1
|
Guo X, Guo Y, Wang Y, Luo C, Cong K. The effects of long-term application of fomesafen on weed seedbank and resistance levels of Amaranthus retroflexus L. FRONTIERS IN PLANT SCIENCE 2024; 15:1424760. [PMID: 39206036 PMCID: PMC11350240 DOI: 10.3389/fpls.2024.1424760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Amaranthus retroflexus L. is one of the invasive malignant weeds in soybean fields. Diphenyl ether herbicides are commonly used to control weeds in soybean fields currently, among which fomesafen is the most widely used. With the long-term use of fomesafen, the weed species in soybean fields in multiple areas declined, and the control effect of fomesafen against Amaranthus retroflexus decreased significantly. This study aims to confirm the effects of long-term use of fomesafen on weed community richness and the current resistance level of Amaranthus retroflexus. In this paper, the result of seed germination indicated that the weed community richness decreased significantly due to the long-term application of fomesafen, and the primary dominant weed was Amaranthus retroflexus. The result of the whole-plant bioassay showed that Amaranthus retroflexus has developed resistance to fomesafen, and the resistance index was 50~59 g a.i. ha-1. The resistance level and mechanism of Amaranthus retroflexus were clarified by target gene detection, enzyme activity determination, and gene expression analysis. The results showed that there were both target resistance with Arg128Gly mutation in the PPX2 gene and non-target resistance (NTSR), with increased activity of metabolic enzymes (cytochromes P450 (P450s) and glutathione S-transferase (GSTs)) and protective enzymes (peroxidase (POD) and catalase (CAT)) in Amaranthus retroflexus.
Collapse
Affiliation(s)
| | - Yulian Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | | | | | | |
Collapse
|
2
|
Guo Y, Wang Y, Zang X, Luo C, Huang C, Cong K, Guo X. Transcriptomic analysis of Amaranthus retroflex resistant to PPO-inhibitory herbicides. PLoS One 2023; 18:e0288775. [PMID: 37616256 PMCID: PMC10449157 DOI: 10.1371/journal.pone.0288775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/04/2023] [Indexed: 08/26/2023] Open
Abstract
Amaranthus retroflexus L. is one of the malignant weeds which can cause a reduction in the soybean yield. We found a population of A. retroflexus (R-Q) resistant to fomesafen through the initial screening of whole-plant dose response bioassay in the research. The resistance index of the population (R-Q) was 183 times of the sensitive population (S-N). The resistant and sensitive populations were used as experimental materials in the paper. Strand-specific RNA-Seq analyses of R‒Q and S‒N populations obtained from herbicide-treated and mock-treated leaf samples after treatment were conducted to generate a full-length transcriptome database. We analyzed differentially expressed genes (DEGs) among the R-Q and S‒N A. retroflexus populations treated with recommended dose and mock-treated on the 1st (24 h) and 3rd (72 h) days to identify genes involved in fomesafen resistance. All 82,287 unigenes were annotated by Blastx search with E-value < 0.00001 from 7 databases. A total of 94,815 DEGs among the three group comparisons were identified. Two nuclear genes encoding PPO (PPX1 and PPX2) and five unigenes belonging to the AP2-EREBP, GRAS, NAC, bHLH and bZIP families exhibited different expression patterns between individuals of S‒N and R-Q populations. The A. retroflexus transcriptome and specific transcription factor families which can respond to fomesafen in resistant and susceptible genotypes were reported in this paper. The PPX1 and PPX2 genes of the target enzyme were identified. The study establishes the foundation for future research and provides opportunities to manage resistant weeds better.
Collapse
Affiliation(s)
- Yulian Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Yu Wang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Xiangyun Zang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Chan Luo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Chunyan Huang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Keqiang Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| | - Xiaotong Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Nie H, Harre NT, Young BG. A New V361A Mutation in Amaranthus palmeri PPX2 Associated with PPO-Inhibiting Herbicide Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091886. [PMID: 37176944 PMCID: PMC10181388 DOI: 10.3390/plants12091886] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Weeds resistant to PPO-inhibiting herbicides threaten the profitability of crop producers relying on this chemistry. In Amaranthus palmeri, mutations at G210 (∆G210) and R128 (R128G/M) of the PPX2 gene were reported to confer PPO-inhibitor resistance. Here, A. palmeri samples from nine states in America, having survived a field application of a PPO-inhibitor, were genotyped to determine the prevalence of these mutations. Less than 5% of the 1828 A. palmeri plants screened contained the ∆G210 mutation. Of the plants lacking ∆G210, a R128 substitution was only found in a single plant. An A. palmeri population from Alabama without mutations at G210 or R128 had a resistance ratio of 3.1 to 3.5 for fomesafen. Of the candidate PPX2 mutations identified in this population, only V361A conferred resistance to lactofen and fomesafen in a transformed bacterial strain. This is the first report of the V361A substitution of PPX2 conferred PPO-inhibiting herbicide resistance in any plant species. Future molecular screens of PPO-inhibitor resistance in A. palmeri and other species should encompass the V361A mutation of PPX2 to avoid false-negative results.
Collapse
Affiliation(s)
- Haozhen Nie
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Nick T Harre
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Bryan G Young
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Yang C, Wang H, Duan Y, Bei F, Jia S, Wang J, Wang H, Liu W. Enhanced Herbicide Metabolism and Target-Site Mutations Confer Multiple Resistance to Fomesafen and Nicosulfuron in Amaranthus retroflexus L. BIOLOGY 2023; 12:biology12040592. [PMID: 37106792 PMCID: PMC10135446 DOI: 10.3390/biology12040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Amaranthus retroflexus L. is a highly competitive broadleaf weed of corn-soybean rotation in northeastern China. In recent years, the herbicide(s) resistance evolution has been threatening its effective management in crop fields. One resistant A. retroflexus (HW-01) population that survived the protoporphyrinogen oxidase (PPO) inhibitor fomesafen and acetolactate synthase (ALS) inhibitor nicosulfuron applied at their field-recommended rate was collected from a soybean field in Wudalianchi City, Heilongjiang Province. This study aimed to investigate the resistance mechanisms of fomesafen and nicosulfuron and determine the resistance profile of HW-01 to other herbicides. Whole plant dose-response bioassays revealed that HW-01 had evolved resistance to fomesafen (50.7-fold) and nicosulfuron (5.2-fold). Gene sequencing showed that the HW-01 population has a mutation in PPX2 (Arg-128-Gly) and a rare mutation in ALS (Ala-205-Val, eight/twenty mutations/total plants). In vitro enzyme activity assays showed that ALS extracted from the HW-01 plants was less sensitive to nicosulfuron (3.2-fold) than ST-1 plants. Pre-treatment with the cytochrome P450 inhibitors malathion, piperonyl butoxide (PBO), 3-amino-1,2,4-triazole (amitrole), and the GSTs inhibitor 4-chloro-7-nitrobenzofurazan (NBD-Cl) significantly increased fomesafen and nicosulfuron sensitivity in the HW-01 population compared with that of the sensitive (S) population ST-1. Moreover, the rapid fomesafen and nicosulfuron metabolism in the HW-01 plants was also confirmed via HPLC-MS/MS analysis. Furthermore, the HW-01 population showed multiple resistance (MR) to PPO, ALS, and PSII inhibitors, with resistance index (RI) values ranging from 3.8 to 9.6. This study confirmed MR to PPO-, ALS-, and PSII-inhibiting herbicides in the A. retroflexus population HW-01, as well as confirming that the cytochrome P450- and GST-based herbicide metabolic along with TSR mechanisms contribute to their multiple resistance to fomesafen and nicosulfuron.
