1
|
Nisa WU, Sandhu S, Nair SK, Kaur H, Kumar A, Rashid Z, Saykhedkar G, Vikal Y. Insights into maydis leaf blight resistance in maize: a comprehensive genome-wide association study in sub-tropics of India. BMC Genomics 2024; 25:760. [PMID: 39103778 DOI: 10.1186/s12864-024-10655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.
Collapse
Affiliation(s)
- Wajhat- Un- Nisa
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder Sandhu
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| | | | - Harleen Kaur
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, Ludhiana, India
| | - Zerka Rashid
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Gajanan Saykhedkar
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
2
|
Feng X, Zheng J, Irisarri I, Yu H, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JMR, Dadras A, Zegers JMS, Rieseberg TP, Dhabalia Ashok A, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang X, Li FW, Rensing SA, Ben Ari J, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang J, Mutwil M, de Vries J, Yin Y. Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nat Genet 2024; 56:1018-1031. [PMID: 38693345 PMCID: PMC11096116 DOI: 10.1038/s41588-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.
Collapse
Affiliation(s)
- Xuehuan Feng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jinfang Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Zhejiang Lab, Hangzhou, China
| | - Iker Irisarri
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
- Section Phylogenomics, Centre for Molecular biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Zoological Museum Hamburg, Hamburg, Germany
| | - Huihui Yu
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Yunnan, China
| | - Bo Zheng
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zahin Ali
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Sophie de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Janine M R Fürst-Jansen
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Armin Dadras
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Jaccoline M S Zegers
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tim P Rieseberg
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Amra Dhabalia Ashok
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Tatyana Darienko
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Maaike J Bierenbroodspot
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany
| | - Lydia Gramzow
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Romy Petroll
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Noe Fernandez-Pozo
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora', Málaga, Spain
| | - Orestis Nousias
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tang Li
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Elisabeth Fitzek
- Computational Biology, Department of Biology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - W Scott Grayburn
- Northern Illinois University, Molecular Core Lab, Department of Biological Sciences, DeKalb, IL, USA
| | - Nina Rittmeier
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Charlotte Permann
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Florian Rümpler
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Günter Theißen
- University of Jena, Matthias Schleiden Institute/Genetics, Jena, Germany
| | - Jeffrey P Mower
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
| | - Maike Lorenz
- University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Experimental Phycology and Culture Collection of Algae at Goettingen University, Goettingen, Germany
| | - Henrik Buschmann
- University of Applied Sciences Mittweida, Faculty of Applied Computer Sciences and Biosciences, Section Biotechnology and Chemistry, Molecular Biotechnology, Mittweida, Germany
| | - Klaus von Schwartzenberg
- Universität Hamburg, Institute of Plant Science and Microbiology, Microalgae and Zygnematophyceae Collection Hamburg and Aquatic Ecophysiology and Phycology, Hamburg, Germany
| | - Lori Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Richard D Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Daum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Xiyin Wang
- North China University of Science and Technology, Tangshan, China
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Julius Ben Ari
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Noa Keren
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Assaf Mosquna
- The Hebrew University of Jerusalem, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Rehovot, Israel
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Research Group Plant Cell Biology, Innsbruck, Austria
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet-Tolosan, France
| | - Chi Zhang
- University of Nebraska-Lincoln, Center for Plant Science Innovation, Lincoln, NE, USA
- University of Nebraska-Lincoln, School of Biological Sciences, Lincoln, NE, USA
| | - Jinling Huang
- Department of Biology, East Carolina University, Greenville, NC, USA
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Marek Mutwil
- Nanyang Technological University, School of Biological Sciences, Singapore, Singapore
| | - Jan de Vries
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Goettingen, Goettingen, Germany.
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany.
- University of Goettingen, Goettingen Center for Molecular Biosciences, Goettingen, Germany.
| | - Yanbin Yin
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
Li CH, Tu YC, Wen MF, Tien HJ, Yen HE. Exogenous myo-inositol increases salt tolerance and accelerates CAM induction in the early juvenile stage of the facultative halophyte Mesembryanthemum crystallinum but not in the late juvenile stage. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:363-377. [PMID: 36949582 DOI: 10.1071/fp22285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/21/2023] [Indexed: 05/03/2023]
Abstract
Mesembryanthemum crystallinum L. (ice plant) develops salt tolerance during the transition from the juvenile to the adult stage through progressive morphological, physiological, biochemical, and molecular changes. Myo -inositol is the precursor for the synthesis of compatible solute D-pinitol and promotes Na+ transport in ice plants. We previously showed that supplying myo -inositol to 9-day-old seedlings alleviates salt damage by coordinating the expression of genes involved in inositol synthesis and transport, affecting osmotic adjustment and the Na/K balance. In this study, we examined the effects of myo -inositol on physiological parameters and inositol-related gene expression in early- and late-stage juvenile plants. The addition of myo -inositol to salt-treated, hydroponically grown late juvenile plants had no significant effects on growth or photosynthesis. In contrast, supplying exogenous myo -inositol to salt-treated early juvenile plants increased leaf biomass, relative water content, and chlorophyll content and improved PSII activity and CO2 assimilation. The treatment combining high salt and myo -inositol synergistically induced the expression of myo -inositol phosphate synthase (INPS ), myo -inositol O -methyltransferase (IMT ), and inositol transporters (INTs ), which modulated root-to-shoot Na/K ratio and increased leaf D-pinitol content. The results indicate that sufficient myo -inositol is a prerequisite for high salt tolerance in ice plant.
