1
|
Lodovici A, Buoso S, Miras-Moreno B, Lucini L, Tomasi N, García-Pérez P, Pinton R, Zanin L. A multi-omics insight on the interplay between iron deficiency and N forms in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1408141. [PMID: 39479546 PMCID: PMC11521840 DOI: 10.3389/fpls.2024.1408141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024]
Abstract
Introduction Nitrogen (N) and iron (Fe) are involved in several biochemical processes in living organisms, and their limited bioavailability is a strong constraint for plant growth and yield. This work investigated the interplay between Fe and N nutritional pathways in tomato plants kept under N and Fe deficiency and then resupplied with Fe and N (as nitrate, ammonium, or urea) through a physiological, metabolomics and gene expression study. Results After 24 hours of Fe resupply, the Fe concentration in Fe-deficient roots was dependent on the applied N form (following the pattern: nitrate > urea > ammonium > Fe-deficient control), and whereas in leaves of urea treated plants the Fe concentration was lower in comparison to the other N forms. Untargeted metabolomics pointed out distinctive modulations of plant metabolism in a treatment-dependent manner. Overall, N-containing metabolites were affected by the treatments in both leaves and roots, while N form significantly shaped the phytohormone profile. Moreover, the simultaneous application of Fe with N to Fe-deficient plants elicited secondary metabolites' accumulation, such as phenylpropanoids, depending on the applied N form (mainly by urea, followed by nitrate and ammonium). After 4 hours of treatment, ammonium- and urea-treated roots showed a reduction of enzymatic activity of Fe(III)-chelate reductase (FCR), compared to nitrate or N-depleted plants (maintained in Fe deficiency, where FCR was maintained at high levels). The response of nitrate-treated plants leads to the improvement of Fe concentration in tomato roots and the increase of Fe(II) transporter (IRT1) gene expression in tomato roots. Conclusions Our results strengthen and improve the understanding about the interaction between N and Fe nutritional pathways, thinning the current knowledge gap.
Collapse
Affiliation(s)
- Arianna Lodovici
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Sara Buoso
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
- Department of Plant Biology, University of Murcia, Murcia, Spain
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Nicola Tomasi
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Pascual García-Pérez
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Roberto Pinton
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Laura Zanin
- Department of Agricultural. Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
2
|
Tavakoli F, Hajiboland R, Bosnic D, Bosnic P, Nikolic M, Tolra R, Poschenrieder C. Signaling function of NH 4+ in the activation of Fe-deficiency response in cucumber (Cucumis sativus L.). PLANTA 2024; 260:53. [PMID: 39009858 DOI: 10.1007/s00425-024-04480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
MAIN CONCLUSION NH4+ is necessary for full functionality of reduction-based Fe deficiency response in plants. Nitrogen (N) is present in soil mainly as nitrate (NO3-) or ammonium (NH4+). Although the significance of a balanced supply of NO3- and NH4+ for optimal growth has been generally accepted, its importance for iron (Fe) acquisition has not been sufficiently investigated. In this work, hydroponically grown cucumber (Cucumis sativus L. cv. Maximus) plants were supplied with NO3- as the sole N source under -Fe conditions. Upon the appearance of chlorosis, plants were supplemented with 2 mM NH4Cl by roots or leaves. The NH4+ treatment increased leaf SPAD and the HCl-extractable Fe concentration while decreased root apoplastic Fe. A concomitant increase in the root concentration of nitric oxide and activity of FRO and its abolishment by an ethylene action inhibitor, indicated activation of the components of Strategy I in NH4+-treated plants. Ammonium-pretreated plants showed higher utilization capacity of sparingly soluble Fe(OH)3 and higher root release of H+, phenolics, and organic acids. The expression of the master regulator of Fe deficiency response (FIT) and its downstream genes (AHA1, FRO2, and IRT1) along with EIN3 and STOP1 was increased by NH4+ application. Temporal analyses and the employment of a split-root system enabled us to suggest that a permanent presence of NH4+ at concentrations lower than 2 mM is adequate to produce an unknown signal and causes a sustained upregulation of Fe deficiency-related genes, thus augmenting the Fe-acquisition machinery. The results indicate that NH4+ appears to be a widespread and previously underappreciated component of plant reduction-based Fe deficiency response.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Plant, Cell and Molecular Biology, University of Tabriz, Tabriz, Iran
| | - Roghieh Hajiboland
- Department of Plant, Cell and Molecular Biology, University of Tabriz, Tabriz, Iran.
