1
|
Harte N, Obrist D, Caversaccio M, Lajoinie G, Wimmer W. Transverse flow under oscillating stimulation in helical square ducts with cochlea-like geometrical curvature and torsion. EUROPEAN JOURNAL OF MECHANICS. B, FLUIDS 2024; 107:165-174. [PMID: 39220585 PMCID: PMC11327769 DOI: 10.1016/j.euromechflu.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/24/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
The cochlea, situated within the inner ear, is a spiral-shaped, liquid-filled organ responsible for hearing. The physiological significance of its shape remains uncertain. Previous research has scarcely addressed the occurrence of transverse flow within the cochlea, particularly in relation to its unique shape. This study aims to investigate the impact of the geometric features of the cochlea on fluid dynamics by characterizing transverse flow induced by harmonically oscillating axial flow in square ducts with curvature and torsion resembling human cochlear anatomy. We examined four geometries to investigate curvature and torsion effects on axial and transverse flow components. Twelve frequencies from 0.125 Hz to 256 Hz were studied, covering infrasound and low-frequency hearing, with mean inlet velocity amplitudes representing levels expected for normal conversation or louder situations. Our simulations show that torsion contributes significantly to transverse flow in unsteady conditions, and that its contribution increases with increasing oscillation frequency. Curvature alone has a small effect on transverse flow strength, which decreases rapidly with increasing frequency. Strikingly, the combined effect of curvature and torsion on transverse flow is greater than expected from a simple superposition of the two effects, especially when the relative contribution of curvature alone becomes negligible. These findings may be relevant to understanding physiological processes in the cochlea, including metabolite transport and wall shear stress. Further studies are needed to investigate possible implications for cochlear mechanics.
Collapse
Affiliation(s)
- N.C. Harte
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - D. Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - M. Caversaccio
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Bern University Hospital, Bern, Switzerland
| | - G.P.R. Lajoinie
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Technical Medical (TechMed) Center, University of Twente, Enschede, The Netherlands
| | - W. Wimmer
- Department of Otorhinolaryngology, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
2
|
Zhao Z, Liang J, Yao W. The Impact of the Fluid-Solid Coupling Behavior of Macro and Microstructures in the Spiral Cochlea on Hearing. J Biomech Eng 2024; 146:061001. [PMID: 38470372 DOI: 10.1115/1.4065043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
The cilia of the outer hair cells (OHCs) are the key microstructures involved in cochlear acoustic function, and their interactions with lymph in the cochlea involve complex, highly nonlinear, coupled motion and energy conversions, including macroscopic fluid-solid coupling. Recent optical measurements have shown that the frequency selectivity of the cochlea at high sound levels is entirely mechanical and is determined by the interactions of the hair bundles with the surrounding fluid. In this paper, an analytical mathematical model of the spiral cochlea containing macro- and micromeasurements was developed to investigate how the phonosensitive function of OHCs' motions is influenced by the macrostructural and microstructural fluid-solid coupling in the spiral cochlea. The results showed that the macrostructural and microstructural fluid-solid coupling exerted the radial forces of OHCs through the flow field, deflecting the cilia and generating frequency-selective properties of the microstructures. This finding showed that microstructural frequency selectivity arises from the radial motions of stereocilia hair bundles and enhances the hearing of sound signals at specific frequencies. It also implied that the macrostructural and microstructural fluid-solid couplings influence the OHCs' radial forces and that this is a key factor in the excitation of ion channels that enables their activity in helping the brain to detect sound.
Collapse
Affiliation(s)
- Zhengshan Zhao
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
| | - Junyi Liang
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106
| | - Wenjuan Yao
- School of Mechanics and Engineering Science, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
| |
Collapse
|
3
|
Dickinson E, Tomblin E, Rose M, Tate Z, Gottimukkula M, Granatosky MC, Santana SE, Hartstone-Rose A. Ecomorphological correlates of inner and middle ear anatomy within phyllostomid bats. Anat Rec (Hoboken) 2023; 306:2751-2764. [PMID: 36823766 DOI: 10.1002/ar.25178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Echolocation is the primary sense used by most bats to navigate their environment. However, the influence of echolocating behaviors upon the morphology of the auditory apparatus remains largely uninvestigated. While it is known that middle ear ossicle size scales positively with body mass across mammals, and that peak call frequency scales negatively with body mass among bats, there are still large gaps in our understanding of the degree to which allometry or ecology influences the morphology of the chiropteran auditory apparatus. To investigate this, we used μCT datasets to quantify three morphological components of the inner and middle ear: ossicle size, ossicle shape, and cochlear spirality. These data were collected across 27 phyllostomid species, spanning a broad range of body sizes, habitats, and dietary categories, and the relationships between these variables and ear morphology were assessed using a comparative phylogenetic approach. Ossicle size consistently scaled with strong negative allometry relative to body mass. Cochlear spirality was significantly (p = .025) associated with wing aspect ratio (a proxy for habitat use) but was not associated with body mass. From a morphological perspective, the malleus and incus exhibited some variation in kind with diet and call frequency, while stapes morphology is more closely tied to body size. Future work will assess these relationships within other chiropteran lineages, and investigate potential morphological differences in the middle and inner ear of echolocating-vs-non-echolocating taxa.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, New York Institute of Technology, Old Westbury, New York, USA
| | - Emily Tomblin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Madison Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Zoe Tate
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mihika Gottimukkula
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology, Old Westbury, New York, USA
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, USA
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Cohen R, Taiber S, Loza O, Kasirer S, Woland S, Sprinzak D. Precise alternating cellular pattern in the inner ear by coordinated hopping intercalations and delaminations. SCIENCE ADVANCES 2023; 9:eadd2157. [PMID: 36812313 DOI: 10.1126/sciadv.add2157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The mammalian hearing organ, the organ of Corti, is one of the most organized tissues in mammals. It contains a precisely positioned array of alternating sensory hair cells (HCs) and nonsensory supporting cells. How such precise alternating patterns emerge during embryonic development is not well understood. Here, we combine live imaging of mouse inner ear explants with hybrid mechano-regulatory models to identify the processes that underlie the formation of a single row of inner hair cells (IHCs). First, we identify a previously unobserved morphological transition, termed "hopping intercalation," that allows cells differentiating toward IHC fate to "hop" under the apical plane into their final position. Second, we show that out-of-row cells with low levels of the HC marker Atoh1 delaminate. Last, we show that differential adhesion between cell types contributes to straightening of the IHC row. Our results support a mechanism for precise patterning based on coordination between signaling and mechanical forces that is likely relevant for many developmental processes.
