1
|
Yu X, Bao H, Xu Q, Chen M, Bao B. Deep brain stimulation and lag synchronization in a memristive two-neuron network. Neural Netw 2024; 180:106728. [PMID: 39299036 DOI: 10.1016/j.neunet.2024.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
In the pursuit of potential treatments for neurological disorders and the alleviation of patient suffering, deep brain stimulation (DBS) has been utilized to intervene or investigate pathological neural activities. To explore the exact mechanism of how DBS works, a memristive two-neuron network considering DBS is newly proposed in this work. This network is implemented by coupling two-dimensional Morris-Lecar neuron models and using a memristor synaptic synapse to mimic synaptic plasticity. The complex bursting activities and dynamical effects are revealed numerically through dynamical analysis. By examining the synchronous behavior, the desynchronization mechanism of the memristor synapse is uncovered. The study demonstrates that synaptic connections lead to the appearance of time-lagged or asynchrony in completely synchronized firing activities. Additionally, the memristive two-neuron network is implemented in hardware based on FPGA, and experimental results confirm the abundant neuronal electrical activities and chaotic dynamical behaviors. This work offers insights into the potential mechanisms of DBS intervention in neural networks.
Collapse
Affiliation(s)
- Xihong Yu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China
| | - Han Bao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China.
| | - Quan Xu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China
| | - Mo Chen
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China
| | - Bocheng Bao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213159, PR China
| |
Collapse
|
2
|
Ma YJX, Zschocke J, Glos M, Kluge M, Penzel T, Kantelhardt JW, Bartsch RP. Sleep-stage dependence and co-existence of cardio-respiratory coordination and phase synchronization. CHAOS (WOODBURY, N.Y.) 2024; 34:043118. [PMID: 38572945 DOI: 10.1063/5.0177552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Interactions between the cardiac and respiratory systems play a pivotal role in physiological functioning. Nonetheless, the intricacies of cardio-respiratory couplings, such as cardio-respiratory phase synchronization (CRPS) and cardio-respiratory coordination (CRC), remain elusive, and an automated algorithm for CRC detection is lacking. This paper introduces an automated CRC detection algorithm, which allowed us to conduct a comprehensive comparison of CRPS and CRC during sleep for the first time using an extensive database. We found that CRPS is more sensitive to sleep-stage transitions, and intriguingly, there is a negative correlation between the degree of CRPS and CRC when fluctuations in breathing frequency are high. This comparative analysis holds promise in assisting researchers in gaining deeper insights into the mechanics of and distinctions between these two physiological phenomena. Additionally, the automated algorithms we devised have the potential to offer valuable insights into the clinical applications of CRC and CRPS.
Collapse
Affiliation(s)
- Yaopeng J X Ma
- Department of Physics, Bar-Ilan University, 5290002 Ramat Gan, Israel
| | - Johannes Zschocke
- Institute of Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Martin-Luther-University Halle-Wittenberg, 06097 Halle (Saale), Germany
- Institute of Physics, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Martin Glos
- Interdisciplinary Center for Sleep Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Maria Kluge
- Interdisciplinary Center for Sleep Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thomas Penzel
- Interdisciplinary Center for Sleep Medicine, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jan W Kantelhardt
- Institute of Physics, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Ronny P Bartsch
- Department of Physics, Bar-Ilan University, 5290002 Ramat Gan, Israel
| |
Collapse
|
3
|
Bao B, Hu J, Bao H, Xu Q, Chen M. Memristor-coupled dual-neuron mapping model: initials-induced coexisting firing patterns and synchronization activities. Cogn Neurodyn 2024; 18:539-555. [PMID: 38699613 PMCID: PMC11061084 DOI: 10.1007/s11571-023-10006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 05/05/2024] Open
Abstract
Synaptic plasticity makes memristors particularly suitable for simulating the connection synapses between neurons that describe magnetic induction coupling. By applying a memristor to the synaptic coupling between two map-based neuron models, a memristor-coupled dual-neuron mapping (MCDN) model is proposed in this article. The MCDN model has a line fixed point set associated with the memristor initial state, which is always unstable for the model parameters and memristor initial state of interest. Complex spiking/bursting firing patterns and their transitions are disclosed using some dynamical analysis means. The numerical results show that these spiking/bursting firings are significantly relied on the memristor initial state, demonstrating the coexistence of firing patterns. Moreover, the initial effects of complete synchronization are explored for the homogeneous MCDN model, and it is clarified that in addition to being related to the coupling strength, the synchronization activities are extremely dependent on the initial states of the memristor and neurons. Finally, these numerical results are confirmed by the FPGA-based hardware experiments.
Collapse
Affiliation(s)
- Bocheng Bao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213159 People’s Republic of China
| | - Jingting Hu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213159 People’s Republic of China
| | - Han Bao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213159 People’s Republic of China
| | - Quan Xu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213159 People’s Republic of China
| | - Mo Chen
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213159 People’s Republic of China
| |
Collapse
|
4
|
Joseph D, Kumar R, Karthikeyan A, Rajagopal K. Dynamics, synchronization and traveling wave patterns of flux coupled network of Chay neurons. Biosystems 2024; 235:105113. [PMID: 38159671 DOI: 10.1016/j.biosystems.2023.105113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Studies in the literature have demonstrated the significance of the synchronization of neuronal electrical activity for signal transmission and information encoding. In light of this importance, we investigate the synchronization of the Chay neuron model using both theoretical analysis and numerical simulations. The Chay model is chosen for its comprehensive understanding of neuronal behavior and computational efficiency. Additionally, we explore the impact of electromagnetic induction, leading to the magnetic flux Chay neuron model. The single neuron model exhibits rich and complex dynamics for various parameter choices. We explore the bifurcation structure of the model through bifurcation diagrams and Lyapunov exponents. Subsequently, we extend our study to two coupled magnetic flux Chay neurons, identifying mode locking and structures reminiscent of Arnold's tongue. We evaluate the stability of the synchronized manifold using Lyapunov theory and confirm our findings through simulations. Expanding our study to networks of diffusively coupled flux Chay neurons, we observe coherent, incoherent, and imperfect chimera patterns. Our investigation of three network types highlights the impact of network topology on the emergent dynamics of the Chay neuron network. Regular networks exhibit diverse patterns, small-world networks demonstrate a critical transition to coherence, and random networks showcase synchronization at specific coupling strengths. These findings significantly contribute to our understanding of the synchronization patterns exhibited by the magnetic flux Chay neuron. To assess the synchronization stability of the Chay neuron network, we employ master stability function analysis.
Collapse
Affiliation(s)
- Dianavinnarasi Joseph
- Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India.
| | - Rakshanaa Kumar
- Department of Information Technology, Chennai Institute of Technology, Chennai 600069, India.
| | - Anitha Karthikeyan
- Department of Electronics and Communication Engineering, Vemu Institute of Technology, Chitoor, Andhra Pradesh 517112, India; Department of Electronics and Communications Engineering and University Centre for Research & Development, Chandigarh University, Mohali 140413, India.
| | - Karthikeyan Rajagopal
- Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India.
| |
Collapse
|
5
|
Bester M, Perciballi G, Fonseca P, van Gilst MM, Mischi M, van Laar JO, Vullings R, Joshi R. Maternal cardiorespiratory coupling: differences between pregnant and nonpregnant women are further amplified by sleep-stage stratification. J Appl Physiol (1985) 2023; 135:1199-1212. [PMID: 37767554 PMCID: PMC10979799 DOI: 10.1152/japplphysiol.00296.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/22/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Pregnancy complications are associated with abnormal maternal autonomic regulation. Subsequently, thoroughly understanding maternal autonomic regulation during healthy pregnancy may enable the earlier detection of complications, in turn allowing for the improved management thereof. Under healthy autonomic regulation, reciprocal interactions occur between the cardiac and respiratory systems, i.e., cardiorespiratory coupling (CRC). Here, we investigate, for the first time, the differences in CRC between healthy pregnant and nonpregnant women. We apply two algorithms, namely, synchrograms and bivariate phase-rectified signal averaging, to nighttime recordings of ECG and respiratory signals. We find that CRC is present in both groups. Significantly less (P < 0.01) cardiorespiratory synchronization occurs in pregnant women (11% vs. 15% in nonpregnant women). Moreover, there is a smaller response in the heart rate of pregnant women corresponding to respiratory inhalations and exhalations. In addition, we stratified these analyses by sleep stages. As each sleep stage is governed by different autonomic states, this stratification not only amplified some of the differences between groups but also brought out differences that remained hidden when analyzing the full-night recordings. Most notably, the known positive relationship between CRC and deep sleep is less prominent in pregnant women than in their nonpregnant counterparts. The decrease in CRC during healthy pregnancy may be attributable to decreased maternal parasympathetic activity, anatomical changes to the maternal respiratory system, and the increased physiological stress accompanying pregnancy. This work offers novel insight into the physiology of healthy pregnancy and forms part of the base knowledge needed to detect abnormalities in pregnancy.NEW & NOTEWORTHY We compare CRC, i.e., the reciprocal interaction between the cardiac and respiratory systems, between healthy pregnant and nonpregnant women for the first time. Although CRC is present in both groups, CRC is reduced during healthy pregnancy; there is less synchronization between maternal cardiac and respiratory activity and a smaller response in maternal heart rate to respiratory inhalations and exhalations. Stratifying this analysis by sleep stages reveals that differences are most prominent during deep sleep.
Collapse
Affiliation(s)
- Maretha Bester
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Patient Care and Monitoring, Philips Research, Eindhoven, The Netherlands
| | - Giulia Perciballi
- Patient Care and Monitoring, Philips Research, Eindhoven, The Netherlands
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Pedro Fonseca
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Patient Care and Monitoring, Philips Research, Eindhoven, The Netherlands
| | - Merel M van Gilst
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Judith Oeh van Laar
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Obstetrics and Gynecology, Máxima Medical Centrum, Veldhoven, The Netherlands
| | - Rik Vullings
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Rohan Joshi
- Patient Care and Monitoring, Philips Research, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Alzaabi Y, Khandoker AH. Effect of depression on phase coherence between respiratory sinus arrhythmia and respiration during sleep in patients with obstructive sleep apnea. Front Physiol 2023; 14:1181750. [PMID: 37841315 PMCID: PMC10572546 DOI: 10.3389/fphys.2023.1181750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: A high prevalence of major depressive disorder (MDD) among Obstructive Sleep Apnea (OSA) patients has been observed in both community and clinical populations. Due to the overlapping symptoms between both disorders, depression is usually misdiagnosed when correlated with OSA. Phase coherence between respiratory sinus arrhythmia (RSA) and respiration (λ RSA-RESP) has been proposed as an alternative measure for assessing vagal activity. Therefore, this study aims to investigate if there is any difference in λ RSA-RESP in OSA patients with and without MDD. Methods: Electrocardiograms (ECG) and breathing signals using overnight polysomnography were collected from 40 OSA subjects with MDD (OSAD+), 40 OSA subjects without MDD (OSAD-), and 38 control subjects (Controls) without MDD and OSA. The interbeat intervals (RRI) and respiratory movement were extracted from 5-min segments of ECG signals with a single apneic event during non-rapid eye movement (NREM) [353 segments] and rapid eye movement (REM) sleep stages [298 segments]. RR intervals (RRI) and respiration were resampled at 10 Hz, and the band passed filtered (0.10-0.4 Hz) before the Hilbert transform was used to extract instantaneous phases of the RSA and respiration. Subsequently, the λ RSA-RESP between RSA and Respiration and Heart Rate Variability (HRV) features were computed. Results: Our results showed that λ RSA-RESP was significantly increased in the OSAD+ group compared to OSAD- group during NREM and REM sleep. This increase was accompanied by a decrease in the low frequency (LF) component of HRV. Discussion: We report that the phase synchronization index between RSA and respiratory movement could provide a useful measure for evaluating depression in OSA patients. Our findings suggest that depression has lowered sympathetic activity when accompanied by OSA, allowing for stronger synchronization between RSA and respiration.
