1
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
2
|
Sun L, Di DW, Li G, Li Y, Kronzucker HJ, Shi W. Transcriptome analysis of rice (Oryza sativa L.) in response to ammonium resupply reveals the involvement of phytohormone signaling and the transcription factor OsJAZ9 in reprogramming of nitrogen uptake and metabolism. JOURNAL OF PLANT PHYSIOLOGY 2020; 246-247:153137. [PMID: 32112956 DOI: 10.1016/j.jplph.2020.153137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 05/28/2023]
Abstract
NH4+ is not only the primary nitrogen for rice, a well-known NH4+ specialist, but is also the chief limiting factor for its production. Limiting NH4+ triggers a series of physiological and biochemical responses that help rice optimise its nitrogen acquisition. However, the dynamic nature and spatial distribution of the adjustments at the whole plant level during this response are still unknown. Here, nitrogen-starved rice seedlings were treated with 0.1 mM (NH4)2SO4 for 4 or 12 h, and then the shoots and roots were harvested for RNA-Seq analysis. We identified 138 and 815 differentially expressed genes (DEGs) in shoots, and 597 and 1074 in roots following 4 and 12 h treatment, respectively. Up-regulated DEGs mainly participated in phenylpropanoid, sugar, and amino acid metabolism, which was confirmed by chemical content analysis. The transcription factor OsJAZ9 was the most pronouncedly induced component under low NH4+ in roots, and a significant increase in root growth, NH4+ absorption, amino acid, and sugar metabolism in response to resupplied NH4+ following nitrogen starvation was identified in JAZ9ox (OsJAZ9-overexpressed) and coi1 (OsCOI1-RNAi). Our data provide comprehensive insight into the whole-plant transcriptomic response in terms of metabolic processes and signaling transduction to a low-NH4+ signal, and identify the transcription factor OsJAZ9 and its involvement in the regulation of carbon/nitrogen metabolism as central to the response to low NH4+.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, Jiangsu, 210008, China; State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu, 210095, China.
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, Jiangsu, 210008, China.
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, Jiangsu, 210008, China.
| | - Yilin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, Jiangsu, 210008, China.
| | - Herbert J Kronzucker
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia; Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
3
|
Asins MJ, Albacete A, Martinez-Andujar C, Pérez-Alfocea F, Dodd IC, Carbonell EA, Dieleman JA. Genetic analysis of rootstock-mediated nitrogen (N) uptake and root-to-shoot signalling at contrasting N availabilities in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:94-106. [PMID: 28818388 DOI: 10.1016/j.plantsci.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 05/16/2023]
Abstract
Selecting rootstocks for high nitrogen acquisition ability may allow decreased N fertilizer application without reducing tomato yields, minimizing environmental nitrate pollution. A commercial hybrid tomato variety was grafted on a genotyped population of 130 recombinant inbred lines (RILs) derived from Solanum pimpinellifolium, and compared with self- and non-grafted controls under contrasting nitrate availabilities (13.8 vs 1.0mM) in the nutrient solution. Grafting itself altered xylem sap composition under N-sufficient conditions, particularly Na+ (8.75-fold increase) concentration. N deprivation decreased shoot dry weight by 72.7% across the grafted RIL population, and one RIL rootstock allowed higher total leaf N content than the best of controls, suggesting more effective N uptake. Sixty-two significant QTLs were detected by multiple QTL mapping procedure for leaf N concentration (LNC), vegetative growth, and the xylem sap concentrations of Mn and four phytohormone groups (cytokinins, gibberellins, salicylic acid and jasmonic acid). Only three LNC QTLs could be common between nitrogen treatments. Clustering of rootstock QTLs controlling LNC, leaf dry weight and xylem sap salicylic acid concentration in chromosome 9 suggests a genetic relationship between this rootstock phytohormone and N uptake efficiency. Some functional candidate genes found within 2 Mbp intervals of LNC and hormone QTLs are discussed.
Collapse
Affiliation(s)
- M J Asins
- Instituto Valenciano de Investigaciones Agrarias, Carretera de Moncada a Náquera Km 4.5, Apartado Oficial, 46113 Moncada, Valencia, Spain.
| | - A Albacete
- CEBAS, CSIC, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | | | - F Pérez-Alfocea
- CEBAS, CSIC, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | - I C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - E A Carbonell
- Instituto Valenciano de Investigaciones Agrarias, Carretera de Moncada a Náquera Km 4.5, Apartado Oficial, 46113 Moncada, Valencia, Spain
| | - J A Dieleman
- Wageningen University & Research, Business Unit Greenhouse Horticulture, P.O. Box 644, 6700 AP Wageningen, The Netherlands
| |
Collapse
|
4
|
Forchhammer K, Lüddecke J. Sensory properties of the PII signalling protein family. FEBS J 2015; 283:425-37. [PMID: 26527104 DOI: 10.1111/febs.13584] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent.
Collapse
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| | - Jan Lüddecke
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| |
Collapse
|
5
|
D'Apuzzo E, Valkov VT, Parlati A, Omrane S, Barbulova A, Sainz MM, Lentini M, Esposito S, Rogato A, Chiurazzi M. PII Overexpression in Lotus japonicus Affects Nodule Activity in Permissive Low-Nitrogen Conditions and Increases Nodule Numbers in High Nitrogen Treated Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:432-42. [PMID: 25390190 DOI: 10.1094/mpmi-09-14-0285-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report here the first characterization of a GLNB1 gene coding for the PII protein in leguminous plants. The main purpose of this work was the investigation of the possible roles played by this multifunctional protein in nodulation pathways. The Lotus japonicus LjGLB1 gene shows a significant transcriptional regulation during the light-dark cycle and different nitrogen availability, conditions that strongly affect nodule formation, development, and functioning. We also report analysis of the spatial profile of expression of LjGLB1 in root and nodule tissues and of the protein's subcellular localization. Transgenic L. japonicus lines overexpressing the PII protein were obtained and tested for the analysis of the symbiotic responses in different conditions. The uncoupling of PII from its native regulation affects nitrogenase activity and nodule polyamine content. Furthermore, our results suggest the involvement of PII in the signaling of the nitrogen nutritional status affecting the legumes' predisposition for nodule formation.