Collapse
Affiliation(s)
- Cheng-Hsun Li
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yun-Cheng Tu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Meng-Fang Wen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsing-Jung Tien
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Dong J, Hudson ME. WI12 Rhg1 interacts with DELLAs and mediates soybean cyst nematode resistance through hormone pathways. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:283-296. [PMID: 34532941 PMCID: PMC8753364 DOI: 10.1111/pbi.13709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/08/2021] [Accepted: 09/10/2021] [Indexed: 05/19/2023]
Abstract
The soybean cyst nematode (SCN) is one of the most important causes of soybean yield loss. The major source of genetic resistance to SCN is the Rhg1 repeat, a tandem copy number polymorphism of three genes. The roles of these genes are only partially understood. Moreover, nematode populations virulent on Rhg1-carrying soybeans are becoming more common, increasing the need to understand the most successful genetic resistance mechanism. Here, we show that a Rhg1-locus gene (Glyma.18G02270) encoding a wound-inducible protein (WI12Rhg1 ) is needed for SCN resistance. Furthermore, knockout of WI12Rhg1 reduces the expression of DELLA18, and the expression of WI12Rhg1 is itself induced by either JA, SA or GA. The content of the defence hormone SA is significantly lower whilst GA12 and GA53 are increased in WI12Rhg1 knockout roots compared with unedited hairy roots. We find that WI12Rhg1 directly interacts with DELLA18 (Glyma.18G040000) in yeast and plants and that double knockout of DELLA18 and its homeolog DELLA11 (Glyma.11G216500) significantly reduces SCN resistance and alters the root morphology. As DELLA proteins are implicated in hormone signalling, we explored the content of defence hormones (JA and SA) in DELLA knockout and unedited roots, finding reduced levels of JA and SA after the knockout of DELLA. Additionally, the treatment of DELLA-knockout roots with JA or SA rescues SCN resistance lost by the knockout. Meanwhile, the SCN resistance of unedited roots decreases after the treatment with GA, but increases with JA or SA. Our findings highlight the critical roles of WI12Rhg1 and DELLA proteins in SCN resistance through interconnection with hormone signalling.
Collapse
Affiliation(s)
- Jia Dong
- Department of Crop SciencesUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| | - Matthew E. Hudson
- Department of Crop SciencesUniversity of Illinois Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
5
|
Chen MZ, Zhong XM, Lin HS, Qin XM. Combined Transcriptome and Metabolome Analysis of Musa nana Laur. Peel Treated With UV-C Reveals the Involvement of Key Metabolic Pathways. Front Genet 2022; 12:792991. [PMID: 35154246 PMCID: PMC8830439 DOI: 10.3389/fgene.2021.792991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
An increasing attention is being given to treat fruits with ultraviolet C (UV-C) irradiation to extend shelf-life, senescence, and protection from different diseases during storage. However, the detailed understanding of the pathways and key changes in gene expression and metabolite accumulation related to UV-C treatments are yet to be explored. This study is a first attempt to understand such changes in banana peel irradiated with UV-C. We treated Musa nana Laur. with 0.02 KJ/m2 UV-C irradiation for 0, 4, 8, 12, 15, and 18 days and studied the physiological and quality indicators. We found that UV-C treatment reduces weight loss and decay rate, while increased the accumulation of total phenols and flavonoids. Similarly, our results demonstrated that UV-C treatment increases the activity of defense and antioxidant system related enzymes. We observed that UV-C treatment for 8 days is beneficial for M. nana peels. The peels of M. nana treated with UV-C for 8 days were then subjected to combined transcriptome and metabolome analysis. In total, there were 425 and 38 differentially expressed genes and accumulated metabolites, respectively. We found that UV-C treatment increased the expression of genes in secondary metabolite biosynthesis related pathways. Concomitant changes in the metabolite accumulation were observed. Key pathways that were responsive to UV-C irradiation include flavonoid biosynthesis, phenylpropanoid bios6ynthesis, plant-pathogen interaction, MAPK signaling (plant), and plant hormone signal transduction pathway. We concluded that UV-C treatment imparts beneficial effects on banana peels by triggering defense responses against disease, inducing expression of flavonoid and alkaloid biosynthesis genes, and activating phytohormone and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ming-zhong Chen
- College of Food Science and Technology, and Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
- Yangjiang Polytechnic, Yangjiang, China
| | | | - Hai-Sheng Lin
- College of Food Science and Technology, and Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Xiao-Ming Qin
- College of Food Science and Technology, and Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
6
|
Doonan JM, Broberg M, Denman S, McDonald JE. Host-microbiota-insect interactions drive emergent virulence in a complex tree disease. Proc Biol Sci 2020; 287:20200956. [PMID: 32811286 DOI: 10.1098/rspb.2020.0956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Forest declines caused by climate disturbance, insect pests and microbial pathogens threaten the global landscape, and tree diseases are increasingly attributed to the emergent properties of complex ecological interactions between the host, microbiota and insects. To address this hypothesis, we combined reductionist approaches (single and polyspecies bacterial cultures) with emergentist approaches (bacterial inoculations in an oak infection model with the addition of insect larvae) to unravel the gene expression landscape and symptom severity of host-microbiota-insect interactions in the acute oak decline (AOD) pathosystem. AOD is a complex decline disease characterized by predisposing abiotic factors, inner bark lesions driven by a bacterial pathobiome, and larval galleries of the bark-boring beetle Agrilus biguttatus. We identified expression of key pathogenicity genes in Brenneria goodwinii, the dominant member of the AOD pathobiome, tissue-specific gene expression profiles, cooperation with other bacterial pathobiome members in sugar catabolism, and demonstrated amplification of pathogenic gene expression in the presence of Agrilus larvae. This study highlights the emergent properties of complex host-pathobiota-insect interactions that underlie the pathology of diseases that threaten global forest biomes.