Collapse
Affiliation(s)
- Roie Cohen
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Olga Loza
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shahar Kasirer
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shiran Woland
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Abd El-Hameed ZS, El-Shafey AAEF, Metwally MA, Abd El-Samie HAER, Kassab A. Anatomy of the rabbit inner ear using computed tomography and magnetic resonance imaging. Anat Histol Embryol 2023; 52:403-410. [PMID: 36609852 DOI: 10.1111/ahe.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Anatomically, the inner ear is a highly complex organ of intricate design, composed of a bony labyrinth that encases the same-shaped membranous labyrinth. It is difficult to study the three-dimensional anatomy of the inner ear because the relevant structures are very small and embedded within the petrous temporal bone, one of the densest bones in the body. The current study aimed to provide a detailed anatomic reference for the normal anatomy of the rabbit's inner ear. As a study model, ten healthy adults New Zealand White rabbit heads were used. Six heads were used for macroscopic evaluation of the bony and membranous labyrinths. The remaining four heads were evaluated radiographically, where 3D images were generated of the bony and membranous labyrinths using data sets from computed tomography (CT) and magnetic resonance imaging (MRI), respectively. The anatomical structures were identified and labelled according to NominaAnatomicaVeterinaria (NAV). Our study revealed that CT and MRI are the optimal cross-sectional imaging modalities for investigating such tiny and often inaccessible inner ear structures. As high-quality scanners are not readily available to veterinarians, the CT and MRI images generated by this research were of lower quality; therefore, high-quality dissections were used to identify/support structures seen in these images. In conclusion, this study provides one of the first investigations that uses multislice CT scans and MRI to study the rabbit's inner ear and its correlation with the corresponding anatomical images. Both anatomical, CT and MRI images will serve as a reference for interpreting pathologies relative to the rabbit's inner ear.
Collapse
Affiliation(s)
- Zeinab Said Abd El-Hameed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | | | - Mohamed Attia Metwally
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | | | - A Kassab
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
6
|
Ali S, Esmat A, Erasha A, Yasuda M, Alsafy M. Morphology and morphometry of the inner ear of the dromedary camel and their influence on the efficiency of hearing and equilibrium. ZOOLOGICAL LETTERS 2022; 8:12. [PMID: 36303215 PMCID: PMC9615196 DOI: 10.1186/s40851-022-00196-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The inner ear morphology and size are linked to hearing and balance ability. The goal of this study was to determine the morphology and morphometrics of the dromedary camel's inner ear and how it influences hearing accommodation and equilibrium in the desert environment. MATERIALS AND METHODS Gross morphology, computed tomography images, and the endocast were used to show the inner ear morphology. A caliper and ImageJ software were used to take measurements on a plastic endocast. RESULTS The presence of the subarcuate fossa, flat cochlea, radii curvature of the semicircular canals, particularly the lateral semicircular canal, orthogonality, and the union between the semicircular canals, along with slightly increased saccule and utricle size, maintains camel balance on sandy ground, even during heavy sandstorms. The cochlear basilar membrane length and cochlea radii ratio aided low-frequency hearing and perception over a wide octave range. CONCLUSION The camel's cochlear characteristics revealed a lengthy basilar membrane, a high radii ratio, 3.0 cochlear canal turns, and a very broad cochlea. The orthogonality of the semicircular canals, the high curvature of the lateral semicircular canal, the presence of the subarcuate fossa, and the confluence between the lateral and posterior semicircular canal were particular specifications that allowed the inner ear of the camel to adapt to desert living.
Collapse
Affiliation(s)
- Safwat Ali
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| | - Abdelraheem Esmat
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| | - Atef Erasha
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat, Sadat City, Egypt
| | - Masahiro Yasuda
- Department of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mohamed Alsafy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Abees 10th, Alexandria, Egypt.
| |
Collapse
|
7
|
Zhao Z, Yao W, Wang M, Wang J, Zhang T. Radial Flow Field of Spiral Cochlea and Its Effect On Stereocilia. J Biomech Eng 2022; 144:1143034. [PMID: 35789250 DOI: 10.1115/1.4054930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 11/08/2022]
Abstract
The opening of the ion channels ultimately depends on the movement and energy conversion of the microstructural organization. It has not been clear how active sound amplification is generated by the microstructure of the cochlea's characteristic spiral shape. In this paper, an analytical model of the spiral cochlea is developed to investigate the radial flow field generated by the spiral shape of the cochlea and its effect on the outer hair cell stereocilia, and to analyze the effect of the spiral shape on the micromechanics of the cochlea. The results show that the spiral shape of the cochlea exerts a radial shear force on the hair cell stereocilia by generating a radial flow field. This causes the stereocilia to deflect in the radial flow field, with the maximum deflection occurring at the apex of the cochlea. This finding explains the microscopic mechanism that causes the cochlea's spiral shape to enhance low-frequency hearing in humans, and it provides a basis for further studies on the contribution of the movement of stereocilia in the radial flow field of the lymphatic fluid to activate ion channels for auditory production.
Collapse
Affiliation(s)
- Zhengshan Zhao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Wenjuan Yao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Mianzhi Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Jiakun Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PRC
| | - Tianyu Zhang
- ENT Institute, Eye & ENT Hospital of Fudan University, Hearing Medicine Key Laboratory, National Health Commission of China; Department of Facial Plastic Reconstruction Surgery, Eye & ENT Hospital of Fudan University, Shanghai 200031, PRC
| |
Collapse
|
8
|
Zedda M, Brunetti A, Palombo MR. First Attempt to Infer Sound Hearing and Its Paleoenvironmental Implications in the Extinct Insular Canid Cynotherium sardous Studiati, 1857 (Sardinia, Italy). Animals (Basel) 2022; 12:ani12070833. [PMID: 35405823 PMCID: PMC8996844 DOI: 10.3390/ani12070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The microtomographic approach allows nondestructive acquisition of anatomical details of the bone labyrinth that houses the inner ear. The petrosal bone can be a gold mine of information for a variety of questions in different research fields, including taxonomic, behavioral, and genetic studies. The semicircular canals provide information on head posture and locomotor ability, whereas the cochlea provides data on hearing ability. The petrosal bone is the hardest structure in the skeleton and could be well preserved in fossil specimens. As a result, it is becoming more and more popular in current archaeological and paleontological studies. In this study, petrosal microtomographic analysis was applied for the first time to Cynotherium sardous, a highly modified endemic canid that inhabited Sardinia during the Middle to Late Pleistocene. Indications about its hearing ability may provide interesting insights to better understand the new lifestyle and behavior this canid acquired during the long evolutionary process it underwent in the peculiar insular ecosystem with a depleted fauna. The poor hearing and echolocalization capabilities of Cynotherium sardous would have been the outcome of reduced competition pressure due to the absence of predators and the abundance of prey, such as the large ochotonid Prolagus sardus, while the high-frequency hearing could be interpreted as an adaptation to detect sounds emitted by its preferred prey. Abstract This is the first study on the bony labyrinth of Cynotherium sardous, an intriguing extinct canid that inhabited Sardinia in the late Middle and Late Pleistocene. The morphological features of the cochlea indicate that C. sardous had a lower number of cochlear turns (2.25) than all extant canids. This feature, as well as the reduced length of the spiral canal, the cochlear curvature rate, and the narrow basal membrane, indicates that C. sardous had poor hearing abilities limited to high-frequency sounds with a low limit of 250 Hz and poor echolocalization skills. From the data available, it is not possible to infer whether C. sardous was unable to echolocalize its prey and relied on other senses (e.g., smell and sight) to locate them or whether the acoustic range of C. sardous was specialized for identifying the sounds produced by its most common prey to transmit signals for predator warnings or group communication. All things considered, the results obtained confirm the utility of cochlea morphological studies in reconstructing the hearing abilities of this species and in providing some suggestions about its ethology, but they fall short of providing any new sound evidence regarding the ecological role of C. sardous in the Late Pleistocene Sardinian ecosystem.
