1
|
Extending the Photon Energy Coverage of a Seeded Free-Electron Laser via Reverse Taper Enhanced Harmonic Cascade. PHOTONICS 2021. [DOI: 10.3390/photonics8020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
External seeded free-electron lasers (FELs) hold promising prospects for producing intense coherent radiation at high harmonics of a conventional laser. The practical harmonic up-conversion efficiencies of current seeding techniques are limited by various three-dimensional effects on the electron beam. In this paper, a novel method is proposed to extend the wavelength coverage of a seeded FEL by combining the reverse taper undulator with the echo-enabled harmonic generation. The proposed technique can significantly enhance the bunching at ultra-high harmonics and preserve the electron beam qualities from degradation by deleterious effects. Theoretical analysis and numerical simulation are performed, and the results demonstrate that stable, intense, nearly fully coherent FEL pulses with photon energy up to 1 keV can be generated. The proposed technique may open up new opportunities to obtain laser-like pulses at sub-nanometer wavelength.
Collapse
|
2
|
Ishino M, Dinh TH, Hosaka Y, Hasegawa N, Yoshimura K, Yamamoto H, Hatano T, Higashiguchi T, Sakaue K, Ichimaru S, Hatayama M, Sasaki A, Washio M, Nishikino M, Maekawa Y. Soft x-ray laser beamline for surface processing and damage studies. APPLIED OPTICS 2020; 59:3692-3698. [PMID: 32400492 DOI: 10.1364/ao.387792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
We have developed a soft x-ray laser (SXRL) beamline equipped with an intensity monitor dedicated to ablation study such as surface processing and damage formation. The SXRL beam having a wavelength of 13.9 nm, pulse width of 7 ps, and pulse energy of around 200 nJ is generated from Ag plasma mediums using an oscillator-amplifier configuration. The SXRL beam is focused onto the sample surface by the Mo/Si multilayer coated spherical mirror. To get the correct irradiation energy/fluence, an intensity monitor composed of a Mo/Si multilayer beam splitter and an x-ray charge-coupled device camera has been installed in the beamline. The Mo/Si multilayer beam splitter has a large polarization dependence in the reflectivity around the incident angle of 45°. However, by evaluating the relationship between reflectivity and transmittance of the beam splitter appropriately, the irradiation energy onto the sample surface can be derived from the energy acquired by the intensity monitor. This SXRL beamline is available to not only the ablation phenomena but also the performance evaluation of soft x-ray optics and resists.
Collapse
|
3
|
Sudar N, Musumeci P, Duris J, Gadjev I, Polyanskiy M, Pogorelsky I, Fedurin M, Swinson C, Kusche K, Babzien M, Gover A. High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator. PHYSICAL REVIEW LETTERS 2016; 117:174801. [PMID: 27824445 DOI: 10.1103/physrevlett.117.174801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Indexed: 06/06/2023]
Abstract
We present results of an experiment where, using a 200 GW CO_{2} laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.
Collapse
Affiliation(s)
- N Sudar
- Particle Beam Physics Laboratory, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - P Musumeci
- Particle Beam Physics Laboratory, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - J Duris
- Particle Beam Physics Laboratory, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - I Gadjev
- Particle Beam Physics Laboratory, Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| | - M Polyanskiy
- Accelerator Test Facility, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - I Pogorelsky
- Accelerator Test Facility, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M Fedurin
- Accelerator Test Facility, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Swinson
- Accelerator Test Facility, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - K Kusche
- Accelerator Test Facility, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M Babzien
- Accelerator Test Facility, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A Gover
- Faculty of Engineering, Department of Physical Electronics, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
4
|
Sobierajski R, Jacyna I, Dłużewski P, Klepka MT, Klinger D, Pełka JB, Burian T, Hájková V, Juha L, Saksl K, Vozda V, Makhotkin I, Louis E, Faatz B, Tiedtke K, Toleikis S, Enkisch H, Hermann M, Strobel S, Loch RA, Chalupsky J. Role of heat accumulation in the multi-shot damage of silicon irradiated with femtosecond XUV pulses at a 1 MHz repetition rate. OPTICS EXPRESS 2016; 24:15468-15477. [PMID: 27410821 DOI: 10.1364/oe.24.015468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The role played by heat accumulation in multi-shot damage of silicon was studied. Bulk silicon samples were exposed to intense XUV monochromatic radiation of a 13.5 nm wavelength in a series of 400 femtosecond pulses, repeated with a 1 MHz rate (pulse trains) at the FLASH facility in Hamburg. The observed surface morphological and structural modifications are formed as a result of sample surface melting. Modifications are threshold dependent on the mean fluence of the incident pulse train, with all threshold values in the range of approximately 36-40 mJ/cm2. Experimental data is supported by a theoretical model described by the heat diffusion equation. The threshold for reaching the melting temperature (45 mJ/cm2) and liquid state (54 mJ/cm2), estimated from this model, is in accordance with experimental values within measurement error. The model indicates a significant role of heat accumulation in surface modification processes.