Collapse
Affiliation(s)
- Enrica D'Apuzzo
- 1 Institute of Biosciences and Bioresources, CNR, Via P. Castellino 111, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
7
|
Steinhauser D, Fernie AR, Araújo WL. Unusual cyanobacterial TCA cycles: not broken just different. TRENDS IN PLANT SCIENCE 2012; 17:503-9. [PMID: 22658681 DOI: 10.1016/j.tplants.2012.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 05/03/2023]
Abstract
As a fundamental energy-conserving process common to all living organisms, respiration is responsible for the oxidation of respiratory substrates to drive ATP synthesis. Accordingly, it has long been accepted that a complete tricarboxylic acid (TCA) cycle is necessary for respiratory energy production. Cyanobacteria, similar to some other prokaryotes, appeared to have an incomplete TCA cycle because they lack the enzyme 2-oxoglutarate dehydrogenase (OGDH). However, it has recently been reported that the cycle can be completed by the action of two alternative enzymes. In this opinion article, we discuss the progress being made to elucidate the nature of the TCA cycles in cyanobacteria and plants and outline open questions concerning the functional significance of this unusual metabolic feature in a broader evolutionary context.
Collapse
Affiliation(s)
- Dirk Steinhauser
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | |
Collapse
|
8
|
Araújo WL, Tohge T, Nunes-Nesi A, Daloso DM, Nimick M, Krahnert I, Bunik VI, Moorhead GBG, Fernie AR. Phosphonate analogs of 2-oxoglutarate perturb metabolism and gene expression in illuminated Arabidopsis leaves. FRONTIERS IN PLANT SCIENCE 2012; 3:114. [PMID: 22876250 PMCID: PMC3410613 DOI: 10.3389/fpls.2012.00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 05/14/2012] [Indexed: 05/19/2023]
Abstract
Although the role of the 2-oxoglutarate dehydrogenase complex (2-OGDHC) has previously been demonstrated in plant heterotrophic tissues its role in photosynthetically active tissues remains poorly understood. By using a combination of metabolite and transcript profiles we here investigated the function of 2-OGDHC in leaves of Arabidopsis thaliana via use of specific phosphonate inhibitors of the enzyme. Incubation of leaf disks with the inhibitors revealed that they produced the anticipated effects on the in situ enzyme activity. In vitro experiments revealed that succinyl phosphonate (SP) and a carboxy ethyl ester of SP are slow-binding inhibitors of the 2-OGDHC. Our results indicate that the reduced respiration rates are associated with changes in the regulation of metabolic and signaling pathways leading to an imbalance in carbon-nitrogen metabolism and cell homeostasis. The inducible alteration of primary metabolism was associated with altered expression of genes belonging to networks of amino acids, plant respiration, and sugar metabolism. In addition, by using isothermal titration calorimetry we excluded the possibility that the changes in gene expression resulted from an effect on 2-oxoglutarate (2OG) binding to the carbon/ATP sensing protein PII. We also demonstrated that the 2OG degradation by the 2-oxoglutarate dehydrogenase strongly influences the distribution of intermediates of the tricarboxylic acid (TCA) cycle and the GABA shunt. Our results indicate that the TCA cycle activity is clearly working in a non-cyclic manner upon 2-OGDHC inhibition during the light period.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Danilo M. Daloso
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Departamento de Biologia Vegetal, Universidade Federal de ViçosaViçosa, Minas Gerais, Brazil
| | - Mhairi Nimick
- Department of Biological Sciences, University of CalgaryCalgary, AB, Canada
| | - Ina Krahnert
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| | - Victoria I. Bunik
- A.N. Belozersly Institute of Physico-Chemical Biology, Moscow State UniversityMoscow, Russia
| | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- *Correspondence: Alisdair R. Fernie, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany. e-mail:
| |
Collapse
|
9
|
Castro Marín I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, Osuna D. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. PLANTA 2011; 233:539-52. [PMID: 21113723 PMCID: PMC3043248 DOI: 10.1007/s00425-010-1316-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 11/04/2010] [Indexed: 05/20/2023]
Abstract
The transition from vegetative growth to reproduction is a major developmental event in plants. To maximise reproductive success, its timing is determined by complex interactions between environmental cues like the photoperiod, temperature and nutrient availability and internal genetic programs. While the photoperiod- and temperature- and gibberellic acid-signalling pathways have been subjected to extensive analysis, little is known about how nutrients regulate floral induction. This is partly because nutrient supply also has large effects on vegetative growth, making it difficult to distinguish primary and secondary influences on flowering. A growth system using glutamine supplementation was established to allow nitrate to be varied without a large effect on amino acid and protein levels, or the rate of growth. Under nitrate-limiting conditions, flowering was more rapid in neutral (12/12) or short (8/16) day conditions in C24, Col-0 and Laer. Low nitrate still accelerated flowering in late-flowering mutants impaired in the photoperiod, temperature, gibberellic acid and autonomous flowering pathways, in the fca co-2 ga1-3 triple mutant and in the ft-7 soc1-1 double mutant, showing that nitrate acts downstream of other known floral induction pathways. Several other abiotic stresses did not trigger flowering in fca co-2 ga1-3, suggesting that nitrate is not acting via general stress pathways. Low nitrate did not further accelerate flowering in long days (16/8) or in 35S::CO lines, and did override the late-flowering phenotype of 35S::FLC lines. We conclude that low nitrate induces flowering via a novel signalling pathway that acts downstream of, but interacts with, the known floral induction pathways.