Collapse
Affiliation(s)
- Yahya Alzaabi
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
7
|
Borik S, Keller M, Perlitz V, Lyra S, Pelz H, Müller G, Leonhardt S, Blazek V. On the cardiorespiratory coordination assessed by the photoplethysmography imaging technique. Sci Rep 2023; 13:14645. [PMID: 37670111 PMCID: PMC10480171 DOI: 10.1038/s41598-023-41828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Cardiorespiratory coordination (CRC) probes the interaction between cardiac and respiratory oscillators in which cardiac and respiratory activity are synchronized, with individual heartbeats occurring at approximately the same temporal positions during several breathing cycles. An increase of CRC has previously been related to pathological stressful states. We studied CRC employing coordigrams computed from non-contact photoplethysmography imaging (PPGI) and respiratory data using the optical flow method. In a blocked study design, we applied the cold pressure test (CPT), water at ambient temperature (AWT), and intermittent resting conditions. In controls (no intervention), CRC remained on initial low levels throughout measurements. In the experimental group (AWT and CPT intervention), CRC decreased during AWT and CPT. Following both interventions, CRC increased significantly, with a rebound effect following AWT. In controls, HR increased steadily over time. CPT evoked a significant HR increase which correlated with subjective stress/pain ratings. The CRC increase following AWT correlated significantly with subjective pain (r = .79) and stress (r = .63) ratings. Furthermore, we observed a significant correlation (r = - .80) between mean RMSSD and mean duration of CRC, which further supports an association between autonomic state and CRC level. CRC analysis obtained from cutaneous tissue perfusion data therefore appears to be a sensitive and useful method for the study of CRC and ANS activity. Future studies need to investigate the physiological principles and clinical significance of these findings.
Collapse
Affiliation(s)
- Stefan Borik
- Department of Electromagnetic and Biomedical Engineering, Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia.
| | - Micha Keller
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | | | - Simon Lyra
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Holger Pelz
- Deutsche Gesellschaft für Osteopathische Medizin (DGOM), Mannheim, Germany
| | | | - Steffen Leonhardt
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Vladimir Blazek
- Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- The Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), Czech Technical University in Prague, Prague, Czech Republic
| |
Collapse
|
8
|
Cairo B, Bari V, de Abreu RM, Gelpi F, De Maria B, Catai AM, Porta A. Characterization of Multiple Regimes of Cardiorespiratory Phase Synchronization in Athletes Undergoing Inspiratory Muscle Training. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083759 DOI: 10.1109/embc40787.2023.10339951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cardiorespiratory phase synchronization (CRPS) is defined as the stable occurrence of n heartbeats within m respiratory cycles according to the n:m phase locking ratio (PLR). Since CRPS is an intermittent phenomenon where different phase synchronization regimes and epochs of phase unlocking can alternate within the same recording, an index of CRPS ideally should assess all potential PLRs present in the recording. However, traditional approaches compute the synchronization index (SYNC%) over a single n:m PLR, namely the one that maximizes CRPS. In the present work, we tested a synchronization index assessing the total percentage of heartbeats coupled to the inspiratory onset regardless of phase locking regimes (SYNC%sum) and we compared its efficacy to the more traditional SYNC%. Analysis was carried out in a cohort of 25 male amateur cyclists (age: 20-40 yrs) undergoing inspiratory muscle training (IMT) at different intensities. CRPS was assessed before and after the IMT protocol, during an experimental condition known to modify CRPS, namely active standing (STAND). We found that after a moderate intensity IMT at 60% of the maximal inspiratory pressure, SYNC%sum could detect the decrease in CRPS following STAND. This result was not visible using the more traditional SYNC%. Therefore, we stress the significant presence of different phase locking regimes in athletes and the importance of accounting for multiple PLRs in CRPS analysis.Clinical Relevance- Multiple phase locking regimes contribute significantly to cardiorespiratory control in amateur cyclists especially after inspiratory muscle training of moderate intensity.
Collapse
|
9
|
Porta A, Bari V, Gelpi F, Cairo B, De Maria B, Tonon D, Rossato G, Faes L. On the Different Abilities of Cross-Sample Entropy and K-Nearest-Neighbor Cross-Unpredictability in Assessing Dynamic Cardiorespiratory and Cerebrovascular Interactions. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040599. [PMID: 37190390 PMCID: PMC10137562 DOI: 10.3390/e25040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Nonlinear markers of coupling strength are often utilized to typify cardiorespiratory and cerebrovascular regulations. The computation of these indices requires techniques describing nonlinear interactions between respiration (R) and heart period (HP) and between mean arterial pressure (MAP) and mean cerebral blood velocity (MCBv). We compared two model-free methods for the assessment of dynamic HP-R and MCBv-MAP interactions, namely the cross-sample entropy (CSampEn) and k-nearest-neighbor cross-unpredictability (KNNCUP). Comparison was carried out first over simulations generated by linear and nonlinear unidirectional causal, bidirectional linear causal, and lag-zero linear noncausal models, and then over experimental data acquired from 19 subjects at supine rest during spontaneous breathing and controlled respiration at 10, 15, and 20 breaths·minute-1 as well as from 13 subjects at supine rest and during 60° head-up tilt. Linear markers were computed for comparison. We found that: (i) over simulations, CSampEn and KNNCUP exhibit different abilities in evaluating coupling strength; (ii) KNNCUP is more reliable than CSampEn when interactions occur according to a causal structure, while performances are similar in noncausal models; (iii) in healthy subjects, KNNCUP is more powerful in characterizing cardiorespiratory and cerebrovascular variability interactions than CSampEn and linear markers. We recommend KNNCUP for quantifying cardiorespiratory and cerebrovascular coupling.
Collapse
Affiliation(s)
- Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | | | - Davide Tonon
- Department of Neurology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy
| | - Gianluca Rossato
- Department of Neurology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Verona, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
10
|
Difrancesco S, van Baardewijk JU, Cornelissen AS, Varon C, Hendriks RC, Brouwer AM. Exploring the use of Granger causality for the identification of chemical exposure based on physiological data. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1106650. [PMID: 37007435 PMCID: PMC10053028 DOI: 10.3389/fnetp.2023.1106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
Wearable sensors offer new opportunities for the early detection and identification of toxic chemicals in situations where medical evaluation is not immediately possible. We previously found that continuously recorded physiology in guinea pigs can be used for early detection of exposure to an opioid (fentanyl) or a nerve agent (VX), as well as for differentiating between the two. Here, we investigated how exposure to these different chemicals affects the interactions between ECG and respiration parameters as determined by Granger causality (GC). Features reflecting such interactions may provide additional information and improve models differentiating between chemical agents. Traditional respiration and ECG features, as well as GC features, were extracted from data of 120 guinea pigs exposed to VX (n = 61) or fentanyl (n = 59). Data were divided in a training set (n = 99) and a test set (n = 21). Minimum Redundancy Maximum Relevance (mRMR) and Support Vector Machine (SVM) algorithms were used to, respectively, perform feature selection and train a model to discriminate between the two chemicals. We found that ECG and respiration parameters are Granger-related under healthy conditions, and that exposure to fentanyl and VX affected these relationships in different ways. SVM models discriminated between chemicals with accuracy of 95% or higher on the test set. GC features did not improve the classification compared to traditional features. Respiration features (i.e., peak inspiratory and expiratory flow) were the most important to discriminate between different chemical’s exposure. Our results indicate that it may be feasible to discriminate between chemical exposure when using traditional physiological respiration features from wearable sensors. Future research will examine whether GC features can contribute to robust detection and differentiation between chemicals when considering other factors, such as generalizing results across species.
Collapse
Affiliation(s)
- S. Difrancesco
- Department Systems Biology, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - J. U. van Baardewijk
- Department Human Performance, The Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
| | - A. S. Cornelissen
- Department CBRN Protection, The Netherlands Organisation for Applied Scientific Research (TNO), Rijswijk, Netherlands
| | - C. Varon
- Circuits and Systems (CAS) Group, Delft University of Technology, Delft, Netherlands
- Centre for Research and Engineering in Space Technologies—CREST, Université Libre de Bruxelles, Brussels, Belgium
| | - R. C. Hendriks
- Circuits and Systems (CAS) Group, Delft University of Technology, Delft, Netherlands
| | - A. M. Brouwer
- Department Human Performance, The Netherlands Organisation for Applied Scientific Research (TNO), Soesterberg, Netherlands
- *Correspondence: A. M. Brouwer,
| |
Collapse
|
11
|
Kalauzi A, Matić Z, Platiša MM, Bojić T. Two Operational Modes of Cardio-Respiratory Coupling Revealed by Pulse-Respiration Quotient. Bioengineering (Basel) 2023; 10:bioengineering10020180. [PMID: 36829674 PMCID: PMC9952035 DOI: 10.3390/bioengineering10020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Due to the fact that respiratory breath-to-breath and cardiac intervals between two successive R peaks (BBI and RRI, respectively) are not temporally concurrent, in a previous paper, we proposed a method to calculate both the integer and non-integer parts of the pulse respiration quotient (PRQ = BBI/RRI = PRQint + b1 + b2), b1 and b2 being parts of the border RRIs for each BBI. In this work, we study the correlations between BBI and PRQ, as well as those between BBI and mean RRI within each BBI (mRRI), on a group of twenty subjects in four conditions: in supine and standing positions, in combination with spontaneous and slow breathing. Results show that the BBI vs. PRQ correlations are positive; whereas the breathing regime had little or no effect on the linear regression slopes, body posture did. Two types of scatter plots were obtained with the BBI vs. mRRI correlations: one showed points aggregated around the concurrent PRQint lines, while the other showed randomly distributed points. Five out of six of the proposed aggregation measures confirmed the existence of these two cardio-respiratory coupling regimes. We also used b1 to study the positions of R pulses relative to the respiration onsets and showed that they were more synchronous with sympathetic activation. Overall, this method should be used in different pathological states.