Collapse
Affiliation(s)
- Marco Zedda
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
- Correspondence: ; Tel.: +39-079-229-583
| | - Antonio Brunetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Maria Rita Palombo
- CNR-IGAG c/o Department of Earth Sciences, Sapienza University, 00185 Rome, Italy;
| |
Collapse
|
9
|
Yao W, Zhao Z, Wang J, Duan M. Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity. Comput Biol Med 2021; 136:104756. [PMID: 34388464 DOI: 10.1016/j.compbiomed.2021.104756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/15/2022]
Abstract
For the processing and detection of speech and music, the human cochlea has an exquisite sensitivity and selectivity of frequency and a dynamic range. How the cochlea performs these remarkable functions has fascinated auditory scientists for decades. Because it is not possible to measure sound-induced vibrations within the cochlea in a living human being, mathematical modeling has played an important role in cochlear mechanics. For this study, a three-dimensional human cochlear model with a fluid‒structure coupling was constructed. Time-domain analysis was performed to calculate the displacement, velocity, and stress of the basilar membrane (BM) and osseous spiral lamina (OSL) at different times in response to a pure tone stimulus. The model reproduced the traveling-wave motion of the BM. The model also showed that the cochlea's spiral shape can induce asymmetrical mechanical behavior of the BM and cause cochlear fluid to move in a radial direction; this may contribute to human sound perception. The cochlea's spiral shape not only enhances a low-frequency vibration of the BM but also changes the maximization of the positions of vibration. Therefore, the spiral's characteristics play a key role in the cochlea's frequency selectivity for low-frequency sounds. And this suggests that the OSL can react to sound as quickly as the BM. Furthermore, the basal region of the BM tends to have more stress than its other regions, and this may explain the clinical observation that human sensorineural hearing loss often occurs at high frequencies.
Collapse
Affiliation(s)
- Wenjuan Yao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, PR China; Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PR China.
| | - Zhengshan Zhao
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, PR China; Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PR China
| | - Jiakun Wang
- School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, PR China; Shanghai Institute of Applied Mathematics and Mechanics, Shanghai, 200072, PR China
| | - Maoli Duan
- Division of ENT Section, Department of Clinical Science, Intervention and Technology and Department of Otolaryngology Head and Neck, Karolinska University Hospital, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
10
|
Cohen R, Sprinzak D. Mechanical forces shaping the development of the inner ear. Biophys J 2021; 120:4142-4148. [PMID: 34242589 DOI: 10.1016/j.bpj.2021.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 01/23/2023] Open
Abstract
The inner ear is one of the most complex structures in the mammalian body. Embedded within it are the hearing and balance sensory organs that contain arrays of hair cells that serve as sensors of sound and acceleration. Within the sensory organs, these hair cells are prototypically arranged in regular mosaic patterns. The development of such complex, yet precise, patterns require the coordination of differentiation, growth, and morphogenesis, both at the tissue and cellular scales. In recent years, there is accumulating evidence that mechanical forces at the tissue, the cellular, and the subcellular scales coordinate the development and organization of this remarkable organ. Here, we review recent works that reveal how such mechanical forces shape the inner ear, control its size, and establish regular cellular patterns. The insights learned from studying how mechanical forces drive the inner ear development are relevant for many other developmental systems in which precise cellular patterns are essential for their function.
Collapse
Affiliation(s)
- Roie Cohen
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Raymond and Beverly Sackler School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Areias B, Parente M, Gentil F, Jorge RN. Influence of the basilar membrane shape and mechanical properties in the cochlear response: A numerical study. Proc Inst Mech Eng H 2021; 235:743-750. [PMID: 33749399 DOI: 10.1177/09544119211003443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hearing impairment is one of the most common health disorders, affecting individuals of all ages, reducing considerably their quality of life. At present, it is known that during an acoustic stimulation a travelling wave is developed inside the cochlea. Existing mathematical and numerical models available in the literature try to describe the shape of this travelling wave, the majority of them present a set of approaches based on some limitations either or both of the mechanical properties used and the geometrical description of the realistic representation. The present numerical study highlights the distinctions of using a spiral model of the cochlea, by comparing the obtained results with a straight, or simplified model. The influence of the implantation of transversely isotropic mechanical models was also studied, by comparing the basilar membrane with isotropic and transversely isotropic mechanical properties. Values of the root mean square error calculated for all models show a greater proximity of the cochlear mapping to the Greenwood function when the basilar membrane is assumed with transversely isotropic mechanical properties for both straight and spiral model. The root-mean square errors calculated were: 2.05, 1.70, 2.72, 2.08 mm, for the straight-isotropic, straight-transversely isotropic, spiral-isotropic and spiral-transversely isotropic model, respectively.