| | - Dragana Bosnic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Roser Tolra
- Plant Physiology Laboratory, Bioscience Faculty, Autonomous University of Barcelona, Barcelona, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Liu XX, Zhu XF, Xue DW, Zheng SJ, Jin CW. Beyond iron-storage pool: functions of plant apoplastic iron during stress. TRENDS IN PLANT SCIENCE 2023; 28:941-954. [PMID: 37019715 DOI: 10.1016/j.tplants.2023.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Iron (Fe) is an essential micronutrient for plants, and its storage in the apoplast represents an important Fe pool. Plants have developed various strategies to reutilize this apoplastic Fe pool to adapt to Fe deficiency. In addition, growing evidence indicates that the dynamic changes in apoplastic Fe are critical for plant adaptation to other stresses, including ammonium stress, phosphate deficiency, and pathogen attack. In this review, we discuss and scrutinize the relevance of apoplastic Fe for plant behavior changes in response to stress cues. We mainly focus on the relevant components that modulate the actions and downstream events of apoplastic Fe in stress signaling networks.
Collapse
Affiliation(s)
- Xing Xing Liu
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Da Wei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Zhang LD, Liu X, Wei MY, Guo ZJ, Zhao ZZ, Gao CH, Li J, Xu JX, Shen ZJ, Zheng HL. Ammonium has stronger Cd detoxification ability than nitrate by reducing Cd influx and increasing Cd fixation in Solanum nigrum L. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127947. [PMID: 34896722 DOI: 10.1016/j.jhazmat.2021.127947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is a harmful heavy metal that affects the growth and development of plants. Nitrogen (N) is an essential nutrient for plants, and appropriate N management can improve Cd tolerance. The aim of our study was to explore the effects of different forms of N on the molecular and physiological responses of the hyperaccumulator Solanum nigrum to Cd toxicity. Measurement of biomass, photosynthetic parameters, and Cd2+ fluxes using non-invasive micro-test technique, Cd fluorescent dying, biochemical methods and quantitative real-time PCR analysis were performed in our study. Our results showed that ammonium (NH4+) has stronger Cd detoxification ability than nitrate (NO3-), which are likely attributed to the following three reasons: (1) NH4+ decreased the influx and accumulation of Cd2+ by regulating the transcription of Cd transport-related genes; (2) the ameliorative effects of NH4+ were accompanied by the increased retention of Cd in the cell walls of roots; and (3) NH4+ up-regulated SnExp expression.
Collapse
Affiliation(s)
- Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China; Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Ming-Yue Wei
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhi-Zhu Zhao
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chang-Hao Gao
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jian-Xin Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
5
|
Chen SY, Gu TY, Qi ZA, Yan J, Fang ZJ, Lu YT, Li H, Gong JM. Two NPF transporters mediate iron long-distance transport and homeostasis in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100244. [PMID: 34778750 PMCID: PMC8577109 DOI: 10.1016/j.xplc.2021.100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Iron (Fe) transport and reallocation are essential to Fe homeostasis in plants, but it is unclear how Fe homeostasis is regulated, especially under stress. Here we report that NPF5.9 and its close homolog NPF5.8 redundantly regulate Fe transport and reallocation in Arabidopsis. NPF5.9 is highly upregulated in response to Fe deficiency. NPF5.9 expresses preferentially in vasculature tissues and localizes to the trans-Golgi network, and NPF5.8 showed a similar expression pattern. Long-distance Fe transport and allocation into aerial parts was significantly increased in NPF5.9-overexpressing lines. In the double mutant npf5.8 npf5.9, Fe loading in aerial parts and plant growth were decreased, which were partially rescued by Fe supplementation. Further analysis showed that expression of PYE, the negative regulator for Fe homeostasis, and its downstream target NAS4 were significantly altered in the double mutant. NPF5.9 and NPF5.8 were shown to also mediate nitrate uptake and transport, although nitrate and Fe application did not reciprocally affect each other. Our findings uncovered the novel function of NPF5.9 and NPF5.8 in long-distance Fe transport and homeostasis, and further indicated that they possibly mediate nitrate transport and Fe homeostasis independently in Arabidopsis.