Collapse
Affiliation(s)
- Cheng Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Hao Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunxia Duan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Feng Bei
- Tai'an Customs, Tai'an 271000, China
| | - Sisi Jia
- Tai'an Customs, Tai'an 271000, China
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Hengzhi Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
5
|
Tano DW, Kozlowska MA, Easter RA, Woodson JD. Multiple pathways mediate chloroplast singlet oxygen stress signaling. PLANT MOLECULAR BIOLOGY 2023; 111:167-187. [PMID: 36266500 DOI: 10.1007/s11103-022-01319-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Chloroplast singlet oxygen initiates multiple pathways to control chloroplast degradation, cell death, and nuclear gene expression. Chloroplasts can respond to stress and changes in the environment by producing reactive oxygen species (ROS). Aside from being cytotoxic, ROS also have signaling capabilities. For example, the ROS singlet oxygen (1O2) can initiate nuclear gene expression, chloroplast degradation, and cell death. To unveil the signaling mechanisms involved, researchers have used several 1O2-producing Arabidopsis thaliana mutants as genetic model systems, including plastid ferrochelatase two (fc2), fluorescent in blue light (flu), chlorina 1 (ch1), and accelerated cell death 2 (acd2). Here, we compare these 1O2-producing mutants to elucidate if they utilize one or more signaling pathways to control cell death and nuclear gene expression. Using publicly available transcriptomic data, we demonstrate fc2, flu, and ch1 share a core response to 1O2 accumulation, but maintain unique responses, potentially tailored to respond to their specific stresses. Subsequently, we used a genetic approach to determine if these mutants share 1O2 signaling pathways by testing the ability of genetic suppressors of one 1O2 producing mutant to suppress signaling in a different 1O2 producing mutant. Our genetic analyses revealed at least two different chloroplast 1O2 signaling pathways control cellular degradation: one specific to the flu mutant and one shared by fc2, ch1, and acd2 mutants, but with life-stage-specific (seedling vs. adult) features. Overall, this work reveals chloroplast stress signaling involving 1O2 is complex and may allow cells to finely tune their physiology to environmental inputs.
Collapse
Affiliation(s)
- David W Tano
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Marta A Kozlowska
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Robert A Easter
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA
| | - Jesse D Woodson
- The School of Plant Sciences, University of Arizona, 1140 E, South Campus Drive, 303 Forbes Hall, Tucson, AZ, 85721-0036, USA.
| |
Collapse
|
6
|
Design, synthesis, herbicidal activity, and the molecular docking study of novel diphenyl ether derivatives as protoporphyrinogen IX oxidase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Bi B, Wang Q, Coleman JJ, Porri A, Peppers JM, Patel JD, Betz M, Lerchl J, McElroy JS. A novel mutation A212T in chloroplast Protoporphyrinogen oxidase (PPO1) confers resistance to PPO inhibitor Oxadiazon in Eleusine indica. PEST MANAGEMENT SCIENCE 2020; 76:1786-1794. [PMID: 31788953 DOI: 10.1002/ps.5703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Protoporphyrinogen oxidase (PPO) with two isoforms, chloroplast-targeted (PPO1) and mitochondrial-targeted (PPO2), catalyzes a step in the biosynthesis of chlorophyll and heme. PPO1 and PPO2 are herbicide target sites of PPO-inhibiting herbicides. Target-site mutations conferring resistance to PPO inhibitors have all thus far been in PPO2. Oxadiazon is a unique PPO inhibitor utilized for preemergence Eleusine indica control. In this research, we evaluated the response of two previously confirmed oxadiazon-resistant and susceptible E. indica biotypes to other PPO inhibitors and identified the resistance mechanism in two oxadiazon-resistant E. indica biotypes. RESULTS Two E. indica biotypes were resistant to oxadiazon, but not to other structurally unrelated PPO inhibitors, such as lactofen, flumioxazin and sulfentrazone. A novel mutation A212T was identified in the chloroplast-targeted PPO1, conferring resistance to oxadiazon in a heterologous expression system. Computational structural modeling provided a mechanistic explanation for reduced herbicide binding to the variant protein: the presence of a methyl group of threonine 212 changes the PPO1 active site and produces repulsive electrostatic interactions that repel oxadiazon from the binding pocket. CONCLUSION The novel A212T mutation in PPO1 conferring resistance specifically to PPO inhibitor oxadiazon was characterized. This is the first evidence of the direct role of PPO1 in the PPO mode of action, and the first evidence of evolved resistance in PPO1. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Bi
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Qiang Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | - John M Peppers
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, USA
| | - Jinesh D Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, USA
| | | | | | - J Scott McElroy
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|
8
|
Huang Z, Cui H, Wang C, Wu T, Zhang C, Huang H, Wei S. Investigation of resistance mechanism to fomesafen in Amaranthus retroflexus L. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104560. [PMID: 32359536 DOI: 10.1016/j.pestbp.2020.104560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Amaranthus retroflexus L. is one of the most troublesome weeds in autumn-crop fields in Northeast China. In recent years, field applications of fomesafen have failed to control an A. retroflexus population in Heilongjiang Province, China. Therefore, in this study, experiments were conducted to determine the resistance of A. retroflexus to fomesafen and investigate the molecular basis of herbicide resistance. Whole-plant dose-response experiments showed that the resistant (R) population exhibited 41.8-fold resistance to fomesafen compared with the susceptible (S) population. Target-gene sequence analysis revealed an Arg-128-Gly substitution in the protoporphyrinogen oxidase (PPO) in the R population. The response of PPO2 transgenic Arabidopsis thaliana to fomesafen demonstrated that the Arg-128-Gly substitution conferred high resistance to fomesafen. Cross- and multiple-resistance analyses indicated that the R population was cross-resistant to lactofen and carfentrazone-ethyl but was sensitive to imazethapyr, thifensulfuron-methyl, atrazine, and glyphosate. This study indicated that the Arg-128-Gly substitution is the main reason for A. retroflexus resistance to fomesafen. To our knowledge, this is the first report of a target-site based mechanism for the resistance to a PPO-inhibiting herbicide in A. retroflexus.
Collapse
Affiliation(s)
- Zhaofeng Huang
- Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), 100193, China
| | - Hailan Cui
- Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), 100193, China
| | - Chunyu Wang
- College of Agriculture, Northeast Agricultural University, 150030, China
| | - Tong Wu
- College of Agriculture, Northeast Agricultural University, 150030, China
| | - Chaoxian Zhang
- Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), 100193, China
| | - Hongjuan Huang
- Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), 100193, China
| | - Shouhui Wei
- Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), 100193, China.
| |
Collapse
|
9
|
Brzezowski P, Ksas B, Havaux M, Grimm B, Chazaux M, Peltier G, Johnson X, Alric J. The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Commun Biol 2019; 2:159. [PMID: 31069268 PMCID: PMC6499784 DOI: 10.1038/s42003-019-0395-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
In the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX). The absence of thylakoid-localised plastid terminal oxidase 2 (PTOX2) and cytochrome b6f complex in the ptox2 petB mutant, results in almost complete reduction of the plastoquinone pool (PQ pool) in light. Here we show that the lack of oxidised PQ impairs PPX function, leading to accumulation and subsequently uncontrolled oxidation of Protogen to non-metabolised Proto. Addition of 3(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) prevents the over-reduction of the PQ pool in ptox2 petB and decreases Proto accumulation. This observation strongly indicates the need of oxidised PQ as the electron acceptor for the PPX reaction in Chlamydomonas reinhardtii. The PPX-PQ pool interaction is proposed to function as a feedback loop between photosynthetic electron transport and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Pawel Brzezowski
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Humboldt-Universität zu Berlin, Institut für Biologie/Pflanzenphysiologie, 10115 Berlin, Germany
| | - Brigitte Ksas
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institut für Biologie/Pflanzenphysiologie, 10115 Berlin, Germany
| | - Marie Chazaux
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Jean Alric
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
10
|
Rangani G, Salas-Perez RA, Aponte RA, Knapp M, Craig IR, Mietzner T, Langaro AC, Noguera MM, Porri A, Roma-Burgos N. A Novel Single-Site Mutation in the Catalytic Domain of Protoporphyrinogen Oxidase IX (PPO) Confers Resistance to PPO-Inhibiting Herbicides. FRONTIERS IN PLANT SCIENCE 2019; 10:568. [PMID: 31156659 PMCID: PMC6530635 DOI: 10.3389/fpls.2019.00568] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/15/2019] [Indexed: 05/10/2023]
Abstract
Protoporphyrinogen oxidase (PPO)-inhibiting herbicides are used to control weeds in a variety of crops. These herbicides inhibit heme and photosynthesis in plants. PPO-inhibiting herbicides are used to control Amaranthus palmeri (Palmer amaranth) especially those with resistance to glyphosate and acetolactate synthase (ALS) inhibiting herbicides. While investigating the basis of high fomesafen-resistance in A. palmeri, we identified a new amino acid substitution of glycine to alanine in the catalytic domain of PPO2 at position 399 (G399A) (numbered according to the protein sequence of A. palmeri). G399 is highly conserved in the PPO protein family across eukaryotic species. Through combined molecular, computational, and biochemical approaches, we established that PPO2 with G399A mutation has reduced affinity for several PPO-inhibiting herbicides, possibly due to steric hindrance induced by the mutation. This is the first report of a PPO2 amino acid substitution at G399 position in a field-selected weed population of A. palmeri. The mutant A. palmeri PPO2 showed high-level in vitro resistance to different PPO inhibitors relative to the wild type. The G399A mutation is very likely to confer resistance to other weed species under selection imposed by the extensive agricultural use of PPO-inhibiting herbicides.
