1
|
Nazaret F, Farajzadeh D, Mejias J, Pacoud M, Cosi A, Frendo P, Alloing G, Mandon K. SydR, a redox-sensing MarR-type regulator of Sinorhizobium meliloti, is crucial for symbiotic infection of Medicago truncatula roots. mBio 2024; 15:e0227524. [PMID: 39480079 PMCID: PMC11633110 DOI: 10.1128/mbio.02275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Rhizobia associate with legumes and induce the formation of nitrogen-fixing nodules. The regulation of bacterial redox state plays a major role in symbiosis, and reactive oxygen species produced by the plant are known to activate signaling pathways. However, only a few redox-sensing transcriptional regulators (TRs) have been characterized in the microsymbiont. Here, we describe SydR, a novel redox-sensing TR of Sinorhizobium meliloti that is essential for the establishment of symbiosis with Medicago truncatula. SydR, a MarR-type TR, represses the expression of the adjacent gene SMa2023 in growing cultures, and this repression is alleviated by NaOCl, tert-butyl hydroperoxide, or H2O2 treatment. Transcriptional psydR-gfp and pSMa2023-gfp fusions, as well as gel shift assays, showed that SydR binds two independent sites of the sydR-SMa2023 intergenic region. This binding is redox-dependent, and site-directed mutagenesis demonstrated that the conserved C16 is essential for SydR redox sensing. The inactivation of sydR did not alter the sensitivity of S. meliloti to NaOCl, tert-butyl hydroperoxide, or H2O2, nor did it affect the response to oxidants of the roGFP2-Orp1 redox biosensor expressed within bacteria. However, in planta, ΔsydR mutation impaired the formation of root nodules. Microscopic observations and analyses of plant marker gene expression showed that the ΔsydR mutant is defective at an early stage of the bacterial infection process. Altogether, these results demonstrated that SydR is a redox-sensing MarR-type TR that plays a key role in the regulation of nitrogen-fixing symbiosis with M. truncatula.IMPORTANCEThe nitrogen-fixing symbiosis between rhizobia and legumes has an important ecological role in the nitrogen cycle, contributes to nitrogen enrichment of soils, and can improve plant growth in agriculture. This interaction is initiated in the rhizosphere by a molecular dialog between the two partners, resulting in plant root infection and the formation of root nodules, where bacteria reduce the atmospheric nitrogen into ammonium. This symbiosis involves modifications of the bacterial redox state in response to reactive oxygen species produced by the plant partner. Here, we show that SydR, a transcriptional regulator of the Medicago symbiont Sinorhizobium meliloti, acts as a redox-responsive repressor that is crucial for the development of root nodules and contributes to the regulation of bacterial infection in S. meliloti/Medicago truncatula symbiotic interaction.
Collapse
Affiliation(s)
- Fanny Nazaret
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | | - Joffrey Mejias
- IRD, CIRAD, Université Montpellier, Plant Health Institute, Montpellier, France
| | - Marie Pacoud
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Anthony Cosi
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Pierre Frendo
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | | - Karine Mandon
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| |
Collapse
|
2
|
Berrabah F, Benaceur F, Yin C, Xin D, Magne K, Garmier M, Gruber V, Ratet P. Defense and senescence interplay in legume nodules. PLANT COMMUNICATIONS 2024; 5:100888. [PMID: 38532645 PMCID: PMC11009364 DOI: 10.1016/j.xplc.2024.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Immunity and senescence play a crucial role in the functioning of the legume symbiotic nodules. The miss-regulation of one of these processes compromises the symbiosis leading to death of the endosymbiont and the arrest of the nodule functioning. The relationship between immunity and senescence has been extensively studied in plant organs where a synergistic response can be observed. However, the interplay between immunity and senescence in the symbiotic organ is poorly discussed in the literature and these phenomena are often mixed up. Recent studies revealed that the cooperation between immunity and senescence is not always observed in the nodule, suggesting complex interactions between these two processes within the symbiotic organ. Here, we discuss recent results on the interplay between immunity and senescence in the nodule and the specificities of this relationship during legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Fathi Berrabah
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria.
| | - Farouk Benaceur
- Faculty of Sciences, University Amar Telidji, 03000 Laghouat, Algeria; Research Unit of Medicinal Plants (RUMP), National Center of Biotechnology Research, CRBt, 25000 Constantine, Algeria
| | - Chaoyan Yin
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Dawei Xin
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Marie Garmier
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Véronique Gruber
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| | - Pascal Ratet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Gul-Lalay, Ullah S, Shah S, Jamal A, Saeed MF, Mihoub A, Zia A, Ahmed I, Seleiman MF, Mancinelli R, Radicetti E. Combined Effect of Biochar and Plant Growth-Promoting Rhizbacteria on Physiological Responses of Canola (Brassica napus L.) Subjected to Drought Stress. JOURNAL OF PLANT GROWTH REGULATION 2024. [DOI: 10.1007/s00344-023-11219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024]
Abstract
AbstractBiochar (BC) and plant growth-promoting microbes (PGPR) could represent a suitable agronomical strategy to mitigate the impacts of drought in arid agro-environmental conditions. However, there is currently little understanding of the synergistic benefit of combining BC and PGPR to increase drought tolerance in oilseeds. In this study, the physiological response of two water-stressed canola (Brassica napus L.) plants subjected to the application of BC obtained from waste wood of Morus alba applied solely or in combination with PGPR strains (Pseudomonas sp.) was evaluated. The experiment consists of two genotypes and nine treatments [(C-Control, T1-15 days drought (15DD), T2-30 days drought (30DD), T3-15 days of drought + PG (15DD + PG), T4-30 days of drought + PG (30DD + PG), T5-15 days drought + biochar (15DD + BC), T6-30 days drought + biochar (30DD + BC), T7-15 days drought + biochar + PG (15DD + BC + PG), T8-30 days drought + biochar + PG (30DD + BC + PG)]. Drought stress decreased emergence energy (EE), leaf area index (LAI), leaf area ratio (LAR), root shoot ratio (RSR), moisture content of leaves (MCL), percent moisture content (%MC), moisture content of shoot (MCS) and moisture content of root (MCR), and relative water content (RWC) in both varieties of Brassica napus L., which in contrast, it is increased by the collective application of both biochar and PGPR. In both varieties, N, P, K, Mg, and Ca concentrations were highest in all the biochar and PGPRs separate and combined treatments, while lowest in 15 and 30 days drought treatments. Osmolyte contents like Glycine betaine (GB) and sugar remarkably increased in the stress condition and then reduced due to the synergistic application of biochar and PGPR. Drought stress has a repressive effect on the antioxidant enzymatic system like Peroxidase (POD), Superoxide dismutase (SOD), and glutathione reductase (GR) as well as total flavonoids, phenolics, and protein content. The antioxidant enzymes and phenolic compounds were dramatically increased by the combined action of biochar and PGPRs. A significant increase in EE, LAR, RSR, and RWC under 15 and 30 days drought conditions, evidently highlighting the synergistic effect of BC and PGPR. The results conclude a substantial and positive effect of the combined use of BC and PGPR strains on canola's response to induced drought stress, by regulating the physiological, biochemical, and agronomic traits of the plants.
