1
|
Hans A, Kiefer N, Marder L, Küstner-Wetekam C, Heikura E, Golchert N, Viehmann JH, Cubaynes D, Ismail I, Trinter F, Lablanquie P, Palaudoux J, Ehresmann A, Penent F. Experimental Realization of Auger Decay in the Field of a Positive Elementary Charge. PHYSICAL REVIEW LETTERS 2024; 132:203002. [PMID: 38829076 DOI: 10.1103/physrevlett.132.203002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Auger electron spectroscopy is an omnipresent experimental tool in many fields of fundamental research and applied science. The determination of the kinetic energies of the Auger electrons yields information about the element emitting the electron and its chemical environment at the time of emission. Here, we present an experimental approach to determine Auger spectra for emitter sites in the vicinity of a positive elementary charge based on electron-electron-electron and electron-electron-photon coincidence spectroscopy. We observe a characteristic redshift of the Auger spectrum caused by the Coulomb interaction with the charged environment. Our results are relevant for the interpretation of Auger spectra of extended systems like large molecules, clusters, liquids, and solids, in particular in high-intensity radiation fields which are nowadays routinely available, e.g., at x-ray free-electron laser facilities. The effect has been widely ignored in the literature so far, and some interpretations of Auger spectra from clusters might need to be revisited.
Collapse
Affiliation(s)
- Andreas Hans
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Nils Kiefer
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Lutz Marder
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Catmarna Küstner-Wetekam
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Emilia Heikura
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Niklas Golchert
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Johannes H Viehmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Denis Cubaynes
- Institut des Sciences Moléculaires d'Orsay, CNRS, Bâtiment 520, Université Paris-Sud and Paris-Saclay, 91405 Orsay-Cedex, France
| | - Iyas Ismail
- Laboratoire de Chimie Physique - Matière et Rayonnement, Sorbonne Université, CNRS, LCP-MR, 75005 Paris Cedex 05, France
| | - Florian Trinter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Pascal Lablanquie
- Laboratoire de Chimie Physique - Matière et Rayonnement, Sorbonne Université, CNRS, LCP-MR, 75005 Paris Cedex 05, France
| | - Jérôme Palaudoux
- Laboratoire de Chimie Physique - Matière et Rayonnement, Sorbonne Université, CNRS, LCP-MR, 75005 Paris Cedex 05, France
| | - Arno Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Francis Penent
- Laboratoire de Chimie Physique - Matière et Rayonnement, Sorbonne Université, CNRS, LCP-MR, 75005 Paris Cedex 05, France
| |
Collapse
|
2
|
Tran S, Tran KC, Saenz Rodriguez A, Kong W. Kinetic energy distributions of atomic ions from disintegration of argon containing nanoclusters in moderately intense nanosecond laser fields: Coulomb explosion or hydrodynamic expansion. Phys Chem Chem Phys 2024; 26:8631-8640. [PMID: 38436420 DOI: 10.1039/d3cp05894h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
We report kinetic energies (KE) of multiply charged atomic ions (MCAI) from interactions of moderately intense nanosecond lasers at 532 nm with argon containing clusters, including neat and doped clusters with a trace amount of trichlorobenzene. We develop a mathematical method to retrieve speed and thereby kinetic energy information from analyzing the time-of-flight profiles of the MCAI. This method should be generally applicable in detections of energetic charged particles with high velocities, a realm where velocity map imaging is inadequate. From this analysis, we discover that the KE of MCAI from doped clusters demonstrates a quadratic dependence on the charge of the atomic ions, while for neat clusters, the dependence is cubic. This result confirms the nature of the cluster disintegration process to be dominated by Coulomb explosion. This result bears more similarity to reports from extreme vacuum ultraviolet (EUV) fields with similar intensities, than to reports from near infrared (NIR) intense laser fields. However, the charge state distribution from our experiment is the opposite: we observe more higher charge state ions than reported in EUV fields, and our charge state distribution is actually similar to those reported in NIR fields. We also report a significant effect of the external electric field on the charge state distribution of the atomic ions: the presence of an electric field can significantly increase the charge from the atomic ions, as shown by a three-fold reduction in the average kinetic energy per charge. Although molecular dynamics simulations have been implemented for experiments in the EUV and NIR, our results allude to the need of a concerted effort in this regime of moderately intense nanosecond laser fields. The significant decrease in charge state distribution and the significant increase in KE from doped clusters, compared with neat clusters, is a telltale sign that the true interaction time between the laser field and the cluster may be substantially shorter than the duration of the laser, a welcome relief for molecular dynamics simulations.