Collapse
|
5
|
Koyama T, Yumoto H, Miura T, Tono K, Togashi T, Inubushi Y, Katayama T, Kim J, Matsuyama S, Yabashi M, Yamauchi K, Ohashi H. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:051801. [PMID: 27250368 DOI: 10.1063/1.4950723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared with the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.
Collapse
Affiliation(s)
- Takahisa Koyama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| | - Hirokatsu Yumoto
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| | - Takanori Miura
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| | - Jangwoo Kim
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Matsuyama
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| | - Kazuto Yamauchi
- Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruhiko Ohashi
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-Cho, Sayo-Gun, Hyogo 679-5198, Japan
| |
Collapse
|
6
|
Kim J, Nagahira A, Koyama T, Matsuyama S, Sano Y, Yabashi M, Ohashi H, Ishikawa T, Yamauchi K. Damage threshold of platinum/carbon multilayers under hard X-ray free-electron laser irradiation. OPTICS EXPRESS 2015; 23:29032-29037. [PMID: 26561172 DOI: 10.1364/oe.23.029032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We evaluated the irradiation damage induced by hard X-ray free-electron lasers to platinum/carbon multilayers intended for use in a focusing reflective mirror. In order to determine the damage threshold, we compared X-ray reflectivities before and after irradiation at the first-order Bragg angle using a focused X-ray free-electron laser with a beam size of approximately 1 μm and a pulse energy ranging from 0.01 to 10 μJ at a photon energy of 10 keV. We confirmed that the damage threshold of the platinum/carbon multilayer with a bilayer period of 3 nm was 0.051 μJ/μm(2), which is sufficiently higher than that in practical applications.
Collapse
|
7
|
Nayak M, Pradhan PC, Lodha GS. Element-specific structural analysis of Si/B4C using resonant X-ray reflectivity. J Appl Crystallogr 2015. [DOI: 10.1107/s1600576715005877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Element-specific structural analysis at the buried interface of a low electron density contrast system is important in many applied fields. The analysis of nanoscaled Si/B4C buried interfaces is demonstrated using resonant X-ray reflectivity. This technique combines information about spatial modulations of charges provided by scattering, which is further enhanced near the resonance, with the sensitivity to electronic structure provided by spectroscopy. Si/B4C thin-film structures are studied by varying the position of B4C in Si layers. Measured values of near-edge optical properties are correlated with the resonant reflectivity profile to quantify the element-specific composition. It is observed that, although Si/B4C forms a smooth interface, there are chemical changes in the sputtered B4C layer. Nondestructive quantification of the chemical changes and the spatial distribution of the constituents is reported.
Collapse
|
8
|
Determining chemically and spatially resolved atomic profile of low contrast interface structure with high resolution. Sci Rep 2015; 5:8618. [PMID: 25726866 PMCID: PMC4345341 DOI: 10.1038/srep08618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
We present precise measurements of atomic distributions of low electron density contrast at a buried interface using soft x-ray resonant scattering. This approach allows one to construct chemically and spatially highly resolved atomic distribution profile upto several tens of nanometer in a non-destructive and quantitative manner. We demonstrate that the method is sensitive enough to resolve compositional differences of few atomic percent in nano-scaled layered structures of elements with poor electron density differences (0.05%). The present study near the edge of potential impurities in soft x-ray range for low-Z system will stimulate the activity in that field.