Collapse
Affiliation(s)
- Gulab Rangani
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Reiofeli A. Salas-Perez
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | | | | | | | | | - Ana Claudia Langaro
- Department of Crop Science, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Matheus M. Noguera
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | | | - Nilda Roma-Burgos
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Nilda Roma-Burgos,
| |
Collapse
|
11
|
Costa GA, Santos LDT, Ferreira GADP, Cruz LRD, Machado VD, Rocha LM. Levels of shading and application of glyphosate and carfentrazone-ethyl in the control of Macroptilium atropurpureum. ACTA ACUST UNITED AC 2018. [DOI: 10.1590/1807-1929/agriambi.v22n12p819-824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Variations in environmental conditions, such as the availability of light, can affect the efficacy of herbicides because they alter the biological characteristics of plants including those that are related to the plant’s sensitivity to herbicides. Therefore, the objective of the present study was to assess the influence of environments with different light availabilities, and of the application of glyphosate and carfentrazone-ethyl (separately or in combination) on the morphophysiology and control of Macroptilium atropurpureum. An experimental design of randomized blocks with five replicates was used, with treatments arranged in a split-plot design. The plots were composed of three levels of shading (full sunlight, 50% shading, and 70% shading); within each plot there were sub-plots, one for each of the two herbicides (glyphosate and carfentrazone-ethyl), used either separately or in combination. The doses of glyphosate + carfentrazone-ethyl applied in the treatments were 0+40 g ha-1 of carfentrazone-ethyl, 1.440+0 g ha-1 of glyphosate, 1.080+30 g ha-1 of glyphosate + carfentrazone-ethyl, and there was an additional treatment that did not include the application of an herbicide. Plants of M. atropurpureum cultivated under shading exhibited higher sensitivity to the herbicides, greater leaflet area, and lower photosynthetic rates than plants cultivated under full sunlight conditions. Under shading, both herbicides applied separately or in combination were effective in controlling M. atropurpureum, which indicates a greater susceptibility of this species to these herbicides in environments with light restriction. The species was tolerant to the two tested herbicides, used either alone or in combination, when grown under full sunlight conditions.
Collapse
|
12
|
Park JH, Jung S. Perturbations in carotenoid and porphyrin status result in differential photooxidative stress signaling and antioxidant responses. Biochem Biophys Res Commun 2018; 496:840-845. [PMID: 29395084 DOI: 10.1016/j.bbrc.2018.01.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 11/16/2022]
Abstract
We examined differential photooxidative stress signaling and antioxidant responses in rice plants treated with norflurazon (NF) and oxyfluorfen (OF), which are inhibitors of carotenoid and porphyrin biosynthesis, respectively. Plants treated with OF markedly increased levels of cellular leakage and malondialdehyde, compared with NF-treated plants, showing that OF plants suffered greater oxidative damage with respect to membrane integrity. The enhanced production of H2O2 in response to OF, but not NF, indicates the important role of H2O2 in activation of photooxidative stress signaling in OF plants. In response to NF and OF, the increased levels of free salicylic acid as well as maintenance of the redox ratio of ascorbate and glutathione pools to a certain level are considered to be crucial factors in the protection against photooxidation. Plants treated with OF greatly up-regulated catalase (CAT) activity and Cat transcript levels, compared with NF-treated plants. Interestingly, NF plants showed no noticeable increase in oxidative metabolism, although they did show considerable increases in ascorbate peroxidase (APX) and peroxidase activities and transcript levels of APX, as in OF plants. Our results suggest that perturbations in carotenoid and porphyrin status by NF and OF can be sensed by differential photooxidative stress signaling, such as that involving H2O2, redox state of ascorbate and glutathione, and salicylic acid, which may be responsible for at least part of the induction of ROS-scavenging enzymes.
Collapse
Affiliation(s)
- Joon-Heum Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
13
|
Park JH, Tran LH, Jung S. Perturbations in the Photosynthetic Pigment Status Result in Photooxidation-Induced Crosstalk between Carotenoid and Porphyrin Biosynthetic Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:1992. [PMID: 29209351 PMCID: PMC5701815 DOI: 10.3389/fpls.2017.01992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/06/2017] [Indexed: 06/01/2023]
Abstract
Possible crosstalk between the carotenoid and porphyrin biosynthetic pathways under photooxidative conditions was investigated by using their biosynthetic inhibitors, norflurazon (NF) and oxyfluorfen (OF). High levels of protoporphyrin IX (Proto IX) accumulated in rice plants treated with OF, whereas Proto IX decreased in plants treated with NF. Both NF and OF treatments resulted in greater decreases in MgProto IX, MgProto IX methyl ester, and protochlorophyllide. Activities and transcript levels of most porphyrin biosynthetic enzymes, particularly in the Mg-porphyrin branch, were greatly down-regulated in NF and OF plants. In contrast, the transcript levels of GSA, PPO1, and CHLD as well as FC2 and HO2 were up-regulated in NF-treated plants, while only moderate increases in FC2 and HO2 were observed in the early stage of OF treatment. Phytoene, antheraxanthin, and zeaxanthin showed high accumulation in NF-treated plants, whereas other carotenoid intermediates greatly decreased. Transcript levels of carotenoid biosynthetic genes, PSY1 and PDS, decreased in response to NF and OF, whereas plants in the later stage of NF treatment exhibited up-regulation of BCH and VDE as well as recovery of PDS. However, perturbed porphyrin biosynthesis by OF did not noticeably influence levels of carotenoid metabolites, regardless of the strong down-regulation of carotenoid biosynthetic genes. Both NF and OF plants appeared to provide enhanced protection against photooxidative damage, not only by scavenging of Mg-porphyrins, but also by up-regulating FC2, HO2, and Fe-chelatase, particularly with increased levels of zeaxanthin via up-regulation of BCH and VDE in NF plants. On the other hand, the up-regulation of GSA, PPO1, and CHLD under inhibition of carotenogenic flux may be derived from the necessity to recover impaired chloroplast biogenesis during photooxidative stress. Our study demonstrates that perturbations in carotenoid and porphyrin biosynthesis coordinate the expression of their biosynthetic genes to sustain plastid function at optimal levels by regulating their metabolic flux in plants under adverse stress conditions.
Collapse
Affiliation(s)
| | | | - Sunyo Jung
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
14
|
Kobayashi K, Masuda T, Tajima N, Wada H, Sato N. Molecular phylogeny and intricate evolutionary history of the three isofunctional enzymes involved in the oxidation of protoporphyrinogen IX. Genome Biol Evol 2015; 6:2141-55. [PMID: 25108393 PMCID: PMC4231631 DOI: 10.1093/gbe/evu170] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tetrapyrroles such as heme and chlorophyll are essential for biological processes, including oxygenation, respiration, and photosynthesis. In the tetrapyrrole biosynthesis pathway, protoporphyrinogen IX oxidase (Protox) catalyzes the formation of protoporphyrin IX, the last common intermediate for the biosynthesis of heme and chlorophyll. Three nonhomologous isofunctional enzymes, HemG, HemJ, and HemY, for Protox have been identified. To reveal the distribution and evolution of the three Protox enzymes, we identified homologs of each along with other heme biosynthetic enzymes by whole-genome clustering across three domains of life. Most organisms possess only one of the three Protox types, with some exceptions. Detailed phylogenetic analysis revealed that HemG is mostly limited to γ-Proteobacteria whereas HemJ may have originated within α-Proteobacteria and transferred to other Proteobacteria and Cyanobacteria. In contrast, HemY is ubiquitous in prokaryotes and is the only Protox in eukaryotes, so this type may be the ancestral Protox. Land plants have a unique HemY homolog that is also shared by Chloroflexus species, in addition to the main HemY homolog originating from Cyanobacteria. Meanwhile, organisms missing any Protox can be classified into two groups; those lacking most heme synthetic genes, which necessarily depend on external heme supply, and those lacking only genes involved in the conversion of uroporphyrinogen III into heme, which would use a precorrin2-dependent alternative pathway. However, hemN encoding coproporphyrinogen IX oxidase was frequently found in organisms lacking Protox enzyme, which suggests a unique role of this gene other than in heme biosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Naoyuki Tajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan CREST, JST, Saitama, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan CREST, JST, Saitama, Japan
| |
Collapse
|
15
|
Riou C, Calliste CA, Da Silva A, Guillaumot D, Rezazgui O, Sol V, Leroy-Lhez S. Anionic porphyrin as a new powerful cell death inducer of Tobacco Bright Yellow-2 cells. Photochem Photobiol Sci 2014; 13:621-5. [PMID: 24535477 DOI: 10.1039/c3pp50315a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/16/2014] [Indexed: 12/16/2023]
Abstract
For the first time, the behaviour of tobacco cell suspensions submitted to four porphyrins was described. The potential killer effect of these photosensitizers on tobacco cells was evaluated. Biological results were correlated with photophysical properties and the reactive oxygen species production capacity of tested compounds. Surprisingly, the anionic free-base porphyrin showed the strongest phototoxic effect.