Collapse
Affiliation(s)
| | - Irene Loef
- Botany Institute, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Linda Bartetzko
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Iain Searle
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | - Daniel Osuna
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
- Present Address: Dpto. de Fisiología Vegetal, Centro Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, C/Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
10
|
Nunes-Nesi A, Fernie AR, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. MOLECULAR PLANT 2010; 3:973-96. [PMID: 20926550 DOI: 10.1093/mp/ssq049] [Citation(s) in RCA: 415] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In addition to light and water, CO(2) and mineral elements are required for plant growth and development. Among these factors, nitrogen is critical, since it is needed to synthesize amino acids, which are the building elements of protein, nucleotides, chlorophyll, and numerous other metabolites and cellular components. Therefore, nitrogen is required by plants in higher quantities and this investment in nitrogen supports the use of CO(2), water, and inorganic nitrogen to produce sugars, organic acids, and amino acids, the basic building blocks of biomass accumulation. This system is maintained by complex metabolic machinery, which is regulated at different levels according to environmental factors such as light, CO(2), and nutrient availability. Plants integrate these signals via a signaling network, which involves metabolites as well as nutrient-sensing proteins. Due to its importance, much research effort has been expended to understand how carbon and nitrogen metabolism are integrated and regulated according to the rates of photosynthesis, photorespiration, and respiration. Thus, in this article, we both discuss recent advances in carbon/nitrogen metabolisms as well as sensing and signaling systems in illuminated leaves of C3-plants and provide a perspective of the type of experiments that are now required in order to take our understanding to a higher level.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
11
|
Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2009; 32:300-18. [PMID: 19054347 DOI: 10.1111/j.1365-3040.2008.01921.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We have established a simple soil-based experimental system that allows a small and sustained restriction of growth of Arabidopsis by low nitrogen (N). Plants were grown in a large volume of a peat-vermiculite mix that contained very low levels of inorganic N. As a control, inorganic N was added in solid form to the peat-vermiculite mix, or plants were grown in conventional nutrient-rich solids. The low N growth regime led to a sustained 20% decrease of the relative growth rate over a period of 2 weeks, resulting in a two- to threefold decrease in biomass in 35- to 40-day-old plants. Plants in the low N regime contained lower levels of nitrate, lower nitrate reductase activity, lower levels of malate, fumarate and other organic acids and slightly higher levels of starch, as expected from published studies of N-limited plants. However, their rosette protein content was unaltered, and total and many individual amino acid levels increased compared with N-replete plants. This metabolic phenotype reveals that Arabidopsis responds adaptively to low N by decreasing the rate of growth, while maintaining the overall protein content, and maintaining or even increasing the levels of many amino acids.
Collapse
Affiliation(s)
- Hendrik Tschoep
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Forchhammer K. PII signal transducers: novel functional and structural insights. Trends Microbiol 2008; 16:65-72. [DOI: 10.1016/j.tim.2007.11.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 11/29/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
|
14
|
Gao P, Xin Z, Zheng ZL. The OSU1/QUA2/TSD2-encoded putative methyltransferase is a critical modulator of carbon and nitrogen nutrient balance response in Arabidopsis. PLoS One 2008; 3:e1387. [PMID: 18167546 PMCID: PMC2148111 DOI: 10.1371/journal.pone.0001387] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 12/11/2007] [Indexed: 02/06/2023] Open
Abstract
The balance between carbon (C) and nitrogen (N) nutrients must be tightly coordinated so that cells can optimize their opportunity for metabolism, growth and development. However, the C and N nutrient balance perception and signaling mechanism remains poorly understood. Here, we report the isolation and characterization of two allelic oversensitive to sugar 1 mutants (osu1-1, osu1-2) in Arabidopsis thaliana. Using the cotyledon anthocyanin accumulation and root growth inhibition assays, we show that the osu1 mutants are more sensitive than wild-type to both of the imbalanced C/N conditions, high C/low N and low C/high N. However, under the balanced C/N conditions (low C/low N or high C/high N), the osu1 mutants have similar anthocyanin levels and root lengths as wild-type. Consistently, the genes encoding two MYB transcription factors (MYB75 and MYB90) and an Asn synthetase isoform (ASN1) are strongly up-regulated by the OSU1 mutation in response to high C/low N and low C/high N, respectively. Furthermore, the enhanced sensitivity of osu1-1 to high C/low N with respect to anthocyanin accumulation but not root growth inhibition can be suppressed by co-suppression of MYB75, indicating that MYB75 acts downstream of OSU1 in the high C/low N imbalance response. Map-based cloning reveals that OSU1 encodes a member of a large family of putative methyltransferases and is allelic to the recently reported QUA2/TSD2 locus identified in genetic screens for cell-adhesion-defective mutants. Accumulation of OSU1/QUA2/TSD2 transcript was not regulated by C and N balance, but the OSU1 promoter was slightly more active in the vascular system. Taken together, our results show that the OSU1/QUA2/TSD2-encoded putative methyltransferase is required for normal C/N nutrient balance response in plants.
Collapse
Affiliation(s)
- Peng Gao
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, United States of America
| | - Zeyu Xin
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, United States of America
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, New York, United States of America
- Plant Sciences PhD Subprogram, Graduate School and University Center, City University of New York, New York, New York, United States of America
| |
Collapse
|
15
|
Mizuno Y, Moorhead GBG, Ng KKS. Structural basis for the regulation of N-acetylglutamate kinase by PII in Arabidopsis thaliana. J Biol Chem 2007; 282:35733-40. [PMID: 17913711 DOI: 10.1074/jbc.m707127200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK.