Collapse
Affiliation(s)
- Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, 11030 Belgrade, Serbia
| | - Zoran Matić
- Biomedical Engineering and Technologies, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence: (Z.M.); (T.B.); Tel.: +381-611-662103 (Z.M.)
| | - Mirjana M. Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, P.O. Box 22, 11129 Belgrade, Serbia
| | - Tijana Bojić
- Department of Radiation Chemistry and Physics 030, “VINČA” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Mike Petrovića Alasa 12–14, 11000 Belgrade, Serbia
- Correspondence: (Z.M.); (T.B.); Tel.: +381-611-662103 (Z.M.)
| |
Collapse
|
12
|
Cardiorespiratory coupling in mechanically ventilated patients studied via synchrogram analysis. Med Biol Eng Comput 2023; 61:1329-1341. [PMID: 36698031 DOI: 10.1007/s11517-023-02784-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
Respiration and cardiac activity are strictly interconnected with reciprocal influences. They act as weakly coupled oscillators showing varying degrees of phase synchronization and their interactions are affected by mechanical ventilation. The study aims at differentiating the impact of three ventilatory modes on the cardiorespiratory phase coupling in critically ill patients. The coupling between respiration and heartbeat was studied through cardiorespiratory phase synchronization analysis carried out via synchrogram during pressure control ventilation (PCV), pressure support ventilation (PSV), and neurally adjusted ventilatory assist (NAVA) in critically ill patients. Twenty patients were studied under all the three ventilatory modes. Cardiorespiratory phase synchronization changed significantly across ventilatory modes. The highest synchronization degree was found during PCV session, while the lowest one with NAVA. The percentage of all epochs featuring synchronization regardless of the phase locking ratio was higher with PCV (median: 33.9%, first-third quartile: 21.3-39.3) than PSV (median: 15.7%; first-third quartile: 10.9-27.8) and NAVA (median: 3.7%; first-third quartile: 3.3-19.2). PCV induces a significant amount of cardiorespiratory phase synchronization in critically ill mechanically ventilated patients. Synchronization induced by patient-driven ventilatory modes was weaker, reaching the minimum with NAVA. Findings can be explained as a result of the more regular and powerful solicitation of the cardiorespiratory system induced by PCV. The degree of phase synchronization between cardiac and respiratory activities in mechanically ventilated humans depends on the ventilatory mode.
Collapse
|
13
|
Jiang L, He J, Pan H, Wu D, Jiang T, Liu J. Seizure detection algorithm based on improved functional brain network structure feature extraction. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Matić Z, Kalauzi A, Moser M, Platiša MM, Lazarević M, Bojić T. Pulse respiration quotient as a measure sensitive to changes in dynamic behavior of cardiorespiratory coupling such as body posture and breathing regime. Front Physiol 2022; 13:946613. [PMID: 36620213 PMCID: PMC9816793 DOI: 10.3389/fphys.2022.946613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: In this research we explored the (homeo)dynamic character of cardiorespiratory coupling (CRC) under the influence of different body posture and breathing regimes. Our tool for it was the pulse respiration quotient (PRQ), representing the number of heartbeat intervals per breathing cycle. We obtained non-integer PRQ values using our advanced Matlab® algorithm and applied it on the signals of 20 healthy subjects in four conditions: supine position with spontaneous breathing (Supin), standing with spontaneous breathing (Stand), supine position with slow (0.1 Hz) breathing (Supin01) and standing with slow (0.1 Hz) breathing (Stand01). Main results: Linear features of CRC (in PRQ signals) were dynamically very sensitive to posture and breathing rhythm perturbations. There are obvious increases in PRQ mean level and variability under the separated and joined influence of orthostasis and slow (0.1 Hz) breathing. This increase was most pronounced in Stand01 as the state of joint influences. Importantly, PRQ dynamic modification showed greater sensitivity to body posture and breathing regime changes than mean value and standard deviation of heart rhythm and breathing rhythm. In addition, as a consequence of prolonged supine position, we noticed the tendency to integer quantization of PRQ (especially after 14 min), in which the most common quantization number was 4:1 (demonstrated in other research reports as well). In orthostasis and slow breathing, quantization can also be observed, but shifted to other values. We postulate that these results manifest resonance effects induced by coupling patterns from sympathetic and parasympathetic adjustments (with the second as dominant factor). Significance: Our research confirms that cardiorespiratory coupling adaptability could be profoundly explored by precisely calculated PRQ parameter since cardiorespiratory regulation in healthy subjects is characterized by a high level of autonomic adaptability (responsiveness) to posture and breathing regime, although comparisons with pathological states has yet to be performed. We found Stand01 to be the most provoking state for the dynamic modification of PRQ (cardiorespiratory inducement). As such, Stand01 has the potential of using for PRQ tuning by conditioning the cardiorespiratory autonomic neural networks, e.g., in the cases where PRQ is disturbed by environmental (i.e., microgravity) or pathologic conditions.
Collapse
Affiliation(s)
- Zoran Matić
- Biomedical Engineering and Technologies, University of Belgrade, Belgrade, Serbia,*Correspondence: Zoran Matić,
| | - Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Maximilian Moser
- Chair of Physiology, Medical University of Graz, Graz, Austria; Human Research Institute, Weiz, Austria
| | - Mirjana M. Platiša
- Institute of Biophysics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mihailo Lazarević
- Department for Mechanics, Faculty for Mechanical Engineering, University of Belgrade, Belgrade, Serbia
| | - Tijana Bojić
- Department of Radiation Chemistry and Physics, “VINČA” Institute of Nuclear Sciences - National Institute of Thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Combining the wavelet transform with a phase-lead compensator to a respiratory motion compensation system with an ultrasound tracking technique in radiation therapy. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Espinoso A, Andrzejak RG. Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients. Phys Rev E 2022; 105:034212. [PMID: 35428047 DOI: 10.1103/physreve.105.034212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for univariate measures of phase irregularity.
Collapse
Affiliation(s)
- Anaïs Espinoso
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain and Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Catalonia, Spain
| | - Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Günther M, Kantelhardt JW, Bartsch RP. The Reconstruction of Causal Networks in Physiology. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:893743. [PMID: 36926108 PMCID: PMC10013035 DOI: 10.3389/fnetp.2022.893743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022]
Abstract
We systematically compare strengths and weaknesses of two methods that can be used to quantify causal links between time series: Granger-causality and Bivariate Phase Rectified Signal Averaging (BPRSA). While a statistical test method for Granger-causality has already been established, we show that BPRSA causality can also be probed with existing statistical tests. Our results indicate that more data or stronger interactions are required for the BPRSA method than for the Granger-causality method to detect an existing link. Furthermore, the Granger-causality method can distinguish direct causal links from indirect links as well as links that arise from a common source, while BPRSA cannot. However, in contrast to Granger-causality, BPRSA is suited for the analysis of non-stationary data. We demonstrate the practicability of the Granger-causality method by applying it to polysomnography data from sleep laboratories. An algorithm is presented, which addresses the stationarity condition of Granger-causality by splitting non-stationary data into shorter segments until they pass a stationarity test. We reconstruct causal networks of heart rate, breathing rate, and EEG amplitude from young healthy subjects, elderly healthy subjects, and subjects with obstructive sleep apnea, a condition that leads to disruption of normal respiration during sleep. These networks exhibit differences not only between different sleep stages, but also between young and elderly healthy subjects on the one hand and subjects with sleep apnea on the other hand. Among these differences are 1) weaker interactions in all groups between heart rate, breathing rate and EEG amplitude during deep sleep, compared to light and REM sleep, 2) a stronger causal link from heart rate to breathing rate but disturbances in respiratory sinus arrhythmia (breathing to heart rate coupling) in subjects with sleep apnea, 3) a stronger causal link from EEG amplitude to breathing rate during REM sleep in subjects with sleep apnea. The Granger-causality method, although initially developed for econometric purposes, can provide a quantitative, testable measure for causality in physiological networks.
Collapse
Affiliation(s)
| | - Jan W Kantelhardt
- Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Ronny P Bartsch
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
18
|
Borovkova EI, Prokhorov MD, Kiselev AR, Hramkov AN, Mironov SA, Agaltsov MV, Ponomarenko VI, Karavaev AS, Drapkina OM, Penzel T. Directional couplings between the respiration and parasympathetic control of the heart rate during sleep and wakefulness in healthy subjects at different ages. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:942700. [PMID: 36926072 PMCID: PMC10013057 DOI: 10.3389/fnetp.2022.942700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022]
Abstract
Cardiorespiratory interactions are important, both for understanding the fundamental processes of functioning of the human body and for development of methods for diagnostics of various pathologies. The properties of cardiorespiratory interaction are determined by the processes of autonomic control of blood circulation, which are modulated by the higher nervous activity. We study the directional couplings between the respiration and the process of parasympathetic control of the heart rate in the awake state and different stages of sleep in 96 healthy subjects from different age groups. The detection of directional couplings is carried out using the method of phase dynamics modeling applied to experimental RR-intervals and the signal of respiration. We reveal the presence of bidirectional couplings between the studied processes in all age groups. Our results show that the coupling from respiration to the process of parasympathetic control of the heart rate is stronger than the coupling in the opposite direction. The difference in the strength of bidirectional couplings between the considered processes is most pronounced in deep sleep.
Collapse
Affiliation(s)
- Ekaterina I Borovkova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Mikhail D Prokhorov
- Smart Sleep Laboratory, Saratov State University, Saratov, Russia.,Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
| | - Anton R Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.,Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia
| | | | - Sergey A Mironov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Mikhail V Agaltsov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Vladimir I Ponomarenko
- Smart Sleep Laboratory, Saratov State University, Saratov, Russia.,Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia
| | - Anatoly S Karavaev
- Smart Sleep Laboratory, Saratov State University, Saratov, Russia.,Laboratory of Nonlinear Dynamics Modeling, Saratov Branch of Kotelnikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Saratov, Russia.,Institute of Cardiological Research, Saratov State Medical University, Saratov, Russia
| | - Oksana M Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Thomas Penzel
- Smart Sleep Laboratory, Saratov State University, Saratov, Russia.,Interdisciplinary Sleep Medicine Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Cairo B, de Abreu RM, Bari V, Gelpi F, De Maria B, Rehder-Santos P, Sakaguchi CA, da Silva CD, De Favari Signini É, Catai AM, Porta A. Optimizing phase variability threshold for automated synchrogram analysis of cardiorespiratory interactions in amateur cyclists. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200251. [PMID: 34689616 DOI: 10.1098/rsta.2020.0251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 06/13/2023]
Abstract
We propose a procedure suitable for automated synchrogram analysis for setting the threshold below which phase variability between two marker event series is of such a negligible amount that the null hypothesis of phase desynchronization can be rejected. The procedure exploits the principle of maximizing the likelihood of detecting phase synchronization epochs and it is grounded on a surrogate data approach testing the null hypothesis of phase uncoupling. The approach was applied to assess cardiorespiratory phase interactions between heartbeat and inspiratory onset in amateur cyclists before and after 11-week inspiratory muscle training (IMT) at different intensities and compared to a more traditional approach to set phase variability threshold. The proposed procedure was able to detect the decrease in cardiorespiratory phase locking strength during vagal withdrawal induced by the modification of posture from supine to standing. IMT had very limited effects on cardiorespiratory phase synchronization strength and this result held regardless of the training intensity. In amateur athletes training, the inspiratory muscles did not limit the decrease in cardiorespiratory phase synchronization observed in the upright position as a likely consequence of the modest impact of this respiratory exercise, regardless of its intensity, on cardiac vagal control. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.