Graphical Abstract
Collapse
|
4
|
Exploring Functional Diversity and Community Structure of Diazotrophic Endophytic Bacteria Associated with Pennisetum glaucum Growing under Field in a Semi-Arid Region. LAND 2022. [DOI: 10.3390/land11070991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Diazotrophic endophytic bacteria (DEB) are the key drivers of nitrogen fixation in rainfed soil ecosystems and, hence, can influence the growth and yield of crop plants. Therefore, the present work investigated the structure and composition of the DEB community at different growth stages of field-grown pearl millet plants, employing the cultivation-dependent method. Diazotrophy of the bacterial isolates was confirmed by acetylene reduction assay and amplification of the nifH gene. ERIC-PCR-based DNA fingerprinting, followed by 16S rRNA gene analysis of isolates recovered at different time intervals, demonstrated the highest bacterial diversity during early (up to 28 DAS (Days after sowing)) and late (63 DAS onwards) stages, as compared to the vegetative growth stage (28–56 DAS). Among all species, Pseudomonas aeruginosa was the most dominant endophyte. Assuming modulation of the immune response as one of the tactics for successful colonization of P. aeruginosa PM389, we studied the expression of the profile of defense genes of wheat, used as a host plant, in response to P. aeruginosa inoculation. Most of the pathogenesis-related PR genes were induced initially (at 6 h after infection (HAI)), followed by their downregulation at 12 HAI. The trend of bacterial colonization was quantified by qPCR of 16S rRNAs. The results obtained in the present study indicated an attenuated defense response in host plants towards endophytic bacteria, which is an important feature that helps endophytes establish themselves inside the endosphere of roots.
Collapse
|
5
|
Endophytic Bacteria Pseudomonas aeruginosa PM389 Subsists Host’s (Triticum aestivum) Immune Response for Gaining Entry Inside the Host. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The present study was designed to compare the defense response of the host plant towards endophytic bacteria Pseudomonas aeruginosa PM389 and pathogenic bacteria Erwinia carotovora and to correlate the level of defense enzymes vis-a-vis bacterial colonization in the host. Wheat seedlings were treated with 107-108 cells ml-1 endophytic and pathogenic bacteria in the separate experimental set-up, and the level of plant defense enzyme was measured at various time intervals. Comparatively reduced level of most defense enzymes was produced in endophytic bacteria treated plants. While the endophytic bacterial population was almost constant after 24 HAI (hour after inoculation), the population of pathogenic bacteria kept fluctuating during the study period from 24 HAI. Unlike pathogenic bacteria, we observed attenuated defense response in challenged host plants towards endophytic bacteria, which helps endophytes establish inside plant. This study would be useful for understanding the mechanism of colonization and strategies of endophytes to fight against the host defense response.
Collapse
|
6
|
Lambert I, Pervent M, Le Queré A, Clément G, Tauzin M, Severac D, Benezech C, Tillard P, Martin-Magniette ML, Colella S, Lepetit M. Responses of mature symbiotic nodules to the whole-plant systemic nitrogen signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5039-5052. [PMID: 32386062 PMCID: PMC7410188 DOI: 10.1093/jxb/eraa221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/30/2020] [Indexed: 05/26/2023]
Abstract
In symbiotic root nodules of legumes, terminally differentiated rhizobia fix atmospheric N2 producing an NH4+ influx that is assimilated by the plant. The plant, in return, provides photosynthates that fuel the symbiotic nitrogen acquisition. Mechanisms responsible for the adjustment of the symbiotic capacity to the plant N demand remain poorly understood. We have investigated the role of systemic signaling of whole-plant N demand on the mature N2-fixing nodules of the model symbiotic association Medicago truncatula/Sinorhizobium using split-root systems. The whole-plant N-satiety signaling rapidly triggers reductions of both N2 fixation and allocation of sugars to the nodule. These responses are associated with the induction of nodule senescence and the activation of plant defenses against microbes, as well as variations in sugars transport and nodule metabolism. The whole-plant N-deficit responses mirror these changes: a rapid increase of sucrose allocation in response to N-deficit is associated with a stimulation of nodule functioning and development resulting in nodule expansion in the long term. Physiological, transcriptomic, and metabolomic data together provide evidence for strong integration of symbiotic nodules into whole-plant nitrogen demand by systemic signaling and suggest roles for sugar allocation and hormones in the signaling mechanisms.
Collapse
Affiliation(s)
- Ilana Lambert
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marjorie Pervent
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Antoine Le Queré
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marc Tauzin
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Dany Severac
- MGX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Claire Benezech
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Pascal Tillard
- Biologie et Physiologie Moléculaire des Plantes, INRAE, CNRS, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ. Evry, CNRS, INRAE, Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Stefano Colella
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marc Lepetit
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
7
|
Plant Growth Promoting Rhizobacterial Mitigation of Drought Stress in Crop Plants: Implications for Sustainable Agriculture. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110712] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abiotic stresses arising from climate change negates crop growth and yield, leading to food insecurity. Drought causes oxidative stress on plants, arising from excessive production of reactive oxygen species (ROS) due to inadequate CO2, which disrupts the photosynthetic machinery of plants. The use of conventional methods for the development of drought-tolerant crops is time-consuming, and the full adoption of modern biotechnology for crop enhancement is still regarded with prudence. Plant growth-promoting rhizobacteria (PGPR) could be used as an inexpensive and environmentally friendly approach for enhancing crop growth under environmental stress. The various direct and indirect mechanisms used for plant growth enhancement by PGPR were discussed. Synthesis of 1-aminocyclopropane−1-carboxylate (ACC) deaminase enhances plant nutrient uptake by breaking down plant ACC, thereby preventing ethylene accumulation, and enable plants to tolerate water stress. The exopolysaccharides produced also improves the ability of the soil to withhold water. PGPR enhances osmolyte production, which is effective in reducing the detrimental effects of ROS. Multifaceted PGPRs are potential candidates for biofertilizer production to lessen the detrimental effects of drought stress on crops cultivated in arid regions. This review proffered ways of augmenting their efficacy as bio-inoculants under field conditions and highlighted future prospects for sustainable agricultural productivity.
Collapse
|
8
|
Pislariu CI, Sinharoy S, Torres-Jerez I, Nakashima J, Blancaflor EB, Udvardi MK. The Nodule-Specific PLAT Domain Protein NPD1 Is Required for Nitrogen-Fixing Symbiosis. PLANT PHYSIOLOGY 2019; 180:1480-1497. [PMID: 31061106 PMCID: PMC6752919 DOI: 10.1104/pp.18.01613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/22/2019] [Indexed: 05/06/2023]
Abstract
Symbiotic nitrogen fixation by rhizobia in legume root nodules is a key source of nitrogen for sustainable agriculture. Genetic approaches have revealed important roles for only a few of the thousands of plant genes expressed during nodule development and symbiotic nitrogen fixation. Previously, we isolated >100 nodulation and nitrogen fixation mutants from a population of Tnt1-insertion mutants of Medigaco truncatula Using Tnt1 as a tag to identify genetic lesions in these mutants, we discovered that insertions in a M. truncatula nodule-specific polycystin-1, lipoxygenase, α-toxin (PLAT) domain-encoding gene, MtNPD1, resulted in development of ineffective nodules. Early stages of nodule development and colonization by the nitrogen-fixing bacterium Sinorhizobium meliloti appeared to be normal in the npd1 mutant. However, npd1 nodules ceased to grow after a few days, resulting in abnormally small, ineffective nodules. Rhizobia that colonized developing npd1 nodules did not differentiate completely into nitrogen-fixing bacteroids and quickly degraded. MtNPD1 expression was low in roots but increased significantly in developing nodules 4 d postinoculation, and expression accompanied invading rhizobia in the nodule infection zone and into the distal nitrogen fixation zone. A functional MtNPD1:GFP fusion protein localized in the space surrounding symbiosomes in infected cells. When ectopically expressed in tobacco (Nicotiana tabacum) leaves, MtNPD1 colocalized with vacuoles and the endoplasmic reticulum. MtNPD1 belongs to a cluster of five nodule-specific single PLAT domain-encoding genes, with apparent nonredundant functions.