Collapse
Affiliation(s)
- James M Doonan
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.,Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Martin Broberg
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.,Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Sandra Denman
- Forest Research, Centre for Forestry and Climate Change, Alice Holt Lodge, Farnham, Surrey GU10 4LH, UK
| | - James E McDonald
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
7
|
Angeles-Shim RB, Shim J, Vinarao RB, Lapis RS, Singleton JJ. A novel locus from the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa). PLoS One 2020; 15:e0229155. [PMID: 32084193 PMCID: PMC7034821 DOI: 10.1371/journal.pone.0229155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
Bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major limiting factor to rice productivity worldwide. Genetic control through the identification of novel sources of bacterial blight resistance and their utilization in resistance breeding remains the most effective and economical strategy to manage the disease. Here we report the identification of a novel locus from the wild Oryza species, Oryza latifolia, conferring a race-specific resistance to Philippine Xoo race 9A (PXO339). The locus was identified from two introgression lines i.e. WH12-2252 and WH12-2256 that segregated from O. latifolia monosomic alien addition lines (MAALs). The discrete segregation ratio of susceptible and resistant phenotypes in the F2 (χ2[3:1] = 0.22 at p>0.05) and F3 (χ2[3:1] = 0.36 at p>0.05) populations indicates that PXO339 resistance in the MAAL-derived introgression lines (MDILs) is controlled by a single, recessive gene. Genotyping of a total of 216 F2, 1130 F3 and 288 F4 plants derived from crossing either of the MDILs with the recurrent parent used to generate the MAALs narrowed the candidate region to a 1,817 kb locus that extends from 10,425 to 12,266 kb in chromosome 12. Putative candidate genes that were identified by data mining and comparative sequence analysis can provide targets for further studies on mapping and cloning of the causal gene for PXO339 resistance in the MDILs. To our knowledge, this is the first report of a genetic locus from the allotetraploid wild rice, O. latifolia conferring race-specific resistance to bacterial blight.
Collapse
Affiliation(s)
| | - Junghyun Shim
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ricky B. Vinarao
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Ruby S. Lapis
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| | - Joshua J. Singleton
- Plant Breeding Division, International Rice Research Institute, Manila, Philippines
| |
Collapse
|
8
|
Gamez RM, Rodríguez F, Vidal NM, Ramirez S, Vera Alvarez R, Landsman D, Mariño-Ramírez L. Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006. BMC Genomics 2019; 20:378. [PMID: 31088352 PMCID: PMC6518610 DOI: 10.1186/s12864-019-5763-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background Banana is one of the most important crops in tropical and sub-tropical regions. To meet the demands of international markets, banana plantations require high amounts of chemical fertilizers which translate into high farming costs and are hazardous to the environment when used excessively. Beneficial free-living soil bacteria that colonize the rhizosphere are known as plant growth-promoting rhizobacteria (PGPR). PGPR affect plant growth in direct or indirect ways and hold great promise for sustainable agriculture. Results PGPR of the genera Bacillus and Pseudomonas in banana cv. Williams were evaluated. These plants were produced through in vitro culture and inoculated individually with two rhizobacteria, Bacillus amyloliquefaciens strain Bs006 and Pseudomonas fluorescens strain Ps006. Control plants without microbial inoculum were also evaluated. These plants were kept in a controlled climate growth room with conditions required to favor plant-microorganism interactions. These interactions were evaluated at 1-, 48- and 96-h using transcriptome sequencing after inoculation to establish differentially expressed genes (DEGs) in plants elicited by the interaction with the two rhizobacteria. Additionally, droplet digital PCR was performed at 1, 48, 96 h, and also at 15 and 30 days to validate the expression patterns of selected DEGs. The banana cv. Williams transcriptome reported differential expression in a large number of genes of which 22 were experimentally validated. Genes validated experimentally correspond to growth promotion and regulation of specific functions (flowering, photosynthesis, glucose catabolism and root growth) as well as plant defense genes. This study focused on the analysis of 18 genes involved in growth promotion, defense and response to biotic or abiotic stress. Conclusions Differences in banana gene expression profiles in response to the rhizobacteria evaluated here (Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006) are influenced by separate bacterial colonization processes and levels that stimulate distinct groups of genes at various points in time. Electronic supplementary material The online version of this article (10.1186/s12864-019-5763-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rocío M Gamez
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 14 Vía Mosquera, Bogotá, Colombia.,Universidad de la Sabana, Chía, Colombia
| | - Fernando Rodríguez
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 14 Vía Mosquera, Bogotá, Colombia
| | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894-6075, USA
| | - Sandra Ramirez
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 14 Vía Mosquera, Bogotá, Colombia
| | - Roberto Vera Alvarez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894-6075, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894-6075, USA
| | - Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894-6075, USA.
| |
Collapse
|
9
|
Guo W, Zhang F, Bao A, You Q, Li Z, Chen J, Cheng Y, Zhao W, Shen X, Zhou X, Jiao Y. The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode. MOLECULAR PLANT PATHOLOGY 2019; 20:270-286. [PMID: 30264924 PMCID: PMC6637870 DOI: 10.1111/mpp.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rhg1 (resistance to Heterodera glycines 1) is an important locus that contributes to resistance against soybean cyst nematode (SCN; Heterodera glycines Ichinohe), which is the most economically damaging disease of soybean worldwide. Simultaneous overexpression of three genes encoding a predicted amino acid transporter, an α-soluble N-ethylmaleimide-sensitive factor attachment protein (α-SNAP) and a predicted wound-induced protein resulted in resistance to SCN provided by this locus. However, the roles of two of these genes (excluding α-SNAP) remain unknown. Here, we report the functional characterization of Glyma.18G022400, a gene at the Rhg1 locus that encodes the predicted amino acid transporter Rhg1-GmAAT. Although the direct role of Rhg1-GmAAT in glutamate transport was not demonstrated, multiple lines of evidence showed that Rhg1-GmAAT impacts glutamic acid tolerance and glutamate transportation in soybean. Transcriptomic and metabolite profiling indicated that overexpression of Rhg1-GmAAT activated the jasmonic acid (JA) pathway. Treatment with a JA biosynthesis inhibitor reduced the resistance provided by the Rhg1-containing PI88788 to SCN, which suggested that the JA pathway might play a role in Rhg1-mediated resistance to SCN. Our results could be helpful for the clarification of the mechanism of resistance to SCN provided by Rhg1 in soybean.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Feng Zhang
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Aili Bao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Qingbo You
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Zeyu Li
- Daqing Branch of Heilongjiang Academy of Agricultural SciencesDaqingHeilongjiang163316China
| | - Jingsheng Chen
- Daqing Branch of Heilongjiang Academy of Agricultural SciencesDaqingHeilongjiang163316China
| | - Yihui Cheng