Collapse
|
9
|
Nass K, Foucar L, Barends TRM, Hartmann E, Botha S, Shoeman RL, Doak RB, Alonso-Mori R, Aquila A, Bajt S, Barty A, Bean R, Beyerlein KR, Bublitz M, Drachmann N, Gregersen J, Jönsson HO, Kabsch W, Kassemeyer S, Koglin JE, Krumrey M, Mattle D, Messerschmidt M, Nissen P, Reinhard L, Sitsel O, Sokaras D, Williams GJ, Hau-Riege S, Timneanu N, Caleman C, Chapman HN, Boutet S, Schlichting I. Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:225-38. [PMID: 25723924 DOI: 10.1107/s1600577515002349] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/03/2015] [Indexed: 05/23/2023]
Abstract
Proteins that contain metal cofactors are expected to be highly radiation sensitive since the degree of X-ray absorption correlates with the presence of high-atomic-number elements and X-ray energy. To explore the effects of local damage in serial femtosecond crystallography (SFX), Clostridium ferredoxin was used as a model system. The protein contains two [4Fe-4S] clusters that serve as sensitive probes for radiation-induced electronic and structural changes. High-dose room-temperature SFX datasets were collected at the Linac Coherent Light Source of ferredoxin microcrystals. Difference electron density maps calculated from high-dose SFX and synchrotron data show peaks at the iron positions of the clusters, indicative of decrease of atomic scattering factors due to ionization. The electron density of the two [4Fe-4S] clusters differs in the FEL data, but not in the synchrotron data. Since the clusters differ in their detailed architecture, this observation is suggestive of an influence of the molecular bonding and geometry on the atomic displacement dynamics following initial photoionization. The experiments are complemented by plasma code calculations.
Collapse
Affiliation(s)
- Karol Nass
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Lutz Foucar
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Thomas R M Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Elisabeth Hartmann
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Sabine Botha
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Robert L Shoeman
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - R Bruce Doak
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrew Aquila
- European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Saša Bajt
- Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Richard Bean
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kenneth R Beyerlein
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maike Bublitz
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Nikolaj Drachmann
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Jonas Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - H Olof Jönsson
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
| | - Wolfgang Kabsch
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Stephan Kassemeyer
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Jason E Koglin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Michael Krumrey
- Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, 10587 Berlin, Germany
| | - Daniel Mattle
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Marc Messerschmidt
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Linda Reinhard
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Oleg Sitsel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Garth J Williams
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Stefan Hau-Riege
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Nicusor Timneanu
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
| | - Carl Caleman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Caleman C, Tîmneanu N, Martin AV, Jönsson HO, Aquila A, Barty A, Scott HA, White TA, Chapman HN. Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser. OPTICS EXPRESS 2015; 23:1213-31. [PMID: 25835880 DOI: 10.1364/oe.23.001213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In structural determination of crystalline proteins using intense femtosecond X-ray lasers, damage processes lead to loss of structural coherence during the exposure. We use a nonthermal description for the damage dynamics to calculate the ultrafast ionization and the subsequent atomic displacement. These effects degrade the Bragg diffraction on femtosecond time scales and gate the ultrafast imaging. This process is intensity and resolution dependent. At high intensities the signal is gated by the ionization affecting low resolution information first. At lower intensities, atomic displacement dominates the loss of coherence affecting high-resolution information. We find that pulse length is not a limiting factor as long as there is a high enough X-ray flux to measure a diffracted signal.
Collapse
|
11
|
Leonov A, Ksenzov D, Benediktovitch A, Feranchuk I, Pietsch U. Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse. IUCRJ 2014; 1:402-17. [PMID: 25485121 PMCID: PMC4224459 DOI: 10.1107/s2052252514018156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/07/2014] [Indexed: 06/01/2023]
Abstract
The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL) is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron-electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12 keV and a pulse width of 40 fs considering a flux of 10(12) photons pulse(-1) (focusing on a spot size of ∼1 µm). This flux corresponds to a fluence ranging between 0.8 and 2.4 mJ µm(-2). The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6 mJ µm(-2).