Collapse
Affiliation(s)
- Catalina I Pislariu
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
- Department of Biology, Texas Woman's University, Denton, Texas 76204
| | - Senjuti Sinharoy
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
| | - Ivone Torres-Jerez
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
| | - Jin Nakashima
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
| | | | - Michael K Udvardi
- Plant Biology Division, Noble Research Institute, Ardmore, Oklahoma 73401
| |
Collapse
|
9
|
Abstract
Fixed (reduced) soil nitrogen plays a critical role in soil fertility and successful food growth. Much soil fertility relies on symbiotic nitrogen fixation: the bacterial partner infects the host plant roots and reduces atmospheric dinitrogen in exchange for host metabolic fuel, a process that involves complex interactions between the partners mediated by changes in gene expression in each partner. Here we test the roles of a family of 11 extracytoplasmic function (ECF) gene regulatory proteins (sigma factors [σs]) that interact with RNA polymerase to determine if they play a significant role in establishing a nitrogen-fixing symbiosis or in responding to various stresses, including cell envelope stress. We discovered that symbiotic nitrogen fixation occurs even when all 11 of these regulatory genes are deleted, that most ECF sigma factors control accessory functions, and that none of the ECF sigma factors are required to survive envelope stress. Bacteria must sense alterations in their environment and respond with changes in function and/or structure in order to cope. Extracytoplasmic function sigma factors (ECF σs) modulate transcription in response to cellular and environmental signals. The symbiotic nitrogen-fixing alphaproteobacterium Sinorhizobium meliloti carries genes for 11 ECF-like σs (RpoE1 to -E10 and FecI). We hypothesized that some of these play a role in mediating the interaction between the bacterium and its plant symbiotic partner. The bacterium senses changes in its immediate environment as it establishes contact with the plant root, initiates invasion of the plant as the root nodule is formed, traverses several root cell layers, and enters plant cortical cells via endocytosis. We used genetics, transcriptomics, and functionality to characterize the entire S. meliloti cohort of ECF σs. We discovered new targets for individual σs, confirmed others by overexpressing individual ECF σs, and identified or confirmed putative promoter motifs for nine of them. We constructed precise deletions of each ECF σ gene and its demonstrated or putative anti-σ gene and also a strain in which all 11 ECF σ and anti-σ genes were deleted. This all-ECF σ deletion strain showed no major defects in free-living growth, in Biolog Phenotype MicroArray assays, or in response to multiple stresses. None of the ECF σs were required for symbiosis on the host plants Medicago sativa and Medicago truncatula: the strain deleted for all ECF σ and anti-σ genes was symbiotically normal. IMPORTANCE Fixed (reduced) soil nitrogen plays a critical role in soil fertility and successful food growth. Much soil fertility relies on symbiotic nitrogen fixation: the bacterial partner infects the host plant roots and reduces atmospheric dinitrogen in exchange for host metabolic fuel, a process that involves complex interactions between the partners mediated by changes in gene expression in each partner. Here we test the roles of a family of 11 extracytoplasmic function (ECF) gene regulatory proteins (sigma factors [σs]) that interact with RNA polymerase to determine if they play a significant role in establishing a nitrogen-fixing symbiosis or in responding to various stresses, including cell envelope stress. We discovered that symbiotic nitrogen fixation occurs even when all 11 of these regulatory genes are deleted, that most ECF sigma factors control accessory functions, and that none of the ECF sigma factors are required to survive envelope stress.
Collapse
|
10
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease Resistance Mechanisms in Plants. Genes (Basel) 2018; 9:E339. [PMID: 29973557 PMCID: PMC6071103 DOI: 10.3390/genes9070339] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Plants have developed a complex defense system against diverse pests and pathogens. Once pathogens overcome mechanical barriers to infection, plant receptors initiate signaling pathways driving the expression of defense response genes. Plant immune systems rely on their ability to recognize enemy molecules, carry out signal transduction, and respond defensively through pathways involving many genes and their products. Pathogens actively attempt to evade and interfere with response pathways, selecting for a decentralized, multicomponent immune system. Recent advances in molecular techniques have greatly expanded our understanding of plant immunity, largely driven by potential application to agricultural systems. Here, we review the major plant immune system components, state of the art knowledge, and future direction of research on plant⁻pathogen interactions. In our review, we will discuss how the decentralization of plant immune systems have provided both increased evolutionary opportunity for pathogen resistance, as well as additional mechanisms for pathogen inhibition of such defense responses. We conclude that the rapid advances in bioinformatics and molecular biology are driving an explosion of information that will advance agricultural production and illustrate how complex molecular interactions evolve.
Collapse
Affiliation(s)
- Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Shaukat Ali
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Emmanuel Byamukama
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| |
Collapse
|
12
|
Berrabah F, Balliau T, Aït-Salem EH, George J, Zivy M, Ratet P, Gourion B. Control of the ethylene signaling pathway prevents plant defenses during intracellular accommodation of the rhizobia. THE NEW PHYTOLOGIST 2018; 219:310-323. [PMID: 29668080 DOI: 10.1111/nph.15142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/28/2018] [Indexed: 05/11/2023]
Abstract
Massive intracellular populations of symbiotic bacteria, referred to as rhizobia, are housed in legume root nodules. Little is known about the mechanisms preventing the development of defense in these organs although genes such as SymCRK and DNF2 of the model legume Medicago truncatula are required for this control after rhizobial internalization in host nodule cells. Here we investigated the molecular basis of the symbiotic control of immunity. Proteomic analysis was performed to compare functional (wild-type) and defending nodules (symCRK). Based on the results, the control of plant immunity during the functional step of the symbiosis was further investigated by biochemical and pharmacological approaches as well as by transcript and histology analysis. Ethylene was identified as a potential signal inducing plant defenses in symCRK nodules. Involvement of this phytohormone in symCRK and dnf2-developed defenses and in the death of intracellular rhizobia was confirmed. This negative effect of ethylene depended on the M. truncatula sickle gene and was also observed in the legume Lotus japonicus. Together, these data indicate that prevention of ethylene-triggered defenses is crucial for the persistence of endosymbiosis and that the DNF2 and SymCRK genes are required for this process.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Thierry Balliau
- INRA, PAPPSO, UMR Génétique Quantitative et Évolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - El Hosseyn Aït-Salem
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Jeoffrey George
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Michel Zivy
- CNRS, PAPPSO, UMR Génétique Quantitative et Évolution - Le Moulon, INRA/Université Paris-Sud/CNRS/AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Pascal Ratet
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| | - Benjamin Gourion
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, Orsay, 91405, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, Orsay, 91405, France
| |
Collapse
|
13
|
Zogli P, Libault M. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:89-93. [PMID: 28818387 DOI: 10.1016/j.plantsci.2017.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 05/26/2023]
Abstract
Plants constantly interact with pathogenic and symbiotic microorganisms. Recent studies have revealed several regulatory mechanisms controlling these interactions. Among them, the plant defense system is activated not only in response to pathogenic, but also in response to symbiotic microbes. Interestingly, shortly after symbiotic microbial recognition, the plant defense system is suppressed to promote plant infection by symbionts. Research studies have demonstrated the influence of the plant epigenome in modulating both pathogenic and symbiotic plant-microbe interactions, thereby influencing plant survival, adaptation and evolution of the plant response to microbial infections. It is however unclear if plant pathogenic and symbiotic responses share similar epigenomic profiles or if epigenomic changes differentially regulate plant-microbe symbiosis and pathogenesis. In this mini-review, we provide an update of the current knowledge of epigenomic control on plant immune responses and symbiosis, with a special attention being paid to knowledge gap and potential strategies to fill-in the missing links.