Collapse
Affiliation(s)
- Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan 20133, Italy
| | - Raphael Martins de Abreu
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
| | - Francesca Gelpi
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
| | | | - Patrícia Rehder-Santos
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Camila Akemi Sakaguchi
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Claudio Donisete da Silva
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Étore De Favari Signini
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan 20133, Italy
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
| |
Collapse
|
20
|
Cenk Eser M, Medeiros ES, Riza M, Zakharova A. Edges of inter-layer synchronization in multilayer networks with time-switching links. CHAOS (WOODBURY, N.Y.) 2021; 31:103119. [PMID: 34717318 DOI: 10.1063/5.0065310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
We investigate the transition to synchronization in a two-layer network of oscillators with time-switching inter-layer links. We focus on the role of the number of inter-layer links and the timescale of topological changes. Initially, we observe a smooth transition to complete synchronization for the static inter-layer topology by increasing the number of inter-layer links. Next, for a dynamic topology with the existent inter-layer links randomly changing among identical oscillators in the layers, we observe a significant improvement in the system synchronizability; i.e., the layers synchronize with lower inter-layer connectivity. More interestingly, we find that, for a critical switching time, the transition from the network state of low inter-layer synchronization to high inter-layer synchronization occurs abruptly as the number of inter-layer links increases. We interpret this phenomenon as shrinking and ultimately the disappearance of the basin of attraction of a desynchronized network state.
Collapse
Affiliation(s)
- Muhittin Cenk Eser
- Department of Physics, Eastern Mediterranean University, 99628 Famagusta, North Cyprus, via Mersin 10, Turkey
| | - Everton S Medeiros
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Mustafa Riza
- Department of Physics, Eastern Mediterranean University, 99628 Famagusta, North Cyprus, via Mersin 10, Turkey
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
21
|
Connectivity of EEG synchronization networks increases for Parkinson's disease patients with freezing of gait. Commun Biol 2021; 4:1017. [PMID: 34462540 PMCID: PMC8405655 DOI: 10.1038/s42003-021-02544-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Freezing of gait (FoG), a paroxysmal gait disturbance commonly experienced by patients with Parkinson's disease (PD), is characterized by sudden episodes of inability to generate effective forward stepping. Recent studies have shown an increase in beta frequency of local-field potentials in the basal-ganglia during FoG, however, comprehensive research on the synchronization between different brain locations and frequency bands in PD patients is scarce. Here, by developing tools based on network science and non-linear dynamics, we analyze synchronization networks of electroencephalography (EEG) brain waves of three PD patient groups with different FoG severity. We find higher EEG amplitude synchronization (stronger network links) between different brain locations as PD and FoG severity increase. These results are consistent across frequency bands (theta, alpha, beta, gamma) and independent of the specific motor task (walking, still standing, hand tapping) suggesting that an increase in severity of PD and FoG is associated with stronger EEG networks over a broad range of brain frequencies. This observation of a direct relationship of PD/FoG severity with overall EEG synchronization together with our proposed EEG synchronization network approach may be used for evaluating FoG propensity and help to gain further insight into PD and the pathophysiology leading to FoG.
Collapse
|
22
|
Reali P, Piazza C, Tacchino G, Songia L, Nazzari S, Reni G, Frigerio A, Bianchi AM. Assessing stress variations in children during the strange situation procedure: comparison of three widely used respiratory sinus arrhythmia estimation methods. Physiol Meas 2021; 42. [PMID: 34325412 DOI: 10.1088/1361-6579/ac18ff] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/29/2021] [Indexed: 01/01/2023]
Abstract
Objective.The respiratory sinus arrhythmia (RSA) is a well-known marker of vagal activity that can be exploited to measure stress changes. RSA is usually estimated from heart rate variability (HRV). This study aims to compare the RSA obtained with three widely adopted methods showing their strengths and potential pitfalls.Approach.The three methods are tested on 69 healthy preschoolers undergoing a stressful protocol, the strange situation procedure (SSP). We compare the RSA estimated by the Porges method, the univariate autoregressive (AR) spectral analysis of the HRV signal, and the bivariate AR spectral analysis of HRV and respirogram signals. We examine RSA differences detected across the SSP episodes and correlation between the estimates provided by each method.Main results.The Porges and the bivariate AR approaches both detected significant differences (i.e. stress variations) in the RSA measured across the SSP. However, the latter method showed higher sensitivity to stress changes induced by the procedure, with the mean RSA variation between baseline and first separation from the mother (the most stressful condition) being significantly different among methods: Porges, -17.5%; univariate AR, -18.3%; bivariate AR, -23.7%. Moreover, the performances of the Porges algorithm were found strictly dependent on the applied preprocessing.Significance.Our findings confirm the bivariate AR analysis of the HRV and respiratory signals as a robust stress assessment tool that does not require any population-specific preprocessing of the signals and warn about using RSA estimates that neglect breath information in more natural experiments, such as those involving children, in which respiratory frequency changes are extremely likely.
Collapse
Affiliation(s)
- Pierluigi Reali
- Electronics Information and Bioengineering Department, Politecnico di Milano, Milano, Italy
| | - Caterina Piazza
- Bioengineering Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Giulia Tacchino
- Electronics Information and Bioengineering Department, Politecnico di Milano, Milano, Italy
| | - Letizia Songia
- Electronics Information and Bioengineering Department, Politecnico di Milano, Milano, Italy
| | - Sarah Nazzari
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Gianluigi Reni
- Bioengineering Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Alessandra Frigerio
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Bosisio Parini, LC, Italy
| | - Anna Maria Bianchi
- Electronics Information and Bioengineering Department, Politecnico di Milano, Milano, Italy
| |
Collapse
|
23
|
Son DY, Kwon HB, Lee DS, Jin HW, Jeong JH, Kim J, Choi SH, Yoon H, Lee MH, Lee YJ, Park KS. Changes in physiological network connectivity of body system in narcolepsy during REM sleep. Comput Biol Med 2021; 136:104762. [PMID: 34399195 DOI: 10.1016/j.compbiomed.2021.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Narcolepsy is marked by pathologic symptoms including excessive daytime drowsiness and lethargy, even with sufficient nocturnal sleep. There are two types of narcolepsy: type 1 (with cataplexy) and type 2 (without cataplexy). Unlike type 1, for which hypocretin is a biomarker, type 2 narcolepsy has no adequate biomarker to identify the causality of narcoleptic phenomenon. Therefore, we aimed to establish new biomarkers for narcolepsy using the body's systemic networks. METHOD Thirty participants (15 with type 2 narcolepsy, 15 healthy controls) were included. We used the time delay stability (TDS) method to examine temporal information and determine relationships among multiple signals. We quantified and analyzed the network connectivity of nine biosignals (brainwaves, cardiac and respiratory information, muscle and eye movements) during nocturnal sleep. In particular, we focused on the differences in network connectivity between groups according to sleep stages and investigated whether the differences could be potential biomarkers to classify both groups by using a support vector machine. RESULT In rapid eye movement sleep, the narcolepsy group displayed more connections than the control group (narcolepsy connections: 24.47 ± 2.87, control connections: 21.34 ± 3.49; p = 0.022). The differences were observed in movement and cardiac activity. The performance of the classifier based on connectivity differences was a 0.93 for sensitivity, specificity and accuracy, respectively. CONCLUSION Network connectivity with the TDS method may be used as a biomarker to identify differences in the systemic networks of patients with narcolepsy type 2 and healthy controls.
Collapse
Affiliation(s)
- Dong Yeon Son
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 03080, South Korea; Integrated Major in Innovative Medical Science, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Hyun Bin Kwon
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 03080, South Korea
| | - Dong Seok Lee
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 03080, South Korea
| | - Hyung Won Jin
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 03080, South Korea; Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| | - Jong Hyeok Jeong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 03080, South Korea; Integrated Major in Innovative Medical Science, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jeehoon Kim
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Sang Ho Choi
- School of Computer and Information Engineering, Kwangwoon University, Seoul, 01897, South Korea
| | - Heenam Yoon
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul, 03016, South Korea
| | - Mi Hyun Lee
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Yu Jin Lee
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, 03080, South Korea
| | - Kwang Suk Park
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, South Korea; Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
24
|
Choi SH, Kwon HB, Jin HW, Yoon H, Lee MH, Lee YJ, Park KS. Weak closed-loop vibrational stimulation improves the depth of slow-wave sleep and declarative memory consolidation. Sleep 2021; 44:6047580. [PMID: 33367712 DOI: 10.1093/sleep/zsaa285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/11/2020] [Indexed: 11/12/2022] Open
Abstract
Sleep is a unique behavioral state that affects body functions and memory. Although previous studies suggested stimulation methods to enhance sleep, a new method is required that is practical for long-term and unconstrained use by people. In this study, we used a novel closed-loop vibration stimulation method that delivers a stimulus in interaction with the intrinsic heart rhythm and examined the effects of stimulation on sleep and memory. Twelve volunteers participated in the experiment and each underwent one adaptation night and two experimental conditions-a stimulation condition (STIM) and a no-stimulation condition (SHAM). The heart rate variability analysis showed a significant increase in the normalized high frequency and the normalized low frequency significantly decreased under the STIM during the slow-wave sleep (SWS) stage. Furthermore, the synchronization ratio between the heartbeat and the stimulus significantly increased under the STIM in the SWS stage. From the electroencephalogram (EEG) spectral analysis, EEG relative powers of slow-wave activity and theta frequency bands showed a significant increase during the STIM in the SWS stage. Additionally, memory retention significantly increased under the STIM compared to the SHAM. These findings suggest that the closed-loop stimulation improves the SWS-stage depth and memory retention, and further provides a new technique for sleep enhancement.