Collapse
Affiliation(s)
- Steven Tran
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.
| | - Kim C Tran
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.
| | - Axel Saenz Rodriguez
- Department of Mathematics, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331, USA.
| |
Collapse
|
3
|
Yao Y, Zhang J, Pandey R, Wu D, Kong W, Xue L. Intensity dependence of multiply charged atomic ions from argon clusters in moderate nanosecond laser fields. J Chem Phys 2021; 155:144301. [PMID: 34654315 DOI: 10.1063/5.0065086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We report the laser intensity dependence of multiply charged atomic ions (MCAIs) Arn+ with 2 ≤ n ≤ 8 from argon clusters in focused nanosecond laser fields at 532 nm. The laser field, in the range of 1011-1012 W/cm2, is insufficient for optical field ionization but is adequate for multiphoton ionization. The MCAI sections of the mass spectra for clusters containing 3700 and 26 000 atoms are dominated by Arn+ with 7 ≤ n ≤ 9, extending to Ar14+. While the distributions of the MCAIs remain largely constant throughout the intensity range of the laser, the abundance of Ar+ relative to the abundances of the MCAIs increases dramatically with increasing laser intensity. Consequently, exponential fittings of the yields result in a larger exponent for Ar+ than for MCAIs, and the exponents of MCAIs with 2 ≤ n ≤ 8 are similar, with only slight variations for different charge states. The width of the arrival time and, hence, the corresponding kinetic energy of Ar+ also increases with increasing laser intensities, while the width of the arrival time of MCAIs remains constant throughout the range of measurements. These results call for more detailed theoretical investigations in this regime of laser-matter interactions.
Collapse
Affiliation(s)
- Yuzhong Yao
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Rahul Pandey
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Di Wu
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Lan Xue
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
4
|
Rupp D, Flückiger L, Adolph M, Colombo A, Gorkhover T, Harmand M, Krikunova M, Müller JP, Oelze T, Ovcharenko Y, Richter M, Sauppe M, Schorb S, Treusch R, Wolter D, Bostedt C, Möller T. Imaging plasma formation in isolated nanoparticles with ultrafast resonant scattering. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:034303. [PMID: 32596413 PMCID: PMC7304997 DOI: 10.1063/4.0000006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We have recorded the diffraction patterns from individual xenon clusters irradiated with intense extreme ultraviolet pulses to investigate the influence of light-induced electronic changes on the scattering response. The clusters were irradiated with short wavelength pulses in the wavelength regime of different 4d inner-shell resonances of neutral and ionic xenon, resulting in distinctly different optical properties from areas in the clusters with lower or higher charge states. The data show the emergence of a transient structure with a spatial extension of tens of nanometers within the otherwise homogeneous sample. Simulations indicate that ionization and nanoplasma formation result in a light-induced outer shell in the cluster with a strongly altered refractive index. The presented resonant scattering approach enables imaging of ultrafast electron dynamics on their natural timescale.