Collapse
Affiliation(s)
- A. Leonov
- Department of Theoretical Physics, Belarusian State University, 220030 Nezavisimosti Avenue 4, Minsk, Belarus
| | - D. Ksenzov
- Festkörperphysik, Universität Siegen, 57072 Walter-Flex-Straße 3, Siegen, Germany
| | - A. Benediktovitch
- Department of Theoretical Physics, Belarusian State University, 220030 Nezavisimosti Avenue 4, Minsk, Belarus
| | - I. Feranchuk
- Department of Theoretical Physics, Belarusian State University, 220030 Nezavisimosti Avenue 4, Minsk, Belarus
| | - U. Pietsch
- Festkörperphysik, Universität Siegen, 57072 Walter-Flex-Straße 3, Siegen, Germany
| |
Collapse
|
12
|
Prasciolu M, Leontowich AFG, Beyerlein KR, Bajt S. Thermal stability studies of short period Sc/Cr and Sc/B₄C/Cr multilayers. APPLIED OPTICS 2014; 53:2126-2135. [PMID: 24787171 DOI: 10.1364/ao.53.002126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
The stability of short period Sc/Cr and Sc/B₄C/Cr multilayers was investigated over a large temperature range. The aim was to find a stable reflective coating for an off-axis parabola for focusing x rays from a soft x-ray free-electron laser. Normal incidence reflectivity, surface roughness, and intrinsic stress were investigated as a function of annealing temperature and two samples were also studied with a high-resolution transmission electron microscope (TEM), a scanning TEM, and through electron energy loss spectroscopy (EELS). Interface-engineered Sc/B₄C/Cr multilayers showed increased thermal stability and higher reflectivity as compared to pure Sc/Cr multilayers.
Collapse
|
13
|
Nosik VL, Rudakova EB. Prospects of biomolecule sequencing with the techniques of translocation through nanopores: A review. CRYSTALLOGR REP+ 2013. [DOI: 10.1134/s1063774513060187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Park J, Nam D, Kohmura Y, Nagasono M, Jeon Y, Lee JB, Ishikawa T, Song C. Assessment of radiation damage in single-shot coherent diffraction of DNA molecules by an extreme-ultraviolet free-electron laser. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:042901. [PMID: 23214633 DOI: 10.1103/physreve.86.042901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 09/04/2012] [Indexed: 06/01/2023]
Abstract
We have investigated the progress of structural distortions in DNA molecules by single-shot coherent diffraction using extreme-ultraviolet radiation from a free-electron laser. A speckle pattern of DNA molecules was successfully acquired using photons in a single pulse with a 100 fs pulse width. The radiation damage was assessed by a cross correlation, revealing that the first exposure has significantly deformed most of the original structures. Molecules were not completely destroyed by the first single-shot exposure and underwent subsequent distortions through continued exposure, until eventually deforming into a radiation-hard structure.
Collapse
Affiliation(s)
- Jaehyun Park
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Barty A, Caleman C, Aquila A, Timneanu N, Lomb L, White TA, Andreasson J, Arnlund D, Bajt S, Barends TRM, Barthelmess M, Bogan MJ, Bostedt C, Bozek JD, Coffee R, Coppola N, Davidsson J, DePonte DP, Doak RB, Ekeberg T, Elser V, Epp SW, Erk B, Fleckenstein H, Foucar L, Fromme P, Graafsma H, Gumprecht L, Hajdu J, Hampton CY, Hartmann R, Hartmann A, Hauser G, Hirsemann H, Holl P, Hunter MS, Johansson L, Kassemeyer S, Kimmel N, Kirian RA, Liang M, Maia FRNC, Malmerberg E, Marchesini S, Martin AV, Nass K, Neutze R, Reich C, Rolles D, Rudek B, Rudenko A, Scott H, Schlichting I, Schulz J, Seibert MM, Shoeman RL, Sierra RG, Soltau H, Spence JCH, Stellato F, Stern S, Strüder L, Ullrich J, Wang X, Weidenspointner G, Weierstall U, Wunderer CB, Chapman HN. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. NATURE PHOTONICS 2012; 6:35-40. [PMID: 24078834 PMCID: PMC3783007 DOI: 10.1038/nphoton.2011.297] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
X-ray free-electron lasers have enabled new approaches to the structural determination of protein crystals that are too small or radiation-sensitive for conventional analysis1. For sufficiently short pulses, diffraction is collected before significant changes occur to the sample, and it has been predicted that pulses as short as 10 fs may be required to acquire atomic-resolution structural information1-4. Here, we describe a mechanism unique to ultrafast, ultra-intense X-ray experiments that allows structural information to be collected from crystalline samples using high radiation doses without the requirement for the pulse to terminate before the onset of sample damage. Instead, the diffracted X-rays are gated by a rapid loss of crystalline periodicity, producing apparent pulse lengths significantly shorter than the duration of the incident pulse. The shortest apparent pulse lengths occur at the highest resolution, and our measurements indicate that current X-ray free-electron laser technology5 should enable structural determination from submicrometre protein crystals with atomic resolution.
