncontrollable antiferromagnetic order and subtle magnetoelectronic responses. However, remarkable advancements have been achieved in antiferromagnetic spintronics in recent years, with consecutive unanticipated discoveries substantiating the feasibility of antiferromagnet-centered spintronic devices. It is emphasized that, distinct from ferromagnets, the richness in complex antiferromagnetic crystal structures is the unique and essential virtue of antiferromagnets that can open up their endless possibilities of novel phenomena and functionality for spintronics. In this Perspective, the recent progress in antiferromagnetic spintronics is reviewed, with a particular focus on that based on several kinds of antiferromagnets with special antiferromagnetic crystal structures. The latest developments in efficiently manipulating antiferromagnetic order, exploring novel antiferromagnetic physical responses, and demonstrating prototype antiferromagnetic spintronic devices are discussed. An outlook on future research directions is also provided. It is hoped that this Perspective can serve as guidance for readers who are interested in this field and encourage unprecedented studies on antiferromagnetic spintronic materials, phenomena, and devices.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Li Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaorong Zhou
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ziang Meng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoning Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhiyuan Duan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Guojian Zhao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Han Yan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Peixin Qin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Zhiqi Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
4
|
Zhu YP, Chen X, Liu XR, Liu Y, Liu P, Zha H, Qu G, Hong C, Li J, Jiang Z, Ma XM, Hao YJ, Zhu MY, Liu W, Zeng M, Jayaram S, Lenger M, Ding J, Mo S, Tanaka K, Arita M, Liu Z, Ye M, Shen D, Wrachtrup J, Huang Y, He RH, Qiao S, Liu Q, Liu C. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 2024; 626:523-528. [PMID: 38356068 DOI: 10.1038/s41586-024-07023-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Spatial, momentum and energy separation of electronic spins in condensed-matter systems guides the development of new devices in which spin-polarized current is generated and manipulated1-3. Recent attention on a set of previously overlooked symmetry operations in magnetic materials4 leads to the emergence of a new type of spin splitting, enabling giant and momentum-dependent spin polarization of energy bands on selected antiferromagnets5-10. Despite the ever-growing theoretical predictions, the direct spectroscopic proof of such spin splitting is still lacking. Here we provide solid spectroscopic and computational evidence for the existence of such materials. In the noncoplanar antiferromagnet manganese ditelluride (MnTe2), the in-plane components of spin are found to be antisymmetric about the high-symmetry planes of the Brillouin zone, comprising a plaid-like spin texture in the antiferromagnetic (AFM) ground state. Such an unconventional spin pattern, further found to diminish at the high-temperature paramagnetic state, originates from the intrinsic AFM order instead of spin-orbit coupling (SOC). Our finding demonstrates a new type of quadratic spin texture induced by time-reversal breaking, placing AFM spintronics on a firm basis and paving the way for studying exotic quantum phenomena in related materials.
Collapse
Affiliation(s)
- Yu-Peng Zhu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xiaobing Chen
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xiang-Rui Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yuntian Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Pengfei Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Heming Zha
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Gexing Qu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Caiyun Hong
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, Westlake University, Hangzhou, China
| | - Jiayu Li
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Zhicheng Jiang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Ming Ma
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yu-Jie Hao
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Ming-Yuan Zhu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Wenjing Liu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Zeng
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Sreehari Jayaram
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Malik Lenger
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Jianyang Ding
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shu Mo
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Kiyohisa Tanaka
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Japan
| | - Masashi Arita
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Japan
| | - Zhengtai Liu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mao Ye
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dawei Shen
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jörg Wrachtrup
- 3rd Institute of Physics, University of Stuttgart, Stuttgart, Germany
- Center for Integrated Quantum Science and Technology (IQST), University of Stuttgart, Stuttgart, Germany
- Center for Applied Quantum Technology, University of Stuttgart, Stuttgart, Germany
| | - Yaobo Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Rui-Hua He
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, Westlake University, Hangzhou, China
| | - Shan Qiao
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Qihang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China.
| | - Chang Liu
- Department of Physics and Shenzhen Institute for Quantum Science and Engineering (SIQSE), Southern University of Science and Technology (SUSTech), Shenzhen, China.
| |
Collapse
|
5
|
Xie H, Zhang N, Ma Y, Chen X, Ke L, Wu Y. Efficient Noncollinear Antiferromagnetic State Switching Induced by the Orbital Hall Effect in Chromium. NANO LETTERS 2023; 23:10274-10281. [PMID: 37909311 DOI: 10.1021/acs.nanolett.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Recently, orbital Hall current has attracted attention as an alternative method to switch the magnetization of ferromagnets. Here we present our findings on electrical switching of the antiferromagnetic state in Mn3Sn/Cr, where despite the much smaller spin Hall angle of Cr, the switching current density is comparable to heavy metal-based heterostructures. However, the inverse process, i.e., spin-to-charge conversion in Cr-based heterostructures, is much less efficient than the Pt-based equivalents, as manifested in the 1 order of magnitude smaller terahertz emission intensity and spin current-induced magnetoresistance. These results in combination with the slow decay of terahertz emission against Cr thickness (diffusion length of ∼11 nm) suggest that the observed magnetic switching can be attributed to orbital current generation in Cr, followed by efficient conversion to spin current. Our work demonstrates the potential of light metals like Cr as efficient orbital/spin current sources for antiferromagnetic spintronics.