Collapse
Affiliation(s)
- Prince Zogli
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Marc Libault
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
14
|
Martínez-Medina A, Appels FVW, van Wees SCM. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. PLANT SIGNALING & BEHAVIOR 2017; 12:e1345404. [PMID: 28692334 PMCID: PMC5616143 DOI: 10.1080/15592324.2017.1345404] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 05/22/2023]
Abstract
We recently found that the beneficial fungus Trichoderma harzianum T-78 primes tomato plants for salicylic acid (SA)- and jasmonic acid (JA)-regulated defenses, resulting in enhanced resistance against the root knot nematode Meloidogyne incognita. By using SA- and JA-impaired mutant lines and exogenous hormonal application, here we investigated whether the SA- and JA-pathways also have a role in T-78 root colonization of Arabidopsis thaliana. Endophytic colonization by T-78 was faster in the SA-impaired mutant sid2 than in the wild type. Moreover, elicitation of SA-dependent defenses by SA application reduced T-78 colonization, indicating that the SA-pathway affects T-78 endophytism. In contrast, elicitation of the JA-pathway, which antagonized SA-dependent defenses, resulted in enhanced endophytic colonization by T-78. These findings are in line with our previous observation that SA-dependent defenses are repressed by T-78, which likely aids colonization by the endophytic fungus.
Collapse
Affiliation(s)
| | - Freek V. W. Appels
- Plant-Microbe Interactions, Department of Biology, Utrecht University, The Netherlands
| | - Saskia C. M. van Wees
- Plant-Microbe Interactions, Department of Biology, Utrecht University, The Netherlands
| |
Collapse
|
15
|
Gemperline E, Keller C, Jayaraman D, Maeda J, Sussman MR, Ané JM, Li L. Examination of Endogenous Peptides in Medicago truncatula Using Mass Spectrometry Imaging. J Proteome Res 2016; 15:4403-4411. [PMID: 27726374 DOI: 10.1021/acs.jproteome.6b00471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant science is an important, rapidly developing area of study. Within plant science, one area of study that has grown tremendously with recent technological advances, such as mass spectrometry, is the field of plant-omics; however, plant peptidomics is relatively underdeveloped in comparison with proteomics and metabolomics. Endogenous plant peptides can act as signaling molecules and have been shown to affect cell division, development, nodulation, reproduction, symbiotic associations, and defense reactions. There is a growing need to uncover the role of endogenous peptides on a molecular level. Mass spectrometric imaging (MSI) is a valuable tool for biological analyses as it allows for the detection of thousands of analytes in a single experiment and also displays spatial information for the detected analytes. Despite the prediction of a large number of plant peptides, their detection and imaging with spatial localization and chemical specificity is currently lacking. Here we analyzed the endogenous peptides and proteins in Medicago truncatula using matrix-assisted laser desorption/ionization (MALDI)-MSI. Hundreds of endogenous peptides and protein fragments were imaged, with interesting peptide spatial distribution changes observed between plants in different developmental stages.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Dhileepkumar Jayaraman
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Junko Maeda
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| |
Collapse
|
16
|
Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJN, Gouzy J, Frugier F, Gamas P. A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis. PLANT PHYSIOLOGY 2016; 171:2256-76. [PMID: 27217496 PMCID: PMC4936592 DOI: 10.1104/pp.16.00711] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 05/19/2023]
Abstract
Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes. Many genes exhibited strong levels of transcriptional activation, sometimes only transiently at 4 h, indicating highly dynamic regulation. Expression reprogramming affected a variety of cellular processes, including perception, signaling, regulation of gene expression, as well as cell wall, cytoskeleton, transport, metabolism, and defense, with numerous NF-induced genes never identified before. Strikingly, early epidermal activation of cytokinin (CK) pathways was indicated, based on the induction of CK metabolic and signaling genes, including the CRE1 receptor essential to promote nodulation. These transcriptional activations were independently validated using promoter:β-glucuronidase fusions with the MtCRE1 CK receptor gene and a CK response reporter (TWO COMPONENT SIGNALING SENSOR NEW). A CK pretreatment reduced the NF induction of the EARLY NODULIN11 (ENOD11) symbiotic marker, while a CK-degrading enzyme (CYTOKININ OXIDASE/DEHYDROGENASE3) ectopically expressed in the root epidermis led to increased NF induction of ENOD11 and nodulation. Therefore, CK may play both positive and negative roles in M. truncatula nodulation.
Collapse
Affiliation(s)
- Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Stéphane Boivin
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Nathalie Rodde
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Olivier Catrice
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Anna Kisiala
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Agnes Lepage
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Sandra Moreau
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Brice Roux
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Ludovic Cottret
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Erika Sallet
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Mathias Brault
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - R J Neil Emery
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Jérôme Gouzy
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Florian Frugier
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| | - Pascal Gamas
- LIPM, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, 31326 Castanet-Tolosan, France (M.-F.J., N.R., O.C., A.L., S.M., B.R., L.C., E.S., J.G., P.G.);INPT-Université de Toulouse, ENSAT, 31326 Castanet-Tolosan, France (M.-F.J.);Institute of Plant Sciences-Paris Saclay University, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universités Paris-Sud/Paris-Diderot/d'Evry, 91190 Gif-sur-Yvette, France (S.B., M.B., F.F.);Biology Department, Trent University, Peterborough, Ontario, Canada K9J 7B8 (A.K., R.J.N.E.); andDepartment of Plant Genetics, Physiology, and Biotechnology, University of Technology and Life Sciences, 85-789 Bydgoszcz, Poland (A.K.)
| |
Collapse
|
17
|
Mass Spectrometric-Based Selected Reaction Monitoring of Protein Phosphorylation during Symbiotic Signaling in the Model Legume, Medicago truncatula. PLoS One 2016; 11:e0155460. [PMID: 27203723 PMCID: PMC4874550 DOI: 10.1371/journal.pone.0155460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/29/2016] [Indexed: 11/19/2022] Open
Abstract
Unlike the major cereal crops corn, rice, and wheat, leguminous plants such as soybean and alfalfa can meet their nitrogen requirement via endosymbiotic associations with soil bacteria. The establishment of this symbiosis is a complex process playing out over several weeks and is facilitated by the exchange of chemical signals between these partners from different kingdoms. Several plant components that are involved in this signaling pathway have been identified, but there is still a great deal of uncertainty regarding the early events in symbiotic signaling, i.e., within the first minutes and hours after the rhizobial signals (Nod factors) are perceived at the plant plasma membrane. The presence of several protein kinases in this pathway suggests a mechanism of signal transduction via posttranslational modification of proteins in which phosphate is added to the hydroxyl groups of serine, threonine and tyrosine amino acid side chains. To monitor the phosphorylation dynamics and complement our previous untargeted 'discovery' approach, we report here the results of experiments using a targeted mass spectrometric technique, Selected Reaction Monitoring (SRM) that enables the quantification of phosphorylation targets with great sensitivity and precision. Using this approach, we confirm a rapid change in the level of phosphorylation in 4 phosphosites of at least 4 plant phosphoproteins that have not been previously characterized. This detailed analysis reveals aspects of the symbiotic signaling mechanism in legumes that, in the long term, will inform efforts to engineer this nitrogen-fixing symbiosis in important non-legume crops such as rice, wheat and corn.