Collapse
Affiliation(s)
- Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Correspondence and requests for materials should be addressed to A.B. and H.N.C., ;
| | - Carl Caleman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew Aquila
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Lukas Lomb
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas A. White
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - David Arnlund
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Saša Bajt
- Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Thomas R. M. Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Michael J. Bogan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Christoph Bostedt
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - John D. Bozek
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Ryan Coffee
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Nicola Coppola
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jan Davidsson
- Department of Photochemistry and Molecular Science, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Daniel P. DePonte
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - R. Bruce Doak
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Veit Elser
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Sascha W. Epp
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Benjamin Erk
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Heinz Graafsma
- Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lars Gumprecht
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Christina Y. Hampton
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | | | - Günter Hauser
- Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany
| | | | - Peter Holl
- PN Sensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany
| | - Mark S. Hunter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Linda Johansson
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Stephan Kassemeyer
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Nils Kimmel
- Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany
| | - Richard A. Kirian
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Mengning Liang
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Erik Malmerberg
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | | | - Andrew V. Martin
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Karol Nass
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Richard Neutze
- Department of Chemistry, Biochemistry and Biophysics, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | | | - Daniel Rolles
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Benedikt Rudek
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Artem Rudenko
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Howard Scott
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Joachim Schulz
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - M. Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Robert L. Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Raymond G. Sierra
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Heike Soltau
- PN Sensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany
| | - John C. H. Spence
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Francesco Stellato
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Stephan Stern
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lothar Strüder
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
| | - Joachim Ullrich
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - X. Wang
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Georg Weidenspointner
- Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany
| | - Uwe Weierstall
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | | | - Henry N. Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Correspondence and requests for materials should be addressed to A.B. and H.N.C., ;
| |
Collapse
|
16
|
Ponomarenko O, Nikulin AY, Moser HO, Yang P, Sakata O. Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale. JOURNAL OF SYNCHROTRON RADIATION 2011; 18:580-94. [PMID: 21685675 PMCID: PMC3286865 DOI: 10.1107/s0909049511016335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/29/2011] [Indexed: 05/30/2023]
Abstract
Coherent X-ray diffraction techniques play an increasingly significant role in the imaging of nanoscale structures, ranging from metallic and semiconductor to biological objects. In material science, X-rays are usually considered to be of a low-destructive nature, but under certain conditions they can cause significant radiation damage and heat loading on the samples. The qualitative literature data concerning the tolerance of nanostructured samples to synchrotron radiation in coherent diffraction imaging experiments are scarce. In this work the experimental evidence of a complete destruction of polymer and gold nanosamples by the synchrotron beam is reported in the case of imaging at 1-10 nm spatial resolution. Numerical simulations based on a heat-transfer model demonstrate the high sensitivity of temperature distribution in samples to macroscopic experimental parameters such as the conduction properties of materials, radiation heat transfer and convection. However, for realistic experimental conditions the calculated rates of temperature rise alone cannot explain the melting transitions observed in the nanosamples. Comparison of these results with the literature data allows a specific scenario of the sample destruction in each particular case to be presented, and a strategy for damage reduction to be proposed.
Collapse
Affiliation(s)
- O. Ponomarenko
- School of Physics, Centre of Excellence for Coherent X-ray Science, Monash University, Wellington Road, Victoria 3800, Australia
- School of Physics, Centre of Excellence for Coherent X-ray Science, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Geological Sciences, The University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, Canada S7N 5E2
| | - A. Y. Nikulin
- School of Physics, Centre of Excellence for Coherent X-ray Science, Monash University, Wellington Road, Victoria 3800, Australia
| | - H. O. Moser
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Postfach 3640, D-76021 Karlsruhe, Germany
| | - P. Yang
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603
| | - O. Sakata
- JASRI/SPring-8, Kouto 1-1-1, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
17
|
Fratalocchi A, Ruocco G. Single-molecule imaging with x-ray free-electron lasers: dream or reality? PHYSICAL REVIEW LETTERS 2011; 106:105504. [PMID: 21469805 DOI: 10.1103/physrevlett.106.105504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Indexed: 05/30/2023]
Abstract
X-ray free-electron lasers (XFEL) are revolutionary photon sources, whose ultrashort, brilliant pulses are expected to allow single-molecule diffraction experiments providing structural information on the atomic length scale of nonperiodic objects. This ultimate goal, however, is currently hampered by several challenging questions basically concerning sample damage, Coulomb explosion, and the role of nonlinearity. By employing an original ab initio approach, we address these issues showing that XFEL-based single-molecule imaging will be only possible with a few-hundred long attosecond pulses, due to significant radiation damage and the formation of preferred multisoliton clusters which reshape the overall electronic density of the molecular system at the femtosecond scale.