Collapse
Affiliation(s)
- Daniela Rupp
- Authors to whom correspondence should be addressed: and
| | | | - Marcus Adolph
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Tais Gorkhover
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, California 94305, USA
| | | | | | | | - Tim Oelze
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Maria Richter
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| | | | | | | | | | | | - Thomas Möller
- IOAP, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
5
|
Multispectroscopic Study of Single Xe Clusters Using XFEL Pulses. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9224932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
X-ray free-electron lasers (XFELs) deliver ultrashort coherent laser pulses in the X-ray spectral regime, enabling novel investigations into the structure of individual nanoscale samples. In this work, we demonstrate how single-shot small-angle X-ray scattering (SAXS) measurements combined with fluorescence and ion time-of-flight (TOF) spectroscopy can be used to obtain size- and structure-selective evaluation of the light-matter interaction processes on the nanoscale. We recorded the SAXS images of single xenon clusters using XFEL pulses provided by the SPring-8 Angstrom compact free-electron laser (SACLA). The XFEL fluences and the radii of the clusters at the reaction point were evaluated and the ion TOF spectra and fluorescence spectra were sorted accordingly. We found that the XFEL fluence and cluster size extracted from the diffraction patterns showed a clear correlation with the fluorescence and ion TOF spectra. Our results demonstrate the effectiveness of the multispectroscopic approach for exploring laser–matter interaction in the X-ray regime without the influence of the size distribution of samples and the fluence distribution of the incident XFEL pulses.
Collapse
|
6
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schütte B, Arbeiter M, Mermillod-Blondin A, Vrakking MJJ, Rouzée A, Fennel T. Ionization Avalanching in Clusters Ignited by Extreme-Ultraviolet Driven Seed Electrons. PHYSICAL REVIEW LETTERS 2016; 116:033001. [PMID: 26849590 DOI: 10.1103/physrevlett.116.033001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 06/05/2023]
Abstract
We study the ionization dynamics of Ar clusters exposed to ultrashort near-infrared (NIR) laser pulses for intensities well below the threshold at which tunnel ionization ignites nanoplasma formation. We find that the emission of highly charged ions up to Ar^{8+} can be switched on with unit contrast by generating only a few seed electrons with an ultrashort extreme-ultraviolet (XUV) pulse prior to the NIR field. Molecular dynamics simulations can explain the experimental observations and predict a generic scenario where efficient heating via inverse bremsstrahlung and NIR avalanching is followed by resonant collective nanoplasma heating. The temporally and spatially well-controlled injection of the XUV seed electrons opens new routes for controlling avalanching and heating phenomena in nanostructures and solids, with implications for both fundamental and applied laser-matter science.
Collapse
Affiliation(s)
- Bernd Schütte
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Mathias Arbeiter
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| | | | | | - Arnaud Rouzée
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Thomas Fennel
- Institute of Physics, University of Rostock, Albert-Einstein-Straße 23, 18059 Rostock, Germany
| |
Collapse
|
8
|
Thomas H, Helal A, Hoffmann K, Kandadai N, Keto J, Andreasson J, Iwan B, Seibert M, Timneanu N, Hajdu J, Adolph M, Gorkhover T, Rupp D, Schorb S, Möller T, Doumy G, DiMauro LF, Hoener M, Murphy B, Berrah N, Messerschmidt M, Bozek J, Bostedt C, Ditmire T. Explosions of xenon clusters in ultraintense femtosecond x-ray pulses from the LCLS free electron laser. PHYSICAL REVIEW LETTERS 2012; 108:133401. [PMID: 22540697 DOI: 10.1103/physrevlett.108.133401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 10/21/2011] [Indexed: 05/31/2023]
Abstract
Explosions of large Xe clusters (<N> ~ 11,000) irradiated by femtosecond pulses of 850 eV x-ray photons focused to an intensity of up to 10(17) W/cm(2) from the Linac Coherent Light Source were investigated experimentally. Measurements of ion charge-state distributions and energy spectra exhibit strong evidence for the formation of a Xe nanoplasma in the intense x-ray pulse. This x-ray produced Xe nanoplasma is accompanied by a three-body recombination and hydrodynamic expansion. These experimental results appear to be consistent with a model in which a spherically exploding nanoplasma is formed inside the Xe cluster and where the plasma temperature is determined by photoionization heating.