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Wei Zhao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Xinjie Shen
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Xinan Zhou
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
| | - Yongqing Jiao
- Key Laboratory of Oil Crop Biology of the Ministry of AgricultureOil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanHubei430062China
- Collaborative Innovation Center of Henan Grain Crops, College of AgronomyHenan Agricultural UniversityZhengzhouHenan450002China
| |
Collapse
|
10
|
Zhang L, Huang X, He C, Zhang QY, Zou X, Duan K, Gao Q. Novel Fungal Pathogenicity and Leaf Defense Strategies Are Revealed by Simultaneous Transcriptome Analysis of Colletotrichum fructicola and Strawberry Infected by This Fungus. FRONTIERS IN PLANT SCIENCE 2018; 9:434. [PMID: 29922301 PMCID: PMC5996897 DOI: 10.3389/fpls.2018.00434] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/21/2018] [Indexed: 05/29/2023]
Abstract
Colletotrichum fructicola, which is part of the C. gloeosporioides species complex, can cause anthracnose diseases in strawberries worldwide. However, the molecular interactions between C. fructicola and strawberry are largely unknown. A deep RNA-sequencing approach was applied to gain insights into the pathogenicity mechanisms of C. fructicola and the defense response of strawberry plants at different stages of infection. The transcriptome data showed stage-specific transcription accompanied by a step-by-step strawberry defense response and the evasion of this defense system by fungus. Fungal genes involved in plant cell wall degradation, secondary metabolism, and detoxification were up-regulated at different stage of infection. Most importantly, C. fructicola infection was accompanied by a large number of highly expressed effectors. Four new identified effectors function in the suppression of Bax-mediated programmed cell death. Strawberry utilizes pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity to prevent C. fructicola invasion, followed by the initiation of downstream innate immunity. The up-regulation of genes related to salicylic acid provided evidence that salicylic acid signaling may serve as the core defense signaling mechanism, while jasmonic acid and ethylene pathways were largely inhibited by C. fructicola. The necrotrophic stage displayed a significant up-regulation of genes involved in reactive oxygen species activation. Collectively, the transcriptomic data of both C. fructicola and strawberry shows that even though plants build a multilayered defense against infection, C. fructicola employs a series of escape or antagonizing mechanisms to successfully infect host cells.
Collapse
Affiliation(s)
- Liqing Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin Huang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chengyong He
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Qing-Yu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaohua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- College of Food Science, Shanghai Ocean University, Shanghai, China
| | - Qinghua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
11
|
Kebede AZ, Johnston A, Schneiderman D, Bosnich W, Harris LJ. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. BMC Genomics 2018; 19:131. [PMID: 29426290 PMCID: PMC5807830 DOI: 10.1186/s12864-018-4513-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/31/2018] [Indexed: 11/27/2022] Open
Abstract
Background Gibberella ear rot (GER) is one of the most economically important fungal diseases of maize in the temperate zone due to moldy grain contaminated with health threatening mycotoxins. To develop resistant genotypes and control the disease, understanding the host-pathogen interaction is essential. Results RNA-Seq-derived transcriptome profiles of fungal- and mock-inoculated developing kernel tissues of two maize inbred lines were used to identify differentially expressed transcripts and propose candidate genes mapping within GER resistance quantitative trait loci (QTL). A total of 1255 transcripts were significantly (P ≤ 0.05) up regulated due to fungal infection in both susceptible and resistant inbreds. A greater number of transcripts were up regulated in the former (1174) than the latter (497) and increased as the infection progressed from 1 to 2 days after inoculation. Focusing on differentially expressed genes located within QTL regions for GER resistance, we identified 81 genes involved in membrane transport, hormone regulation, cell wall modification, cell detoxification, and biosynthesis of pathogenesis related proteins and phytoalexins as candidate genes contributing to resistance. Applying droplet digital PCR, we validated the expression profiles of a subset of these candidate genes from QTL regions contributed by the resistant inbred on chromosomes 1, 2 and 9. Conclusion By screening global gene expression profiles for differentially expressed genes mapping within resistance QTL regions, we have identified candidate genes for gibberella ear rot resistance on several maize chromosomes which could potentially lead to a better understanding of Fusarium resistance mechanisms. Electronic supplementary material The online version of this article (10.1186/s12864-018-4513-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aida Z Kebede
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.,Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Anne Johnston
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Danielle Schneiderman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Whynn Bosnich
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Linda J Harris
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
12
|
Sperotto RA, de Araújo Junior AT, Adamski JM, Cargnelutti D, Ricachenevsky FK, de Oliveira BHN, da Cruz RP, Dos Santos RP, da Silva LP, Fett JP. Deep RNAseq indicates protective mechanisms of cold-tolerant indica rice plants during early vegetative stage. PLANT CELL REPORTS 2018; 37:347-375. [PMID: 29151156 DOI: 10.1007/s00299-017-2234-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/08/2017] [Indexed: 05/13/2023]
Abstract
Cold-tolerance in rice may be related to increased cellulose deposition in the cell wall, membrane fatty acids unsaturation and differential expression of several newly identified genes. Low temperature exposure during early vegetative stages limits rice plant's growth and development. Most genes previously related to cold tolerance in rice are from the japonica subspecies. To help clarify the mechanisms that regulate cold tolerance in young indica rice plants, comparative transcriptome analysis of 6 h cold-treated (10 °C) leaves from two genotypes, cold-tolerant (CT) and cold-sensitive (CS), was performed. Differentially expressed genes were identified: 831 and 357 sequences more expressed in the tolerant and in the sensitive genotype, respectively. The genes with higher expression in the CT genotype were used in systems biology analyses to identify protein-protein interaction (PPI) networks and nodes (proteins) that are hubs and bottlenecks in the PPI. From the genes more expressed in the tolerant plants, 60% were reported as affected by cold in previous transcriptome experiments and 27% are located within QTLs related to cold tolerance during the vegetative stage. Novel cold-responsive genes were identified. Quantitative RT-PCR confirmed the high-quality of RNAseq libraries. Several genes related to cell wall assembly or reinforcement are cold-induced or constitutively highly expressed in the tolerant genotype. Cold-tolerant plants have increased cellulose deposition under cold. Genes related to lipid metabolism are more expressed in the tolerant genotype, which has higher membrane fatty acids unsaturation, with increasing levels of linoleic acid under cold. The CT genotype seems to have higher photosynthetic efficiency and antioxidant capacity, as well as more effective ethylene, Ca2+ and hormone signaling than the CS. These genes could be useful in future biotechnological approaches aiming to increase cold tolerance in rice.