Collapse
Affiliation(s)
- A Fratalocchi
- PRIMALIGHT, Faculty of Electrical Engineering; Applied Mathematics and Computational Science, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | | |
Collapse
|
18
|
Duke EMH, Johnson LN. Macromolecular crystallography at synchrotron radiation sources: current status and future developments. Proc Math Phys Eng Sci 2010. [DOI: 10.1098/rspa.2010.0448] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
X-ray diffraction with synchrotron radiation (SR) has revealed the atomic structures of numerous biological macromolecules including proteins and protein complexes, nucleic acids and their protein complexes, viruses, membrane proteins and drug targets. The bright SR X-ray beam with its small divergence has made the study of weakly diffracting crystals of large biological molecules possible. The ability to tune the wavelength of the SR beam to the absorption edge of certain elements has allowed anomalous scattering to be exploited for phase determination. We review the developments at synchrotron sources and beamlines from the early days to the present time, and discuss the significance of the results in providing a deeper understanding of the biological function, the design of new therapeutic molecules and time-resolved studies of dynamic events using pump–probe techniques. Radiation damage, a problem with bright X-ray sources, has been partially alleviated by collecting data at low temperature (100 K) but work is ongoing. In the most recent development, free electron laser sources can offer a peak brightness of hard X-rays approximately 10
8
times brighter than that achieved at SR sources. We describe briefly how early experiments at FLASH and Linear Coherent Light Source have shown exciting possibilities for the future.
Collapse
Affiliation(s)
- E. M. H. Duke
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - L. N. Johnson
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
19
|
Ksenzov D, Schlemper C, Pietsch U. Resonant soft x-ray reflectivity of Me/B(4)C multilayers near the boron K edge. APPLIED OPTICS 2010; 49:4767-4773. [PMID: 20820220 DOI: 10.1364/ao.49.004767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Energy dependence of the optical constants of boron carbide in the short period Ru/B(4)C and Mo/B(4)C multilayers (MLs) are evaluated from complete reflectivity scans across the boron K edge using the energy-resolved photon-in-photon-out method. Differences between the refractive indices of the B(4)Cmaterial inside and close to the surface are obtained from the peak profile of the first order ML Bragg peak and the reflection profile near the critical angle of total external reflection close to the surface. Where a Mo/B(4)C ML with narrow barrier layers appears as a homogeneous ML at all energies, a Ru/B(4)C ML exhibits another chemical nature of boron at the surface compared to the bulk. From evaluation of the critical angle of total external reflection in the energy range between 184 and 186eV, we found an enriched concentration of metallic boron inside the Ru-rich layer at the surface, which is not visible in other energy ranges.
Collapse
Affiliation(s)
- Dmitriy Ksenzov
- University of Siegen, Walter-Flex Strasse 3, 57068 Siegen, Germany.
| | | | | |
Collapse
|
20
|
Rajkovic I, Busse G, Hallmann J, Moré R, Petri M, Quevedo W, Krasniqi F, Rudenko A, Tschentscher T, Stojanovic N, Düsterer S, Treusch R, Tolkiehn M, Techert S. Diffraction properties of periodic lattices under free electron laser radiation. PHYSICAL REVIEW LETTERS 2010; 104:125503. [PMID: 20366545 DOI: 10.1103/physrevlett.104.125503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Indexed: 05/29/2023]
Abstract
In this Letter, we report the pioneering use of free electron laser radiation for the investigation of periodic crystalline structures. The diffraction properties of silver behenate single nanocrystals (5.8 nm periodicity) with the dimensions of 20 nm x 20 nm x 20 microm and as powder with grain sizes smaller than 200 nm were investigated with 8 nm free electron laser radiation in single-shot modus with 30 fs long free electron laser pulses. This work emphasizes the possibility of using soft x-ray free electron laser radiation for these crystallographic studies on a nanometer scale.