Collapse
Affiliation(s)
- H Thomas
- Texas Center for High Intensity Laser Science, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ziaja B, Wabnitz H, Wang F, Weckert E, Möller T. Energetics, ionization, and expansion dynamics of atomic clusters irradiated with short intense vacuum-ultraviolet pulses. PHYSICAL REVIEW LETTERS 2009; 102:205002. [PMID: 19519035 DOI: 10.1103/physrevlett.102.205002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Indexed: 05/27/2023]
Abstract
Kinetic equations are used to model the dynamics of Xe clusters irradiated with short, intense vacuum-ultraviolet pulses. Various cluster size and pulse fluences are considered. It is found that the highly charged ions observed in the experiments are mainly due to Coulomb explosion of the outer cluster shell. Ions within the cluster core predominantly recombine with plasma electrons, forming a large fraction of neutral atoms. To our knowledge, our model is the first and only one that gives an accurate description of all of the experimental data collected from atomic clusters at 100 nm photon wavelength.
Collapse
Affiliation(s)
- B Ziaja
- Hamburger Synchrotronstrahlungslabor, Deutsches Elektronen-Synchrotron, D-22607 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
10
|
Murphy BF, Hoffmann K, Belolipetski A, Keto J, Ditmire T. Explosion of xenon clusters driven by intense femtosecond pulses of extreme ultraviolet light. PHYSICAL REVIEW LETTERS 2008; 101:203401. [PMID: 19113338 DOI: 10.1103/physrevlett.101.203401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Indexed: 05/27/2023]
Abstract
The explosions of large xenon clusters irradiated by intense, femtosecond extreme ultraviolet pulses at a wavelength of 38 nm have been studied. Using high harmonic generation from a 35 fs laser, clusters have been irradiated by extreme ultraviolet pulses at intensity approaching 10;{11} W/cm;{2}. Charge states up to Xe8+ are observed, states well above those produced by single atom illumination, indicating that plasma continuum lowering is important. Furthermore, the kinetic energy distribution of the exploding ions is consistent with a quasineutral hydrodynamic expansion, rather than a Coulomb explosion.
Collapse
Affiliation(s)
- B F Murphy
- Texas Center for High Intensity Laser Science, Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
11
|
Bostedt C, Thomas H, Hoener M, Eremina E, Fennel T, Meiwes-Broer KH, Wabnitz H, Kuhlmann M, Plönjes E, Tiedtke K, Treusch R, Feldhaus J, de Castro ARB, Möller T. Multistep ionization of argon clusters in intense femtosecond extreme ultraviolet pulses. PHYSICAL REVIEW LETTERS 2008; 100:133401. [PMID: 18517951 DOI: 10.1103/physrevlett.100.133401] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Indexed: 05/26/2023]
Abstract
The interaction of intense extreme ultraviolet femtosecond laser pulses (lambda = 32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10(13) W/cm(2), we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find no evidence for electron emission from plasma heating processes.
Collapse
Affiliation(s)
- C Bostedt
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Eugene-Wigner-Bldg. EW 3-1, Hardenbergstr. 36, 10623 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Heidenreich A, Last I, Jortner J. Simulations of Extreme Ionization and Electron Dynamics in Ultraintense Laser-Cluster Interactions. Isr J Chem 2007. [DOI: 10.1560/ijc.47.1.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
13
|
Heidenreich A, Last I, Jortner J. Extreme multielectron ionization of elemental clusters in ultraintense laser fields. Isr J Chem 2007. [DOI: 10.1560/ijc.47.2.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Georgescu I, Saalmann U, Rost JM. Attosecond resolved charging of ions in a rare-gas cluster. PHYSICAL REVIEW LETTERS 2007; 99:183002. [PMID: 17995403 DOI: 10.1103/physrevlett.99.183002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Indexed: 05/25/2023]
Abstract
A scheme to probe dissipative multielectron motion in time is introduced. In this context attosecond probing enables one to obtain information which is lost at later times and cannot be retrieved by conventional methods in the energy domain due to the incoherent nature of the dynamics. As a specific example we will trace the transient charging of ions in a rare-gas cluster during a strong femtosecond vacuum-ultraviolet pulse by means of delayed attosecond pulses.