Collapse
Affiliation(s)
- Raul Antonio Sperotto
- Centro de Ciências Biológicas e da Saúde (CCBS), Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade do Vale do Taquari-UNIVATES, Lajeado, RS, Brazil.
| | | | - Janete Mariza Adamski
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Denise Cargnelutti
- Departamento de Agronomia, Universidade Federal da Fronteira Sul (UFFS), Erechim, RS, Brazil
| | | | - Ben-Hur Neves de Oliveira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata Pereira da Cruz
- Departamento de Plantas de Lavoura, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rinaldo Pires Dos Santos
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leila Picolli da Silva
- Departamento de Zootecnia, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Janette Palma Fett
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Dametto A, Sperotto RA, Adamski JM, Blasi ÉAR, Cargnelutti D, de Oliveira LFV, Ricachenevsky FK, Fregonezi JN, Mariath JEA, da Cruz RP, Margis R, Fett JP. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:1-12. [PMID: 26259169 DOI: 10.1016/j.plantsci.2015.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/10/2023]
Abstract
Rice productivity is largely affected by low temperature, which can be harmful throughout plant development, from germination to grain filling. Germination of indica rice cultivars under cold is slow and not uniform, resulting in irregular emergence and small plant population. To identify and characterize novel genes involved in cold tolerance during the germination stage, two indica rice genotypes (sister lines previously identified as cold-tolerant and cold-sensitive) were used in parallel transcriptomic analysis (RNAseq) under cold treatment (seeds germinating at 13 °C for 7 days). We detected 1,361 differentially expressed transcripts. Differences in gene expression found by RNAseq were confirmed for 11 selected genes using RT-qPCR. Biological processes enhanced in the cold-tolerant seedlings include: cell division and expansion (confirmed by anatomical sections of germinating seeds), cell wall integrity and extensibility, water uptake and membrane transport capacity, sucrose synthesis, generation of simple sugars, unsaturation of membrane fatty acids, wax biosynthesis, antioxidant capacity (confirmed by histochemical staining of H2O2), and hormone and Ca(2+)-signaling. The cold-sensitive seedlings respond to low temperature stress increasing synthesis of HSPs and dehydrins, along with enhanced ubiquitin/proteasome protein degradation pathway and polyamine biosynthesis. Our findings can be useful in future biotechnological approaches aiming to cold tolerance in indica rice.
Collapse
Affiliation(s)
- Andressa Dametto
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Centro Universitário UNIVATES, Lajeado, RS, Brazil
| | - Raul A Sperotto
- Centro de Ciências Biológicas e da Saúde (CCBS), Centro Universitário UNIVATES, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Centro Universitário UNIVATES, Lajeado, RS, Brazil.
| | - Janete M Adamski
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Édina A R Blasi
- Centro de Ciências Biológicas e da Saúde (CCBS), Centro Universitário UNIVATES, Lajeado, RS, Brazil
| | - Denise Cargnelutti
- Departamento de Agronomia, Universidade Federal da Fronteira Sul (UFFS), Erechim, RS, Brazil
| | - Luiz F V de Oliveira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Felipe K Ricachenevsky
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jeferson N Fregonezi
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jorge E A Mariath
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata P da Cruz
- Departamento de Plantas de Lavoura, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rogério Margis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Janette P Fett
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Li X, Zhao J, Walk TC, Liao H. Characterization of soybean β-expansin genes and their expression responses to symbiosis, nutrient deficiency, and hormone treatment. Appl Microbiol Biotechnol 2014; 98:2805-17. [PMID: 24113821 DOI: 10.1007/s00253-013-5240-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/15/2013] [Accepted: 08/18/2013] [Indexed: 01/21/2023]
Abstract
Expansins are plant cell wall-loosening proteins encoded by a superfamily of genes including α-expansin, β-expansin, expansin-like A, and expansin-like B proteins. They play a variety of biological roles during plant growth and development. Expansin genes have been reported in many plant species, and results primarily from graminaceous members indicate that β-expansins are more abundant in monocots than in dicots. Soybean [Glycine max (L.) Merr] is an important legume crop. This work identified nine β-expansin gene family members in soybean (GmEXPBs) that were divided into two distinct classes based on phylogeny and gene structure, with divergence between the two groups occurring more in introns than in exons. A total of 887 hormone-responsive and environmental stress-related putative cis-elements from 188 families were found in the 2-kb upstream region of GmEXPBs. Variations in number and type of cis-elements associated with each gene indicate that the function of these genes is differentially regulated by these signals. Expression analysis confirmed that the family members were ubiquitously, yet differentially expressed in soybean. Responsiveness to nutrient deficiency stresses and regulation by auxin (indole-3-acetic acid) and cytokinin (6-benzylaminopurine) varied among GmEXPBs. In addition, most β-expansin genes were associated with symbiosis of soybean inoculated with Rhizobium or abuscular mycorrhizal fungi (AMF). Taken together, these results systematically investigate the characteristics of the entire GmEXPB family in soybean and comprise the first report analyzing the relationship of GmEXPBs with rhizobial or AMF symbiosis. This information is a valuable step in the process of understanding the expansin protein functions in soybean and opens avenues for continued researches.