Collapse
Affiliation(s)
- Bruno Areias
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Marco Parente
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal.,FEUP, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernanda Gentil
- Escola Superior de Saúde, Clínica ORL - Dr. Eurico de Almeida, WIDEX, Porto, Portugal
| | - Renato Natal Jorge
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal.,FEUP, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
13
|
Urciuoli A, Zanolli C, Beaudet A, Pina M, Almécija S, Moyà-Solà S, Alba DM. A comparative analysis of the vestibular apparatus in Epipliopithecus vindobonensis: Phylogenetic implications. J Hum Evol 2021; 151:102930. [PMID: 33422741 DOI: 10.1016/j.jhevol.2020.102930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/06/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Pliopithecoids are an extinct group of catarrhine primates from the Miocene of Eurasia. More than 50 years ago, they were linked to hylobatids due to some morphological similarities, but most subsequent studies have supported a stem catarrhine status, due to the retention of multiple plesiomorphic features (e.g., the ectotympanic morphology) relative to crown catarrhines. More recently, some morphological similarities to hominoids have been noted, raising the question of whether they could be stem members of this clade. To re-evaluate these competing hypotheses, we examine the morphology of the semicircular canals of the bony labyrinth of the middle Miocene pliopithecid Epipliopithecus vindobonensis. The semicircular canals are suitable to test between these hypotheses because (1) they have been shown to embed strong phylogenetic signal and reliably discriminate among major clades; (2) several potential hominoid synapomorphies have been identified previously in the semicircular canals; and (3) semicircular canal morphology has not been previously described for any pliopithecoid. We use a deformation-based (landmark-free) three-dimensional geometric morphometric approach to compare Epipliopithecus with a broad primate sample of extant and extinct anthropoids. We quantify similarities in semicircular canal morphology using multivariate analyses, reconstruct ancestral morphotypes by means of a phylomorphospace approach, and identify catarrhine and hominoid synapomorphies based on discrete characters. Epipliopithecus semicircular canal morphology most closely resembles that of platyrrhines and Aegyptopithecus due to the retention of multiple anthropoid symplesiomorphies. However, Epipliopithecus is most parsimoniously interpreted as a stem catarrhine more derived than Aegyptopithecus due to the possession of a crown catarrhine synapomorphy (i.e., the rounded anterior canal), combined with the lack of other catarrhine and any hominoid synapomorphies. Some similarities with hylobatids and atelids are interpreted as homoplasies likely related to positional behavior. The semicircular canal morphology of Epipliopithecus thus supports the common view that pliopithecoids are stem catarrhines.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Clément Zanolli
- Univ. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600, Pessac, France
| | - Amélie Beaudet
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS 2050, South Africa; Department of Anatomy, University of Pretoria, PO Box 2034, Pretoria, 0001, South Africa
| | - Marta Pina
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, 176 Oxford Road, Manchester, M13 9PL, UK
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, Central Park West at 79(th) Street, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Salvador Moyà-Solà
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain; Unitat d'Antropologia (Departament de Biologia Animal, Biologia Vegetal i Ecologia), Universitat Autònoma de Barcelona, Campus de la UAB s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - David M Alba
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
14
|
Moatti A, Cai Y, Li C, Sattler T, Edwards L, Piedrahita J, Ligler FS, Greenbaum A. Three-dimensional imaging of intact porcine cochlea using tissue clearing and custom-built light-sheet microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:6181-6196. [PMID: 33282483 PMCID: PMC7687970 DOI: 10.1364/boe.402991] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 05/03/2023]
Abstract
Hearing loss is a prevalent disorder that affects people of all ages. On top of the existing hearing aids and cochlear implants, there is a growing effort to regenerate functional tissues and restore hearing. However, studying and evaluating these regenerative medicine approaches in a big animal model (e.g. pigs) whose anatomy, physiology, and organ size are similar to a human is challenging. In big animal models, the cochlea is bulky, intricate, and veiled in a dense and craggy otic capsule. These facts complicate 3D microscopic analysis that is vital in the cochlea, where structure-function relation is time and again manifested. To allow 3D imaging of an intact cochlea of newborn and juvenile pigs with a volume up to ∼ 250 mm3, we adapted the BoneClear tissue clearing technique, which renders the bone transparent. The transparent cochleae were then imaged with cellular resolution and in a timely fashion, which prevented bubble formation and tissue degradation, using an adaptive custom-built light-sheet fluorescence microscope. The adaptive light-sheet microscope compensated for deflections of the illumination beam by changing the angles of the beam and translating the detection objective while acquiring images. Using this combination of techniques, macroscopic and microscopic properties of the cochlea were extracted, including the density of hair cells, frequency maps, and lower frequency limits. Consequently, the proposed platform could support the growing effort to regenerate cochlear tissues and assist with basic research to advance cures for hearing impairments.
Collapse
Affiliation(s)
- Adele Moatti
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Yuheng Cai
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Chen Li
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Tyler Sattler
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Laura Edwards
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jorge Piedrahita
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Frances S. Ligler
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Alon Greenbaum
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Wimmer W, Anschuetz L, Weder S, Wagner F, Delingette H, Caversaccio M. Human bony labyrinth dataset: Co-registered CT and micro-CT images, surface models and anatomical landmarks. Data Brief 2019; 27:104782. [PMID: 31763421 PMCID: PMC6864122 DOI: 10.1016/j.dib.2019.104782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022] Open
Abstract
The presented data set consists of images, labels and surface models of 23 human bony labyrinths. For each specimen clinical computed tomography (CT) and co-registered high-resolution micro-CT images were acquired. Using the images, the bony labyrinth was segmented and 3D surface models were generated. Each specimen is accompanied by a description file containing the coordinates of anatomical landmarks and the corresponding cochlear coordinate system. The data set can be used to study the morphology of the inner ear or to evaluate segmentation algorithm as used for the preoperative planning of surgical procedures such as cochlear implantation.
Collapse
Affiliation(s)
- Wilhelm Wimmer
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
- Université Côte d’Azur, Inria, Epione, Sophia Antipolis, France
| | - Lukas Anschuetz
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, Switzerland
| | - Stefan Weder
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, Switzerland
| | - Franca Wagner
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, Switzerland
| | | | - Marco Caversaccio
- Department of ENT, Head and Neck Surgery, Inselspital, Bern University Hospital, Switzerland
- Hearing Research Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Switzerland
| |
Collapse
|
16
|
Cochlear shape reveals that the human organ of hearing is sex-typed from birth. Sci Rep 2019; 9:10889. [PMID: 31350421 PMCID: PMC6659711 DOI: 10.1038/s41598-019-47433-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Sex differences in behavioral and neural characteristics can be caused by cultural influences but also by sex-based differences in neurophysiological and sensorimotor features. Since signal-response systems influence decision-making, cooperative and collaborative behaviors, the anatomical or physiological bases for any sex-based difference in sensory mechanisms are important to explore. Here, we use uniform scaling and nonparametric representations of the human cochlea, the main organ of hearing that imprints its adult-like morphology within the petrosal bone from birth. We observe a sex-differentiated torsion along the 3D cochlear curve in samples of 94 adults and 22 juvenile skeletons from cross-cultural contexts. The cochlear sexual dimorphism measured in our study allows sex assessment from the human skeleton with a mean accuracy ranging from 0.91 to 0.93 throughout life. We conclude that the human cochlea is sex-typed from an early post-natal age. This, for the first time, allows nondestructive sex determination of juveniles' skeletal remains in which the biomolecules are too degraded for study but in which the petrosal is preserved, one of the most common bone within archaeological assemblages. Our observed sex-typed cochlear shape from birth is likely associated with complex evolutionary processes in modern humans for reasons not yet fully understood.
Collapse
|
17
|
Ren Y, Landegger LD, Stankovic KM. Gene Therapy for Human Sensorineural Hearing Loss. Front Cell Neurosci 2019; 13:323. [PMID: 31379508 PMCID: PMC6660246 DOI: 10.3389/fncel.2019.00323] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
Hearing loss is the most common sensory impairment in humans and currently disables 466 million people across the world. Congenital deafness affects at least 1 in 500 newborns, and over 50% are hereditary in nature. To date, existing pharmacologic therapies for genetic and acquired etiologies of deafness are severely limited. With the advent of modern sequencing technologies, there is a vast compendium of growing genetic alterations that underlie human hearing loss, which can be targeted by therapeutics such as gene therapy. Recently, there has been tremendous progress in the development of gene therapy vectors to treat sensorineural hearing loss (SNHL) in animal models in vivo. Nevertheless, significant hurdles remain before such technologies can be translated toward clinical use. These include addressing the blood-labyrinth barrier, engineering more specific and effective delivery vehicles, improving surgical access, and validating novel targets. In this review, we both highlight recent progress and outline challenges associated with in vivo gene therapy for human SNHL.