Collapse
Affiliation(s)
- Ionuţ Georgescu
- Max Planck Institute for Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | | | | |
Collapse
|
15
|
Heidenreich A, Last I, Jortner J. Extreme ionization of Xe clusters driven by ultraintense laser fields. J Chem Phys 2007; 127:074305. [PMID: 17718611 DOI: 10.1063/1.2762217] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe(n) clusters (n=2-2171, initial cluster radius R(0)=2.16-31.0 A) driven by ultraintense infrared Gaussian laser fields (peak intensity I(M)=10(15)-10(20) W cm(-2), temporal pulse length tau=10-100 fs, and frequency nu=0.35 fs(-1)). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of [Xe(q+)](n) with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of the inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I(M)=10(18)-10(20) W cm(-2)) inner ionization is dominated by BSI. At lower intensities (I(M)=10(15)-10(16) W cm(-2)), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the [Xe(q+)](n) ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe(2171) at tau=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I(M)=10(15)-10(16) W cm(-2) establishes an ultraintense laser pulse length control mechanism of extreme ionization products.
Collapse
|
16
|
Namba S, Hasegawa N, Nishikino M, Kawachi T, Kishimoto M, Sukegawa K, Tanaka M, Ochi Y, Takiyama K, Nagashima K. Enhancement of double auger decay probability in xenon clusters irradiated with a soft-x-ray laser pulse. PHYSICAL REVIEW LETTERS 2007; 99:043004. [PMID: 17678361 DOI: 10.1103/physrevlett.99.043004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Indexed: 05/16/2023]
Abstract
The interaction of large Xe clusters with a soft x-ray laser pulse having a wavelength of 13.9 nm and an intensity of up to 2x10(10) W/cm2 was investigated using a time-of-flight ion mass spectrometer. The corresponding laser photon energy was sufficiently high to photoionize Xe 4d innershell electrons. It was found that Xe3+ ions (which result from double Auger decay of 4d vacancies) became the dominant final ionic product with increasing cluster size and x-ray intensity. This is in contrast to the results of synchrotron radiation experiments involving free Xe atoms, in which Xe2+ is the dominant resultant ion species. Possible mechanisms responsible for the enhancement of the double Auger transition probability in x-ray laser and cluster interaction are discussed.
Collapse
Affiliation(s)
- S Namba
- Graduate School of Engineering, Hiroshima University, Kagamiyama 1-4-1, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kundu M, Bauer D. Nonlinear resonance absorption in the laser-cluster interaction. PHYSICAL REVIEW LETTERS 2006; 96:123401. [PMID: 16605903 DOI: 10.1103/physrevlett.96.123401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Indexed: 05/08/2023]
Abstract
Rare-gas or metal clusters are known to absorb laser energy very efficiently. Upon cluster expansion, the Mie plasma frequency may become equal to the laser frequency. This linear resonance has been well studied both experimentally and theoretically employing pump probe schemes. In this work, we focus on the few-cycle regime or the early stage of the cluster dynamics, where linear resonance is not met but, nevertheless, efficient absorption of laser energy persists. By retrieving time-dependent oscillator frequencies from particle-in-cell simulation results, we show that nonlinear resonance is the dominant mechanism behind outer ionization and energy absorption in near infrared laser-driven clusters.