Collapse
Affiliation(s)
- Yutaka Mizuno
- Department of Biological Sciences and the Alberta Ingenuity Centre for Carbohydrate Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
16
|
Osanai T, Tanaka K. Keeping in touch with PII: PII-interacting proteins in unicellular cyanobacteria. PLANT & CELL PHYSIOLOGY 2007; 48:908-14. [PMID: 17566056 DOI: 10.1093/pcp/pcm072] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
PII protein is conserved among bacteria, archaea and plants, and is thought to function as a carbon/nitrogen balance sensor in these organisms. Recently, several proteins that specifically interact with PII, including a PII phosphatase (PphA), an amino acid biosynthetic enzyme (NAGK), a probable membrane channel (PamA) and a small protein (PipX) that also interacts with the nitrogen transcription factor NtcA, have been identified in the unicellular cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. These findings and subsequent analyses have suggested that PII protein controls carbon and nitrogen metabolism at the gene expression level as well as at the protein activity level. In this review, the functions of PII are envisaged based on functional analyses of the PII-interacting proteins identified in cyanobacteria.
Collapse
Affiliation(s)
- Takashi Osanai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032 Japan
| | | |
Collapse
|
17
|
Moorhead GB, Ferrar TS, Chen YM, Mizuno Y, Smith CS, Ng KK, Muench DG, Lohmeier-Vogel E. The higher plant PII signal transduction protein: structure, function and properties. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The PII carbon/nitrogen sensing protein was discovered in Escherichia coli (Migula 1895) Castellani and Chalmers 1919, over 40 years ago. Orthologues have been discovered in three kingdoms of life making it one of the most ancient and conserved signaling proteins known. Recent advances in the field have established its primary binding partner in plants as N-acetyl glutamate kinase and the crystal structure has revealed features unique to plants that likely contribute to its function in vivo. Here, we review the properties, function, and novel structural features of this chloroplast-localized metabolic sensor of higher plants.
Collapse
Affiliation(s)
- Greg B.G. Moorhead
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Tony S. Ferrar
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Yan M. Chen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Yutaka Mizuno
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Catherine S. Smith
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Kenneth K.S. Ng
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Douglas G. Muench
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Elke Lohmeier-Vogel
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
18
|
Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:320-37. [PMID: 17355433 DOI: 10.1111/j.1365-313x.2007.03050.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Abundant nitrogen is required for the optimal growth and development of plants, while numerous biotic and abiotic factors that consume soil nitrogen frequently create a nitrogen limitation growth condition. To cope with this, plants have evolved a suite of adaptive responses to nitrogen limitation. However, the molecular mechanism governing the adaptability of plants to nitrogen limitation is totally unknown because no reported mutant defines this trait. Here we isolated an Arabidopsis mutant, nla (nitrogen limitation adaptation), and identified the NLA gene as an essential component in this molecular mechanism. Supplied with insufficient inorganic nitrogen (nitrate or ammonium), the nla mutant failed to develop the essential adaptive responses to nitrogen limitation, but senesced much earlier and more rapidly than did the wild type. Under other stress conditions including low phosphorus nutrient, drought and high temperature, the nla mutant did not show this early senescence phenotype, but closely resembled the wild type in growth and development. Map-based cloning of NLA revealed that this gene encodes a RING-type ubiquitin ligase, and nla is a deletion mutation which does not code for the RING domain in the NLA protein. The NLA protein is localized to the nuclear speckles, where this protein interacts with the Arabidopsis ubiquitin conjugase 8 (AtUBC8). In the nla mutant, the deletion of the RING domain from NLA altered its subcellular localization, disrupted the interaction between NLA and AtUBC8 and caused the early senescence phenotype induced by low inorganic nitrogen. All the results indicate that NLA is a positive regulator for the development of the adaptability of Arabidopsis to nitrogen limitation.
Collapse
Affiliation(s)
- Mingsheng Peng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
19
|
Abstract
Plants often grow in soils that contain very low concentrations of the macronutrients nitrogen, phosphorus, potassium, and sulfur. To adapt and grow in nutrient-deprived environments plants must sense changes in external and internal mineral nutrient concentrations and adjust growth to match resource availability. The sensing and signal transduction networks that control plant responses to nutrient deprivation are not well characterized for nitrogen, potassium, and sulfur deprivation. One branch of the signal transduction cascade related to phosphorus-deprivation response has been defined through the identification of a transcription factor that is regulated by sumoylation. Two different microRNAs play roles in regulating gene expression under phosphorus and sulfur deprivation. Reactive oxygen species increase rapidly after mineral nutrient deprivation and may be one upstream mediator of nutrient signaling. A number of molecular analyses suggest that both short-term and longer-term responses will be important in understanding the progression of signaling events when the external, then internal, supplies of nutrients become depleted.
Collapse
|
20
|
|
21
|
|
22
|
Heinrich A, Woyda K, Brauburger K, Meiss G, Detsch C, Stülke J, Forchhammer K. Interaction of the membrane-bound GlnK-AmtB complex with the master regulator of nitrogen metabolism TnrA in Bacillus subtilis. J Biol Chem 2006; 281:34909-17. [PMID: 17001076 DOI: 10.1074/jbc.m607582200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII proteins are widespread and highly conserved signal transduction proteins occurring in bacteria, Archaea, and plants and play pivotal roles in controlling nitrogen assimilatory metabolism. This study reports on biochemical properties of the PII-homologue GlnK (originally termed NrgB) in Bacillus subtilis (BsGlnK). Like other PII proteins, the native BsGlnK protein has a trimeric structure and readily binds ATP in the absence of divalent cations, whereas 2-oxoglutarate is only weakly bound. In contrast to other PII-like proteins, Mg2+ severely affects its ATP-binding properties. BsGlnK forms a tight complex with the membrane-bound ammonium transporter AmtB (NrgA), from which it can be relieved by millimolar concentrations of ATP. Immunoprecipitation and co-localization experiments identified a novel interaction between the BsGlnK-AmtB complex and the major transcription factor of nitrogen metabolism, TnrA. In vitro in the absence of ATP, TnrA is completely tethered to membrane (AmtB)-bound GlnK, whereas in extracts from BsGlnK- or AmtB-deficient cells, TnrA is entirely soluble. The presence of 4 mm ATP leads to concomitant solubilization of BsGlnK and TnrA. This ATP-dependent membrane re-localization of TnrA by BsGlnK/AmtB may present a novel mechanism to control the global nitrogen-responsive transcription regulator TnrA in B. subtilis under certain physiological conditions.