Collapse
Affiliation(s)
- Si-Ying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Yu Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zi-Ai Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zi-Jun Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Ting Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ji-Ming Gong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Zhang X, Liu H, Zhang S, Wang J, Wei C. NH 4+-N alleviates iron deficiency in rice seedlings under calcareous conditions. Sci Rep 2019; 9:12712. [PMID: 31481724 PMCID: PMC6722072 DOI: 10.1038/s41598-019-49207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/20/2019] [Indexed: 11/09/2022] Open
Abstract
Drip-irrigated rice (Oryza sativa L.) in calcareous soil exhibits signs of iron (Fe) deficiency. This study aimed to explore whether NH4+ alleviates Fe deficiency in rice seedlings grown under calcareous conditions. Two rice varieties (cv. 'T43' Fe deficiency-tolerant variety and cv. 'T04' Fe deficiency-sensitive variety) were used to carry out two independent experiments with exposure to different nitrogen (N) forms (nitrate (NO3-) or NH4+) under calcareous conditions. In experiment 1, plants were precultured in a nutrient solution with excess Fe (40 µM Fe(II)-EDTA) for 14 d and then supplied NO3--N (AN) or NH4--N (NN) without Fe for 3, 6, or 12 d. In experiment 2, plants were fed AN or NN with 10 µM Fe(II)-EDTA for 18 d. Compared to plants exposed to AN, leaves of plants exposed to NN showed severe chlorosis and significantly decreased chlorophyll content during Fe starvation. The xylem sap pH and cell wall Fe fraction in both shoots and roots of rice fed NN were significantly higher than those fed AN. However, the Fe concentration in xylem sap, soluble and organelle Fe fractions in both shoots and roots, and the shoot/root Fe content ratio in rice exposed to AN were significantly higher than those in plants exposed to NN. AN reduced the root aerenchyma fraction and root porosity compared to NN, which induced greater water uptake and hydraulic conductance by roots, hence the stronger xylem sap flow rate with AN. The results indicated that NH4+-N alleviated Fe deficiency in rice under calcareous conditions by promoting Fe re-allocation in rice tissues and Fe transportation from roots to shoots.
Collapse
Affiliation(s)
- Xinjiang Zhang
- Key Lab of Oasis Ecology Agriculture of Xinjiang Production and Construction Group, Shihezi University, North 4th Street No. 221, Shihezi, 832000, P.R. China
| | - Hui Liu
- Special Plant Genomics Laboratory, College of Life Sciences, Shihezi University, North 4th Street No. 221, Shihezi, 832000, P.R. China
| | - Shujie Zhang
- Xinjiang Academy of Agriculture and Reclamation, Wuyi Road No. 221, Shihezi, 832000, P.R. China
| | - Juan Wang
- Key Lab of Oasis Ecology Agriculture of Xinjiang Production and Construction Group, Shihezi University, North 4th Street No. 221, Shihezi, 832000, P.R. China
| | - Changzhou Wei
- Key Lab of Oasis Ecology Agriculture of Xinjiang Production and Construction Group, Shihezi University, North 4th Street No. 221, Shihezi, 832000, P.R. China.
| |
Collapse
|
7
|
Shi R, Melzer M, Zheng S, Benke A, Stich B, von Wirén N. Iron Retention in Root Hemicelluloses Causes Genotypic Variability in the Tolerance to Iron Deficiency-Induced Chlorosis in Maize. FRONTIERS IN PLANT SCIENCE 2018; 9:557. [PMID: 29755495 PMCID: PMC5932200 DOI: 10.3389/fpls.2018.00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/09/2018] [Indexed: 05/25/2023]
Abstract
Antagonistic interactions of phosphorus (P) hamper iron (Fe) acquisition by plants and can cause Fe deficiency-induced chlorosis. To determine the physiological processes underlying adverse Fe-P interactions, the maize lines B73 and Mo17, which differ in chlorosis susceptibility, were grown hydroponically at different Fe:P ratios. In the presence of P, Mo17 became more chlorotic than B73. The higher sensitivity of Mo17 to Fe deficiency was not related to Fe-P interactions in leaves but to lower Fe translocation to shoots, which coincided with a larger pool of Fe being fixed in the root apoplast of P-supplied Mo17 plants. Fractionating cell wall components from roots showed that most of the cell wall-contained P accumulated in pectin, whereas most of the Fe was bound to root hemicelluloses, revealing that co-precipitation of Fe and P in the apoplast was not responsible for Fe inactivation in roots. A negative correlation between chlorophyll index and hemicellulose-bound Fe in 85 inbred lines of the intermated maize B73 × Mo17 (IBM) population indicated that apoplastic Fe retention contributes to genotypic differences in chlorosis susceptibility of maize grown under low Fe supplies. Our study indicates that Fe retention in the hemicellulose fraction of roots is an important determinant in the tolerance to Fe deficiency-induced chlorosis of graminaceous plant species with low phytosiderophore release, like maize.