Collapse
Affiliation(s)
- Sang Ho Choi
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Republic of Korea
| | - Hyun Bin Kwon
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Republic of Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hyung Won Jin
- Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Republic of Korea
| | - Heenam Yoon
- Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul, Republic of Korea
| | - Mi Hyun Lee
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Jin Lee
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kwang Suk Park
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Corticomuscular coupling analysis based on improved LSTM and transfer entropy. Neurosci Lett 2021; 760:136012. [PMID: 34098023 DOI: 10.1016/j.neulet.2021.136012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/11/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
The study of functional corticomuscular coupling can reflect the interaction between the cerebral cortex and muscle tissue, thereby helping to understand how the brain controls muscle tissue and the effect of muscle movement on brain function. This study proposes a detection model of the coupling strength between the cortex and muscles. The detection model uses an adaptive selector to choose the optimal long short-term memory network, uses this network to extract the features of electroencephalography and electromyography, and finally transforms time characteristics into the frequency domain. The transfer entropy is used to represent the interaction intensity of signals in different frequency bands. Using this model, we analyze the coupling relationship between the cortex and muscles in the three movements of wrist flexion, wrist extension, and clench fist, and compare the model with traditional wavelet coherence analysis and deep canonical correlation analysis. The experimental results show that our model can not only express the bidirectional coupling relationship between different frequency bands but also suppress the possible false coupling that traditional methods may detect. Our research shows that the proposed model has great potential in medical rehabilitation, movement decoding, and other fields.
Collapse
|
26
|
Angelova M, Holloway PM, Shelyag S, Rajasegarar S, Rauch HGL. Effect of Stress on Cardiorespiratory Synchronization of Ironman Athletes. Front Physiol 2021; 12:612245. [PMID: 33737881 PMCID: PMC7960764 DOI: 10.3389/fphys.2021.612245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this paper is to investigate the cardiorespiratory synchronization in athletes subjected to extreme physical stress combined with a cognitive stress tasks. ECG and respiration were measured in 14 athletes before and after the Ironman competition. Stroop test was applied between the measurements before and after the Ironman competition to induce cognitive stress. Synchrogram and empirical mode decomposition analysis were used for the first time to investigate the effects of physical stress, induced by the Ironman competition, on the phase synchronization of the cardiac and respiratory systems of Ironman athletes before and after the competition. A cognitive stress task (Stroop test) was performed both pre- and post-Ironman event in order to prevent the athletes from cognitively controlling their breathing rates. Our analysis showed that cardiorespiratory synchronization increased post-Ironman race compared to pre-Ironman. The results suggest that the amount of stress the athletes are recovering from post-competition is greater than the effects of the Stroop test. This indicates that the recovery phase after the competition is more important for restoring and maintaining homeostasis, which could be another reason for stronger synchronization.
Collapse
Affiliation(s)
- Maia Angelova
- D2I Research Centre, School of IT, Deakin University, Geelong, VIC, Australia
| | - Philip M Holloway
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Sergiy Shelyag
- D2I Research Centre, School of IT, Deakin University, Geelong, VIC, Australia
| | | | - H G Laurie Rauch
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
27
|
The Effect of a Non-Local Fractional Operator in an Asymmetrical Glucose-Insulin Regulatory System: Analysis, Synchronization and Electronic Implementation. Symmetry (Basel) 2020. [DOI: 10.3390/sym12091395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
For studying biological conditions with higher precision, the memory characteristics defined by the fractional-order versions of living dynamical systems have been pointed out as a meaningful approach. Therefore, we analyze the dynamics of a glucose-insulin regulatory system by applying a non-local fractional operator in order to represent the memory of the underlying system, and whose state-variables define the population densities of insulin, glucose, and β-cells, respectively. We focus mainly on four parameters that are associated with different disorders (type 1 and type 2 diabetes mellitus, hypoglycemia, and hyperinsulinemia) to determine their observation ranges as a relation to the fractional-order. Like many preceding works in biosystems, the resulting analysis showed chaotic behaviors related to the fractional-order and system parameters. Subsequently, we propose an active control scheme for forcing the chaotic regime (an illness) to follow a periodic oscillatory state, i.e., a disorder-free equilibrium. Finally, we also present the electronic realization of the fractional glucose-insulin regulatory model to prove the conceptual findings.
Collapse
|
28
|
Tankanag AV, Grinevich AA, Tikhonova IV, Chemeris NK. An Analysis of Phase Relationships between Oscillatory Processes in the Human Cardiovascular System. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
de Abreu RM, Catai AM, Cairo B, Rehder-Santos P, da Silva CD, Signini ÉDF, Sakaguchi CA, Porta A. A Transfer Entropy Approach for the Assessment of the Impact of Inspiratory Muscle Training on the Cardiorespiratory Coupling of Amateur Cyclists. Front Physiol 2020; 11:134. [PMID: 32158402 PMCID: PMC7052290 DOI: 10.3389/fphys.2020.00134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/07/2020] [Indexed: 12/23/2022] Open
Abstract
The strength of cardiorespiratory interactions diminishes with age. Physical exercise can reduce the rate of this trend. Inspiratory muscle training (IMT) is a technique capable of improving cardiorespiratory interactions. This study evaluates the effect of IMT on cardiorespiratory coupling in amateur cyclists. Thirty male young healthy cyclists underwent a sham IMT of very low intensity (SHAM, n = 9), an IMT of moderate intensity at 60% of the maximal inspiratory pressure (MIP60, n = 10) and an IMT of high intensity at the critical inspiratory pressure (CIP, n = 11). Electrocardiogram, non-invasive arterial pressure, and thoracic respiratory movement (RM) were recorded before (PRE) and after (POST) training at rest in supine position (REST) and during active standing (STAND). The beat-to-beat series of heart period (HP) and systolic arterial pressure (SAP) were analyzed with the RM signal via a traditional non-causal approach, such as squared coherence function, and via a causal model-based transfer entropy (TE) approach. Cardiorespiratory coupling was quantified via the HP-RM squared coherence at the respiratory rate (K 2 HP-R M), the unconditioned TE from RM to HP (TER M → HP) and the TE from RM to HP conditioned on SAP (TER M → HP| SAP). In PRE condition we found that STAND led to a decrease of TER M → HP| SAP. After SHAM and CIP training this tendency was confirmed, while MIP60 inverted it by empowering cardiorespiratory coupling. This behavior was observed in presence of unvaried SAP mean and with usual responses of the baroreflex control and HP mean to STAND. TER M → HP and K 2 HP- RM were not able to detect the post-training increase of cardiorespiratory coupling strength during STAND, thus suggesting that conditioning out SAP is important for the assessment of cardiorespiratory interactions. Since the usual response of HP mean, SAP mean and baroreflex sensitivity to postural stressor were observed after MIP60 training, we conclude that the post-training increase of cardiorespiratory coupling during STAND in MIP60 group might be the genuine effect of some rearrangements at the level of central respiratory network and its interactions with sympathetic drive and vagal activity.
Collapse
Affiliation(s)
| | - Aparecida Maria Catai
- Department of Physical Therapy, Federal University of São Carlos, São Carlos, Brazil
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | | | | | | | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Cardiothoracic – Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| |
Collapse
|
30
|
Günther M, Bartsch RP, Miron-Shahar Y, Hassin-Baer S, Inzelberg R, Kurths J, Plotnik M, Kantelhardt JW. Coupling Between Leg Muscle Activation and EEG During Normal Walking, Intentional Stops, and Freezing of Gait in Parkinson's Disease. Front Physiol 2019; 10:870. [PMID: 31354521 PMCID: PMC6639586 DOI: 10.3389/fphys.2019.00870] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
In this paper, we apply novel techniques for characterizing leg muscle activation patterns via electromyograms (EMGs) and for relating them to changes in electroencephalogram (EEG) activity during gait experiments. Specifically, we investigate changes of leg-muscle EMG amplitudes and EMG frequencies during walking, intentional stops, and unintended freezing-of-gait (FOG) episodes. FOG is a frequent paroxysmal gait disturbance occurring in many patients suffering from Parkinson's disease (PD). We find that EMG amplitudes and frequencies do not change significantly during FOG episodes with respect to walking, while drastic changes occur during intentional stops. Phase synchronization between EMG signals is most pronounced during walking in controls and reduced in PD patients. By analyzing cross-correlations between changes in EMG patterns and brain-wave amplitudes (from EEGs), we find an increase in EEG-EMG coupling at the beginning of stop and FOG episodes. Our results may help to better understand the enigmatic pathophysiology of FOG, to differentiate between FOG events and other gait disturbances, and ultimately to improve diagnostic procedures for patients suffering from PD.
Collapse
Affiliation(s)
- Moritz Günther
- Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Physics, Bar-Ilan University, Ramat Gan, Israel
| | | | - Yael Miron-Shahar
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel
- Neuroscience Department, Sackler Faculty of Medicine, School of Graduate Studies, Tel-Aviv University, Tel Aviv, Israel
| | - Sharon Hassin-Baer
- Sagol Neuroscience Center and Department of Neurology, Sheba Medical Center, Movement Disorders Institute, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rivka Inzelberg
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
- Saratov State University, Saratov, Russia
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Tel Hashomer, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Jan W. Kantelhardt
- Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
31
|
Ren Y, Zhang J. Increased cardiorespiratory synchronization evoked by a breath controller based on heartbeat detection. Biomed Eng Online 2019; 18:61. [PMID: 31109326 PMCID: PMC6528364 DOI: 10.1186/s12938-019-0683-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/14/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The cardiovascular and respiratory systems are functionally related to each other, but the underlying physiologic mechanism of cardiorespiratory coupling (CRC) is unclear. Cardiopulmonary phase synchronization is a form of cardiorespiratory coupling. However, it is difficult to study in experimental data which are very often inherently nonstationary and thus contain only quasiperiodic oscillations. So how to enhance cardiopulmonary synchronization and quantify cardiopulmonary synchronization, the changes in cardiac function under the conditions of cardiopulmonary synchronization, and the physiological mechanisms behind them are the main issues to be discussed in this paper. RESULTS The results showed that the cardiorespiratory synchronization significantly increased when breathing was controlled by heartbeat detection (p < 0.001). And the respiratory sinus arrhythmia (RSA) obviously decreased (p < 0.01) in the 2/2 mode and increased (p < 0.001) in the 4/4 mode. During the 2/2 breathing pattern compared with spontaneous breathing, systolic blood pressure (SBP) decreased (p < 0.05), and diastolic blood pressure (DBP), mean arterial blood pressure (MBP), and SV decreased significantly (p < 0.01). During the 4/4 breathing pattern compared to 2/2 breathing patterns, DBP, MBP, and cardiac output (CO) increased (p < 0.05), and stroke volume (SV) increased significantly (p < 0.01). When analyzing the relationships among these parameters, the RSA was found to be associated with the respiration rate in all respiratory patterns. CONCLUSIONS We demonstrated that voluntary cardiorespiratory synchronization (VCRS) can effectively enhance cardiopulmonary phase synchronization, but cardiopulmonary phase synchronization and RSA represent different aspects of the cardiorespiratory interaction. It is found that cardiac function parameters such as the blood pressure and output per stroke could be affected by the number of heartbeats contained in the exhalation and inspiratory phase regulated through VCRS. So we can study cardiopulmonary phase synchronization by VCRS. It can be used to study in experimental data for the physiological mechanism of cardiopulmonary coupling.