Collapse
Affiliation(s)
- Annette Heinrich
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W, Hurry V. The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:720-34. [PMID: 16923014 DOI: 10.1111/j.1365-313x.2006.02821.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cold acclimation and over-wintering by herbaceous plants are energetically expensive and are dependent on functional plastid metabolism. To understand how the stroma and the lumen proteomes adapt to low temperatures, we have taken a proteomic approach (difference gel electrophoresis) to identify proteins that changed in abundance in Arabidopsis chloroplasts during cold shock (1 day), and short- (10 days) and long-term (40 days) acclimation to 5 degrees C. We show that cold shock (1 day) results in minimal change in the plastid proteomes, while short-term (10 days) acclimation results in major changes in the stromal but few changes in the lumen proteome. Long-term acclimation (40 days) results in modulation of the proteomes of both compartments, with new proteins appearing in the lumen and further modulations in protein abundance occurring in the stroma. We identify 43 differentially displayed proteins that participate in photosynthesis, other plastid metabolic functions, hormone biosynthesis and stress sensing and signal transduction. These findings not only provide new insights into the cold response and acclimation of Arabidopsis, but also demonstrate the importance of studying changes in protein abundance within the relevant cellular compartment.
Collapse
Affiliation(s)
- Estelle Goulas
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhu Y, Conrad MC, Zhang Y, Roberts GP. Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals. J Bacteriol 2006; 188:1866-74. [PMID: 16484197 PMCID: PMC1426566 DOI: 10.1128/jb.188.5.1866-1874.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodospirillum rubrum, NifA, the transcriptional activator for the nif genes, is posttranslationally activated only by the uridylylated form of GlnB, one of three P(II) homologs in the organism. We have used the yeast two-hybrid system to detect variants of GlnB that interact better with NifA than does wild-type GlnB. When examined for physiological effects in R. rubrum, these GlnB* variants activated NifA in the presence of NH(4)(+), which normally blocks NifA activation completely, and in the absence of GlnD, whose uridylylation of GlnB is also normally essential for NifA activation. When these variants were tested in the two-hybrid system for their interaction with NtrB, a receptor that should interact with the nonuridylylated form of GlnB, they were uniformly weaker than wild-type GlnB in that interaction. When expressed in R. rubrum either as single-copy integrants or on multiple-copy plasmids, these variants were also dramatically altered in terms of their ability to regulate several other receptors involved in nitrogen metabolism, including GlnE, NtrB/NtrC, and DRAT (dinitrogenase reductase ADP-ribosyl transferase)-DRAG (dinitrogenase reductase-activating glycohydrolase). The consistent pattern throughout is that these GlnB variants partially mimic the uridylylated form of wild-type GlnB, even under nitrogen-excess conditions and in strains lacking GlnD. The results suggest that the role of uridylylation of GlnB is primarily to shift the equilibrium of GlnB from a "nitrogen-sufficient" form to a "nitrogen-deficient" form, each of which interacts with different but overlapping receptor proteins in the cell. These GlnB variants apparently shift that equilibrium through direct structural changes.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
25
|
Fan X, Gordon-Weeks R, Shen Q, Miller AJ. Glutamine transport and feedback regulation of nitrate reductase activity in barley roots leads to changes in cytosolic nitrate pools. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:1333-40. [PMID: 16547128 DOI: 10.1093/jxb/erj110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The size of tissue amino acid pools in plants may indicate nitrogen status and provide a signal that can regulate nitrate uptake and assimilation. The effects of treating barley roots with glutamine have been examined, first to identify the transport system for the uptake of the amino acid and then to measure root NR activity and cellular pools of nitrate. Treating N replete roots with glutamine elicited a change in the cell membrane potential and the size of this response was concentration dependent. In addition, the size of the electrical change depended on the previous exposures of the root to glutamine and was lost after a few cycles of treatment. Whole root tissue pools of glutamine and phenylalanine increased when roots were incubated in a nutrient solution containing 10 mM nitrate and 1 mM glutamine. Treating roots with 1 mM glutamine increased cytosolic nitrate activity from 3 mM to 7 mM and this change peaked after 2 h of treatment. Parallel measurements of root nitrate reductase activity during treatment with 1 mM glutamine showed a decrease. These measurements provide evidence for feedback regulation on NR activity that result in changes in cytosolic nitrate activity. After 6 h in glutamine both root NR activity and cytosolic nitrate activity returned to pretreatment values, while tissue concentrations of glutamine and phenylalanine remained elevated. The data are discussed in terms of the mechanisms that are most likely to be responsible for the changes in cytosolic nitrate.