Collapse
Affiliation(s)
- Rongli Shi
- Department of Physiology and Cell Biology, Leibniz-Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Michael Melzer
- Department of Physiology and Cell Biology, Leibniz-Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Andreas Benke
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Benjamin Stich
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Nicolaus von Wirén
- Department of Physiology and Cell Biology, Leibniz-Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
8
|
Leaden L, Pagani MA, Balparda M, Busi MV, Gomez-Casati DF. Altered levels of AtHSCB disrupts iron translocation from roots to shoots. PLANT MOLECULAR BIOLOGY 2016; 92:613-628. [PMID: 27655366 DOI: 10.1007/s11103-016-0537-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/29/2016] [Indexed: 05/26/2023]
Abstract
Plants overexpressing AtHSCB and hscb knockdown mutants showed altered iron homeostasis. The overexpression of AtHSCB led to activation of the iron uptake system and iron accumulation in roots without concomitant transport to shoots, resulting in reduced iron content in the aerial parts of plants. By contrast, hscb knockdown mutants presented the opposite phenotype, with iron accumulation in shoots despite the reduced levels of iron uptake in roots. AtHSCB play a key role in iron metabolism, probably taking part in the control of iron translocation from roots to shoots. Many aspects of plant iron metabolism remain obscure. The most known and studied homeostatic mechanism is the control of iron uptake in the roots by shoots. Nevertheless, this mechanism likely involves various unknown sensors and unidentified signals sent from one tissue to another which need to be identified. Here, we characterized Arabidopsis thaliana plants overexpressing AtHSCB, encoding a mitochondrial cochaperone involved in [Fe-S] cluster biosynthesis, and hscb knockdown mutants, which exhibit altered shoot/root Fe partitioning. Overexpression of AtHSCB induced an increase in root iron uptake and content along with iron deficiency in shoots. Conversely, hscb knockdown mutants exhibited increased iron accumulation in shoots and reduced iron uptake in roots. Different experiments, including foliar iron application, citrate supplementation and iron deficiency treatment, indicate that the shoot-directed control of iron uptake in roots functions properly in these lines, implying that [Fe-S] clusters are not involved in this regulatory mechanism. The most likely explanation is that both lines have altered Fe transport from roots to shoots. This could be consistent with a defect in a homeostatic mechanism operating at the root-to-shoot translocation level, which would be independent of the shoot control over root iron deficiency responses. In summary, the phenotypes of these plants indicate that AtHSCB plays a role in iron metabolism.
Collapse
Affiliation(s)
- Laura Leaden
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508-900, Brazil
| | - María A Pagani
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Manuel Balparda
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - María V Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Diego F Gomez-Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET-Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
9
|
Dragišić Maksimović JJ, Zivanović BD, Maksimović VM, Mojović MD, Nikolic MT, Vučinić ZB. Filter strip as a method of choice for apoplastic fluid extraction from maize roots. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:49-58. [PMID: 24767115 DOI: 10.1016/j.plantsci.2014.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 05/11/2023]
Abstract
Apoplastic fluid was extracted from maize (Zea mays L.) roots using two procedures: collection from the surface of intact plant roots by filter paper strips (AF) or vacuum infiltration and/or centrifugation from excised root segments (AWF). The content of cytoplasmic marker (glucose-6-phosphate, G-6-P) and antioxidative components (enzymes, organic acids, phenolics, sugars, ROS) were compared in the extracts. The results obtained demonstrate that AF was completely free of G-6-P, as opposed to AWF where the cytoplasmic constituent was detected even at mildest centrifugation (200×g). Isoelectric focusing of POD and SOD shows the presence of cytoplasmic isoforms in AWF, and HPLC of sugars and phenolics a much more complex composition of AWF, due to cytoplasmic contamination. Organic acid composition differed in the two extracts, much higher concentrations of malic acid being registered in AF, while oxalic acid due to intracellular contamination being present only in AWF. EPR spectroscopy of DEPMPO spin trap in the extracts showed persistent generation of hydroxyl radical adduct in AF. The results obtained argue in favor of the filter strip method for the root apoplastic fluid extraction, avoiding the problems of cytoplasmic contamination and dilution and enabling concentration measurements in minute regions of the root.