Collapse
Affiliation(s)
- C Riou
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, 123 avenue Albert Thomas, 87060 Limoges, France.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kim S, Schlicke H, Van Ree K, Karvonen K, Subramaniam A, Richter A, Grimm B, Braam J. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways. THE PLANT CELL 2013; 25:4984-93. [PMID: 24363312 PMCID: PMC3904000 DOI: 10.1105/tpc.113.119172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/16/2013] [Accepted: 11/29/2013] [Indexed: 05/20/2023]
Abstract
Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.
Collapse
Affiliation(s)
- Se Kim
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Hagen Schlicke
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | - Kalie Van Ree
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Kristine Karvonen
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Anant Subramaniam
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Andreas Richter
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | - Janet Braam
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
- Address correspondence to
| |
Collapse
|
17
|
Barajas-López JDD, Kremnev D, Shaikhali J, Piñas-Fernández A, Strand Å. PAPP5 is involved in the tetrapyrrole mediated plastid signalling during chloroplast development. PLoS One 2013; 8:e60305. [PMID: 23555952 PMCID: PMC3612061 DOI: 10.1371/journal.pone.0060305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/25/2013] [Indexed: 12/17/2022] Open
Abstract
The initiation of chloroplast development in the light is dependent on nuclear encoded components. The nuclear genes encoding key components in the photosynthetic machinery are regulated by signals originating in the plastids. These plastid signals play an essential role in the regulation of photosynthesis associated nuclear genes (PhANGs) when proplastids develop into chloroplasts. One of the plastid signals is linked to the tetrapyrrole biosynthesis and accumulation of the intermediates the Mg-ProtoIX and its methyl ester Mg-ProtoIX-ME. Phytochrome-Associated Protein Phosphatase 5 (PAPP5) was isolated in a previous study as a putative Mg-ProtoIX interacting protein. In order to elucidate if there is a biological link between PAPP5 and the tetrapyrrole mediated signal we generated double mutants between the Arabidopsis papp5 and the crd mutants. The crd mutant over-accumulates Mg-ProtoIX and Mg-ProtoIX-ME and the tetrapyrrole accumulation triggers retrograde signalling. The crd mutant exhibits repression of PhANG expression, altered chloroplast morphology and a pale phenotype. However, in the papp5crd double mutant, the crd phenotype is restored and papp5crd accumulated wild type levels of chlorophyll, developed proper chloroplasts and showed normal induction of PhANG expression in response to light. Tetrapyrrole feeding experiments showed that PAPP5 is required to respond correctly to accumulation of tetrapyrroles in the cell and that PAPP5 is most likely a component in the plastid signalling pathway down stream of the tetrapyrrole Mg-ProtoIX/Mg-ProtoIX-ME. Inhibition of phosphatase activity phenocopied the papp5crd phenotype in the crd single mutant demonstrating that PAPP5 phosphatase activity is essential to mediate the retrograde signal and to suppress PhANG expression in the crd mutant. Thus, our results suggest that PAPP5 receives an inbalance in the tetrapyrrole biosynthesis through the accumulation of Mg-ProtoIX and acts as a negative regulator of PhANG expression during chloroplast biogenesis and development.
Collapse
Affiliation(s)
| | - Dmitry Kremnev
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Jehad Shaikhali
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Aurora Piñas-Fernández
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
18
|
Barajas-López JDD, Blanco NE, Strand Å. Plastid-to-nucleus communication, signals controlling the running of the plant cell. BIOCHIMICA ET BIOPHYSICA ACTA 2013. [PMID: 22749883 DOI: 10.1016/j.bbamcr.2012.06.020 [epub ahead of print]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The presence of genes encoding organellar proteins in both the nucleus and the organelle necessitates tight coordination of expression by the different genomes, and this has led to the evolution of sophisticated intracellular signaling networks. Organelle-to-nucleus signaling, or retrograde control, coordinates the expression of nuclear genes encoding organellar proteins with the metabolic and developmental state of the organelle. Complex networks of retrograde signals orchestrate major changes in nuclear gene expression and coordinate cellular activities and assist the cell during plant development and stress responses. It has become clear that, even though the chloroplast depends on the nucleus for its function, plastid signals play important roles in an array of different cellular processes vital to the plant. Hence, the chloroplast exerts significant control over the running of the cell. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
19
|
van Dooren GG, Kennedy AT, McFadden GI. The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal 2012; 17:634-56. [PMID: 22320355 DOI: 10.1089/ars.2012.4539] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. RECENT ADVANCES In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. CRITICAL ISSUES Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. FUTURE DIRECTIONS Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.
Collapse
Affiliation(s)
- Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|
20
|
Camargo ER, Senseman SA, McCauley GN, Bowe S, Harden J, Guice JB. Interaction between saflufenacil and imazethapyr in red rice (Oryza ssp.) and hemp sesbania (Sesbania exaltata) as affected by light intensity. PEST MANAGEMENT SCIENCE 2012; 68:1010-8. [PMID: 22323402 DOI: 10.1002/ps.3260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/09/2011] [Accepted: 12/22/2011] [Indexed: 05/24/2023]
Abstract
BACKGROUND Saflufenacil is a broadleaf herbicide for preplant burndown and pre-emergence applications in various crops. This study was established to evaluate the absorption and translocation of saflufenacil in hemp sesbania and imazethapyr in red rice as a function of their post-emergence interaction and light intensity. RESULTS Imazethapyr plus saflufenacil provided a greater uptake (30%) and translocation (35%) of (14) C-imazethapyr than imazethapyr alone. In the section above treated leaf (ATL), a higher percentage of the absorbed imazethapyr (23%) was quantified in the imazethapyr plus saflufenacil treatment after 168 h. Faster basipetal movement of imazethapyr was identified under higher light availability. Absorption of (14) C-saflufenacil ranged from approximately 40 to 60% among herbicide and light intensity treatments. At 12 and 24 h after treatment (HAT) a greater percentage (15-20%) of the absorbed saflufenacil was quantified above the treated leaf at the two lower light intensities. Similar trends were observed for basipetal movement of saflufenacil. CONCLUSION Saflufenacil enhanced absorption, overall translocation and acropetal movement of imazethapyr in the TX4 red rice. Basipetal movement of imazethapyr was faster under higher light intensities. Overall, imazethapyr improved absorption of saflufenacil in hemp sesbania plants. Reduction in light intensity resulted in greater translocation of saflufenacil, promoting acropetal and basipetal distribution at the two lower light intensity treatments.
Collapse
Affiliation(s)
- Edinalvo R Camargo
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Kindgren P, Norén L, López JDDB, Shaikhali J, Strand A. Interplay between Heat Shock Protein 90 and HY5 controls PhANG expression in response to the GUN5 plastid signal. MOLECULAR PLANT 2012; 5:901-13. [PMID: 22201048 DOI: 10.1093/mp/ssr112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The presence of genes encoding organellar proteins in different cellular compartments necessitates a tight coordination of expression by the different genomes of the eukaryotic cell. This coordination of gene expression is achieved by organelle-to-nucleus or retrograde communication. Stress-induced perturbations of the tetrapyrrole pathway trigger large changes in nuclear gene expression in plants. Recently, we identified HSP90 proteins as ligands of the putative plastid signal Mg-ProtoIX. In order to investigate whether the interaction between HSP90 and Mg-ProtoIX is biologically relevant, we produced transgenic lines with reduced levels of cytosolic HSP90 in wild-type and gun5 backgrounds. Our work reveals that HSP90 proteins respond to the tetrapyrrole-mediated plastid signal to control expression of photosynthesis-associated nuclear genes (PhANG) during the response to oxidative stress. We also show that the hy5 mutant is insensitive to tetrapyrrole accumulation and that Mg-ProtoIX, cytosolic HSP90, and HY5 are all part of the same signaling pathway. These findings suggest that a regulatory complex controlling gene expression that includes HSP90 proteins and a transcription factor that is modified by tetrapyrroles in response to changes in the environment is evolutionarily conserved between yeast and plants.