Collapse
Affiliation(s)
- Xinxin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Lin JS, Lin CC, Li YC, Wu MT, Tsai MH, Hsing YIC, Jeng ST. Interaction of small RNA-8105 and the intron of IbMYB1 RNA regulates IbMYB1 family genes through secondary siRNAs and DNA methylation after wounding. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:781-794. [PMID: 23663233 DOI: 10.1111/tpj.12238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Small RNAs (sRNAs) play important roles in plants under stress conditions. However, limited research has been performed on the sRNAs involved in plant wound responses. In the present study, a novel wounding-induced sRNA, sRNA8105, was identified in sweet potato (Ipomoea batatas cv. Tainung 57) using microarray analysis. It was found that expression of sRNA8105 increased after mechanical wounding. Furthermore, Dicer-like 1 (DCL1) is required for the sRNA8105 precursor (pre-sRNA8105) to generate 22 and 24 nt mature sRNA8105. sRNA8105 targeted the first intron of IbMYB1 (MYB domain protein 1) before RNA splicing, and mediated RNA cleavage and DNA methylation of IbMYB1. The interaction between sRNA8105 and IbMYB1 was confirmed by cleavage site mapping, agro-infiltration analyses, and use of a transgenic sweet potato over-expressing pre-sRNA8105 gene. Induction of IbMYB1-siRNA was observed in the wild-type upon wounding and in transgenic sweet potato over-expressing pre-sRNA8105 gene without wounding, resulting in decreased expression of the whole IbMYB1 gene family, i.e. IbMYB1 and the IbMYB2 genes, and thus directing metabolic flux toward biosynthesis of lignin in the phenylpropanoid pathway. In conclusion, sRNA8105 induced by wounding binds to the first intron of IbMYB1 RNA to methylate IbMYB1, cleave IbMYB1 RNA, and trigger production of secondary siRNAs, further repressing the expression of the IbMYB1 family genes and regulating the phenylpropanoid pathway.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Lin JS, Lin CC, Lin HH, Chen YC, Jeng ST. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. THE NEW PHYTOLOGIST 2012; 196:427-440. [PMID: 22931461 DOI: 10.1111/j.1469-8137.2012.04277.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/12/2012] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs which post-transcriptionally regulate gene expression by directing mRNA cleavage or translational inhibition. miRNAs play multiple roles in the growth, development and stress responses in plants. However, little is known of the wounding-responsive miRNAs and their regulation. Here, we investigated the expression patterns of microR828 (miR828) on wounding in sweet potato (Ipomoea batatas cv Tainung 57). The expression of miR828 was only detected in leaves, and was induced by wounding rather than by ethylene, hydrogen peroxide (H2O2), methyl jasmonate or nitric oxide (NO). Moreover, cyclic guanosine monophosphate (cGMP) was necessary for miR828 accumulation in leaves on wounding. Two miR828 target candidates, named IbMYB and IbTLD, were obtained by cDNA cloning, and their mRNA cleavage caused by miR828 was confirmed by cleavage site mapping, agro-infiltration and transgenics studies. The reduction in IbMYB and IbTLD expression coincided with the induction of miR828, demonstrating that IbMYB and IbTLD might be miR828 targets. Furthermore, transgenic sweet potato overexpressing miR828 precursor affected lignin and H2O2 contents. These results showed that cGMP could regulate wounding-responsive miR828, which repressed the expression of IbMYB and IbTLD. Subsequently, lignin and H2O2 were accumulated to participate in defense mechanisms.
Collapse
Affiliation(s)
- Jeng-Shane Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Ching Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hsin-Hung Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Shih-Tong Jeng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
17
|
Libik-Konieczny M, Surówka E, Kuźniak E, Nosek M, Miszalski Z. Effects of Botrytis cinerea and Pseudomonas syringae infection on the antioxidant profile of Mesembryanthemum crystallinum C3/CAM intermediate plant. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1052-1059. [PMID: 21342714 DOI: 10.1016/j.jplph.2010.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/16/2010] [Accepted: 12/18/2010] [Indexed: 05/30/2023]
Abstract
Mesembryathemum crystallinum plants performing C(3) or CAM (crassulacean acid metabolism) appear to be highly resistant to Botrytis cinerea as well as to Pseudomonas syringae. Fungal hyphae growth was restricted to 48h post-inoculation (hpi) in both metabolic types and morphology of hyphae differed between those growing in C(3) and CAM plants. Growth of bacteria was inhibited significantly 24 hpi in both C(3) and CAM plants. B. cinerea and P. syringae infection led to an increase in the concentration of H(2)O(2) in C(3) plants 3 hpi, while a decrease in H(2)O(2) content was observed in CAM performing plants. The concentration of H(2)O(2) returned to the control level 24 and 48 hpi. Changes in H(2)O(2) content corresponded with the activity of guaiacol peroxidase (POD), mostly 3 hpi. We noted that its activity decreased significantly in C(3) plants and increased in CAM plants in response to inoculation with both pathogens. On the contrary, changes in the activity of CAT did not correlate with H(2)O(2) level. It increased significantly after interaction of C(3) plants with B. cinerea or P. syringae, but in CAM performing plants, the activity of this enzyme was unchanged. Inoculation with B. cinerea or P. syringae led to an increase in the total SOD activity in C(3) plants while CAM plants did not exhibit changes in the total SOD activity after interaction with both pathogens. In conclusion, the pathogen-induced changes in H(2)O(2) content and in SOD, POD and CAT activities in M. crystallinum leaves, were related to the photosynthetic metabolism type of the stressed plants rather than to the lifestyle of the invading pathogen.