Collapse
Affiliation(s)
| | - Branka D Zivanović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Vuk M Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Miloš D Mojović
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| | - Miroslav T Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Zeljko B Vučinić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|
10
|
Dragišić Maksimović J, Mojović M, Maksimović V, Römheld V, Nikolic M. Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2411-20. [PMID: 22249995 DOI: 10.1093/jxb/err359] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This work was focused on the role of silicon (Si) in amelioration of manganese (Mn) toxicity caused by elevated production of hydroxyl radicals (·OH) in the leaf apoplast of cucumber (Cucumis sativus L.). The plants were grown in nutrient solutions with adequate (0.5 μM) or excessive (100 μM) Mn concentrations with or without Si being supplied. The symptoms of Mn toxicity were absent in the leaves of Si-treated plants subjected to excess Mn, although the leaf Mn concentration remained extremely high. The apoplastic concentration of free Mn(2+) and H(2)O(2) of high Mn-treated plants was significantly decreased by Si treatment. Si supply suppressed the Mn-induced increased abundance of peroxidase (POD) isoforms in the leaf apoplastic fluid, and led to a rapid suppression of guaiacol-POD activity under excess Mn. The spin-trapping reagent 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide was used to detect ·OH by electron paramagnetic resonance spectroscopy. Although supplying Si markedly decreased the accumulation of ·OH in the leaf apoplast with excess Mn, adding monosilicic acid to the Mn(2+)/H(2)O(2) reaction mixture did not directly affect the Fenton reaction in vitro. The results indicate that Si contributes indirectly to a decrease in ·OH in the leaf apoplast by decreasing the free apoplastic Mn(2+), thus regulating the Fenton reaction. A direct inhibitory effect of Si on guaiacol-POD activity (demonstrated in vitro) may also contribute to decreasing the POD-mediated generation of ·OH.
Collapse
|
11
|
Eichert T, Peguero-Pina JJ, Gil-Pelegrín E, Heredia A, Fernández V. Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field-grown peach (Prunus persica). PHYSIOLOGIA PLANTARUM 2010; 138:48-59. [PMID: 19843239 DOI: 10.1111/j.1399-3054.2009.01295.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach (Prunus persica (L.) Batsch.) leaves and the responses of previously chlorotic leaves to Fe resupply via the root or the leaf. Iron deficiency induced a decline of maximum potential photosystem II (PSII) efficiency (F(V)/F(M)), of rates of net photosynthesis and transpiration and of water use efficiency. Iron chlorosis was associated with a reduction of leaf xylem vessel size and of leaf hydraulic conductance. In the course of the day, water potentials in chlorotic leaves remained higher (less negative) than in green leaves. In chlorotic leaves, normal stomatal functioning was disturbed, as evidenced by the lack of opening upon withdrawal of external CO(2) and stomatal closure after sudden illumination of previously darkened leaves. We conclude that the Fe deficiency induced limitations of xylem conductivity elicited a water saving strategy, which poses an additional challenge to plant growth on high pH, calcareous soils. Fertilisation with Fe improved photosynthetic performance but the proper xylem structure and water relations of leaves were not fully restored, indicating that Fe must be available at the first stages of leaf growth and development.