Collapse
|
18
|
Miao Z, Xu W, Li D, Hu X, Liu J, Zhang R, Tong Z, Dong J, Su Z, Zhang L, Sun M, Li W, Du Z, Hu S, Wang T. De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. BMC Genomics 2015; 16:818. [PMID: 26481731 PMCID: PMC4615886 DOI: 10.1186/s12864-015-2019-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/07/2015] [Indexed: 11/21/2022] Open
Abstract
Background The entire world is facing a deteriorating environment. Understanding the mechanisms underlying plant responses to external abiotic stresses is important for breeding stress-tolerant crops and herbages. Phytohormones play critical regulatory roles in plants in the response to external and internal cues to regulate growth and development. Medicago falcata is one of the stress-tolerant candidate leguminous species and is able to fix atmospheric nitrogen. This ability allows leguminous plants to grow in nitrogen deficient soils. Methods We performed Illumina sequencing of cDNA prepared from abiotic stress treated M. falcata. Sequencedreads were assembled to provide a transcriptome resource. Transcripts were annotated using BLASTsearches against the NCBI non-redundant database and gene ontology definitions were assigned. Acomparison among the three abiotic stress treated samples was carried out. The expression of transcriptswas confirmed with qRT-PCR. Results We present an abiotic stress-responsive M. falcata transcriptome using next-generation sequencing data from samples grown under standard, dehydration, high salinity, and cold conditions. We combined reads from all samples and de novo assembled 98,515 transcripts to build the M. falcata gene index. A comprehensive analysis of the transcriptome revealed abiotic stress-responsive mechanisms underlying the metabolism and core signalling components of major phytohormones. We identified nod factor signalling pathways during early symbiotic nodulation that are modified by abiotic stresses. Additionally, a global comparison of homology between the M. falcata and M. truncatula transcriptomes, along with five other leguminous species, revealed a high level of global sequence conservation within the family. Conclusions M. falcata is shown to be a model candidate for studying abiotic stress-responsive mechanisms in legumes. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to abiotic stresses. Our data provides many gene candidates that might be used for herbage and crop breeding. Additionally, FalcataBase (http://bioinformatics.cau.edu.cn/falcata/) was built for storing these data. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2019-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Present address: Department of Agronomy, Purdue University, West Lafayette, IN, USA.
| | - Wei Xu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Daofeng Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China. .,Present address: Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Xiaona Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiaxing Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zongyong Tong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Liwei Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Min Sun
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Wenjie Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Zhenglin Du
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proc Natl Acad Sci U S A 2015; 112:15232-7. [PMID: 26401023 DOI: 10.1073/pnas.1500777112] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.
Collapse
|
20
|
Lang C, Long SR. Transcriptomic Analysis of Sinorhizobium meliloti and Medicago truncatula Symbiosis Using Nitrogen Fixation-Deficient Nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:856-868. [PMID: 25844838 DOI: 10.1094/mpmi-12-14-0407-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The bacterium Sinorhizobium meliloti interacts symbiotically with legume plant hosts such as Medicago truncatula to form nitrogen-fixing root nodules. During symbiosis, plant and bacterial cells differentiate in a coordinated manner, resulting in specialized plant cells that contain nitrogen-fixing bacteroids. Both plant and bacterial genes are required at each developmental stage of symbiosis. We analyzed gene expression in nodules formed by wild-type bacteria on six plant mutants with defects in nitrogen fixation. We observed differential expression of 482 S. meliloti genes with functions in cell envelope homeostasis, cell division, stress response, energy metabolism, and nitrogen fixation. We simultaneously analyzed gene expression in M. truncatula and observed differential regulation of host processes that may trigger bacteroid differentiation and control bacterial infection. Our analyses of developmentally arrested plant mutants indicate that plants use distinct means to control bacterial infection during early and late symbiotic stages.
Collapse
Affiliation(s)
- Claus Lang
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| | - Sharon R Long
- Department of Biology, Stanford University, Stanford, CA 94305-5020, U.S.A
| |
Collapse
|
21
|
Hossain MS, Joshi T, Stacey G. System approaches to study root hairs as a single cell plant model: current status and future perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:363. [PMID: 26042143 PMCID: PMC4436566 DOI: 10.3389/fpls.2015.00363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/06/2015] [Indexed: 05/29/2023]
Abstract
Our current understanding of plant functional genomics derives primarily from measurements of gene, protein and/or metabolite levels averaged over the whole plant or multicellular tissues. These approaches risk diluting the response of specific cells that might respond strongly to the treatment but whose signal is diluted by the larger proportion of non-responding cells. For example, if a gene is expressed at a low level, does this mean that it is indeed lowly expressed or is it highly expressed, but only in a few cells? In order to avoid these issues, we adopted the soybean root hair cell, derived from a single, differentiated root epidermal cell, as a single-cell model for functional genomics. Root hair cells are intrinsically interesting since they are major conduits for root water and nutrient uptake and are also the preferred site of infection by nitrogen-fixing rhizobium bacteria. Although a variety of other approaches have been used to study single plant cells or single cell types, the root hair system is perhaps unique in allowing application of the full repertoire of functional genomic and biochemical approaches. In this mini review, we summarize our published work and place this within the broader context of root biology, with a significant focus on understanding the initial events in the soybean-rhizobium interaction.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Division of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary Stacey
- Division of Plant Sciences and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
22
|
Berrabah F, Ratet P, Gourion B. Multiple steps control immunity during the intracellular accommodation of rhizobia. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1977-85. [PMID: 25682610 PMCID: PMC4378630 DOI: 10.1093/jxb/eru545] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 05/20/2023]
Abstract
Medicago truncatula belongs to the legume family and forms symbiotic associations with nitrogen fixing bacteria, the rhizobia. During these interactions, the plants develop root nodules in which bacteria invade the plant cells and fix nitrogen for the benefit of the plant. Despite massive infection, legume nodules do not develop visible defence reactions, suggesting a special immune status of these organs. Some factors influencing rhizobium maintenance within the plant cells have been previously identified, such as the M. truncatula NCR peptides whose toxic effects are reduced by the bacterial protein BacA. In addition, DNF2, SymCRK, and RSD are M. truncatula genes required to avoid rhizobial death within the symbiotic cells. DNF2 and SymCRK are essential to prevent defence-like reactions in nodules after bacteria internalization into the symbiotic cells. Herein, we used a combination of genetics, histology and molecular biology approaches to investigate the relationship between the factors preventing bacterial death in the nodule cells. We show that the RSD gene is also required to repress plant defences in nodules. Upon inoculation with the bacA mutant, defence responses are observed only in the dnf2 mutant and not in the symCRK and rsd mutants. In addition, our data suggest that lack of nitrogen fixation by the bacterial partner triggers bacterial death in nodule cells after bacteroid differentiation. Together our data indicate that, after internalization, at least four independent mechanisms prevent bacterial death in the plant cell. These mechanisms involve successively: DNF2, BacA, SymCRK/RSD and bacterial ability to fix nitrogen.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
23
|
Gemperline E, Jayaraman D, Maeda J, Ané JM, Li L. Multifaceted investigation of metabolites during nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:149-58. [PMID: 25323862 PMCID: PMC4286419 DOI: 10.1007/s13361-014-1010-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/08/2014] [Accepted: 09/14/2014] [Indexed: 05/08/2023]
Abstract
Legumes have developed the unique ability to establish a symbiotic relationship with soil bacteria known as rhizobia. This interaction results in the formation of root nodules in which rhizobia thrive and reduce atmospheric dinitrogen into plant-usable ammonium through biological nitrogen fixation (BNF). Owing to the availability of genetic information for both of the symbiotic partners, the Medicago truncatula-Sinorhizobium meliloti association is an excellent model for examining the BNF process. Although metabolites are important in this symbiotic association, few studies have investigated the array of metabolites that influence this process. Of these studies, most target only a few specific metabolites, the roles of which are either well known or are part of a well-characterized metabolic pathway. Here, we used a multifaceted mass spectrometric (MS) approach to detect and identify the key metabolites that are present during BNF using the Medicago truncatula-Sinorhizobium meliloti association as the model system. High mass accuracy and high resolution matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) Orbitrap instruments were used in this study and provide complementary results for more in-depth characterization of the nitrogen-fixation process. We used well-characterized plant and bacterial mutants to highlight differences between the metabolites that are present in functional versus nonfunctional nodules. Our study highlights the benefits of using a combination of mass spectrometric techniques to detect differences in metabolite composition and the distributions of these metabolites in plant biology.