Collapse
Affiliation(s)
- Xiaorong Fan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | |
Collapse
|
26
|
Chen YM, Ferrar TS, Lohmeier-Vogel EM, Lohmeir-Vogel E, Morrice N, Mizuno Y, Berenger B, Ng KKS, Muench DG, Moorhead GBG. The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase. J Biol Chem 2005; 281:5726-33. [PMID: 16377628 DOI: 10.1074/jbc.m510945200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PII proteins are key mediators of the cellular response to carbon and nitrogen status and are found in all domains of life. In eukaryotes, PII has only been identified in red algae and plants, and in these organisms, PII localizes to the plastid. PII proteins perform their role by assessing cellular carbon, nitrogen, and energy status and conferring this information to other proteins through protein-protein interaction. We have used affinity chromatography and mass spectrometry to identify the PII-binding proteins of Arabidopsis thaliana. The major PII-interacting protein is the chloroplast-localized enzyme N-acetyl glutamate kinase, which catalyzes the key regulatory step in the pathway to arginine biosynthesis. The interaction of PII with N-acetyl glutamate kinase was confirmed through pull-down, gel filtration, and isothermal titration calorimetry experiments, and binding was shown to be enhanced in the presence of the downstream product, arginine. Enzyme kinetic analysis showed that PII increases N-acetyl glutamate kinase activity slightly, but the primary function of binding is to relieve inhibition of enzyme activity by the pathway product, arginine. Knowing the identity of PII-binding proteins across a spectrum of photosynthetic and non-photosynthetic organisms provides a framework for a more complete understanding of the function of this highly conserved signaling protein.
Collapse
Affiliation(s)
- Yan M Chen
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ferrario-Méry S, Bouvet M, Leleu O, Savino G, Hodges M, Meyer C. Physiological characterisation of Arabidopsis mutants affected in the expression of the putative regulatory protein PII. PLANTA 2005; 223:28-39. [PMID: 16133214 DOI: 10.1007/s00425-005-0063-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 06/07/2005] [Indexed: 05/04/2023]
Abstract
The PII signal transducing protein is involved in carbon/nitrogen (C/N) sensing in bacteria and cyanobacteria. In higher plants the function of the PII homolog GLB1 is not known. GLB1 transcripts were found in all plant organs tested, while in Arabidopsis leaves GLB1 expression and PII protein levels were not significantly affected by either the day/night cycle or N-nutrition. Its putative regulatory role in plants has been studied by analysing Arabidopsis thaliana T-DNA insertion lines in the GLB1 gene. These PII mutants showed an 80% (PIIV1 mutant) and 100% (PIIS2 mutant) reduced AtGLB1 transcript level and no detectable PII protein. They did not display an altered growth or developmental phenotype when grown under non-limiting conditions suggesting that the PII protein does not play a crucial role in plants. However, in vitro grown PII mutants did show a higher sensitivity to nitrite (NO (2) (-) ) compared to the wild-type plants. This observation is reminiscent of the role of PII in the regulation of NO (2) (-) metabolism in cyanobacteria. Furthermore, when grown hydroponically, the PII mutants displayed a slight increase in carbohydrate (starch and sugars) levels in response to N starvation and a slight decrease in the levels of ammonium (NH (4) (+) ) and amino acids (mainly Gln) in response to NH (4) (+) resupply. Although the phenotypic changes are rather small in the mutant lines, these data support the hypothesis of a subtle involvement of the PII protein in the regulation of some steps of primary C and N metabolism.
Collapse
Affiliation(s)
- Sylvie Ferrario-Méry
- Unité de Nutrition Azotée des Plantes, INRA, Route de St. Cyr, 78026 Versailles Cedex, France.
| | | | | | | | | | | |
Collapse
|
28
|
Lohmeier-Vogel EM, Loukanina N, Ferrar TS, Moorhead GBG, Thorpe TA. N-acetyl glutamate kinase from Daucus carota suspension cultures: embryogenic expression profile, purification and characterization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:854-61. [PMID: 16289950 DOI: 10.1016/j.plaphy.2005.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/13/2005] [Accepted: 07/26/2005] [Indexed: 05/05/2023]
Abstract
In Daucus carota, N-acetylglutamate-5-phosphotransferase (NAGK; E.C. 2.7.2.8) specific activity was shown to correlate with the progression of somatic embryogenesis and was highest in the latter stages, where growth was most rapid. The enzyme was subsequently purified greater than 1200-fold using heat treatment, ammonium sulfate fractionation, gel filtration, anion exchange and dye ligand chromatography. Carrot NAGK was shown to have a subunit molecular weight of 31 kDa and form a hexamer. The Kms for NAG and ATP are 5.24 and 2.11 mM, respectively. Arginine (Arg) is a K-type allosteric inhibitor of the enzyme, and Hill coefficients in the order of 5 in the presence of Arg suggest that the enzyme is highly cooperative. D. carota NAGK does not bind to Arabidopsis thaliana PII affinity columns, nor does the A. thaliana PII increase NAGK specific activity, indicating its cellular location is probably different.
Collapse
Affiliation(s)
- Elke M Lohmeier-Vogel
- Biochemistry Division, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada T2N 1N4
| | | | | | | | | |
Collapse
|
29
|
Slocum RD. Genes, enzymes and regulation of arginine biosynthesis in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:729-45. [PMID: 16122935 DOI: 10.1016/j.plaphy.2005.06.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 06/17/2005] [Indexed: 05/04/2023]
Abstract
Arabidopsis genes encoding enzymes for each of the eight steps in L-arginine (Arg) synthesis were identified, based upon sequence homologies with orthologs from other organisms. Except for N-acetylglutamate synthase (NAGS; EC 2.3.1.1), which is encoded by two genes, all remaining enzymes are encoded by single genes. Targeting predictions for these enzymes, based upon their deduced sequences, and subcellular fractionation studies, suggest that most enzymes of Arg synthesis reside within the plastid. Synthesis of the L-ornthine (Orn) intermediate in this pathway from L-glutamate occurs as a series of acetylated intermediates, as in most other organisms. An N-acetylornithine:glutamate acetyltransferase (NAOGAcT; EC 2.3.1.35) facilitates recycling of the acetyl moiety during Orn formation (cyclic pathway). A putative N-acetylornithine deacetylase (NAOD; EC 3.5.1.16), which participates in the "linear" pathway for Orn synthesis in some organisms, was also identified. Previous biochemical studies have indicated that allosteric regulation of the first and, especially, the second steps in Orn synthesis (NAGS; N-acetylglutamate kinase (NAGK), EC 2.7.2.8) by the Arg end-product are the major sites of metabolic control of the pathway in organisms using the cyclic pathway. Gene expression profiling for pathway enzymes further suggests that NAGS, NAGK, NAOGAcT and NAOD are coordinately regulated in response to changes in Arg demand during plant growth and development. Synthesis of Arg from Orn is further coordinated with pyrimidine nucleotide synthesis, at the level of allocation of the common carbamoyl-P intermediate.