Collapse
Affiliation(s)
- Yin Ren
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
| | - Lukas D. Landegger
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Konstantina M. Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Harvard Program in Therapeutic Science, Harvard University, Boston, MA, United States
| |
Collapse
|
18
|
Iosa M, Morone G, Paolucci S. Phi in physiology, psychology and biomechanics: The golden ratio between myth and science. Biosystems 2018; 165:31-39. [DOI: 10.1016/j.biosystems.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/03/2018] [Accepted: 01/03/2018] [Indexed: 11/25/2022]
|
19
|
|
20
|
Spiral Form of the Human Cochlea Results from Spatial Constraints. Sci Rep 2017; 7:7500. [PMID: 28790422 PMCID: PMC5548794 DOI: 10.1038/s41598-017-07795-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/29/2017] [Indexed: 01/10/2023] Open
Abstract
The human inner ear has an intricate spiral shape often compared to shells of mollusks, particularly to the nautilus shell. It has inspired many functional hearing theories. The reasons for this complex geometry remain unresolved. We digitized 138 human cochleae at microscopic resolution and observed an astonishing interindividual variability in the shape. A 3D analytical cochlear model was developed that fits the analyzed data with high precision. The cochlear geometry neither matched a proposed function, namely sound focusing similar to a whispering gallery, nor did it have the form of a nautilus. Instead, the innate cochlear blueprint and its actual ontogenetic variants were determined by spatial constraints and resulted from an efficient packing of the cochlear duct within the petrous bone. The analytical model predicts well the individual 3D cochlear geometry from few clinical measures and represents a clinical tool for an individualized approach to neurosensory restoration with cochlear implants.
Collapse
|
21
|
Abstract
The inner ear of mammals consists of the cochlea, which is involved with the sense of hearing, and the vestibule and three semicircular canals, which are involved with the sense of balance. Although different regions of the inner ear contribute to different functions, the bony chambers and membranous ducts are morphologically continuous. The gross anatomy of the cochlea that has been related to auditory physiologies includes overall size of the structure, including volume and total spiral length, development of internal cochlear structures, including the primary and secondary bony laminae, morphology of the spiral nerve ganglion, and the nature of cochlear coiling, including total number of turns completed by the cochlear canal and the relative diameters of the basal and apical turns. The overall sizes, shapes, and orientations of the semicircular canals are related to sensitivity to head rotations and possibly locomotor behaviors. Intraspecific variation, primarily in the shape and orientation of the semicircular canals, may provide additional clues to help us better understand form and function of the inner ear.
Collapse
Affiliation(s)
- Eric G. Ekdale
- Department of BiologySan Diego State UniversitySan DiegoCAUSA
- Department of PaleontologySan Diego Natural History MuseumSan DiegoCAUSA
| |
Collapse
|
22
|
Ketten DR, Arruda J, Cramer S, Yamato M. Great Ears: Low-Frequency Sensitivity Correlates in Land and Marine Leviathans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 875:529-38. [PMID: 26611001 DOI: 10.1007/978-1-4939-2981-8_64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Like elephants, baleen whales produce low-frequency (LF) and even infrasonic (IF) signals, suggesting they may be particularly susceptible to underwater anthropogenic sound impacts. Analyses of computerized tomography scans and histologies of the ears in five baleen whale and two elephant species revealed that LF thresholds correlate with basilar membrane thickness/width and cochlear radii ratios. These factors are consistent with high-mass, low-stiffness membranes and broad spiral curvatures, suggesting that Mysticeti and Proboscidea evolved common inner ear adaptations over similar time scales for processing IF/LF sounds despite operating in different media.
Collapse
Affiliation(s)
- D R Ketten
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA. .,Harvard Medical School, Boston, MA, 02114, USA. .,Curtin University, Perth, WA, 6845, Australia.
| | - J Arruda
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA. .,Massachusetts Eye and Ear Infirmary, Boston, MA, 02114, USA.
| | - S Cramer
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
| | - M Yamato
- National Museum of Natural History, Smithsonian Institution, Washington, DC, 20004, USA.
| |
Collapse
|
23
|
Kim N, Steele CR, Puria S. The importance of the hook region of the cochlea for bone-conduction hearing. Biophys J 2015; 107:233-41. [PMID: 24988357 DOI: 10.1016/j.bpj.2014.04.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 11/25/2022] Open
Abstract
For the most part, the coiled shape of the cochlea has been shown to have only minor importance for air-conducted hearing. It is hypothesized, however, that this coiled shape may play a more significant role for the bone-conducted (BC) route of hearing, through inertial forces exerted by the middle ear and cochlear fluid, and that this can be tested by comparing the results of applying BC stimuli in a variety of different directions. A three-dimensional finite element model of a human middle ear coupled to the inner ear was formulated. BC excitations were simulated by applying rigid-body vibrations normal to the surface of the basilar membrane (BM) at 0.8 (d(1)), 5.8 (d(2)), 15.6 (d(3)), and 33.1 (d(4)) mm from the base of the cochlea, such that relative motions of the fluid within the cochlea produced excitations of the BM. The vibrational direction normal to the BM surface at the base of the cochlea (d(1)) produced the highest BM velocity response across all tested frequencies-higher than an excitation direction normal to the BM surface at the nonbasal locations (d(2)-d(4)), even when the stimulus frequency matched the best frequency for each location. The basal part of the human cochlea features a well-developed hook region, colocated with the cochlear vestibule, that features the largest difference in fluid volume between the scala vestibuli (SV) and scala tympani (ST) found in the cochlea. The proximity of the hook region to the oval and round windows, combined with it having the biggest fluid-volume difference between the SV and ST, is thought to result in a maximization of the pressure difference between the SV and ST for BC stimuli normal to the BM in this region, and consequently a maximization of the resulting BM velocity.