Collapse
Affiliation(s)
- Erin Gemperline
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | - Junko Maeda
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin - Madison, Madison, WI 53705, USA
- Address reprint requests to: Lingjun Li, University of Wisconsin at Madison, School of Pharmacy, 5125 Rennebohm Hall, 777 Highland Avenue, Madison, Wisconsin 53705-2222 Phone: 608-265-8491 Fax: 608-262-5345
| |
Collapse
|
24
|
Tóth K, Stacey G. Does plant immunity play a critical role during initiation of the legume-rhizobium symbiosis? FRONTIERS IN PLANT SCIENCE 2015; 6:401. [PMID: 26082790 PMCID: PMC4451252 DOI: 10.3389/fpls.2015.00401] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/19/2015] [Indexed: 05/22/2023]
Abstract
Plants are exposed to many different microbes in their habitats. These microbes may be benign or pathogenic, but in some cases they are beneficial for the host. The rhizosphere provides an especially rich palette for colonization by beneficial (associative and symbiotic) microorganisms, which raises the question as to how roots can distinguish such 'friends' from possible 'foes' (i.e., pathogens). Plants possess an innate immune system that can recognize pathogens, through an arsenal of protein receptors, including receptor-like kinases (RLKs) and receptor-like proteins (RLPs) located at the plasma membrane. In addition, the plant host has intracellular receptors (so called NBS-LRR proteins or R proteins) that directly or indirectly recognize molecules released by microbes into the plant cell. A successful cooperation between legume plants and rhizobia leads to beneficial symbiotic interaction. The key rhizobial, symbiotic signaling molecules [lipo-chitooligosaccharide Nod factors (NF)] are perceived by the host legume plant using lysin motif-domain containing RLKs. Perception of the symbiotic NFs trigger signaling cascades leading to bacterial infection and accommodation of the symbiont in a newly formed root organ, the nodule, resulting in a nitrogen-fixing root nodule symbiosis. The net result of this symbiosis is the intracellular colonization of the plant with thousands of bacteria; a process that seems to occur in spite of the immune ability of plants to prevent pathogen infection. In this review, we discuss the potential of the invading rhizobial symbiont to actively avoid this innate immune response, as well as specific examples of where the plant immune response may modulate rhizobial infection and host range.
Collapse
Affiliation(s)
| | - Gary Stacey
- *Correspondence: Gary Stacey, Division of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
25
|
Liang Y, Tóth K, Cao Y, Tanaka K, Espinoza C, Stacey G. Lipochitooligosaccharide recognition: an ancient story. THE NEW PHYTOLOGIST 2014; 204:289-96. [PMID: 25453133 DOI: 10.1111/nph.12898] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chitin is the second most abundant polysaccharide in nature, found in crustacean shells, insect exoskeletons and fungal cell walls. The action of chitin and chitin derivatives on plants has become a very interesting story of late. Chitin is a b1-4-linked polymer of N-acetyl-Dglucosamine(GlcNAc). In this unmodified form, chitooligosaccharides (degree of polymerization(dp) = 6–8)) are strong inducers of plant innate immunity. By contrast, when these chitooligosaccharides are acylated (so-called lipochitooligosaccharides, LCOs) and further modified, they can act as Nod factors, the key signaling molecules that play an important role in the initiation of the legume–rhizobium symbiosis. In a similar form, these molecules can also act as Myc factors, the key signaling molecules involved in the arbuscular mycorrhizal (AM)symbiosis. It has been proposed that Nod factor perception might have evolved from the more ancient AM symbiosis. Increasing evidence now suggests that LCO perception might have evolved from plant innate immunity signaling. In this review, we will discuss the evolutionary origin of symbiotic LCO recognition.
Collapse
Affiliation(s)
- Yan Liang
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
26
|
Berrabah F, Bourcy M, Cayrel A, Eschstruth A, Mondy S, Ratet P, Gourion B. Growth conditions determine the DNF2 requirement for symbiosis. PLoS One 2014; 9:e91866. [PMID: 24632747 PMCID: PMC3954807 DOI: 10.1371/journal.pone.0091866] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bacteroid's persistence and to prevent defense-like reactions in the nodules. This manuscript shows that a Rhizobium mutant unable to differentiate is not sufficient to trigger defense-like reactions in this organ. Furthermore, we show that the requirement of DNF2 for effective symbiosis can be overcome by permissive growth conditions. The dnf2 knockout mutants grown in vitro on agarose or Phytagel as gelling agents are able to produce nodules fixing nitrogen with the same efficiency as the wild-type. However, when agarose medium is supplemented with the plant defense elicitor ulvan, the dnf2 mutant recovers the fix- phenotype. Together, our data show that plant growth conditions impact the gene requirement for symbiotic nitrogen fixation and suggest that they influence the symbiotic suppression of defense reactions in nodules.
Collapse
Affiliation(s)
- Fathi Berrabah
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Marie Bourcy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Anne Cayrel
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Alexis Eschstruth
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Samuel Mondy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
- * E-mail:
| | - Benjamin Gourion
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Gif sur Yvette, France
| |
Collapse
|
27
|
Domonkos A, Horvath B, Marsh JF, Halasz G, Ayaydin F, Oldroyd GED, Kalo P. The identification of novel loci required for appropriate nodule development in Medicago truncatula. BMC PLANT BIOLOGY 2013; 13:157. [PMID: 24119289 PMCID: PMC3852326 DOI: 10.1186/1471-2229-13-157] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/25/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND The formation of functional symbiotic nodules is the result of a coordinated developmental program between legumes and rhizobial bacteria. Genetic analyses in legumes have been used to dissect the signaling processes required for establishing the legume-rhizobial endosymbiotic association. Compared to the early events of the symbiotic interaction, less attention has been paid to plant loci required for rhizobial colonization and the functioning of the nodule. Here we describe the identification and characterization of a number of new genetic loci in Medicago truncatula that are required for the development of effective nitrogen fixing nodules. RESULTS Approximately 38,000 EMS and fast neutron mutagenized Medicago truncatula seedlings were screened for defects in symbiotic nitrogen fixation. Mutant plants impaired in nodule development and efficient nitrogen fixation were selected for further genetic and phenotypic analysis. Nine mutants completely lacking in nodule formation (Nod-) represented six complementation groups of which two novel loci have been identified. Eight mutants with ineffective nodules (Fix-) represented seven complementation groups, out of which five were new monogenic loci. The Fix- M. truncatula mutants showed symptoms of nitrogen deficiency and developed small white nodules. Microscopic analysis of Fix- nodules revealed that the mutants have defects in the release of rhizobia from infection threads, differentiation of rhizobia and maintenance of persistence of bacteria in nodule cells. Additionally, we monitored the transcriptional activity of symbiosis specific genes to define what transcriptional stage of the symbiotic process is blocked in each of the Fix- mutants. Based on the phenotypic and gene expression analysis a functional hierarchy of the FIX genes is proposed. CONCLUSIONS The new symbiotic loci of M. truncatula isolated in this study provide the foundation for further characterization of the mechanisms underpinning nodulation, in particular the later stages associated with bacterial release and nodule function.