Collapse
Affiliation(s)
- Peter Kindgren
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | | | | | | |
Collapse
|
22
|
Barajas-López JDD, Blanco NE, Strand Å. Plastid-to-nucleus communication, signals controlling the running of the plant cell. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:425-37. [PMID: 22749883 DOI: 10.1016/j.bbamcr.2012.06.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 12/30/2022]
Abstract
The presence of genes encoding organellar proteins in both the nucleus and the organelle necessitates tight coordination of expression by the different genomes, and this has led to the evolution of sophisticated intracellular signaling networks. Organelle-to-nucleus signaling, or retrograde control, coordinates the expression of nuclear genes encoding organellar proteins with the metabolic and developmental state of the organelle. Complex networks of retrograde signals orchestrate major changes in nuclear gene expression and coordinate cellular activities and assist the cell during plant development and stress responses. It has become clear that, even though the chloroplast depends on the nucleus for its function, plastid signals play important roles in an array of different cellular processes vital to the plant. Hence, the chloroplast exerts significant control over the running of the cell. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
23
|
Del Buono D, Ioli G, Nasini L, Proietti P. A comparative study on the interference of two herbicides in wheat and italian ryegrass and on their antioxidant activities and detoxification rates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12109-12115. [PMID: 21999101 DOI: 10.1021/jf2026555] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A study was carried out to compare the effects of treating wheat (Triticum aestivum) and Italian ryegrass (Lolium multiflorum) with atrazine and fluorodifen. The herbicides interfered with photosynthesis and dark respiration, depending on the species. Atrazine decreased photosynthesis in both species and dark respiration in wheat, while fluorodifen caused decrements of photosynthetic activity of wheat. Antioxidant enzymes, such as ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), were generally more active in untreated and treated wheat with respect to Italian ryegrass, which explains why oxidative damage, expressed as malondialdehyde (MDA) content, was only found in ryegrass. Investigations on the activity of herbicide-detoxifying enzyme, glutathione S-transferase (GST), and on the accumulation and persistence of the herbicides in the plants showed higher detoxification rates in wheat than in the grass.
Collapse
Affiliation(s)
- Daniele Del Buono
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | | | | | | |
Collapse
|
24
|
Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. PHOTOSYNTHESIS RESEARCH 2010; 105:143-66. [PMID: 20582474 DOI: 10.1007/s11120-010-9568-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 05/30/2010] [Indexed: 05/03/2023]
Abstract
Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, Pázmány P. s. 1/C, 1117 Budapest, Hungary.
| | | |
Collapse
|
25
|
Castro AJ, Saladin G, Bézier A, Mazeyrat-Gourbeyre F, Baillieul F, Clément C. The herbicide flumioxazin stimulates pathogenesis-related gene expression and enzyme activities in Vitis vinifera. PHYSIOLOGIA PLANTARUM 2008; 134:453-63. [PMID: 18636988 DOI: 10.1111/j.1399-3054.2008.01151.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this work, the capacity of the soil-applied herbicide flumioxazin (fmx) to trigger defence mechanisms was assessed using 6-week-old in vitro grown Vitis vinifera L. plantlets. Time-course studies demonstrated that the herbicide induced the expression of basic beta-1,3-glucanase (Vvglu), basic chitinase (Vvchit1b) and PR10 (VvPR10.3) genes encoding three pathogenesis-related (PR) proteins involved in grapevine defence against pathogens. Thus, all transcripts accumulated in grapevine tissues to reach maximum values after 24-72 h of herbicide exposure, except for VvPR10.3 gene expression, which was induced in roots and stems but not in leaves. Induction of PR genes was observed to a greater extent in roots and leaves, and its intensity diminished in the stems although still remained noteworthy. The activities of beta-1,3-glucanase and chitinase enzymes significantly increased in the whole plant after herbicide exposure and were still stimulated 21 days after the beginning of treatments. Similarly, the most remarkable effect occurred in roots. However, all enzyme activities tested were stimulated in the upper aerial tissues as well, indicating that fmx or a derived product acts systemically, likely via root uptake.
Collapse
Affiliation(s)
- Antonio Jesús Castro
- Laboratoire de Stress, Défenses et Reproduction des Plantes, URVVC UPRES EA 2069, Université de Reims Champagne-Ardenne, UFR Sciences, BP 1039 Moulin de la Housse, 51687 Reims cedex 2, France
| | | | | | | | | | | |
Collapse
|
26
|
Ankele E, Kindgren P, Pesquet E, Strand A. In vivo visualization of Mg-protoporphyrin IX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast. THE PLANT CELL 2007; 19:1964-79. [PMID: 17586657 PMCID: PMC1955713 DOI: 10.1105/tpc.106.048744] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The photosynthetic apparatus is composed of proteins encoded by genes from both the nucleus and the chloroplast. To ensure that the photosynthetic complexes are assembled stoichiometrically and to enable their rapid reorganization in response to a changing environment, the plastids emit signals that regulate nuclear gene expression to match the status of the plastids. One of the plastid signals, the chlorophyll intermediate Mg-ProtoporphyrinIX (Mg-ProtoIX) accumulates under stress conditions and acts as a negative regulator of photosynthetic gene expression. By taking advantage of the photoreactive property of tetrapyrroles, Mg-ProtoIX could be visualized in the cells using confocal laser scanning spectroscopy. Our results demonstrate that Mg-ProtoIX accumulated both in the chloroplast and in the cytosol during stress conditions. Thus, the signaling metabolite is exported from the chloroplast, transmitting the plastid signal to the cytosol. Our results from the Mg-ProtoIX over- and underaccumulating mutants copper response defect and genome uncoupled5, respectively, demonstrate that the expression of both nuclear- and plastid-encoded photosynthesis genes is regulated by the accumulation of Mg-ProtoIX. Thus, stress-induced accumulation of the signaling metabolite Mg-ProtoIX coordinates nuclear and plastidic photosynthetic gene expression.
Collapse
Affiliation(s)
- Elisabeth Ankele
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
27
|
Wang JM, Asami T, Murofushi N, Yoshida S. Isolation and Initial Characterization of 132-Hydroxychlorophyll a Induced by Cyclohexanedione Derivatives in Tobacco Cell Suspension Cultures. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710084iaicoh2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Pasquer F, Ochsner U, Zarn J, Keller B. Common and distinct gene expression patterns induced by the herbicides 2,4-dichlorophenoxyacetic acid, cinidon-ethyl and tribenuron-methyl in wheat. PEST MANAGEMENT SCIENCE 2006; 62:1155-67. [PMID: 17054088 DOI: 10.1002/ps.1291] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In wheat, herbicides are used to control weeds. Little is known about the changes induced in the metabolism of tolerant plants after herbicide treatment. The impact of three herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), cinidon-ethyl and tribenuron-methyl] on the wheat transcriptome was studied using cDNA microarrays. Gene expression of plants grown in a controlled environment or in the field was studied between 24 h and 2 weeks after treatment. Under controlled conditions, 2,4-D induced genes of the phenylpropanoid pathway soon after treatment. Cinidon-ethyl triggered peroxidase and defence-related gene expression under controlled conditions, probably because reactive oxygen species are released by photo-oxidation of protoporphyrin-IX. The same genes were upregulated in the field as under controlled conditions, albeit at a weaker level. These results show that cinidon-ethyl specifically induces genes involved in plant defence. Under controlled conditions, tribenuron-methyl did not change the expression profile immediately after treatment, but defence-related genes were upregulated after 1 week. Sulfonylurea compounds such as tribenuron-methyl specifically inhibit acetolactate synthase and are rapidly detoxified, but the activity of some of the resulting metabolites could explain later changes in gene expression. Finally, overexpression of the isopropylmalate synthase gene, involved in branched-chain amino acid synthesis, and of defence-related genes was observed in the field after sulfonylurea treatment.