Collapse
Affiliation(s)
- Marta Libik-Konieczny
- Institute of Plant Physiology, Polish Academy of Science, ul Niezapominajek 21, 30-239 Kraków, Poland.
| | | | | | | | | |
Collapse
|
18
|
Kuźniak E, Kornas A, Gabara B, Ullrich C, Skłodowska M, Miszalski Z. Interaction of Botrytis cinerea with the intermediate C3-CAM plant Mesembryanthemum crystallinum. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2010. [PMID: 0 DOI: 10.1016/j.envexpbot.2010.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
19
|
Xie W, Goodwin PH. A PRp27 gene of Nicotiana benthamiana contributes to resistance to Pseudomonas syringae pv. tabaci but not to Colletotrichum destructivum or Colletotrichum orbiculare. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:351-361. [PMID: 32688652 DOI: 10.1071/fp08241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 01/21/2009] [Indexed: 06/11/2023]
Abstract
NbPRp27 from Nicotiana benthamiana Domin. is highly similar to NtPRp27, which is a secreted protein from Nicotiana tabacum L. belonging to pathogen-inducible genes comprising the PR17 family of pathogenesis-related proteins. A collection of related genes from plants in several plant families showed that their deduced amino acid sequences clustered according to plant family. Expression of NbPRp27 was not detectable in healthy leaves or stems but was expressed at high levels in roots. Expression was induced by wounding, BTH, ethylene, methyl jasmonate, ABA and NAA, but not by drought, heat or cold stress. Expression was induced by infection with the hemibiotrophic pathogens, Colletotrichum destructivum, Colletotrichum orbiculare and Pseudomonas syringae pv. tabaci. For infections with the Colletotrichum species, expression increased more slowly during biotrophy than necrotrophy, but the reverse was true for P. syringae pv. tabaci. Virus-induced silencing of NbPRp27 did not affect the lesion number produced by the Colletotrichum species but did reduce basal resistance to P. syringae pv. tabaci permitting higher bacterial populations. Based on sequence similarities, PRp27 proteins have been hypothesised to have protease activity and may contribute to resistance by exhibiting direct antimicrobial activity in the apoplast, releasing of antimicrobial compounds from the plant matrix or releasing elicitors from pathogens to induce resistance.
Collapse
Affiliation(s)
- Weilong Xie
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Paul H Goodwin
- Department of Environmental Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
20
|
Panthee DR, Marois JJ, Wright DL, Narváez D, Yuan JS, Stewart CN. Differential expression of genes in soybean in response to the causal agent of Asian soybean rust (Phakopsora pachyrhizi Sydow) is soybean growth stage-specific. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:359-70. [PMID: 18853130 DOI: 10.1007/s00122-008-0905-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 09/23/2008] [Indexed: 05/07/2023]
Abstract
Understanding plant host response to a pathogen such as Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), under different environmental conditions and growth stages is crucial for developing a resistant plant variety. The main objective of this study was to perform global transcriptome profiling of P. pachyrhizi-exposed soybean (Glycine max) with susceptible reaction to the pathogen from two distinct developmental growth stages using whole genome Affymetrix microarrays of soybean followed by confirmation using a resistant genotype. Soybean cv. 5601T (susceptible to ASR) at the V(4) and R(1) growth stages and Glycine tomentella (resistant to ASR) plants were inoculated with P. pachyrhizi and leaf samples were collected after 72 h of inoculation for microarray analysis. Upon analyzing the data using Array Assist software at 5% false discovery rate (FDR), a total of 5,056 genes were found significantly differentially expressed at V(4) growth stage, of which 2,401 were up-regulated, whereas 579 were found differentially expressed at R(1) growth stage, of which 264 were up-regulated. There were 333 differentially expressed common genes between the V(4) and R(1) growth stages, of which 125 were up-regulated. A large difference in number of differentially expressed genes between the two growth stages indicates that the gene expression is growth-stage-specific. We performed real-time RT-PCR analysis on nine of these genes from both growth stages and both plant species and found results to be congruent with those from the microarray analysis.
Collapse
Affiliation(s)
- Dilip R Panthee
- Department of Plant Sciences, 252 Ellington Plant Sciences, The University of Tennessee, 2431 Joe Johnson Dr., Knoxville, TN, 37996, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Kubicka E, Zadernowski R. Enhanced jasmonate biosynthesis in plants and possible implications for food quality. ACTA ALIMENTARIA 2007. [DOI: 10.1556/aalim.36.2007.4.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Winter K, Holtum JAM. Environment or development? Lifetime net CO2 exchange and control of the expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum. PLANT PHYSIOLOGY 2007; 143:98-107. [PMID: 17056756 PMCID: PMC1761986 DOI: 10.1104/pp.106.088922] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/09/2006] [Indexed: 05/12/2023]
Abstract
The relative influence of plant age and environmental stress signals in triggering a shift from C(3) photosynthesis to Crassulacean acid metabolism (CAM) in the annual halophytic C(3)-CAM species Mesembryanthemum crystallinum was explored by continuously monitoring net CO(2) exchange of whole shoots from the seedling stage until seed set. Plants exposed to high salinity (400 mm NaCl) in hydroponic culture solution or grown in saline-droughted soil acquired between 11% and 24% of their carbon via net dark CO(2) uptake involving CAM. In contrast, plants grown under nonsaline, well-watered conditions were capable of completing their life cycle by operating in the C(3) mode without ever exhibiting net CO(2) uptake at night. These observations are not consistent with the widely expressed view that the induction of CAM by high salinity in M. crystallinum represents an acceleration of preprogrammed developmental processes. Rather, our study demonstrates that the induction of the CAM pathway for carbon acquisition in M. crystallinum is under environmental control.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama.
| | | |
Collapse
|
23
|
Kim YC, Kim SY, Paek KH, Choi D, Park JM. Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants. Biochem Biophys Res Commun 2006; 345:638-45. [PMID: 16696948 DOI: 10.1016/j.bbrc.2006.04.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 04/19/2006] [Indexed: 11/25/2022]
Abstract
A putative cytochrome P450 gene from chili pepper, Capsicum annuum L. Bukang cytochrome P450 (CaCYP1), was identified using cDNA microarray analysis of gene expression following induction of the leaf hypersensitive response by inoculation of pepper plants with the non-host pathogen Xanthomonas axonopodis pv. glycines 8ra. The full-length cDNA of CaCYP1 encoded a protein of 514 amino acid residues, which contained a putative hydrophobic membrane anchoring domain in the N-terminal region, and a heme-binding motif in the C-terminal region. Analysis of the deduced amino acid sequence of CaCYP1 revealed that it has high homology to Arabidopsis CYP89A5, the function of which is unknown. Expression of CaCYP1 was preferentially increased in pepper plants in response to non-host pathogen inoculation and also during the host resistance response. CaCYP1 expression also increased following treatment with salicylic acid and abscisic acid, while treatment with ethylene had a mild effect. Using a virus-induced gene silencing-based reverse genetics approach, we demonstrated that suppression of CaCYP1 results in enhanced susceptibility to bacterial pathogens. Interestingly, gene silencing of CaCYP1 in pepper plants resulted in the reduced expression of the defense-related genes CaLTP1, CaSIG4, and Cadhn. Our results indicated that CaCYP1, a novel cytochrome P450 in pepper plants, may play a role in plant defense response pathways that involve salicylic acid and abscisic acid signaling pathways.