Collapse
Affiliation(s)
- Yumiao Ren
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xianning West Road, Xi'an, 710049, China
- School of Electronics and Information Engineering, Xi'an Technological University, Xi'an, 710032, China
| | - Jianbao Zhang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xianning West Road, Xi'an, 710049, China.
| |
Collapse
|
32
|
Scholkmann F, Wolf U. The Pulse-Respiration Quotient: A Powerful but Untapped Parameter for Modern Studies About Human Physiology and Pathophysiology. Front Physiol 2019; 10:371. [PMID: 31024336 PMCID: PMC6465339 DOI: 10.3389/fphys.2019.00371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/18/2019] [Indexed: 01/06/2023] Open
Abstract
A specific and unique aspect of cardiorespiratory activity can be captured by dividing the heart rate (HR) by the respiration rate (RR), giving the pulse-respiration quotient (PRQ = HR/RR). In this review article, we summarize the main findings of studies using and investigating the PRQ. We describe why the PRQ is a powerful parameter that captures complex regulatory states of the cardiorespiratory system, and we highlight the need to re-introduce the use of this parameter into modern studies about human physiology and pathophysiology. In particular, we show that the PRQ (i) changes during human development, (ii) is time-dependent (ultradian, circadian, and infradian rhythms), (iii) shows specific patterns during sleep, (iv) changes with physical activity and body posture, (v) is linked with psychophysical and cognitive activity, (vi) is sex-dependent, and (vii) is determined by the individual physiological constitution. Furthermore, we discuss the medical aspects of the PRQ in terms of applications for disease classification and monitoring. Finally, we explain why there should be a revival in the use of the PRQ for basic research about human physiology and for applications in medicine, and we give recommendations for the use of the PRQ in studies and medical applications.
Collapse
Affiliation(s)
- Felix Scholkmann
- Institute of Complementary and Integrative Medicine, University of Bern, Bern, Switzerland
| | | |
Collapse
|
33
|
Yoon H, Choi SH, Kim SK, Kwon HB, Oh SM, Choi JW, Lee YJ, Jeong DU, Park KS. Human Heart Rhythms Synchronize While Co-sleeping. Front Physiol 2019; 10:190. [PMID: 30914965 PMCID: PMC6421336 DOI: 10.3389/fphys.2019.00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Human physiological systems have a major role in maintenance of internal stability. Previous studies have found that these systems are regulated by various types of interactions associated with physiological homeostasis. However, whether there is any interaction between these systems in different individuals is not well-understood. The aim of this research was to determine whether or not there is any interaction between the physiological systems of independent individuals in an environment where they are connected with one another. We investigated the heart rhythms of co-sleeping individuals and found evidence that in co-sleepers, not only do independent heart rhythms appear in the same relative phase for prolonged periods, but also that their occurrence has a bidirectional causal relationship. Under controlled experimental conditions, this finding may be attributed to weak cardiac vibration delivered from one individual to the other via a mechanical bed connection. Our experimental approach could help in understanding how sharing behaviors or social relationships between individuals are associated with interactions of physiological systems.
Collapse
Affiliation(s)
- Heenam Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Sang Kyong Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Hyun Bin Kwon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Seong Min Oh
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Won Choi
- Department of Neuropsychiatry, Eulji University School of Medicine, Eulji General Hospital, Seoul, South Korea
| | - Yu Jin Lee
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Do-Un Jeong
- Department of Neuropsychiatry and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, South Korea
| | - Kwang Suk Park
- Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Paced Breathing Increases the Redundancy of Cardiorespiratory Control in Healthy Individuals and Chronic Heart Failure Patients. ENTROPY 2018; 20:e20120949. [PMID: 33266673 PMCID: PMC7512533 DOI: 10.3390/e20120949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Synergy and redundancy are concepts that suggest, respectively, adaptability and fault tolerance of systems with complex behavior. This study computes redundancy/synergy in bivariate systems formed by a target X and a driver Y according to the predictive information decomposition approach and partial information decomposition framework based on the minimal mutual information principle. The two approaches assess the redundancy/synergy of past of X and Y in reducing the uncertainty of the current state of X. The methods were applied to evaluate the interactions between heart and respiration in healthy young subjects (n = 19) during controlled breathing at 10, 15 and 20 breaths/minute and in two groups of chronic heart failure patients during paced respiration at 6 (n = 9) and 15 (n = 20) breaths/minutes from spontaneous beat-to-beat fluctuations of heart period and respiratory signal. Both methods suggested that slowing respiratory rate below the spontaneous frequency increases redundancy of cardiorespiratory control in both healthy and pathological groups, thus possibly improving fault tolerance of the cardiorespiratory control. The two methods provide markers complementary to respiratory sinus arrhythmia and the strength of the linear coupling between heart period variability and respiration in describing the physiology of the cardiorespiratory reflex suitable to be exploited in various pathophysiological settings.
Collapse
|
35
|
Yoon H, Choi SH, Kwon HB, Kim SK, Hwang SH, Oh SM, Choi JW, Lee YJ, Jeong DU, Park KS. Sleep-Dependent Directional Coupling of Cardiorespiratory System in Patients With Obstructive Sleep Apnea. IEEE Trans Biomed Eng 2018; 65:2847-2854. [DOI: 10.1109/tbme.2018.2819719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Sola-Soler J, Cuadros A, Giraldo BF. Cardiorespiratory Phase Synchronization increases during certain mental stimuli in healthy subjects. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:5298-5301. [PMID: 30441533 DOI: 10.1109/embc.2018.8513471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several neurological and mechanical non-linear mechanisms relate the respiratory and cardiovascular systems to one another. Besides the well-known modulation of heart rate by respiration, another form of non-linear interaction between both systems is Cardiorespiratory Phase Synchronization (CRPS). In this study we investigated CRPS on a group of 27 healthy individuals subject to a stimulation protocol with five different mental states: a basal state, a videogame, a comedy video, a suspense video and a reading state. Acontinuous measure of CRPS was calculated from the phase synchrogram between respiratory and electrocardiographic signals. Periods of CRPS were characterized by their average duration (AvDurSync) and by the percentage of synchronized time (%Sync) within each mental state. These measures were studied considering two thresholds: a minimum amplitude and a minimum duration for synchronization. Each subject exhibited a particular pattern of phase locking ratios along the different mental states. We observed that, in all states, %Sync decreased and AvDurSync increased in proportion to the minimum duration threshold. Both measures were inversely proportional to the minimum amplitude threshold.uring the videogame, subjects showed a significantly higher %Sync as compared to any other mental stimulus, irrespective of the minimum duration threshold. Mental stimulation can be an alternative approach to enhance cardiorespiratory coupling when subjects have difficulties to perform aerobic exercise, such as in patients with Chronic Obstructive Pulmonary Disease or Chronic Heart failure.
Collapse
|
37
|
Impaired cardiorespiratory coupling in young normotensives with a family history of hypertension. J Hypertens 2018; 36:2157-2167. [DOI: 10.1097/hjh.0000000000001795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Klimesch W. The frequency architecture of brain and brain body oscillations: an analysis. Eur J Neurosci 2018; 48:2431-2453. [PMID: 30281858 PMCID: PMC6668003 DOI: 10.1111/ejn.14192] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/19/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023]
Abstract
Research on brain oscillations has brought up a picture of coupled oscillators. Some of the most important questions that will be analyzed are, how many frequencies are there, what are the coupling principles, what their functional meaning is, and whether body oscillations follow similar coupling principles. It is argued that physiologically, two basic coupling principles govern brain as well as body oscillations: (i) amplitude (envelope) modulation between any frequencies m and n, where the phase of the slower frequency m modulates the envelope of the faster frequency n, and (ii) phase coupling between m and n, where the frequency of n is a harmonic multiple of m. An analysis of the center frequency of traditional frequency bands and their coupling principles suggest a binary hierarchy of frequencies. This principle leads to the foundation of the binary hierarchy brain body oscillation theory. Its central hypotheses are that the frequencies of body oscillations can be predicted from brain oscillations and that brain and body oscillations are aligned to each other. The empirical evaluation of the predicted frequencies for body oscillations is discussed on the basis of findings for heart rate, heart rate variability, breathing frequencies, fluctuations in the BOLD signal, and other body oscillations. The conclusion is that brain and many body oscillations can be described by a single system, where the cross talk - reflecting communication - within and between brain and body oscillations is governed by m : n phase to envelope and phase to phase coupling.
Collapse
Affiliation(s)
- Wolfgang Klimesch
- Centre of Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
39
|
Niizeki K, Saitoh T. Association Between Phase Coupling of Respiratory Sinus Arrhythmia and Slow Wave Brain Activity During Sleep. Front Physiol 2018; 9:1338. [PMID: 30319446 PMCID: PMC6167474 DOI: 10.3389/fphys.2018.01338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022] Open
Abstract
Phase coupling of respiratory sinus arrhythmia (RSA) has been proposed to be an alternative measure for evaluating autonomic nervous system (ANS) activity. The aim of this study was to analyze how phase coupling of RSA is altered during sleep, in order to explore whether this measure is a predictor of slow wave sleep (SWS). Overnight electroencephalograms (EEG), electrocardiograms (ECG), and breathing using inductance plethysmography were recorded from 30 healthy volunteers (six females, age range 21–64, 31.6 ± 14.7 years). Slow wave activity was evaluated by the envelope of the amplitude of the EEG δ-wave (0.5–4 Hz). The RSA was extracted from the change in the R-R interval (RRI) by band-pass filter, where pass band frequencies were determined from the profile of the power spectral density for respiration. The analytic signals of RSA and respiration were obtained by Hilbert transform, after which the amplitude of RSA (ARSA) and the degree of phase coupling (λ) were quantified. Additionally, the normalized high-frequency component (HFn) of the frequency-domain heart rate variability (HRV) was calculated. Using auto- and cross-correlation analyses, we found that overnight profiles of λ and δ-wave were correlated, with significant cross-correlation coefficients (0.461 ± 0.107). The δ-wave and HFn were also correlated (0.426 ± 0.115). These correlations were higher than that for the relationship between δ-wave and ARSA (0.212 ± 0.161). The variation of λ precedes the onset of the δ-wave by ~3 min, suggesting a vagal enhancement prior to the onset of SWS. Auto correlation analysis revealed that the periodicity of λ was quite similar to that of the δ-wave (88.3 ± 15.7 min vs. 88.6 ± 16.3 min, λ-cycle = 0.938 × δ-cycle + 5.77 min, r = 0.902). These results suggest that phase coupling analysis of RSA appears to be a marker for predicting SWS intervals, thereby complementing other noninvasive tools and diagnostic efforts.