Collapse
Affiliation(s)
- I Rajkovic
- Max Planck Institute for Biophysical Chemistry, 37070 Goettingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hau-Riege SP, Boutet S, Barty A, Bajt S, Bogan MJ, Frank M, Andreasson J, Iwan B, Seibert MM, Hajdu J, Sakdinawat A, Schulz J, Treusch R, Chapman HN. Sacrificial tamper slows down sample explosion in FLASH diffraction experiments. PHYSICAL REVIEW LETTERS 2010; 104:064801. [PMID: 20366823 DOI: 10.1103/physrevlett.104.064801] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Indexed: 05/29/2023]
Abstract
Intense and ultrashort x-ray pulses from free-electron lasers open up the possibility for near-atomic resolution imaging without the need for crystallization. Such experiments require high photon fluences and pulses shorter than the time to destroy the sample. We describe results with a new femtosecond pump-probe diffraction technique employing coherent 0.1 keV x rays from the FLASH soft x-ray free-electron laser. We show that the lifetime of a nanostructured sample can be extended to several picoseconds by a tamper layer to dampen and quench the sample explosion, making <1 nm resolution imaging feasible.
Collapse
Affiliation(s)
- Stefan P Hau-Riege
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Khorsand AR, Sobierajski R, Louis E, Bruijn S, van Hattum ED, van de Kruijs RWE, Jurek M, Klinger D, Pelka JB, Juha L, Burian T, Chalupsky J, Cihelka J, Hajkova V, Vysin L, Jastrow U, Stojanovic N, Toleikis S, Wabnitz H, Tiedtke K, Sokolowski-Tinten K, Shymanovich U, Krzywinski J, Hau-Riege S, London R, Gleeson A, Gullikson EM, Bijkerk F. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure. OPTICS EXPRESS 2010; 18:700-712. [PMID: 20173890 DOI: 10.1364/oe.18.000700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic force microscopy, and scanning transmission electron microcopy. An ultrafast molybdenum silicide formation due to enhanced atomic diffusion in melted silicon has been determined to be the key process in the damage mechanism. The influence of the energy diffusion on the damage process was estimated. The results are of significance for the design of multilayer optics for a new generation of pulsed (from atto- to nanosecond) XUV sources.
Collapse
Affiliation(s)
- A R Khorsand
- FOM-Institute for Plasma Physics Rijnhuizen, Edisonbaan 14, Nieuwegein, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ksenzov D, Panzner T, Schlemper C, Morawe C, Pietsch U. Optical properties of boron carbide near the boron K edge evaluated by soft-x-ray reflectometry from a Ru/B(4)C multilayer. APPLIED OPTICS 2009; 48:6684-6691. [PMID: 20011008 DOI: 10.1364/ao.48.006684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Soft-x-ray Bragg reflection from two Ru/B(4)C multilayers with 10 and 63 periods was used for independent determination of both real and imaginary parts of the refractive index n = 1 - delta + ibeta close to the boron K edge (approximately 188 eV). Prior to soft x-ray measurements, the structural parameters of the multilayers were determined by x-ray reflectometry using hard x rays. For the 63-period sample, the optical properties based on the predictions made for elemental boron major deviations were found close to the K edge of boron for the 10-period sample explained by chemical bonding of boron to B(4)C and various boron oxides.
Collapse
Affiliation(s)
- Dmitriy Ksenzov
- University of Siegen, Walter-Flex Strasse 3, 57068 Siegen, Germany.
| | | | | | | | | |
Collapse
|
24
|
Diffract-and-destroy: Can X-ray lasers “solve” the radiation damage problem? Ultramicroscopy 2008; 108:1502-3. [DOI: 10.1016/j.ultramic.2008.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/09/2008] [Indexed: 11/21/2022]
|
25
|
Schmidt KE, Spence JCH, Weierstall U, Kirian R, Wang X, Starodub D, Chapman HN, Howells MR, Doak RB. Tomographic femtosecond x-ray diffractive imaging. PHYSICAL REVIEW LETTERS 2008; 101:115507. [PMID: 18851299 DOI: 10.1103/physrevlett.101.115507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Indexed: 05/26/2023]
Abstract
A method is proposed for obtaining three simultaneous projections of a target from a single radiation pulse, which also allows the relative orientation of successive targets to be determined. The method has application to femtosecond x-ray diffraction, and does not require solution of the phase problem. We show that the principal axes of a compact charge-density distribution can be obtained from projections of its autocorrelation function, which is directly accessible in diffraction experiments. The results may have more general application to time resolved tomographic pump-probe experiments and time-series imaging.