Collapse
Affiliation(s)
- Hang Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Nan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634, Singapore
| | - Yuteng Ma
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- National University of Singapore (Chong Qing) Research Institute, Chongqing Liang Jiang New Area, Chongqing 401123, China
| | - Xin Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Lin Ke
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634, Singapore
| | - Yihong Wu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- National University of Singapore (Chong Qing) Research Institute, Chongqing Liang Jiang New Area, Chongqing 401123, China
| |
Collapse
|
6
|
Shao DF, Jiang YY, Ding J, Zhang SH, Wang ZA, Xiao RC, Gurung G, Lu WJ, Sun YP, Tsymbal EY. Néel Spin Currents in Antiferromagnets. PHYSICAL REVIEW LETTERS 2023; 130:216702. [PMID: 37295086 DOI: 10.1103/physrevlett.130.216702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023]
Abstract
Ferromagnets are known to support spin-polarized currents that control various spin-dependent transport phenomena useful for spintronics. On the contrary, fully compensated antiferromagnets are expected to support only globally spin-neutral currents. Here, we demonstrate that these globally spin-neutral currents can represent the Néel spin currents, i.e., staggered spin currents flowing through different magnetic sublattices. The Néel spin currents emerge in antiferromagnets with strong intrasublattice coupling (hopping) and drive the spin-dependent transport phenomena such as tunneling magnetoresistance (TMR) and spin-transfer torque (STT) in antiferromagnetic tunnel junctions (AFMTJs). Using RuO_{2} and Fe_{4}GeTe_{2} as representative antiferromagnets, we predict that the Néel spin currents with a strong staggered spin polarization produce a sizable fieldlike STT capable of the deterministic switching of the Néel vector in the associated AFMTJs. Our work uncovers the previously unexplored potential of fully compensated antiferromagnets and paves a new route to realize the efficient writing and reading of information for antiferromagnetic spintronics.
Collapse
Affiliation(s)
- Ding-Fu Shao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Yuan-Yuan Jiang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jun Ding
- College of Science, Henan University of Engineering, Zhengzhou 451191, People's Republic of China
| | - Shu-Hui Zhang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zi-An Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Rui-Chun Xiao
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gautam Gurung
- Trinity College, University of Oxford, Broad Street, Oxford, OX1 3BH, United Kingdom
| | - W J Lu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Y P Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Microstructures, Nanjing University, Nanjing 210093, China
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| |
Collapse
|
7
|
Ojo OP, Gunatilleke WDCB, Biacchi AJ, Wang H, Nolas GS. Thermal and Electronic Properties of Ba 2MnSe 3. Inorg Chem 2023; 62:3555-3561. [PMID: 36791428 DOI: 10.1021/acs.inorgchem.2c04048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The structural, thermal, and electronic properties of Ba2MnSe3 were investigated. Analysis of the low-temperature heat capacity revealed a low Debye temperature and a low average speed of sound that, together with the bonding in this material, result in a low thermal conductivity over a relatively large temperature range. Density functional theory and calculated electron localization were employed to investigate the electronic structure and bonding. Absorption and photoluminescence spectroscopy measurements corroborated our calculations and revealed a direct band gap of 1.75 eV. This study expands on our understanding of the physical properties of this material and reveals previously unascertained properties, the knowledge of which is imperative for any potential application of interest.
Collapse
Affiliation(s)
- Oluwagbemiga P Ojo
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | | | - Adam J Biacchi
- Nanoscale Device Characterization Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Hsin Wang
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - George S Nolas
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
8
|
Xie H, Chen X, Zhang Q, Mu Z, Zhang X, Yan B, Wu Y. Magnetization switching in polycrystalline Mn 3Sn thin film induced by self-generated spin-polarized current. Nat Commun 2022; 13:5744. [PMID: 36180425 PMCID: PMC9525633 DOI: 10.1038/s41467-022-33345-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical manipulation of spins is essential to design state-of-the-art spintronic devices and commonly relies on the spin current injected from a second heavy-metal material. The fact that chiral antiferromagnets produce spin current inspires us to explore the magnetization switching of chiral spins using self-generated spin torque. Here, we demonstrate the electric switching of noncollinear antiferromagnetic state in Mn3Sn by observing a crossover from conventional spin-orbit torque to the self-generated spin torque when increasing the MgO thickness in Ta/MgO/Mn3Sn polycrystalline films. The spin current injection from the Ta layer can be controlled and even blocked by varying the MgO thickness, but the switching sustains even at a large MgO thickness. Furthermore, the switching polarity reverses when the MgO thickness exceeds around 3 nm, which cannot be explained by the spin-orbit torque scenario due to spin current injection from the Ta layer. Evident current-induced switching is also observed in MgO/Mn3Sn and Ti/Mn3Sn bilayers, where external injection of spin Hall current to Mn3Sn is negligible. The inter-grain spin-transfer torque induced by spin-polarized current explains the experimental observations. Our findings provide an alternative pathway for electrical manipulation of non-collinear antiferromagnetic state without resorting to the conventional bilayer structure. Under an applied current, chiral antiferromagnets, such as Mn3Sn, can produce a spin-polarized current. Here, by varying the thickness of a buffering layer, the authors show that this spin-polarized current can drive self-induced switching in polycrystalline Mn3Sn.
Collapse
Affiliation(s)
- Hang Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Xin Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Qi Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.,Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Rd. 1088, Shenzhen, 518055, China
| | - Zhiqiang Mu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xinhai Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Rd. 1088, Shenzhen, 518055, China
| | - Binghai Yan
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Yihong Wu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| |
Collapse
|