Collapse
Affiliation(s)
- Young-Cheol Kim
- Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea
| | | | | | | | | |
Collapse
|
24
|
Park CJ, Shin YC, Lee BJ, Kim KJ, Kim JK, Paek KH. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to Tobacco mosaic virus and Xanthomonas campestris. PLANTA 2006; 223:168-79. [PMID: 16344945 DOI: 10.1007/s00425-005-0067-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Accepted: 06/13/2005] [Indexed: 05/05/2023]
Abstract
Plant WRKY transcription factors were previously implicated in the alteration of gene expression in response to various pathogens. The WRKY proteins constitute a large family of plant transcription factors, whose precise functions have yet to be elucidated. Using a domain-specific differential display procedure, we isolated a WRKY gene, which is rapidly induced during an incompatible interaction between hot pepper and Tobacco mosaic virus (TMV) or Xanthomonas campestris pv . vesicatoria (Xcv). The full-length cDNA of CaWRKY-a (Capsicum annuum WRKY-a) encodes a putative polypeptide of 546 amino acids, containing two WRKY domains with a zinc finger motif. The expression of CaWRKY-a could be rapidly induced by not only chemical elicitor such as salicylic acid (SA) or ethephon but also wounding treatments. The nuclear localization of CaWRKY-a was determined in transient expression system using tobacco BY-2 cells by polyethylene glycol (PEG)-mediated transformation experiment. With oligonucleotide molecules containing the putative W-box sequences as a probe, we confirmed that CaWRKY-a protein had W-box-binding activity. These results suggest that CaWRKY-a might be involved as a transcription factor in plant defense-related signal transduction pathways.
Collapse
Affiliation(s)
- Chang-Jin Park
- School of Life Sciences and Biotechnology, Korea University, 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Jou Y, Chou PH, He M, Hung Y, Yen HE. Tissue-specific expression and functional complementation of a yeast potassium-uptake mutant by a salt-induced ice plant gene mcSKD1. PLANT MOLECULAR BIOLOGY 2004; 54:881-93. [PMID: 15604658 DOI: 10.1007/s11103-004-0335-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A full-length salt-induced transcript homologous to SKD1 (suppressor of K(+) transport growth defect) of the AAA (ATPase associated with a variety of cellular activities)-type ATPase family has been identified from the halophyte Mesembryanthemum crystallinum (ice plant). The expression of mcSKD1 was induced by 200 mM NaCl or higher in cultured ice plant cells. When cultured ice plant cells were grown in a high K(+) (42.6 mM) medium, the level of mcSKD1 expression decreased. At the whole plant level, constitutive expression of mcSKD1 was observed in roots, stems, leaves and floral organs. Addition of 400 mM NaCl increased the transcript level in roots and stems. The expression of atSKD1 , a homologue gene in Arabidopsis , was down regulated by salt stress. Under salt stress, mcSKD1 was preferentially expressed in the outer cortex of roots and stems and in the epidermal bladder cells of leaves. The mcSKD1 transcript was constitutively expressed in placenta and integuments of the developing floral buds. Expression of the full-length or C-terminal deletion of mcSKD1 was able to complement the K(+) uptake-defect phenotype in mutant Saccharomyces cerevisiae , which is defective in high- and low-affinity K(+) uptake. Deletion of the N-terminal coiled-coil motif of mcSKD1, a structure required for membrane association, resulted in greatly reduced K(+) transport. Expression of mcSKD1 also increased the salt-tolerant ability of yeast mutants and either N- or C-terminal deletion decreased the efficiency. The physiological relevancies of mcSKD1 for K(+) uptake under high salinity environments are discussed.
Collapse
Affiliation(s)
- Yingtzy Jou
- Department of Life Sciences, National Chung-Hsing University, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Park CJ, Kim KJ, Shin R, Park JM, Shin YC, Paek KH. Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:186-98. [PMID: 14690503 DOI: 10.1046/j.1365-313x.2003.01951.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A hot pepper (Capsicum annuum) cDNA clone encoding pathogenesis-related protein 10 (CaPR-10) was isolated by differential screening of a cDNA library prepared from pepper leaves inoculated with tobacco mosaic virus pathotype (TMV-P0). CaPR-10 transcripts were induced in the incompatible interaction with TMV-P0 or Xanthomonas campestris pv. vesicatoria (Xcv) but not induced in the compatible interaction. Characterization of enzymatic properties of CaPR-10 indicated that the recombinant protein exhibits a ribonucleolytic activity against TMV RNA, as well as against pepper total RNA, and shows its putative antiviral activity in several conditions. The CaPR-10 protein existed at very low level in leaf tissue but was dramatically induced as soon as plants were inoculated with TMV-P0, and this was correlated with the increase of its ribonucleolytic activity. Immunoblot analysis and pull-down assays using proteins extracted from pepper leaves showed that TMV-P0 inoculation led to the phosphorylation of CaPR-10, a modification that should affect its capacity for RNase function. We present data that the induction and subsequent phosphorylation of CaPR-10 increased its ribonucleolytic activity to cleave invading viral RNAs, and this activity should be important to its antiviral pathway during viral attack in vivo.
Collapse
Affiliation(s)
- Chang-Jin Park
- School of Lifesciences and Biotechnology, Korea University 1, 5-ga, Anam-dong, Sungbuk-gu, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|