Collapse
Affiliation(s)
- Namkeun Kim
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Charles R Steele
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Sunil Puria
- Department of Mechanical Engineering, Stanford University, Stanford, California; Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California.
| |
Collapse
|
24
|
Crumpton N, Kardjilov N, Asher RJ. Convergence vs. Specialization in the ear region of moles (Mammalia). J Morphol 2015; 276:900-14. [PMID: 25858660 DOI: 10.1002/jmor.20391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 11/05/2022]
Abstract
We investigated if and how the inner ear region undergoes similar adaptations in small, fossorial, insectivoran-grade mammals, and found a variety of inner ear phenotypes. In our sample, afrotherian moles (Chrysochloridae) and the marsupial Notoryctes differ from most other burrowing mammals in their relatively short radii of semicircular canal curvature; chrysochlorids and fossorial talpids share a relatively long interampullar width. Chrysochlorids are unique in showing a highly coiled cochlea with nearly four turns. Extensive cochlear coiling may reflect their greater ecological dependence on low frequency auditory cues compared to talpids, tenrecids, and the marsupial Notoryctes. Correspondingly, the lack of such extensive coiling in the inner ear of other fossorial species may indicate a greater reliance on other senses to enable their fossorial lifestyle, such as tactile sensation from vibrissae and Eimer's organs. The reliance of chrysochlorids on sound is evident in the high degree of coiling and in the diversity of its mallear types, and may help explain the lack of any semiaquatic members of that group. The simplest mallear types among chrysochlorids are not present in the basal-most members of that clade, but all extant chrysochlorids investigated to date exhibit extensive cochlear coiling. The chrysochlorid ear region thus exhibits mosaic evolution; our data suggest that extensive coiling evolved in chrysochlorids prior to and independently of diversification in middle ear ossicle size and shape.
Collapse
Affiliation(s)
- Nick Crumpton
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, UK.,Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Nikolay Kardjilov
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109, Berlin, Germany
| | - Robert J Asher
- Department of Zoology, University of Cambridge, Downing Street, CB2 3EJ, UK
| |
Collapse
|
25
|
Intraspecific Variation of Endocranial Structures in Extant Equus: A Prelude to Endocranial Studies in Fossil Equoids. J MAMM EVOL 2015. [DOI: 10.1007/s10914-015-9293-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Ekdale EG, Racicot RA. Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti. J Anat 2014; 226:22-39. [PMID: 25400023 DOI: 10.1111/joa.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 11/28/2022] Open
Abstract
The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon.
Collapse
Affiliation(s)
- Eric G Ekdale
- Department of Biology, San Diego State University, San Diego, CA, USA; Department of Paleontology, San Diego Natural History Museum, San Diego, CA, USA
| | | |
Collapse
|
27
|
MA JIANWEI, YAO WENJUAN. RESEARCH ON THE DISTRIBUTION OF PRESSURE FIELD ON THE BASILAR MEMBRANE IN THE PASSIVE SPIRAL COCHLEA. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cochlea is the important auditory organ of the inner ear. It is responsible for transforming the acoustic signals into neural impulses that travel along the auditory nerve to the brain. The role of, perhaps, the most characteristic feature of the cochlea, its three-dimensional (3D) helical structure, has remained elusive. To address this problem, the present paper develops a 3D spiral cochlea mathematical model using orthogonal coordinate system. Based on the method of separation of variables and conformal transformation, equations of three cases for the velocity potential are derived to solve the steady flow problem of lymph in the cochlea. Then, the distribution of pressure field on the basilar membrane (BM) is obtained. By comparing the analytical results with FE analyses results, the derived formulas are demonstrated to be accurate and reliable. The conclusion can be drawn that the spiral shape and physical dimension of the cochlea have a significant influence on the distribution of pressure field. Interestingly, near the helicotrema, the velocity potential of the first case plays a leading role in pressure distribution on the BM. Therefore, it may enhance the vibration of BM and improve hearing ability in the low-frequency parts of human ears. The proposed model could provide an approach for further investigation of fluid-structure interaction problem in the cochlea.
Collapse
Affiliation(s)
- JIANWEI MA
- Department of Civil Engineering, Shanghai University, Shanghai 200072, China
| | - WENJUAN YAO
- Department of Civil Engineering, Shanghai University, Shanghai 200072, China
| |
Collapse
|
28
|
Palghat Udayashankar A, Kössl M, Nowotny M. Lateralization of travelling wave response in the hearing organ of bushcrickets. PLoS One 2014; 9:e86090. [PMID: 24465889 PMCID: PMC3897617 DOI: 10.1371/journal.pone.0086090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
Travelling waves are the physical basis of frequency discrimination in many vertebrate and invertebrate taxa, including mammals, birds, and some insects. In bushcrickets (Tettigoniidae), the crista acustica is the hearing organ that has been shown to use sound-induced travelling waves. Up to now, data on mechanical characteristics of sound-induced travelling waves were only available along the longitudinal (proximal-distal) direction. In this study, we use laser Doppler vibrometry to investigate in-vivo radial (anterior-posterior) features of travelling waves in the tropical bushcricket Mecopoda elongata. Our results demonstrate that the maximum of sound-induced travelling wave amplitude response is always shifted towards the anterior part of the crista acustica. This lateralization of the travelling wave response induces a tilt in the motion of the crista acustica, which presumably optimizes sensory transduction by exerting a shear motion on the sensory cilia in this hearing organ.
Collapse
Affiliation(s)
- Arun Palghat Udayashankar
- AK Neurobiologie und Biosensorik, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany
| | - Manfred Kössl
- AK Neurobiologie und Biosensorik, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany
| | - Manuela Nowotny
- AK Neurobiologie und Biosensorik, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
29
|
Ekdale EG. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals. PLoS One 2013; 8:e66624. [PMID: 23805251 PMCID: PMC3689836 DOI: 10.1371/journal.pone.0066624] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Variation is a naturally occurring phenomenon that is observable at all levels of morphology, from anatomical variations of DNA molecules to gross variations between whole organisms. The structure of the otic region is no exception. The present paper documents the broad morphological diversity exhibited by the inner ear region of placental mammals using digital endocasts constructed from high-resolution X-ray computed tomography (CT). Descriptions cover the major placental clades, and linear, angular, and volumetric dimensions are reported. PRINCIPAL FINDINGS The size of the labyrinth is correlated to the overall body mass of individuals, such that large bodied mammals have absolutely larger labyrinths. The ratio between the average arc radius of curvature of the three semicircular canals and body mass of aquatic species is substantially lower than the ratios of related terrestrial taxa, and the volume percentage of the vestibular apparatus of aquatic mammals tends to be less than that calculated for terrestrial species. Aspects of the bony labyrinth are phylogenetically informative, including vestibular reduction in Cetacea, a tall cochlear spiral in caviomorph rodents, a low position of the plane of the lateral semicircular canal compared to the posterior canal in Cetacea and Carnivora, and a low cochlear aspect ratio in Primatomorpha. SIGNIFICANCE The morphological descriptions that are presented add a broad baseline of anatomy of the inner ear across many placental mammal clades, for many of which the structure of the bony labyrinth is largely unknown. The data included here complement the growing body of literature on the physiological and phylogenetic significance of bony labyrinth structures in mammals, and they serve as a source of data for future studies on the evolution and function of the vertebrate ear.