Collapse
Affiliation(s)
- Robert D Slocum
- Department of Biological Sciences, Goucher College, Baltimore, MD 21204-2794, USA.
| |
Collapse
|
30
|
Cantón FR, Suárez MF, Cánovas FM. Molecular aspects of nitrogen mobilization and recycling in trees. PHOTOSYNTHESIS RESEARCH 2005; 83:265-78. [PMID: 16143856 DOI: 10.1007/s11120-004-9366-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 05/03/2004] [Indexed: 05/04/2023]
Abstract
Plants have developed a variety of molecular strategies to use limiting nutrients with a maximum efficiency. N assimilated into biomolecules can be released in the form of ammonium by plant metabolic activities in various physiological processes such as photorespiration, the biosynthesis of phenylpropanoids or the mobilization of stored reserves. Thus, efficient reassimilation mechanisms are required to reincorporate liberated ammonium into metabolism and maintain N plant economy. Although the biochemistry and molecular biology of ammonium recycling in annual herbaceous plants has been previously reported, the recent advances in woody plants need to be reviewed. Moreover, it is important to point out that N recycling is quantitatively massive during some of these metabolic processes in trees, including seed germination, the onset of dormancy and resumption of active growth or the biosynthesis of lignin that takes place during wood formation. Therefore, woody plants constitute an excellent system as a model to study N mobilization and recycling. The aim of this paper is to provide an overview of different physiological processes in woody perennials that challenge the overall plant N economy by releasing important amounts of inorganic N in the form of ammonium.
Collapse
Affiliation(s)
- Francisco R Cantón
- Departamento de Biología Molecular y Bioquímica, Instituto Andaluz de Biotecnología, Unidad Asociada UMA-CSIC, Universidad de Málaga, Málaga 29071, Spain
| | | | | |
Collapse
|
31
|
Walch-Liu P, Filleur S, Gan Y, Forde BG. Signaling mechanisms integrating root and shoot responses to changes in the nitrogen supply. PHOTOSYNTHESIS RESEARCH 2005; 83:239-50. [PMID: 16143854 DOI: 10.1007/s11120-004-2080-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 07/07/2004] [Indexed: 05/04/2023]
Abstract
During their life cycle, plants must be able to adapt to wide variations in the supply of soil nitrogen (N). Changes in N availability, and in the relative concentrations of NO(3) (-)and NH(4) (+), are known to have profound regulatory effects on the N uptake systems in the root, on C and N metabolism throughout the plant, and on root and shoot morphology. Optimising the plant's responses to fluctuations in the N supply requires co-ordination of the pathways of C and N assimilation, as well as establishment of the appropriate allocation of resources between root and shoot growth. Achieving this integration of responses at the whole plant level implies long-distance signaling mechanisms that can communicate information about the current availability of N from root-to-shoot, and information about the C/N status of the shoot in the reverse direction. In this review we will discuss recent advances which have contributed to our understanding of these long-range signaling pathways.
Collapse
Affiliation(s)
- Pia Walch-Liu
- Department of Biological Sciences, Lancaster University, Lancaster LA1 4YQ, Bailrigg, UK
| | | | | | | |
Collapse
|
32
|
Sugiyama K, Hayakawa T, Kudo T, Ito T, Yamaya T. Interaction of N-acetylglutamate kinase with a PII-like protein in rice. PLANT & CELL PHYSIOLOGY 2004; 45:1768-78. [PMID: 15653795 DOI: 10.1093/pcp/pch199] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PII protein in bacteria is a sensor for 2-oxoglutarate and a transmitter for glutamine signaling. We identified an OsGlnB gene that encoded a bacterial PII-like protein in rice. Yeast two-hybrid analysis showed that an OsGlnB gene product interacted with N-acetylglutamate kinase 1 (OsNAGK1) and PII-like protein (OsGlnB) itself in rice. In cyanobacteria, NAGK is a key enzyme in arginine biosynthesis. Transient expression of OsGlnB cDNA or OsNAGK1 cDNA fused with sGFP in rice leaf blades strongly suggested that the PII-like protein as well as OsNAGK1 protein is located in chloroplasts. Both OsGlnB and OsNAGK1 genes were expressed in roots, leaf blades, leaf sheaths and spikelets of rice, and these two genes were coordinately expressed in leaf blades during the life span. Thus, PII-like protein in rice plants is potentially able to interact with OsNAGK1 protein in vivo. This finding will provide a clue to the precise physiological function of PII-like protein in rice.