Collapse
Affiliation(s)
- Agota Domonkos
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| | | | | | - Gabor Halasz
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center, Szeged 6726, Hungary
| | | | - Peter Kalo
- Agricultural Biotechnology Center, Gödöllő 2100, Hungary
| |
Collapse
|
28
|
Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J, Benedito VA, Kondorosi E, Udvardi MK. The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. THE PLANT CELL 2013; 25:3584-601. [PMID: 24082011 PMCID: PMC3809551 DOI: 10.1105/tpc.113.114017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/26/2013] [Accepted: 09/11/2013] [Indexed: 05/07/2023]
Abstract
Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.
Collapse
Affiliation(s)
| | | | | | - Attila Kereszt
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
| | | | - Jin Nakashima
- The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | | | - Eva Kondorosi
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Avenue de la Terrasse 91198 Gif sur Yvette, France
| | | |
Collapse
|
29
|
Xi J, Chen Y, Nakashima J, Wang SM, Chen R. Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:893-902. [PMID: 23634841 DOI: 10.1094/mpmi-02-13-0043-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti results in the formation on the host roots of new organs, nodules, in which biological nitrogen fixation takes place. In infected cells, rhizobia enclosed in a plant-derived membrane, the symbiosome membrane, differentiate to nitrogen-fixing bacteroids. The symbiosome membrane serves as an interface for metabolite and signal exchanges between the host cells and endosymbionts. At some point during symbiosis, symbiosomes and symbiotic cells are disintegrated, resulting in nodule senescence. The regulatory mechanisms that underlie nodule senescence are not fully understood. Using a forward genetics approach, we have uncovered the early senescent nodule 1 (esn1) mutant from an M. truncatula fast neutron-induced mutant collection. Nodules on esn1 roots are spherically shaped, ineffective in nitrogen fixation, and senesce early. Atypical among fixation defective mutants isolated thus far, bacteroid differentiation and expression of nifH, Leghemoglobin, and DNF1 genes are not affected in esn1 nodules, supporting the idea that a process downstream of bacteroid differentiation and nitrogenase gene expression is affected in the esn1 mutant. Expression analysis shows that marker genes involved in senescence, macronutrient degradation, and remobilization are greatly upregulated during nodule development in the esn1 mutant, consistent with a role of ESN1 in nodule senescence and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Jiejun Xi
- Lanzhou University, Lanzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Ye H, Gemperline E, Venkateshwaran M, Chen R, Delaux PM, Howes-Podoll M, Ané JM, Li L. MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatula-Sinorhizobium meliloti symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:130-145. [PMID: 23551619 DOI: 10.1111/tpj.12191] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/19/2013] [Accepted: 03/25/2013] [Indexed: 05/21/2023]
Abstract
Symbiotic associations between leguminous plants and nitrogen-fixing rhizobia culminate in the formation of specialized organs called root nodules, in which the rhizobia fix atmospheric nitrogen and transfer it to the plant. Efficient biological nitrogen fixation depends on metabolites produced by and exchanged between both partners. The Medicago truncatula-Sinorhizobium meliloti association is an excellent model for dissecting this nitrogen-fixing symbiosis because of the availability of genetic information for both symbiotic partners. Here, we employed a powerful imaging technique - matrix-assisted laser desorption/ionization (MALDI)/mass spectrometric imaging (MSI) - to study metabolite distribution in roots and root nodules of M. truncatula during nitrogen fixation. The combination of an efficient, novel MALDI matrix [1,8-bis(dimethyl-amino) naphthalene, DMAN] with a conventional matrix 2,5-dihydroxybenzoic acid (DHB) allowed detection of a large array of organic acids, amino acids, sugars, lipids, flavonoids and their conjugates with improved coverage. Ion density maps of representative metabolites are presented and correlated with the nitrogen fixation process. We demonstrate differences in metabolite distribution between roots and nodules, and also between fixing and non-fixing nodules produced by plant and bacterial mutants. Our study highlights the benefits of using MSI for detecting differences in metabolite distributions in plant biology.
Collapse
Affiliation(s)
- Hui Ye
- School of Pharmacy, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Erin Gemperline
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | | | - Ruibing Chen
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Pierre-Marc Delaux
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Maegen Howes-Podoll
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Jean-Michel Ané
- Department of Agronomy, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin - Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
31
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
32
|
Limpens E, Moling S, Hooiveld G, Pereira PA, Bisseling T, Becker JD, Küster H. cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 DOI: 10.1371/jour-nal.pone.0064377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 05/23/2023] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital "in situ". This digital "in situ" offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
Affiliation(s)
- Erik Limpens
- Laboratory of Molecular Biology, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Nallu S, Silverstein KAT, Samac DA, Bucciarelli B, Vance CP, VandenBosch KA. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula. PLoS One 2013; 8:e60355. [PMID: 23573247 PMCID: PMC3613412 DOI: 10.1371/journal.pone.0060355] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/25/2013] [Indexed: 12/31/2022] Open
Abstract
Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR) group of defensin-like (DEFL) genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.
Collapse
Affiliation(s)
- Sumitha Nallu
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Kevin A. T. Silverstein
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Deborah A. Samac
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Bruna Bucciarelli
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Carroll P. Vance
- US Department of Agriculture-Agricultural Research Service-Plant Science Research Unit, Saint Paul, Minnesota, United States of America
| | - Kathryn A. VandenBosch
- Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
34
|
Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M, Mysore KS, Udvardi MK, Gourion B, Ratet P. Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. THE NEW PHYTOLOGIST 2013; 197:1250-1261. [PMID: 23278348 DOI: 10.1111/nph.12091] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
Medicago truncatula and Sinorhizobium meliloti form a symbiotic association resulting in the formation of nitrogen-fixing nodules. Nodule cells contain large numbers of bacteroids which are differentiated, nitrogen-fixing forms of the symbiotic bacteria. In the nodules, symbiotic plant cells home and maintain hundreds of viable bacteria. In order to better understand the molecular mechanism sustaining the phenomenon, we searched for new plant genes required for effective symbiosis. We used a combination of forward and reverse genetics approaches to identify a gene required for nitrogen fixation, and we used cell and molecular biology to characterize the mutant phenotype and to gain an insight into gene function. The symbiotic gene DNF2 encodes a putative phosphatidylinositol phospholipase C-like protein. Nodules formed by the mutant contain a zone of infected cells reduced to a few cell layers. In this zone, bacteria do not differentiate properly into bacteroids. Furthermore, mutant nodules senesce rapidly and exhibit defense-like reactions. This atypical phenotype amongst Fix(-) mutants unravels dnf2 as a new actor of bacteroid persistence inside symbiotic plant cells.