Collapse
Affiliation(s)
- Thomas Eichert
- Plant Nutrition Department, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
12
|
Kovács K, Kuzmann E, Tatár E, Vértes A, Fodor F. Investigation of iron pools in cucumber roots by Mössbauer spectroscopy: direct evidence for the Strategy I iron uptake mechanism. PLANTA 2009; 229:271-278. [PMID: 18830704 DOI: 10.1007/s00425-008-0826-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 09/11/2008] [Indexed: 05/26/2023]
Abstract
Distinct chemical species of iron were investigated by Mössbauer spectroscopy during iron uptake into cucumber roots grown in unbuffered nutrient solution with or without 57Fe-citrate. Mössbauer spectra of iron deficient roots supplied with 10-500 microM 57Fe-citrate for 30-180 min and 24 h and iron-sufficient ones, were recorded. The roots were analysed for Fe concentration and Fe reductase activity. The Mössbauer parameters in the case of iron-sufficient roots revealed high-spin iron(III) components suggesting the presence of FeIII-carboxylate complexes, hydrous ferric oxides and sulfate-hydroxide containing species. No FeII was detected in these roots. However, iron-deficient roots supplied with 0.5 mM 57FeIII-citrate for 30 min contained significant amount of FeII in a hexaaqua complex form. This is a direct evidence for the Strategy I iron uptake mechanism. Correlation was found between the decrease in Fe reductase activity and the ratio of FeII-FeIII components as the time of iron supply was increased. The data may refer to a higher iron reduction rate as compared to its uptake/reoxidation in the cytoplasm in accordance with the increased reduction rate in iron deficient Strategy I plants.
Collapse
Affiliation(s)
- Krisztina Kovács
- Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter lane 1/a, 1117, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
13
|
Nikolic M, Cesco S, Römheld V, Varanini Z, Pinton R. Short-term interactions between nitrate and iron nutrition in cucumber. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:402-408. [PMID: 32689367 DOI: 10.1071/fp07022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 03/15/2007] [Indexed: 05/14/2023]
Abstract
Cucumber (Cucumis sativus L.) plants were precultured for 7 days in either optimal (10 µm) or low (0.5 µm) Fe conditions and then grown for further 5 days in a N-free nutrient solution with (+Fe) or without (-Fe) 10 µm Fe. Thereafter NO3- (4 mm) was added to the nutrient solution for 24 h and, concomitantly, half of the -Fe plants were treated with 1 µm Fe complexed to water extractable humic substances (WEHS). Supply of NO3- to +Fe-N-deprived plants caused a large induction in the capacity to take up the anion by roots, which was accompanied by a rise in root-shoot NO3- concentration. The -Fe plants showed a lower level of induction of NO3- uptake and hence a lower accumulation of the anion in the tissues, these effects being reversed by supply of Fe-WEHS. Supply of either NO3-- or NH4+-N (+/- Fe-WEHS) to -Fe plants promoted the development of the root FeIII-chelate reductase activity, but the capacity of roots to take up the Fe2+ remained unaffected. Results show that an inadequate Fe supply can limit the acquisition of NO3-, whereas NO3- supply can affect Fe uptake by influencing the development and maintenance of a high FeIII-chelate reducing capacity.
Collapse
Affiliation(s)
- Miroslav Nikolic
- Center for Multidisciplinary Studies of the Belgrade University, Serbia
| | - Stefano Cesco
- Department of Agriculture and Environmental Sciences, University of Udine, Italy
| | - Volker Römheld
- Institute of Plant Nutrition (330), University of Hohenheim, Germany
| | - Zeno Varanini
- Department of Sciences, Technologies and Marketing of Grapevine and Wine, University of Verona, Italy
| | - Roberto Pinton
- Department of Agriculture and Environmental Sciences, University of Udine, Italy
| |
Collapse
|
14
|
Zhao T, Ling HQ. Effects of pH and nitrogen forms on expression profiles of genes involved in iron homeostasis in tomato. PLANT, CELL & ENVIRONMENT 2007; 30:518-27. [PMID: 17324237 DOI: 10.1111/j.1365-3040.2007.01638.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we investigated the effects of pH and nitrogen forms on iron homeostasis and the expression profiles of genes involved in iron uptake and metabolism using tomato cultivar T3238 and its iron-inefficient mutant T3238fer. We showed that high external pH led to increased expression of four iron uptake genes (LeIRT1, LeIRT2, LeFRO1, LeNRAMP1) regardless of the nitrogen sources. Interestingly, the transcript level of FER was decreased at high pH and increased at low pH. In iron-inefficient mutant T3238fer, the expression of LeFRO1, LeIRT1 and LeNRAMP1 was much less than wild type under the culture conditions with high pH and on the non-buffered agar medium with NO(3) (-) as the sole N source, demonstrating that FER protein is required for the increased expression of LeFRO1, LeIRT1 and LeNRAMP1 under culture conditions with high pH. Considering the paradoxical expression patterns of FER to LeFRO1, LeIRT1 and LeNRAMP1 in T3238, we speculate that FER is essential, but is not the limited factor for the transcriptional regulation of the three iron uptake genes. In conclusion, the alteration of rhizosphere pH by assimilating NO(3) (-) or NH(4) (+) influenced Fe availability and consequently affected iron homeostasis in tomato. The enhanced expression of LeFRO1, LeIRT1 and LeNRAMP1 under the culture condition with high pH or on agar media with NO(3) (-) as the sole N source might be a consequence of reduced iron availability in the solution or agar medium at high pH.