Collapse
Affiliation(s)
- Eric G. Ekdale
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Paleontology, San Diego Natural History Museum, San Diego, California, United States of America
| |
Collapse
|
30
|
Vele O, Schrijver I. Inherited hearing loss: molecular genetics and diagnostic testing. ACTA ACUST UNITED AC 2013; 2:231-48. [PMID: 23495655 DOI: 10.1517/17530059.2.3.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hearing loss is a clinically and genetically heterogeneous condition with major medical and social consequences. It affects up to 8% of the general population. OBJECTIVE This review recapitulates the principles of auditory physiology and the molecular basis of hearing loss, outlines the main types of non-syndromic and syndromic deafness by mode of inheritance, and provides an overview of current clinically available genetic testing. METHODS This paper reviews the literature on auditory physiology and on genes, associated with hearing loss, for which genetic testing is presently offered. RESULTS/CONCLUSION The advent of molecular diagnostic assays for hereditary hearing loss permits earlier detection of the underlying causes, facilitates appropriate interventions, and is expected to generate the data necessary for more specific genotype-phenotype correlations.
Collapse
Affiliation(s)
- Oana Vele
- Stanford University School of Medicine, Department of Pathology and Pediatrics, L235, 300 Pasteur Drive, Stanford, CA 94305, USA +1 650 724 2403 ; +1 650 724 1567 ;
| | | |
Collapse
|
31
|
Zagadou BF, Mountain DC. Analysis of the cochlear amplifier fluid pump hypothesis. J Assoc Res Otolaryngol 2012; 13:185-97. [PMID: 22302113 DOI: 10.1007/s10162-011-0308-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 12/08/2011] [Indexed: 10/14/2022] Open
Abstract
We use analysis of a realistic three-dimensional finite-element model of the tunnel of Corti (ToC) in the middle turn of the gerbil cochlea tuned to the characteristic frequency (CF) of 4 kHz to show that the anatomical structure of the organ of Corti (OC) is consistent with the hypothesis that the cochlear amplifier functions as a fluid pump. The experimental evidence for the fluid pump is that outer hair cell (OHC) contraction and expansion induce oscillatory flow in the ToC. We show that this oscillatory flow can produce a fluid wave traveling in the ToC and that the outer pillar cells (OPC) do not present a significant barrier to fluid flow into the ToC. The wavelength of the resulting fluid wave launched into the tunnel at the CF is 1.5 mm, which is somewhat longer than the wavelength estimated for the classical traveling wave. This fluid wave propagates at least one wavelength before being significantly attenuated. We also investigated the effect of OPC spacing on fluid flow into the ToC and found that, for physiologically relevant spacing between the OPCs, the impedance estimate is similar to that of the underlying basilar membrane. We conclude that the row of OPCs does not significantly impede fluid exchange between ToC and the space between the row of OPC and the first row of OHC-Dieter's cells complex, and hence does not lead to excessive power loss. The BM displacement resulting from the fluid pumped into the ToC is significant for motion amplification. Our results support the hypothesis that there is an additional source of longitudinal coupling, provided by the ToC, as required in many non-classical models of the cochlear amplifier.
Collapse
|
32
|
Gavara N, Manoussaki D, Chadwick RS. Auditory mechanics of the tectorial membrane and the cochlear spiral. Curr Opin Otolaryngol Head Neck Surg 2011; 19:382-7. [PMID: 21785353 PMCID: PMC3327783 DOI: 10.1097/moo.0b013e32834a5bc9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review is timely and relevant because new experimental and theoretical findings suggest that cochlear mechanics from the nanoscale to the macroscale are affected by the mechanical properties of the tectorial membrane and the cochlea's spiral shape. RECENT FINDINGS Main tectorial membrane themes addressed in this review are composition and morphology, nanoscale mechanical interactions with the outer hair cell bundle, macroscale longitudinal coupling, fluid interaction with inner hair cell bundles, and macroscale dynamics and waves. Main cochlear spiral themes are macroscale, low-frequency energy focusing and microscale organ of Corti shear gain. SUMMARY Recent experimental and theoretical findings reveal exquisite sensitivity of cochlear mechanical performance to tectorial membrane structural organization, mechanics, and its positioning with respect to hair bundles. The cochlear spiral geometry is a major determinant of low-frequency hearing. These findings suggest a number of important research directions.
Collapse
Affiliation(s)
- Núria Gavara
- Auditory Mechanics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Daphne Manoussaki
- Department of Sciences, Technical University of Crete, Hania, Greece
| | - Richard S. Chadwick
- Auditory Mechanics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Lamb JS, Chadwick RS. Dual traveling waves in an inner ear model with two degrees of freedom. PHYSICAL REVIEW LETTERS 2011; 107:088101. [PMID: 21929207 PMCID: PMC3508461 DOI: 10.1103/physrevlett.107.088101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Indexed: 05/10/2023]
Abstract
We calculate traveling waves in the mammalian cochlea, which transduces acoustic vibrations into neural signals. We use a WKB-based mechanical model with both the tectorial membrane (TM) and basilar membrane (BM) coupled to the fluid to calculate motions along the length of the cochlea. This approach generates two wave numbers that manifest as traveling waves with different modes of motion between the BM and TM. The waves add differently on each mass, producing distinct tuning curves and different characteristic frequencies (CFs) for the TM and the BM. We discuss the effect of TM stiffness and coupling on the waves and tuning curves. We also consider how the differential motions between the masses could influence the cochlear amplifier and how mode conversion could take place in the cochlea.
Collapse
Affiliation(s)
- Jessica S Lamb
- Section on Auditory Mechanics, NIDCD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
34
|
Dror AA, Avraham KB. Hearing Impairment: A Panoply of Genes and Functions. Neuron 2010; 68:293-308. [DOI: 10.1016/j.neuron.2010.10.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 12/13/2022]
|
35
|
Ekdale EG. Ontogenetic Variation in the Bony Labyrinth of Monodelphis domestica (Mammalia: Marsupialia) Following Ossification of the Inner Ear Cavities. Anat Rec (Hoboken) 2010; 293:1896-912. [DOI: 10.1002/ar.21234] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Fleischer M, Schmidt R, Gummer AW. Compliance profiles derived from a three-dimensional finite-element model of the basilar membrane. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:2973-2991. [PMID: 21117747 DOI: 10.1121/1.3372752] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A finite-element analysis is used to explore the impact of elastic material properties, boundary conditions, and geometry, including coiling, on the spatial characteristics of the compliance of the unloaded basilar membrane (BM). It is assumed that the arcuate zone is isotropic and the pectinate zone orthotropic, and that the radial component of the effective Young's modulus in the pectinate zone decreases exponentially with distance from base to apex. The results concur with tonotopic characteristics of compliance and neural data. Moreover, whereas the maximum compliance in a radial profile is located close to the boundary between the two zones in the basal region, it shifts to the midpoint of the pectinate zone for the apical BM; the width of the profile also expands. This shift begins near the 1 kHz characteristic place for guinea pig and the 2.4 kHz place for gerbil. Shift and expansion are not observed for linear rather than exponential decrease of the radial component of Young's modulus. This spatial change of the compliance profile leads to the prediction that mechanical excitation in the apical region of the organ of Corti is different to that in the basal region.