Collapse
Affiliation(s)
- K E Schmidt
- Department of Physics, Arizona State University, Tempe, Arizona 85287-1504, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miao J, Ishikawa T, Shen Q, Earnest T. Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu Rev Phys Chem 2008; 59:387-410. [PMID: 18031219 DOI: 10.1146/annurev.physchem.59.032607.093642] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In 1999, researchers extended X-ray crystallography to allow the imaging of noncrystalline specimens by measuring the X-ray diffraction pattern of a noncrystalline specimen and then directly phasing it using the oversampling method with iterative algorithms. Since then, the field has evolved moving in three important directions. The first is the 3D structural determination of noncrystalline materials, which includes the localization of the defects and strain field inside nanocrystals, and quantitative 3D imaging of disordered materials such as nanoparticles and biomaterials. The second is the 3D imaging of frozen-hydrated whole cells at a resolution of 10 nm or better. A main thrust is to localize specific multiprotein complexes inside cells. The third is the potential of imaging single large protein complexes using extremely intense and ultrashort X-ray pulses. In this article, we review the principles of this methodology, summarize recent developments in each of the three directions, and illustrate a few examples.
Collapse
Affiliation(s)
- Jianwei Miao
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
27
|
Hau-Riege SP, London RA, Chapman HN, Bergh M. Soft-x-ray free-electron-laser interaction with materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:046403. [PMID: 17995118 DOI: 10.1103/physreve.76.046403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Indexed: 05/25/2023]
Abstract
Soft-x-ray free-electron lasers have enabled materials studies in which structural information is obtained faster than the relevant probe-induced damage mechanisms. We present a continuum model to describe the damage process based on hot-dense plasma theory, which includes a description of the energy deposition in the samples, the subsequent dynamics of the sample, and the detector signal. We compared the model predictions with experimental data and mostly found reasonable agreement. In view of future free-electron-laser performance, the model was also used to predict damage dynamics of samples and optical elements at shorter wavelengths and larger photon fluences than currently available.
Collapse
Affiliation(s)
- Stefan P Hau-Riege
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
28
|
Chapman HN, Hau-Riege SP, Bogan MJ, Bajt S, Barty A, Boutet S, Marchesini S, Frank M, Woods BW, Benner WH, London RA, Rohner U, Szöke A, Spiller E, Möller T, Bostedt C, Shapiro DA, Kuhlmann M, Treusch R, Plönjes E, Burmeister F, Bergh M, Caleman C, Huldt G, Seibert MM, Hajdu J. Femtosecond time-delay X-ray holography. Nature 2007; 448:676-9. [PMID: 17687320 DOI: 10.1038/nature06049] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 06/22/2007] [Indexed: 11/08/2022]
Abstract
Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton's 'dusty mirror' experiment, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging can be used to achieve high resolution, beyond radiation damage limits for biological samples. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.
Collapse
Affiliation(s)
- Henry N Chapman
- University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gaffney KJ, Chapman HN. Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering. Science 2007; 316:1444-8. [PMID: 17556577 DOI: 10.1126/science.1135923] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Measuring atomic-resolution images of materials with x-ray photons during chemical reactions or physical transformations resides at the technological forefront of x-ray science. New x-ray-based experimental capabilities have been closely linked with advances in x-ray sources, a trend that will continue with the impending arrival of x-ray-free electron lasers driven by electron accelerators. We discuss recent advances in ultrafast x-ray science and coherent imaging made possible by linear-accelerator-based light sources. These studies highlight the promise of ultrafast x-ray lasers, as well as the technical challenges and potential range of applications that will accompany these transformative x-ray light sources.
Collapse
Affiliation(s)
- K J Gaffney
- PULSE Center, Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|