Collapse
Affiliation(s)
- Frédérique Pasquer
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | | | | | | |
Collapse
|
29
|
Lermontova I, Grimm B. Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:499-510. [PMID: 17059408 DOI: 10.1111/j.1365-313x.2006.02894.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Protoporphyrinogen oxidase (EC 1.3.3.4, PPOX) is the last enzyme in the branched tetrapyrrole biosynthetic pathway, before its substrate protoporphyrin is directed to the Mg and Fe branches for chlorophyll and haem biosynthesis, respectively. The enzyme exists in many plants in two similar isoforms, which are either exclusively located in plastids (PPOX I) or in mitochondria and plastids (PPOX II). Antisense RNA expression inhibited the formation of PPOX I in transgenic tobacco plants, which showed reduced growth rate and necrotic leaf damage. The cytotoxic effect is attributed to accumulation of photodynamically acting protoporphyrin. The expression levels of PPOX I mRNA and protein and the cellular enzyme activities were reduced to similar extents in transgenic plants grown under low- or high-light conditions (70 and 530 mumol photons m(-2) sec(-1)). More necrotic leaf lesions were surprisingly generated under low- than under high-light exposure. Several reasons were explored to explain this paradox and the intriguing necrotic phenotype of PPOX-deficient plants under both light intensity growth conditions. The same reduction of PPOX expression and activity under both light conditions led to similar initial protoporphyrin, but to faster decrease in protoporphyrin content during high light. It is likely that a light intensity-dependent degradation of reduced and oxidized porphyrins prevents severe photodynamic leaf damage. Moreover, under high-light conditions, elevated contents of reduced and total low-molecular-weight antioxidants contribute to the protection against photosensitizing porphyrins. These reducing conditions stabilize protoporphyrinogen in plastids and allow their redirection into the metabolic pathway.
Collapse
Affiliation(s)
- Inna Lermontova
- Institute of Biology/Plant Physiology, Humboldt University, Philippstr. 13, Building 12, 10115 Berlin, Germany
| | | |
Collapse
|
30
|
Patzoldt WL, Hager AG, McCormick JS, Tranel PJ. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci U S A 2006; 103:12329-34. [PMID: 16894159 PMCID: PMC1567880 DOI: 10.1073/pnas.0603137103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herbicides that act by inhibiting protoporphyrinogen oxidase (PPO) are widely used to control weeds in a variety of crops. The first weed to evolve resistance to PPO-inhibiting herbicides was Amaranthus tuberculatus, a problematic weed in the midwestern United States that previously had evolved multiple resistances to herbicides inhibiting two other target sites. Evaluation of a PPO-inhibitor-resistant A. tuberculatus biotype revealed that resistance was a (incompletely) dominant trait conferred by a single, nuclear gene. Three genes predicted to encode PPO were identified in A. tuberculatus. One gene from the resistant biotype, designated PPX2L, contained a codon deletion that was shown to confer resistance by complementation of a hemG mutant strain of Escherichia coli grown in the presence and absence of the PPO inhibitor lactofen. PPX2L is predicted to encode both plastid- and mitochondria-targeted PPO isoforms, allowing a mutation in a single gene to confer resistance to two herbicide target sites. Unique aspects of the resistance mechanism include an amino acid deletion, rather than a substitution, and the dual-targeting nature of the gene, which may explain why resistance to PPO inhibitors has been rare.
Collapse
Affiliation(s)
| | - Aaron G. Hager
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Joel S. McCormick
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Patrick J. Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
- To whom correspondence should be addressed at:
Department of Crop Sciences, University of Illinois, 320 ERML, 1201 West Gregory Drive, Urbana, IL 61801. E-mail:
| |
Collapse
|
31
|
Nandihalli UB, Duke MV, Ashmore JW, Musco VA, Clark RD, Duke SO. Enantioselectivity of protoporphyrinogen oxidase-inhibiting herbicides. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780400404] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Williams P, Hardeman K, Fowler J, Rivin C. Divergence of duplicated genes in maize: evolution of contrasting targeting information for enzymes in the porphyrin pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:727-39. [PMID: 16460507 DOI: 10.1111/j.1365-313x.2005.02632.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The divergence of sequence and expression pattern of duplicated genes provides a means for genetic innovation to occur without sacrificing an essential function. The cpx1 and cpx2 genes of maize are a singular example of duplicated genes that have diverged by deletion and creation of protein targeting information. The cpx genes encode coproporphyrinogen III oxidase ('coprogen oxidase'), which catalyzes a step in the synthesis of chlorophyll and heme. In plants, this enzyme has been found exclusively in the plastids. The cpx1 and cpx2 genes encode almost identical, catalytically active enzymes with distinctive N-terminal peptide sequences. The cpx1 gene encodes the expected plastid transit peptide, but this region is deleted from the cpx2 gene. While the 5' regions of both messenger RNAs are highly similar, the cpx2 gene has an open-reading frame that could encode a new targeting signal. GFP fused with CPX1 localized to the plastids. In contrast, the GFP fusion with CPX2 did not target plastids and appeared to localize to mitochondria. Both cpx genes are expressed ubiquitously but, based on mutant phenotype, they seem to have discrete biological roles. Seedlings homozygous for a null mutation in the cpx1 gene completely lack chlorophyll and develop necrotic lesions in the light. However, the mutant seedlings and callus cultures will grow in tissue culture in the dark, implying that they retain a capacity to produce heme. We discuss models for the evolution of the cpx genes and possible roles of mitochondrion-localized coprogen oxidase activity in maize.
Collapse
Affiliation(s)
- Pascale Williams
- Department of Botany and Plant Pathology, Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR, USA
| | | | | | | |
Collapse
|
33
|
Yao N, Greenberg JT. Arabidopsis ACCELERATED CELL DEATH2 modulates programmed cell death. THE PLANT CELL 2006; 18:397-411. [PMID: 16387834 PMCID: PMC1356547 DOI: 10.1105/tpc.105.036251] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae-induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events.
Collapse
Affiliation(s)
- Nan Yao
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
34
|
Nott A, Jung HS, Koussevitzky S, Chory J. Plastid-to-nucleus retrograde signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:739-59. [PMID: 16669780 DOI: 10.1146/annurev.arplant.57.032905.105310] [Citation(s) in RCA: 363] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant cells store genetic information in the genomes of three organelles: the nucleus, plastid, and mitochondrion. The nucleus controls most aspects of organelle gene expression, development, and function. In return, organelles send signals to the nucleus to control nuclear gene expression, a process called retrograde signaling. This review summarizes our current understanding of plastid-to-nucleus retrograde signaling, which involves multiple, partially redundant signaling pathways. The best studied is a pathway that is triggered by buildup of Mg-ProtoporphyrinIX, the first intermediate in the chlorophyll branch of the tetrapyrrole biosynthetic pathway. In addition, there is evidence for a plastid gene expression-dependent pathway, as well as a third pathway that is dependent on the redox state of photosynthetic electron transport components. Although genetic studies have identified several players involved in signal generation, very little is known of the signaling components or transcription factors that regulate the expression of hundreds of nuclear genes.
Collapse
Affiliation(s)
- Ajit Nott
- Plant Biology Laboratory and Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
35
|
Beck CF. Signaling pathways from the chloroplast to the nucleus. PLANTA 2005; 222:743-56. [PMID: 16231154 DOI: 10.1007/s00425-005-0021-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 05/04/2005] [Indexed: 05/04/2023]
Abstract
Genetic and physiological studies have to-date revealed evidence for five signaling pathways by which the chloroplast exerts retrograde control over nuclear genes. One of these pathways is dependent on product(s) of plastid protein synthesis, for another the signal is singlet oxygen, a third employs chloroplast-generated hydrogen peroxide, a fourth is controlled by the redox state of the photosynthetic electron transport chain, and a fifth involves intermediates and possibly proteins of tetrapyrrole biosynthesis. These five pathways may be part of a complex signaling network that links the functional and physiological state of the chloroplast to the nucleus. Mutants defective in various steps of photosynthesis reveal a surprising diversity in nuclear responses suggesting the existence of a complex signaling network.