Collapse
Affiliation(s)
- Kyuichi Niizeki
- Department of Biosystems Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Tadashi Saitoh
- Department of Biosystems Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| |
Collapse
|
40
|
Mazzotti DR, Lim DC, Sutherland K, Bittencourt L, Mindel JW, Magalang U, Pack AI, de Chazal P, Penzel T. Opportunities for utilizing polysomnography signals to characterize obstructive sleep apnea subtypes and severity. Physiol Meas 2018; 39:09TR01. [PMID: 30047487 DOI: 10.1088/1361-6579/aad5fe] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a heterogeneous sleep disorder with many pathophysiological pathways to disease. Currently, the diagnosis and classification of OSA is based on the apnea-hypopnea index, which poorly correlates to underlying pathology and clinical consequences. A large number of in-laboratory sleep studies are performed around the world every year, already collecting an enormous amount of physiological data within an individual. Clinically, we have not yet fully taken advantage of this data, but combined with existing analytical approaches, we have the potential to transform the way OSA is managed within an individual patient. Currently, respiratory signals are used to count apneas and hypopneas, but patterns such as inspiratory flow signals can be used to predict optimal OSA treatment. Electrocardiographic data can reveal arrhythmias, but patterns such as heart rate variability can also be used to detect and classify OSA. Electroencephalography is used to score sleep stages and arousals, but specific patterns such as the odds-ratio product can be used to classify how OSA patients responds differently to arousals. OBJECTIVE In this review, we examine these and many other existing computer-aided polysomnography signal processing algorithms and how they can reflect an individual's manifestation of OSA. SIGNIFICANCE Together with current technological advance, it is only a matter of time before advanced automatic signal processing and analysis is widely applied to precision medicine of OSA in the clinical setting.
Collapse
Affiliation(s)
- Diego R Mazzotti
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lucchini M, Pini N, Fifer WP, Burtchen N, Signorini MG. Characterization of cardiorespiratory phase synchronization and directionality in late premature and full term infants. Physiol Meas 2018; 39:064001. [PMID: 29767630 PMCID: PMC6063316 DOI: 10.1088/1361-6579/aac553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Though the mutual influence of cardiovascular and respiratory rhythms in healthy newborns has been documented, its full characterization is still pending. In general, the activity of many physiological subsystems has a well-expressed rhythmic character, and often an interdependency between physiological rhythms emerges early in development. Traditional methods of data analysis only address the quantification of the strength of subsystem interactions. In this work, we will investigate system interrelationships in terms of the possible presence of causal or directional interplays. APPROACH In this paper, we propose a methodological application that quantifies phase coupling and its directionality in a population of newborn infants born between 35 and 40 weeks of gestational age (GA). The aim is to assess whether GA at birth significantly influences the development of phase synchronization and the directionality of the coupling between the cardiovascular and respiratory system activity. Several studies indicating irregular cardiorespiratory coupling as a leading cause of several pathologies underscore the need to investigate this phenomenon in this at-risk population. MAIN RESULTS Results from our investigation show a different directionality profile as a function of GA and sleep state. SIGNIFICANCE These findings are a contribution to the understanding of higher risk for the documented negative outcomes in the late preterm population. Moreover, these parameters could provide a tool for the development of early markers of cardiorespiratory dysregulation in infants.
Collapse
Affiliation(s)
- Maristella Lucchini
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY, United States of America. Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | | | | | | | | |
Collapse
|
42
|
Improving the understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold. PLoS One 2018; 13:e0194462. [PMID: 29621264 PMCID: PMC5886413 DOI: 10.1371/journal.pone.0194462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/02/2018] [Indexed: 11/25/2022] Open
Abstract
Our contribution focuses on the characterization of sleep apnea from a cardiac rate point of view, using Recurrence Quantification Analysis (RQA), based on a Heart Rate Variability (HRV) feature selection process. Three parameters are crucial in RQA: those related to the embedding process (dimension and delay) and the threshold distance. There are no overall accepted parameters for the study of HRV using RQA in sleep apnea. We focus on finding an overall acceptable combination, sweeping a range of values for each of them simultaneously. Together with the commonly used RQA measures, we include features related to recurrence times, and features originating in the complex network theory. To the best of our knowledge, no author has used them all for sleep apnea previously. The best performing feature subset is entered into a Linear Discriminant classifier. The best results in the “Apnea-ECG Physionet database” and the “HuGCDN2014 database” are, according to the area under the receiver operating characteristic curve, 0.93 (Accuracy: 86.33%) and 0.86 (Accuracy: 84.18%), respectively. Our system outperforms, using a relatively small set of features, previously existing studies in the context of sleep apnea. We conclude that working with dimensions around 7–8 and delays about 4–5, and using for the threshold distance the Fixed Amount of Nearest Neighbours (FAN) method with 5% of neighbours, yield the best results. Therefore, we would recommend these reference values for future work when applying RQA to the analysis of HRV in sleep apnea. We also conclude that, together with the commonly used vertical and diagonal RQA measures, there are newly used features that contribute valuable information for apnea minutes discrimination. Therefore, they are especially interesting for characterization purposes. Using two different databases supports that the conclusions reached are potentially generalizable, and are not limited by database variability.
Collapse
|
43
|
Pion‐Massicotte J, Godbout R, Savard P, Roy J. Development and validation of an algorithm for the study of sleep using a biometric shirt in young healthy adults. J Sleep Res 2018; 28:e12667. [DOI: 10.1111/jsr.12667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Joëlle Pion‐Massicotte
- Sleep Laboratory & Clinic Hôpital Rivière‐des‐Prairies Montréal QC Canada
- Institut de génie biomédical Polytechnique Montréal Montréal QC Canada
- Carré Technologies Montréal QC Canada
| | - Roger Godbout
- Sleep Laboratory & Clinic Hôpital Rivière‐des‐Prairies Montréal QC Canada
- Department of Psychiatry Université de Montréal Montréal QC Canada
| | - Pierre Savard
- Institut de génie biomédical Polytechnique Montréal Montréal QC Canada
| | | |
Collapse
|
44
|
Gao Y, Ren L, Li R, Zhang Y. Electroencephalogram-Electromyography Coupling Analysis in Stroke Based on Symbolic Transfer Entropy. Front Neurol 2018; 8:716. [PMID: 29354091 PMCID: PMC5758532 DOI: 10.3389/fneur.2017.00716] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
The coupling strength between electroencephalogram (EEG) and electromyography (EMG) signals during motion control reflects the interaction between the cerebral motor cortex and muscles. Therefore, neuromuscular coupling characterization is instructive in assessing motor function. In this study, to overcome the limitation of losing the characteristics of signals in conventional time series symbolization methods, a variable scale symbolic transfer entropy (VS-STE) analysis approach was proposed for corticomuscular coupling evaluation. Post-stroke patients (n = 5) and healthy volunteers (n = 7) were recruited and participated in various tasks (left and right hand gripping, elbow bending). The proposed VS-STE was employed to evaluate the corticomuscular coupling strength between the EEG signal measured from the motor cortex and EMG signal measured from the upper limb in both the time-domain and frequency-domain. Results showed a greater strength of the bi-directional (EEG-to-EMG and EMG-to-EEG) VS-STE in post-stroke patients compared to healthy controls. In addition, the strongest EEG–EMG coupling strength was observed in the beta frequency band (15–35 Hz) during the upper limb movement. The predefined coupling strength of EMG-to-EEG in the affected side of the patient was larger than that of EEG-to-EMG. In conclusion, the results suggested that the corticomuscular coupling is bi-directional, and the proposed VS-STE can be used to quantitatively characterize the non-linear synchronization characteristics and information interaction between the primary motor cortex and muscles.
Collapse
Affiliation(s)
- Yunyuan Gao
- College of Automation, Intelligent Control & Robotics Institute, Hangzhou Dianzi University, Hangzhou, China
| | - Leilei Ren
- College of Automation, Intelligent Control & Robotics Institute, Hangzhou Dianzi University, Hangzhou, China
| | - Rihui Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States.,Guangdong Provincial Work-Injury Rehabilitation Hospital, Guangzhou, China
| | - Yingchun Zhang
- College of Automation, Intelligent Control & Robotics Institute, Hangzhou Dianzi University, Hangzhou, China.,Department of Biomedical Engineering, University of Houston, Houston, TX, United States.,Guangdong Provincial Work-Injury Rehabilitation Hospital, Guangzhou, China
| |
Collapse
|
45
|
Sobiech T, Buchner T, Krzesiński P, Gielerak G. Cardiorespiratory coupling in young healthy subjects. Physiol Meas 2017; 38:2186-2202. [PMID: 29076810 DOI: 10.1088/1361-6579/aa9693] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To quantify the presence of cardiorespiratory interaction in a group of 41 healthy subjects performing a subset of the Ewing test battery. APPROACH We measure the empirical distribution of the cardiorespiratory coupling time (RI), defined as the time from inspiration onset to R peaks in the ECG. The study protocol is a subset of the Ewing test battery. The respiratory function was measured with a thoracic belt and heart rate was obtained from a two channel ECG measurement. Both series of fiducial points were determined using custom software. Additionally, we determine the presence of cardiorespiratory coupling (CRC) and cardiorespiratory interaction (CRI) using Shannon entropy, synchrograms and coordigrams. MAIN RESULTS We observe that the RI distribution is asymmetric and nonuniform. These features are a manifestation of the causal relation between heart action and respiration. The preceding R peak strongly affects a position of inspiration onset. From the asymmetry of the RI distribution we conclude that this relation is stronger than the relation between inspiration onset and the following R peak. We use a suitable choice of surrogate data to prove that the result cannot be falsified. We observe a dual structure of the RI histograms, which may be related to the respiratory rhythmogenesis. We compare the sensitivity of RI histograms with other measures of CRI and CRC. In 46% of subjects, CRC appears in at least one stage of the examination, most often in resting states. In states of increased stress-orthostasis or physical (exercise)-the strength of coupling is visibly diminished. The nonuniform structure of the RI histogram is more sensitive to the presence of CRI than synchrograms or coordigrams are, as is well visible in the group averages. We also refer to the question of the most proper mathematical description of cardiorespiratory dynamics (phase domain or time domain). Finally, we formulate the hypothesis that the arterial blood pressure is a common driver of cardiac and respiratory rhythms. SIGNIFICANCE Analysis of the asymmetry of RI histograms is an interesting and sensitive method to study cardiorespiratory interaction and autonomic balance, in order to assess physical and mental health. The dual structure of the RI histograms which we have observed suggests the possible presence of a twofold mechanism for respiratory rhythmogenesis, as proposed by Galletly and Larsen.