Collapse
Affiliation(s)
- M Kundu
- Max-Planck-Institut für Kernphysik, Postfach 103980, 69029 Heidelberg, Germany
| | | |
Collapse
|
18
|
Laarmann T, Rusek M, Wabnitz H, Schulz J, de Castro ARB, Gürtler P, Laasch W, Möller T. Emission of thermally activated electrons from rare gas clusters irradiated with intense VUV light pulses from a free electron laser. PHYSICAL REVIEW LETTERS 2005; 95:063402. [PMID: 16090951 DOI: 10.1103/physrevlett.95.063402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Indexed: 05/03/2023]
Abstract
The ionization dynamics of Ar and Xe clusters irradiated with intense vacuum ultraviolet light from a free-electron laser is investigated using photoelectron spectroscopy. Clusters comprising between 70 and 900 atoms were irradiated with femtosecond pulses at 95 nm wavelength (approximately 13 eV photon energy) and a peak intensity of approximately 4 x 10(12) W/cm2. A broad thermal distribution of emitted electrons from clusters with a maximum kinetic energy up to 30-40 eV is observed. The observation of relatively low-energy photoelectrons is in good agreement with calculations using a time-dependent Thomas-Fermi model and gives experimental evidence of an outer ionization process of the clusters, due to delayed thermoelectronic emission.
Collapse
Affiliation(s)
- T Laarmann
- Max-Born-Institute, Max-Born Strasse 2a, D-12489 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Førre M, Selstø S, Hansen JP, Madsen LB. Exact nondipole Kramers-Henneberger form of the light-atom hamiltonian: an application to atomic stabilization and photoelectron energy spectra. PHYSICAL REVIEW LETTERS 2005; 95:043601. [PMID: 16090806 DOI: 10.1103/physrevlett.95.043601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Indexed: 05/03/2023]
Abstract
The exact nondipole minimal-coupling Hamiltonian for an atom interacting with an explicitly time- and space-dependent laser field is transformed into the rest frame of a classical free electron in the laser field, i.e., into the Kramers-Henneberger frame. The new form of the Hamiltonian is used to study nondipole effects in the high-intensity, high-frequency regime. Fully three-dimensional nondipole ab initio wave packet calculations show that the ionization probability may decrease for increasing field strength. We identify a unique signature for the onset of this dynamical stabilization effect in the photoelectron spectrum.
Collapse
Affiliation(s)
- M Førre
- Department of Physics and Technology, University of Bergen, Norway
| | | | | | | |
Collapse
|
20
|
Petrov GM, Davis J, Velikovich AL, Kepple PC, Dasgupta A, Clark RW, Borisov AB, Boyer K, Rhodes CK. Modeling of clusters in a strong 248-nm laser field by a three-dimensional relativistic molecular dynamic model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:036411. [PMID: 15903592 DOI: 10.1103/physreve.71.036411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 01/21/2005] [Indexed: 05/02/2023]
Abstract
A relativistic time-dependent three-dimensional particle simulation model has been developed to study the interaction of intense ultrashort KrF (248 nm) laser pulses with small Xe clusters. The trajectories of the electrons and ions are treated classically according to the relativistic equation of motion. The model has been applied to a different regime of ultrahigh intensities extending to 10(21) W/ cm(2). In particular, the behavior of the interaction with the clusters from intensities of approximately 10(15) W/cm(2) to intensities sufficient for a transition to the so-called "collective oscillation model" has been explored. At peak intensities below 10(20) W/cm(2), all electrons are removed from the cluster and form a plasma. It is found that the "collective oscillation model" commences at intensities in excess of 10(20) W/cm(2), the range that can be reached in stable relativistic channels. At these high intensities, the magnetic field has a profound effect on the shape and trajectory of the electron cloud. Specifically, the electrons are accelerated to relativistic velocities with energies exceeding 1 MeV in the direction of laser propagation and the magnetic field distorts the shape of the electron cloud to give the form of a pancake.
Collapse
Affiliation(s)
- G M Petrov
- Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | | | |
Collapse
|