Collapse
Affiliation(s)
- Christoph F Beck
- Institute of Biology III, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
36
|
Jung S, Back K. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:423-30. [PMID: 15890521 DOI: 10.1016/j.plaphy.2005.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/04/2005] [Indexed: 05/02/2023]
Abstract
We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Sunyo Jung
- Center for Agricultural Biomaterials, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, South Korea
| | | |
Collapse
|
37
|
Vasileuskaya Z, Oster U, Beck CF. Involvement of tetrapyrroles in inter-organellar signaling in plants and algae. PHOTOSYNTHESIS RESEARCH 2004; 82:289-99. [PMID: 16143841 DOI: 10.1007/s11120-004-2160-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Accepted: 07/21/2004] [Indexed: 05/04/2023]
Abstract
For the assembly of a functional chloroplast, the coordinated expression of genes distributed between nucleus and chloroplasts is a prerequisite. While the nucleus plays an undisputed dominant role in controling biogenesis and functioning of chloroplasts, plastidic signals appear to control the expression of a subset of nuclear genes; the majority of which encodes chloroplast constituents. Tetrapyrrole biosynthesis intermediates are attractive candidates for one type of plastidic signal ever since an involvement of Mg-porphyrins in signaling from chloroplast to nucleus was first demonstrated in Chlamydomonas reinhardtii. Since then, Mg-protoporphyrin IX has been shown to exert a regulatory function on nuclear genes in higher plants as well. Here we review evidence for the role played by tetrapyrroles in inter-organellar communication. We also report on a screening for nuclear genes that may be subject to regulation by tetrapyrroles. This revealed that (i) >HEMA, the gene encoding the first enzyme specific for porphyrin biosynthesis is induced by Mg-protoporphyrin IX, (ii) several nuclear HSP70 genes are regulated by tetrapyrroles. Members of the gene family induced by the feeding of Mg-rotoporphyrin IX encode chaperones located in either the chloroplast or the cytosol. These results point to an important role of Mg-tetrapyrroles as plastidic signal in controling the initial step of porphyrin biosynthesis, and the synthesis of chaperones involved in protein folding in cytosol/stroma, protein transport into organelles, and the stress response.
Collapse
Affiliation(s)
- Zinaida Vasileuskaya
- Institut fuer Biologie III, Albert-Ludwigs-Universitaet, Schaenzlestrasse 1, 79104, Freiburg, Germany,
| | | | | |
Collapse
|
38
|
Abstract
Chloroplasts emit signals that modulate nuclear gene expression, thereby ensuring the proper assembly of the photosynthetic apparatus. Recent studies have provided major new insights into one of these signalling mechanisms, and identified the chlorophyll precursor Mg-protoporphyrin IX as a key signalling molecule.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
39
|
Larkin RM, Alonso JM, Ecker JR, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 2003; 299:902-6. [PMID: 12574634 DOI: 10.1126/science.1079978] [Citation(s) in RCA: 342] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nuclear genes control plastid differentiation in response to developmental signals, environmental signals, and retrograde signals from plastids themselves. In return, plastids emit signals that are essential for proper expression of many nuclear photosynthetic genes. Accumulation of magnesium-protoporphyrin IX (Mg-Proto), an intermediate in chlorophyll biosynthesis, is a plastid signal that represses nuclear transcription through a signaling pathway that, in Arabidopsis, requires the GUN4 gene. GUN4 binds the product and substrate of Mg- chelatase, an enzyme that produces Mg-Proto, and activates Mg-chelatase. Thus, GUN4 participates in plastid-to-nucleus signaling by regulating Mg-Proto synthesis or trafficking.
Collapse
Affiliation(s)
- Robert M Larkin
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
40
|
O'Brian MR, Thöny-Meyer L. Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 2002; 46:257-318. [PMID: 12073655 DOI: 10.1016/s0065-2911(02)46006-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Haems are involved in many cellular processes in prokaryotes and eukaryotes. The biosynthetic pathway leading to haem formation is, with few exceptions, well-conserved, and is controlled in accordance with cellular function. Here, we review the biosynthesis of haem and its regulation in prokaryotes. In addition, we focus on a modification of haem for cytochrome c biogenesis, a complex process that entails both transport between cellular compartments and a specific thioether linkage between the haem moiety and the apoprotein. Finally, a whole genome analysis from 63 prokaryotes indicates intriguing exceptions to the universality of the haem biosynthetic pathway and helps define new frontiers for future study.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
41
|
Cornah JE, Roper JM, Pal Singh D, Smith AG. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem J 2002; 362:423-32. [PMID: 11853551 PMCID: PMC1222403 DOI: 10.1042/0264-6021:3620423] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ferrochelatase is the terminal enzyme of haem biosynthesis, catalysing the insertion of ferrous iron into the macrocycle of protoporphyrin IX, the last common intermediate of haem and chlorophyll synthesis. Its activity has been reported in both plastids and mitochondria of higher plants, but the relative amounts of the enzyme in the two organelles are unknown. Ferrochelatase is difficult to assay since ferrous iron requires strict anaerobic conditions to prevent oxidation, and in photosynthetic tissues chlorophyll interferes with the quantification of the product. Accordingly, we developed a sensitive fluorimetric assay for ferrochelatase that employs Co(2+) and deuteroporphyrin in place of the natural substrates, and measures the decrease in deuteroporphyrin fluorescence. A hexane-extraction step to remove chlorophyll is included for green tissue. The assay is linear over a range of chloroplast protein concentrations, with an average specific activity of 0.68 nmol x min(-1) x mg of protein(-1), the highest yet reported. The corresponding value for mitochondria is 0.19 nmol x min(-1) x mg of protein(-1). The enzyme is inhibited by N-methylprotoporphyrin, with an estimated IC(50) value of approximately 1 nM. Using this assay we have quantified ferrochelatase activity in plastids and mitochondria from green pea leaves, etiolated pea leaves and pea roots to determine the relative amounts in the two organelles. We found that, in all three tissues, greater than 90% of the activity was associated with plastids, but ferrochelatase was reproducibly detected in mitochondria, at levels greater than the contaminating plastid marker enzyme, and was latent. Our results indicate that plastids are the major site of haem biosynthesis in higher plant cells, but that mitochondria also have the capacity for haem production.
Collapse
Affiliation(s)
- Johanna E Cornah
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
42
|
Brusslan JA, Peterson MP. Tetrapyrrole regulation of nuclear gene expression. PHOTOSYNTHESIS RESEARCH 2002; 71:185-94. [PMID: 16228131 DOI: 10.1023/a:1015539109209] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tetrapyrroles are the structural backbone of chlorophyll and heme, and are essential for primary photochemistry, light harvesting, and electron transport. The biochemistry of their synthesis has been studied extensively, and it has been suggested that some of the tetrapyrrole biochemical intermediates can affect nuclear gene expression. In this review, tetrapyrrole biosynthesis, which occurs in the chloroplast, and its regulation will be covered. An analysis of the intracellular location of tetrapyrrole intermediates will also be included. The focus will be on tetrapyrrole intermediates that have been suggested to affect gene expression. These include Mg-protoporphyrin IX and Mg-protoporphyrin IX monomethyl ester. Recent evidence also suggests a specific signaling role for the H subunit of Mg-chelatase, an enzyme that catalyzes the insertion of Mg into the tetrapyrrole ring. Since gene expression studies have been done in plants and green algae, our discussion will be limited to these organisms.
Collapse
Affiliation(s)
- Judy A Brusslan
- Department of Biological Sciences, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840-3702, USA,
| | | |
Collapse
|
43
|
Martins BM, Grimm B, Mock HP, Huber R, Messerschmidt A. Crystal structure and substrate binding modeling of the uroporphyrinogen-III decarboxylase from Nicotiana tabacum. Implications for the catalytic mechanism. J Biol Chem 2001; 276:44108-16. [PMID: 11524417 DOI: 10.1074/jbc.m104759200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzymatic catalysis of many biological processes of life is supported by the presence of cofactors and prosthetic groups originating from the common tetrapyrrole precursor uroporphyrinogen-III. Uroporphyrinogen-III decarboxylase catalyzes its conversion into coproporphyrinogen-III, leading in plants to chlorophyll and heme biosynthesis. Here we report the first crystal structure of a plant (Nicotiana tabacum) uroporphyrinogen-III decarboxylase, together with the molecular modeling of substrate binding in tobacco and human enzymes. Its structural comparison with the homologous human protein reveals a similar catalytic cleft with six invariant polar residues, Arg(32), Arg(36), Asp(82), Ser(214) (Thr in Escherichia coli), Tyr(159), and His(329) (tobacco numbering). The functional relationships obtained from the structural and modeling analyses of both enzymes allowed the proposal for a refined catalytic mechanism. Asp(82) and Tyr(159) seem to be the catalytic functional groups, whereas the other residues may serve in substrate recognition and binding, with Arg(32) steering its insertion. The crystallographic dimer appears to represent the protein dimer under physiological conditions. The dimeric arrangement offers a plausible mechanism at least for the first two (out of four) decarboxylation steps.