Collapse
Affiliation(s)
- Tomasz Sobiech
- Cardiovascular Physics Group, Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | | | | | | |
Collapse
|
46
|
Antonio FJ, Itami AS, de Picoli S, Teixeira JJV, Mendes RDS. Spatial patterns of dengue cases in Brazil. PLoS One 2017; 12:e0180715. [PMID: 28715435 PMCID: PMC5513438 DOI: 10.1371/journal.pone.0180715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 06/20/2017] [Indexed: 12/22/2022] Open
Abstract
Dengue infection plays a central role in our society, since it is the most prevalent vector-borne viral disease affecting humans. We statistically investigated patterns concerning the spatial spreading of dengue epidemics in Brazil, as well as their temporal evolution in all Brazilian municipalities for a period of 12 years. We showed that the distributions of cases in municipalities follow power laws persistent in time and that the infection scales linearly with the population of the municipalities. We also found that the average number of dengue cases does not have a clear dependence on the longitudinal position of municipalities. On the other hand, we found that the average distribution of cases varies with the latitudinal position of municipalities, displaying an almost constant growth from high latitudes until reaching the Tropic of Capricorn leveling to a plateau closer to the Equator. We also characterized the spatial correlation of the number of dengue cases between pairs of municipalities, where our results showed that the spatial correlation function decays with the increase of distance between municipalities, following a power-law with an exponential cut-off. This regime leads to a typical dengue traveling distance. Finally, we considered modeling this last behaviour within the framework of a Edwards-Wilkinson equation with a fractional derivative on space.
Collapse
Affiliation(s)
- Fernando Jose Antonio
- Departamento Acadêmico de Ciências da Natureza, Universidade Tecnológica Federal do Paraná – Cornélio Procópio, Brazil
| | - Andreia Silva Itami
- Departamento de Física, Universidade Estadual de Maringá, Maringá, Brazil
- National Institute of Science and Technology for Complex Systems, Maringá, Brazil
| | - Sergio de Picoli
- Departamento de Física, Universidade Estadual de Maringá, Maringá, Brazil
- National Institute of Science and Technology for Complex Systems, Maringá, Brazil
| | | | - Renio dos Santos Mendes
- Departamento de Física, Universidade Estadual de Maringá, Maringá, Brazil
- National Institute of Science and Technology for Complex Systems, Maringá, Brazil
| |
Collapse
|
47
|
Kuhnhold A, Schumann AY, Bartsch RP, Ubrich R, Barthel P, Schmidt G, Kantelhardt JW. Quantifying cardio-respiratory phase synchronization-a comparison of five methods using ECGs of post-infarction patients. Physiol Meas 2017; 38:925-939. [PMID: 28151433 DOI: 10.1088/1361-6579/aa5dd3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Phase synchronization between two weakly coupled oscillators occurs in many natural systems. Since it is difficult to unambiguously detect such synchronization in experimental data, several methods have been proposed for this purpose. Five popular approaches are systematically optimized and compared here. APPROACH We study and apply the automated synchrogram method, the reduced synchrogram method, two variants of a gradient method, and the Fourier mode method, analyzing 24h data records from 1455 post-infarction patients, the same data with artificial inaccuracies, and corresponding surrogate data generated by Fourier phase randomization. MAIN RESULTS We find that the automated synchrogram method is the most robust of all studied approaches when applied to records with missing data or artifacts, whereas the gradient methods should be preferred for noisy data and low-accuracy R-peak positions. We also show that a strong circadian rhythm occurs with much more frequent phase synchronization episodes observed during night time than during day time by all five methods. SIGNIFICANCE In specific applications, the identified characteristic differences as well as strengths and weaknesses of each method in detecting episodes of cardio-respiratory phase synchronization will be useful for selecting an appropriate method with respect to the type of systematic and dynamical noise in the data.
Collapse
Affiliation(s)
- Anja Kuhnhold
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany. Physique et Matériaux, Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, Luxembourg
| | | | | | | | | | | | | |
Collapse
|
48
|
Tseng PH, Lee PL, Hsu WC, Ma Y, Lee YC, Chiu HM, Ho YL, Chen MF, Wu MS, Peng CK. A Higher Proportion of Metabolic Syndrome in Chinese Subjects with Sleep-Disordered Breathing: A Case-Control Study Based on Electrocardiogram-Derived Sleep Analysis. PLoS One 2017; 12:e0169394. [PMID: 28081171 PMCID: PMC5231382 DOI: 10.1371/journal.pone.0169394] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
Objective The prevalence of metabolic syndrome (MS) has increased rapidly in Taiwan and worldwide. We aim to determine the association between sleep-disordered breathing (SDB) and MS in a Chinese general population. Methods This case-control study recruited subjects who have undergone a prospective electrocardiogram-based cardiopulmonary coupling (CPC) sleep spectrogram as part of the periodic health check-ups at the National Taiwan University Hospital. Comprehensive anthropometrics, blood biochemistry, prevalence of MS and its individual components were compared with Bonferroni correction between 40 subjects with SDB, defined as the CPC-derived apnea–hypopnea index (CPC-AHI) >5 event/hour and 80 age- and sex-matched controls, defined as CPC-AHI <1 event/hour. MS was diagnosed based on the Adult Treatment Panel III, with a modification of waist circumference for Asians. Results Subjects with SDB were more obese with larger waist circumferences (95.1±12.9 vs. 87.3±6.9, P < .001) and borderline higher BMI (27.0±4.9 vs. 24.3±2.5, P = .002). Waist circumference was independently associated with the presence of SDB after adjustment for BMI, systolic blood pressure and fasting blood glucose in multiple regression analyses. Subjects with SDB had a higher prevalence of central obesity (72.5% vs. 42.5%, P = .002), hyperglycemia (45.0% vs. 26.3%, P = .04), MS (45.0% vs. 22.5%, P = .01) and number of MS components (2.4 ± 1.6 vs. 1.7 ± 1.4, P = .01) than the control group. Waist circumference was significantly correlated with both CPC-AHI (r = .492, P = .0013) and PSG-AHI (r = .699, P < .0001) in the SDB group. Conclusions SDB was associated with a higher prevalence of MS and its individual components, notably central obesity, in a Chinese general population. Large-scale screening of high risk population with MS to identify subjects with SDB for appropriate management is warranted.
Collapse
Affiliation(s)
- Ping-Huei Tseng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Pei-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center of Sleep Disorder, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chung Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center of Sleep Disorder, National Taiwan University Hospital, Taipei, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yan Ma
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Yi-Chia Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Lwun Ho
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Fong Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| | - Chung-Kang Peng
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
49
|
Mazzucco CE, Marchi A, Bari V, De Maria B, Guzzetti S, Raimondi F, Catena E, Ottolina D, Amadio C, Cravero S, Fossali T, Colombo R, Porta A. Mechanical ventilatory modes and cardioventilatory phase synchronization in acute respiratory failure patients. Physiol Meas 2017; 38:895-911. [PMID: 28052047 DOI: 10.1088/1361-6579/aa56ae] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardioventilatory phase synchronization was studied in ten critically ill patients admitted in intensive care unit (ICU) for acute respiratory failure under two mechanical ventilatory modes: (i) pressure controlled ventilation (PCV); (ii) pressure support ventilation (PSV). The two modalities were administered to the same patient in different times in a random order. Cardioventilatory phase interactions were typified by plotting the relative position of a heartbeat, detected from the electrocardiogram and collected in n groups, within m ventilatory cycles as a function of the progressive cardiac beat number via the synchrogram. n:m phase synchronized patterns were detected by computing the variability of each phase group. The percent duration of the recording featuring phase synchronization was assessed as a measure of the strength of phase synchrony and tested against situations of full phase desynchronization between cardiac and ventilatory rhythms. Indexes quantifying the variability of the cardiac and ventilatory activities were computed as well. Findings proved that: (i) a significant presence of n:m phase synchronized patterns was detected in PCV; (ii) the strength of n:m phase synchronization was stronger during PCV than PSV; (iii) different strengths of cardioventilatory phase synchronization detected during PCV and PSV were found in presence of similar heart and ventilatory rates and alike variability. We conclude that mechanical ventilation can induce a significant presence of cardioventilatory phase synchronized patterns and this amount depends on the mode of mechanical ventilation. Future studies should test the eventual link of the level of phase coordination between heart and mechanical ventilation to a clinical outcome to understand whether featuring a certain degree of cardioventilatory phase synchronization is beneficial for the critical patient in ICU.
Collapse
Affiliation(s)
- Claudio Enrico Mazzucco
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lo PC, Miao Tian WJ. NEUROCARDIAC-CARDIORESPIRATORY INTERACTION OF HEART-BRAIN MAILUNS SYNCHRONY AT DEEP ZEN MEDITATION. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2016. [DOI: 10.4015/s1016237216500393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Innovatively new behaviors of heart rate variability caused by special heart-transition process were observed in the long-term, well-experienced Zen practitioners while practicing the heart-to-heart imprint sealing (HHIS) Zen meditation. HHIS Zen practice involves specific neurocardiac-cardiorespiratory interaction while on the way of realizing the heart-dominant, detached brain. Results of analyzing the electrocardiogram and respiratory signals of 10 experienced practitioners reveal several distinctive characteristics: (1) remarkably linear correlation between standard deviation of the normal R-to-R intervals, SDNN, and total power in very-low-frequency (VLF, 0.0033–0.04[Formula: see text]Hz) band of power spectrum of the heart-rate sequence, (2) time-varying VLF power dominating over the low-frequency and high-frequency power in heart rate variability (HRV) variations, (3) intermittent transition into slowly, deeply abdominal respiration inducing a boost of heart rates, (4) heart-rate baseline slowly fluctuating at 0.005–0.0067[Formula: see text]Hz, about 1.5–2 cycles in 5-min period, and (5) remarkable respiratory sinus arrhythmia (RSA) synchrony between heart rate and respiration rhythm. This paper proposes a rational scientific hypothesis for the neurocardiac-cardiorespiratory mechanism. The unique scheme of HHIS Zen meditation involves the spiritual-qi concentration and refinement for pinpointing into the particular energy centers, mailuns. Ignition by a subtle, deepest abdominal respiration, electrical impulses rapidly transmit from solar plexus to branchial plexuses to activate unique heart-transition process. Simultaneously, another branch streams upward the spinal cord to cervical plexus and brainstem that effectively harmonizes neurocardiac interactions. To investigate the underlying behaviors, time-domain and frequency-domain HRV based on continuous wavelet transform were employed.
Collapse
Affiliation(s)
- Pei-Chen Lo
- Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | | |
Collapse
|