Collapse
Affiliation(s)
- Kenjiro Sugiyama
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, 981-8555 Japan
| | | | | | | | | |
Collapse
|
33
|
Maheswaran M, Urbanke C, Forchhammer K. Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem 2004; 279:55202-10. [PMID: 15502156 DOI: 10.1074/jbc.m410971200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transduction protein P(II) from the cyanobacterium Synechococcus elongatus strain PCC 7942 forms a complex with the key enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK). Here we report the effect of complex formation on the catalytic properties of NAGK. Although pH and ion dependence are not affected, the catalytic efficiency of NAGK is strongly enhanced by binding of P(II), with K(m) decreasing by a factor of 10 and V(max) increasing 4-fold. In addition, arginine feedback inhibition of NAGK is strongly decreased in the presence of P(II), resulting in a tight control of NAGK activity under physiological conditions by P(II). Analysis of the NAGK-P(II) complex suggests that one P(II) trimer binds to one NAGK hexamer with a K(d) of approximately 3 nm. Complex formation is strongly affected by ATP and ADP. ADP is a strong inhibitor of complex formation, whereas ATP inhibits complex formation only in the absence of divalent cations or in the presence of Mg(2+) ions, together with increased 2-oxoglutarate concentrations. Ca(2+) is able to antagonize the negative effect of ATP and 2-oxoglutarate. ADP and ATP exert their adverse effect on NAGK-P(II) complex formation through binding to the P(II) protein.
Collapse
Affiliation(s)
- Mani Maheswaran
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|
34
|
Templeton GW, Moorhead GBG. A renaissance of metabolite sensing and signaling: from modular domains to riboswitches. THE PLANT CELL 2004; 16:2252-7. [PMID: 15342904 PMCID: PMC520930 DOI: 10.1105/tpc.104.160930] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- George W Templeton
- Department of Biological Sciences University of Calgary Calgary, AB T2N 1N4, Canada
| | | |
Collapse
|
35
|
Heinrich A, Maheswaran M, Ruppert U, Forchhammer K. The Synechococcus elongatus P signal transduction protein controls arginine synthesis by complex formation with N-acetyl-L-glutamate kinase. Mol Microbiol 2004; 52:1303-14. [PMID: 15165234 DOI: 10.1111/j.1365-2958.2004.04058.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This communication identifies, for the first time, a receptor protein for signal perception from the P(II) signal transduction protein in the cyanobacterium Synechococcus elongatus. P(II), a phosphoprotein that signals the carbon/nitrogen status of the cells, forms a tight complex with the key enzyme of the arginine biosynthetic pathway, N-acetylglutamate (NAG) kinase. In complex with P(II), the catalytic activity of NAG kinase is strongly enhanced. Complex formation does not require the effector molecules of P(II), 2-oxoglutarate and ATP, but it is highly susceptible to modifications at the phosphorylation site of P(II), Ser-49. Stable complexes were only formed with the non-phosphorylated form of P(II) but not with Ser-49 mutants. In accordance with these data, NAG kinase activity in S. elongatus extracts correlated with the phosphorylation state of P(II), with high NAG kinase activities corresponding to non-phosphorylated P(II) (nitrogen-excess conditions) and low activities to increased levels of P(II) phosphorylation (nitrogen-poor conditions), thus subjecting the key enzyme of arginine biosynthesis to global nitrogen control.
Collapse
Affiliation(s)
- Annette Heinrich
- Institut für Mikrobiologie und Molekularbiologie, Interdisziplinäres Forschungszentrum (IFZ), Justus-Liebig Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
36
|
Burillo S, Luque I, Fuentes I, Contreras A. Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 2004; 186:3346-54. [PMID: 15150219 PMCID: PMC415743 DOI: 10.1128/jb.186.11.3346-3354.2004] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 02/25/2004] [Indexed: 11/20/2022] Open
Abstract
PII, one of the most conserved signal transduction proteins, is believed to be a key player in the coordination of nitrogen assimilation and carbon metabolism in bacteria, archaea, and plants. However, the identity of PII receptors remains elusive, particularly in photosynthetic organisms. Here we used yeast two-hybrid approaches to identify new PII receptors and to explore the extent of conservation of PII signaling mechanisms between eubacteria and photosynthetic eukaryotes. Screening of Synechococcus sp. strain PCC 7942 libraries with PII as bait resulted in identification of N-acetyl glutamate kinase (NAGK), a key enzyme in the biosynthesis of arginine. The integrity of Ser49, a residue conserved in PII proteins from organisms that perform oxygenic photosynthesis, appears to be essential for NAGK binding. The effect of glnB mutations on NAGK activity is consistent with positive regulation of NAGK by PII. Phylogenetic and yeast two-hybrid analyses strongly suggest that there was conservation of the NAGK-PII regulatory interaction in the evolution of cyanobacteria and chloroplasts, providing insight into the function of eukaryotic PII-like proteins.
Collapse
Affiliation(s)
- Sergio Burillo
- División de Genética, Universidad de Alicante, E-03080 Alicante, Spain
| | | | | | | |
Collapse
|
37
|
Burillo S, Luque I, Fuentes I, Contreras A. Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 2004. [PMID: 15150219 DOI: 10.1128/jb.186.11.3346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
PII, one of the most conserved signal transduction proteins, is believed to be a key player in the coordination of nitrogen assimilation and carbon metabolism in bacteria, archaea, and plants. However, the identity of PII receptors remains elusive, particularly in photosynthetic organisms. Here we used yeast two-hybrid approaches to identify new PII receptors and to explore the extent of conservation of PII signaling mechanisms between eubacteria and photosynthetic eukaryotes. Screening of Synechococcus sp. strain PCC 7942 libraries with PII as bait resulted in identification of N-acetyl glutamate kinase (NAGK), a key enzyme in the biosynthesis of arginine. The integrity of Ser49, a residue conserved in PII proteins from organisms that perform oxygenic photosynthesis, appears to be essential for NAGK binding. The effect of glnB mutations on NAGK activity is consistent with positive regulation of NAGK by PII. Phylogenetic and yeast two-hybrid analyses strongly suggest that there was conservation of the NAGK-PII regulatory interaction in the evolution of cyanobacteria and chloroplasts, providing insight into the function of eukaryotic PII-like proteins.
Collapse
Affiliation(s)
- Sergio Burillo
- División de Genética, Universidad de Alicante, E-03080 Alicante, Spain
| | | | | | | |
Collapse
|