Collapse
Affiliation(s)
- B M Martins
- Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, 82152 Martinsried bei München, Germany.
| | | | | | | | | |
Collapse
|
44
|
Warabi E, Usui K, Tanaka Y, Matsumoto H. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase. PEST MANAGEMENT SCIENCE 2001; 57:743-8. [PMID: 11517729 DOI: 10.1002/ps.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2001] [Accepted: 05/01/2001] [Indexed: 05/23/2023]
Abstract
The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.
Collapse
Affiliation(s)
- E Warabi
- Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | |
Collapse
|
45
|
Watanabe N, Che FS, Iwano M, Takayama S, Yoshida S, Isogai A. Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem 2001; 276:20474-81. [PMID: 11274159 DOI: 10.1074/jbc.m101140200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protoporphyrinogen oxidase (Protox) is the final enzyme in the common pathway of chlorophyll and heme biosynthesis. Two Protox isoenzymes have been described in tobacco, a plastidic and a mitochondrial form. We isolated and sequenced spinach Protox cDNA, which encodes a homolog of tobacco mitochondrial Protox (Protox II). Alignment of the deduced amino acid sequence between Protox II and other tobacco mitochondrial Protox homologs revealed a 26-amino acid N-terminal extension unique to the spinach enzyme. Immunoblot analysis of spinach leaf extract detected two proteins with apparent molecular masses of 57 and 55 kDa in chloroplasts and mitochondria, respectively. In vitro translation experiments indicated that two translation products (59 and 55 kDa) are produced from Protox II mRNA, using two in-frame initiation codons. Transport experiments using green fluorescent protein-fused Protox II suggested that the larger and smaller translation products (Protox IIL and IIS) target exclusively to chloroplasts and mitochondria, respectively.
Collapse
Affiliation(s)
- N Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Jacobs JM, Jacobs NJ. Measurement of protoporphyrinogen oxidase activity. CURRENT PROTOCOLS IN TOXICOLOGY 2001; Chapter 8:Unit 8.5. [PMID: 20954158 DOI: 10.1002/0471140856.tx0805s00] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protoporphyrinogen oxidase catalyzes the oxidation of protoporphyrinogen to protophyrin. It is a membrane-bound mitochondrial enzyme and it is the target of photobleaching herbicides. The basic assay presented in this unit for measuring oxidase activity is based on oxidation of the colorless, nonfluorescent substrate, protoporphyrinogen, to the colored, fluorescent protophyrin. Alternate protocols are provided for the measuring the accumulation of protoporphyrinogen resulting from a decrease in oxidase activity due to treatment with diphenyl ether herbicides or oxidase inhibitor.
Collapse
Affiliation(s)
- J M Jacobs
- Dartmouth Medical School, Hanover, New Hampshire, USA
| | | |
Collapse
|
47
|
Møller SG, Kunkel T, Chua NH. A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 2001; 15:90-103. [PMID: 11156608 PMCID: PMC312601 DOI: 10.1101/gad.850101] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants perceive light via specialized photoreceptors of which the phytochromes (phyA-E), absorbing far-red (FR) and red light (R) are best understood. Several nuclear and cytoplasmic proteins have been characterized whose deficiencies lead to changes in light-dependent morphological responses and gene expression. However, no plastid protein has yet been identified to play a role in phytochrome signal transduction. We have isolated a new Arabidopsis mutant, laf (long after FR) 6, with reduced responsiveness preferentially toward continuous FR light. The disrupted gene in laf6 encodes a novel plant ATP-binding-cassette (atABC1) protein of 557 amino acids with high homology to ABC-like proteins from lower eukaryotes. In contrast to lower eukaryotic ABCs, however, atABC1 contains an N-terminal transit peptide, which targets it to chloroplasts. atABC1 deficiency in laf6 results in an accumulation of the chlorophyll precursor protoporphyrin IX and in attenuation of FR-regulated gene expression. The long hypocotyl phenotype of laf6 and the accumulation of protoporphyrin IX in the mutant can be recapitulated by treating wild-type (WT) seedlings with flumioxazin, a protoporphyrinogen IX oxidase (PPO) inhibitor. Moreover, protoporphyrin IX accumulation in flumioxazin-treated WT seedlings can be reduced by overexpression of atABC1. Consistent with the notion that ABC proteins are involved in transport, these observations suggest that functional atABC1 is required for the transport and correct distribution of protoporphyrin IX, which may act as a light-specific signaling factor involved in coordinating intercompartmental communication between plastids and the nucleus.
Collapse
Affiliation(s)
- S G Møller
- Laboratory of Plant Molecular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | | | |
Collapse
|
48
|
de Marco A, Volrath S, Bruyere T, Law M, Fonné-Pfister R. Recombinant maize protoporphyrinogen IX oxidase expressed in Escherichia coli forms complexes with GroEL and DnaK chaperones. Protein Expr Purif 2000; 20:81-6. [PMID: 11035954 DOI: 10.1006/prep.2000.1274] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The clone corresponding to maize plastidic protoporphyrinogen IX oxidase (PPO) has been isolated by functional complementation and inserted into a pET16b vector for expression in Escherichia coli. Recombinant PPO was purified by standard affinity chromatography using a metal chelating resin. Two contaminants copurified with recombinant PPO and were identified as GroEL and DnaK. Since chaperone binding to hydrophobic regions of the protein is regulated by ATP availability, an ATP washing step was introduced prior to elution of the recombinant protein from an affinity column. This washing step selectively removed both chaperones and allowed the recovery of pure PPO. Coexpression of PPO and GroELS resulted in a sixfold increase of soluble PPO yield, suggesting that bacterial chaperones could be limiting during the folding of the heterologous protein. However, a portion of PPO was still found in the insoluble fraction. Buffer containing the GroEL and DnaK enabled resuspension of PPO from the insoluble fraction but failed to enhance refolding of the denaturated protein. Attempts to increase the amount of soluble PPO using a thioredoxin-PPO fusion protein were not successful. Initial characterization of the recombinant PPO found that it possessed a high V(max), an elevated affinity for substrate, and an elevated sensitivity to PPO inhibitor herbicides compared to previous reports.
Collapse
Affiliation(s)
- A de Marco
- LD Biochemistry Unit, Novartis Crop Protection AG, Basel, CH-4002, Switzerland
| | | | | | | | | |
Collapse
|
49
|
Che FS, Watanabe N, Iwano M, Inokuchi H, Takayama S, Yoshida S, Isogai A. Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. PLANT PHYSIOLOGY 2000; 124:59-70. [PMID: 10982422 PMCID: PMC59122 DOI: 10.1104/pp.124.1.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2000] [Accepted: 04/27/2000] [Indexed: 05/23/2023]
Abstract
Protoporphyrinogen oxidase (Protox) is the last common enzyme in the biosynthesis of chlorophylls and heme. In plants, there are two isoenzymes of Protox, one located in plastids and other in the mitochondria. We cloned the cDNA of spinach (Spinacia oleracea) plastidal Protox and purified plastidal Protox protein from spinach chloroplasts. Sequence analysis of the cDNA indicated that the plastid Protox of spinach is composed of 562 amino acids containing the glycine-rich motif GxGxxG previously proposed to be a dinucleotide binding site of many flavin-containing proteins. The cDNA of plastidal Protox complemented a Protox mutation in Escherichia coli. N-terminal sequence analysis of the purified enzyme revealed that the plastidal Protox precursor is processed at the N-terminal site of serine-49. The predicted transit peptide (methionine-1 to cysteine-48) was sufficient for the transport of precursors into the plastid because green fluorescent protein fused with the predicted transit peptide was transported to the chloroplast. Immunocytochemical analysis using electron microscopy showed that plastidal Protox is preferentially associated with the stromal side of the thylakoid membrane, and a small portion of the enzyme is located on the stromal side of the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- F S Che
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Watanabe N, Che FS, Terashima K, Takayama S, Yoshida S, Isogai A. Purification and properties of protoporphyrinogen oxidase from spinach chloroplasts. PLANT & CELL PHYSIOLOGY 2000; 41:889-92. [PMID: 10965946 DOI: 10.1093/pcp/pcd007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protoporphyrinogen oxidase (Protox), an enzyme that catalyzes the common step of chlorophyll and heme biosynthetic pathways, was purified from spinach chloroplasts. The molecular weight of purified protein was estimated to be approximately 60,000 by SDS-PAGE. Protox activity was stimulated by addition of FAD, suggesting that chloroplast Protox requires FAD as a cofactor. Furthermore, the Protox-inhibiting herbicide, S23142, specifically inhibited the purified Protox activity at an IC50 value of 1 nM.
Collapse
Affiliation(s)
- N Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|