Collapse
Affiliation(s)
- Ting Zhao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Datun Road, Chaoyang District, Beijing 100101, China
| | | |
Collapse
|
15
|
Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. PLANT PHYSIOLOGY 2006; 141:1446-58. [PMID: 16815956 PMCID: PMC1533956 DOI: 10.1104/pp.106.082586] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Here, we describe two members of the Arabidopsis (Arabidopsis thaliana) Yellow Stripe-Like (YSL) family, AtYSL1 and AtYSL3. The YSL1 and YSL3 proteins are members of the oligopeptide transporter family and are predicted to be integral membrane proteins. YSL1 and YSL3 are similar to the maize (Zea mays) YS1 phytosiderophore transporter (ZmYS1) and the AtYSL2 iron (Fe)-nicotianamine transporter, and are predicted to transport metal-nicotianamine complexes into cells. YSL1 and YSL3 mRNAs are expressed in both root and shoot tissues, and both are regulated in response to the Fe status of the plant. Beta-glucuronidase reporter expression, driven by YSL1 and YSL3 promoters, reveals expression patterns of the genes in roots, leaves, and flowers. Expression was highest in senescing rosette leaves and cauline leaves. Whereas the single mutants ysl1 and ysl3 had no visible phenotypes, the ysl1ysl3 double mutant exhibited Fe deficiency symptoms, such as interveinal chlorosis. Leaf Fe concentrations are decreased in the double mutant, whereas manganese, zinc, and especially copper concentrations are elevated. In seeds of double-mutant plants, the concentrations of Fe, zinc, and copper are low. Mobilization of metals from leaves during senescence is impaired in the double mutant. In addition, the double mutant has reduced fertility due to defective anther and embryo development. The proposed physiological roles for YSL1 and YSL3 are in delivery of metal micronutrients to and from vascular tissues.
Collapse
Affiliation(s)
- Brian M Waters
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Schönherr J, Fernández V, Schreiber L. Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:4484-92. [PMID: 15913315 DOI: 10.1021/jf050453t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe hydroxide precipitates on CMs. These results explain why in the past foliar application of Fe compounds had limited success. Inorganic Fe salts are instable and phytotoxic because of low pH, while Fe chelates penetrate slowly and 100% humidity is required for significant penetration rates. Concentrations as low as reasonably possible should be used. These physical facts are expected to apply to stomatous leaf surfaces as well, but absolute rates probably depend on leaf age and plant species. High humidity in stagnant air layers may favor penetration rates across stomatous leaf surfaces when humidity in bulk air is below 100%.
Collapse
Affiliation(s)
- Jörg Schönherr
- Institute of Vegetable and Fruit Science, University of Hannover, Am Steinberg 3, 31157 Sarstedt, Germany
| | | | | |
Collapse
|
17
|
Graziano M, Lamattina L. Nitric oxide and iron in plants: an emerging and converging story. TRENDS IN PLANT SCIENCE 2005; 10:4-8. [PMID: 15642517 DOI: 10.1016/j.tplants.2004.12.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although iron is plentiful, it exists primarily in its insoluble form and is therefore not freely available to plants. Thus, complex strategies involving chelators, production of reductive agents, reductase activities, proton-mediated processes, specialized storage proteins, and others, act in concert to mobilize iron from the environment into the plant and within the plant. Because of its fundamental role in plant productivity and ultimately in human nutrition, several unsolved and central questions concerning sensing, trafficking, homeostasis and delivery of iron in plants are currently a matter of intense debate. Here, we discuss some recent studies focusing on iron nutrition in plants as well as evidence from iron homeostasis in animals and propose a new scenario involving the formation of nitric oxide and iron-nitrosyl complexes as part of the dynamic network that governs plant iron homeostasis.
Collapse
Affiliation(s)
- Magdalena Graziano
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | |
Collapse
|