Collapse
Affiliation(s)
- Mario Fleischer
- Faculty of Mechanical Engineering, Institute of Solid Mechanics, Technische Universität Dresden, 01062 Dresden, Germany
| | | | | |
Collapse
|
37
|
Abstract
The aim of this article is to give readers a general overview of the concepts involved in the latest generation of implantable hearing aids. A section on ear biomechanics has also been included to familiarize readers with the basic concepts involved. These devices have been developed over the last 20 years, driven by problems with conventional hearing aids and by advances in the understanding of middle-ear mechanics. The use of technology borrowed from cochlear implants has enabled the first generation of fully implantable aids to be trialled. The author examines the theoretical advantages and disadvantages of implantable hearing aids over conventional aids and then reviews the technology and clinical results of a range of devices that have been trialled.
Collapse
Affiliation(s)
- P Counter
- School of Surgical and Reproductive Sciences, Newcastle University, Newcastle, UK,
| |
Collapse
|
38
|
Abstract
The conventional theory about the snail shell shape of the mammalian cochlea is that it evolved essentially and perhaps solely to conserve space inside the skull. Recently, a theory proposed that the spiral's graded curvature enhances the cochlea's mechanical response to low frequencies. This article provides a multispecies analysis of cochlear shape to test this theory and demonstrates that the ratio of the radii of curvature from the outermost and innermost turns of the cochlear spiral is a significant cochlear feature that correlates strongly with low-frequency hearing limits. The ratio, which is a measure of curvature gradient, is a reflection of the ability of cochlear curvature to focus acoustic energy at the outer wall of the cochlear canal as the wave propagates toward the apex of the cochlea.
Collapse
|
39
|
Zhang Y, Kim CK, Lee KJB, Park Y. Resultant pressure distribution pattern along the basilar membrane in the spiral shaped cochlea. J Biol Phys 2008; 33:195-211. [PMID: 19669540 DOI: 10.1007/s10867-007-9052-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 12/23/2007] [Indexed: 11/30/2022] Open
Abstract
The cochlea is an important auditory organ in the inner ear. In most mammals, it is coiled as a spiral. Whether this specific shape influences hearing is still an open problem. By employing a three-dimensional fluid model of the cochlea with an idealized geometry, the influence of the spiral geometry of the cochlea is examined. We obtain solutions of the model through a conformal transformation in a long-wave approximation. Our results show that the net pressure acting on the basilar membrane is not uniform along its spanwise direction. Also, it is shown that the location of the maximum of the spanwise pressure difference in the axial direction has a mode dependence. In the simplest pattern, the present result is consistent with the previous theory based on the Wentzel-Kramers-Brillouin-like approximation (Manoussaki et al., Phys Rev Lett 96:088701, 2006). In this mode, the pressure difference in the spanwise direction is a monotonic function of the distance from the apex and the normal velocity across the channel width is zero. Thus, in the lowest-order approximation, we can neglect the existence of the Reissner's membrane in the upper channel. However, higher responsive modes show different behavior and, thus, the real maximum is expected to be located not exactly at the apex but at a position determined by the spiral geometry of the cochlea and the width of the cochlear duct. In these modes, the spanwise normal velocities are not zero. Thus, it indicates that one should take into account the detailed geometry of the cochlear duct for a more quantitative result. The present result clearly demonstrates that the spiral geometry and the geometry of the cochlear duct play decisive roles in distributing the wave energy.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea.
| | | | | | | |
Collapse
|
40
|
Xia A, Visosky AMB, Cho JH, Tsai MJ, Pereira FA, Oghalai JS. Altered traveling wave propagation and reduced endocochlear potential associated with cochlear dysplasia in the BETA2/NeuroD1 null mouse. J Assoc Res Otolaryngol 2007; 8:447-63. [PMID: 17701252 PMCID: PMC2538339 DOI: 10.1007/s10162-007-0092-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 07/20/2007] [Indexed: 11/28/2022] Open
Abstract
The BETA2/NeuroD1 null mouse has cochlear dysplasia. Its cochlear duct is shorter than normal, there is a lack of spiral ganglion neurons, and there is hair cell disorganization. We measured vertical movements of the tectorial membrane at acoustic frequencies in excised cochleae in response to mechanical stimulation of the stapes using laser doppler vibrometry. While tuning curve sharpness was similar between wild-type, heterozygotes, and null mice in the base, null mutants had broader tuning in the apex. At both the base and the apex, null mice had less phase lag accumulation with increasing stimulus frequency than wild-type or heterozygote mice. In vivo studies demonstrated that the null mouse lacked distortion product otoacoustic emissions, and the cochlear microphonic and endocochlear potential were found to be severely reduced. Electrically evoked otoacoustic emissions could be elicited, although the amplitudes were lower than those of wild-type mice. Cochlear cross-sections revealed an incomplete partition malformation, with fenestrations within the modiolus that connected the cochlear turns. Outer hair cells from null mice demonstrated the normal pattern of prestin expression within their lateral walls and normal FM 1-43 dye entry. Overall, these data demonstrate that while tonotopicity can exist with cochlear dysplasia, traveling wave propagation is abnormally fast. Additionally, the presence of electrically evoked otoacoustic emissions suggests that outer hair cell reverse transduction is present, although the acoustic response is shaped by the alterations in cochlear mechanics.
Collapse
Affiliation(s)
- Anping Xia
- The Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030 USA
| | - Ann Marie B. Visosky
- The Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030 USA
| | - Jang-Hyeon Cho
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
| | - Fred A. Pereira
- The Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030 USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030 USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030 USA
- Department of Bioengineering, Rice University, Houston, TX 77251 USA
| | - John S. Oghalai
- The Bobby R. Alford Department of Otolaryngology – Head and Neck Surgery, Baylor College of Medicine, One Baylor Plaza, NA102, Houston, TX 77030 USA
- Department of Bioengineering, Rice University, Houston, TX 77251 USA
| |
Collapse
|
41
|
Abstract
The hearing organ contains sensory hair cells, which convert sound-evoked vibration into action potentials in the auditory nerve. This process is greatly enhanced by molecular motors that reside within the outer hair cells, but the performance also depends on passive mechanical properties, such as the stiffness, mass, and friction of the structures within the organ of Corti. We used resampled confocal imaging to study the mechanical properties of the low-frequency regions of the cochlea. The data allowed us to estimate an important mechanical parameter, the radial strain, which was found to be 0.1% near the inner hair cells and 0.3% near the third row of outer hair cells during moderate-level sound stimulation. The strain was caused by differences in the motion trajectories of inner and outer hair cells. Motion perpendicular to the reticular lamina was greater at the outer hair cells, but inner hair cells showed greater radial vibration. These differences led to deformation of the reticular lamina, which connects the apex of the outer and inner hair cells. These results are important for understanding how the molecular motors of the outer hair cells can so profoundly affect auditory sensitivity.
Collapse
Affiliation(s)
- Igor Tomo
- Karolinska Institutet, Center for Hearing and Communication Research, Department of Clinical Neuroscience, M1, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
42
|
|