Collapse
Affiliation(s)
- Marie Bourcy
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Lysiane Brocard
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Catalina I Pislariu
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Viviane Cosson
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Peter Mergaert
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Millon Tadege
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Kirankumar S Mysore
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Michael K Udvardi
- The Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, 73401, OK, USA
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, CNRS, Avenue de la terrasse, 91198, Gif Sur Yvette, France
| |
Collapse
|
35
|
Reynoso MA, Blanco FA, Zanetti ME. Insights into post-transcriptional regulation during legume-rhizobia symbiosis. PLANT SIGNALING & BEHAVIOR 2013; 8:e23102. [PMID: 23221780 PMCID: PMC3657005 DOI: 10.4161/psb.23102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During the past ten years, changes in the transcriptome have been assessed at different stages of the legume-rhizobia association by the use of DNA microarrays and, more recently, by RNA sequencing technologies. These studies allowed the identification of hundred or thousand of genes whose steady-state mRNA levels increase or decrease upon bacterial infection or in nodules as compared with uninfected roots. However, transcriptome based-approaches do not distinguish between mRNAs that are being actively translated, stored as messenger ribonucleoproteins (mRNPs) or targeted for degradation. Despite that the increase in steady-state levels of an mRNA does not necessarily correlate with an increase in abundance or activity of the encoded protein, this information has been commonly used to select genes that are candidates to play a role during nodule organogenesis or bacterial infection. Such criterion does not take into account the post-transcriptional mechanisms that contribute to the regulation of gene expression. One of such mechanisms, which has significant impact on gene expression, is the selective recruitment of mRNAs to the translational machinery. Here, we review the post-transcriptional mechanisms that contribute to the regulation of gene expression in the context of the ecological and agronomical important symbiotic interaction established between roots of legumes and the nitrogen fixing bacteria collectively known as rhizobia. In addition, we discuss how the development of new technologies that allow the assessment of these regulatory layers would help to understand the genetic network governing legume rhizobia symbiosis.
Collapse
|
36
|
Boscari A, del Giudice J, Ferrarini A, Venturini L, Zaffini AL, Delledonne M, Puppo A. Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? PLANT PHYSIOLOGY 2013; 161:425-39. [PMID: 23136381 PMCID: PMC3532272 DOI: 10.1104/pp.112.208538] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Medicago truncatula is one of the most studied model plants. Nevertheless, the genome of this legume remains incompletely determined. We used RNA-Seq to characterize the transcriptome during the early organogenesis of the nodule and during its functioning. We detected 37,333 expressed transcription units; to our knowledge, 1,670 had never been described before and were functionally annotated. We identified 7,595 new transcribed regions, mostly corresponding to 5' and 3' untranslated region extensions and new exons associated with 5,264 previously annotated genes. We also inferred 23,165 putative transcript isoforms from 6,587 genes and measured the abundance of transcripts for each isoform, which suggests an important role for alternative splicing in the generation of proteome diversity in M. truncatula. Finally, we carried out a differential expression analysis, which provided a comprehensive view of transcriptional reprogramming during nodulation. In particular, depletion of nitric oxide in roots inoculated with Sinorhizobium meliloti greatly increased our understanding of the role of this reactive species in the optimal establishment of the symbiotic interaction, revealing differential patterns of expression for 2,030 genes and pointing to the inhibition of the expression of defense genes.
Collapse
|
37
|
Khatoon A, Rehman S, Salavati A, Komatsu S. A comparative proteomics analysis in roots of soybean to compatible symbiotic bacteria under flooding stress. Amino Acids 2012; 43:2513-25. [PMID: 22692703 DOI: 10.1007/s00726-012-1333-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
A proteomics approach was used to evaluate the effects of flooding stress on early symbiotic interaction between soybean roots and soil bacteria, Bradyrhizobium japonicum. Three-day-old soybean was inoculated with B. japonicum followed by flooding. The number of root hairs in seedlings, without or with flooding stress, was increased after 3 days of inoculation. Proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. Out of 219 protein spots, 14 and 8 proteins were increased and decreased, respectively, by inoculation under flooding compared with without flooding. These proteins were compared in untreated and flooded seedlings. Increased level of 6 proteins in flooded seedlings compared with untreated seedlings was suppressed by inoculation in seedlings under flooding. They were related to disease/defense, protein synthesis, energy, and metabolism. Differential abundance of glucan endo-1,3-beta-glucosidase, phosphoglycerate kinase, and triosephosphate isomerase, based on their localization in middle and tip of root, indicated that they might be related to increase in number of root hairs. These results suggest that disease/defense, energy, and metabolism-related proteins may be particularly subjected to regulation in flooded soybean seedlings, when inoculated with B. japonicum and that this regulation may lead to increase in number of root hair during early symbiotic differentiation.
Collapse
Affiliation(s)
- Amana Khatoon
- National Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba, 305-8518, Japan
| | | | | | | |
Collapse
|
38
|
Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey DJ, Park K, Howes-Podoll M, den Os D, Yeun LH, Westphall MS, Sussman MR, Ané JM, Coon JJ. Rapid phosphoproteomic and transcriptomic changes in the rhizobia-legume symbiosis. Mol Cell Proteomics 2012; 11:724-44. [PMID: 22683509 PMCID: PMC3434772 DOI: 10.1074/mcp.m112.019208] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/07/2012] [Indexed: 11/06/2022] Open
Abstract
Symbiotic associations between legumes and rhizobia usually commence with the perception of bacterial lipochitooligosaccharides, known as Nod factors (NF), which triggers rapid cellular and molecular responses in host plants. We report here deep untargeted tandem mass spectrometry-based measurements of rapid NF-induced changes in the phosphorylation status of 13,506 phosphosites in 7739 proteins from the model legume Medicago truncatula. To place these phosphorylation changes within a biological context, quantitative phosphoproteomic and RNA measurements in wild-type plants were compared with those observed in mutants, one defective in NF perception (nfp) and one defective in downstream signal transduction events (dmi3). Our study quantified the early phosphorylation and transcription dynamics that are specifically associated with NF-signaling, confirmed a dmi3-mediated feedback loop in the pathway, and suggested "cryptic" NF-signaling pathways, some of them being also involved in the response to symbiotic arbuscular mycorrhizal fungi.
Collapse
Affiliation(s)
- Christopher M. Rose
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Jeremy D. Volkening
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Paul A. Grimsrud
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Junko Maeda
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Derek J. Bailey
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Kwanghyun Park
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
- **Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Désirée den Os
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
- §§Present address: Penn State Biology Department, University Park, Pennsylvania 16802
| | - Li Huey Yeun
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael S. Westphall
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Michael R. Sussman
- ¶Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
| | - Jean-Michel Ané
- §Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706
| | - Joshua J. Coon
- From the ‡Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
- ‖Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706
- ‡‡Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
39
|
Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:139-50. [PMID: 21995763 DOI: 10.1094/mpmi-06-11-0179] [Citation(s) in RCA: 414] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and Rhizobium bacteria that fix atmospheric nitrogen for the plant. Several other types of beneficial soilborne microbes, such as plant-growth-promoting rhizobacteria and fungi with biological control activity, can stimulate plant growth by directly suppressing deleterious soilborne pathogens or by priming aboveground plant parts for enhanced defense against foliar pathogens or insect herbivores. The establishment of beneficial associations requires mutual recognition and substantial coordination of plant and microbial responses. A growing body of evidence suggests that beneficial microbes are initially recognized as potential invaders, after which an immune response is triggered, whereas, at later stages of the interaction, mutualists are able to short-circuit plant defense responses to enable successful colonization of host roots. Here, we review our current understanding of how symbiotic and nonsymbiotic beneficial soil microbes modulate the plant immune system and discuss the role of local and systemic defense responses in establishing the delicate balance between the two partners.
Collapse
|
40
|
Kereszt A, Mergaert P, Kondorosi E. Bacteroid development in legume nodules: evolution of mutual benefit or of sacrificial victims? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1300-9. [PMID: 21995798 DOI: 10.1094/mpmi-06-11-0152] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Symbiosomes are organelle-like structures in the cytoplasm of legume nodule cells which are composed of the special, nitrogen-fixing forms of rhizobia called bacteroids, the peribacteroid space and the enveloping peribacteroid membrane of plant origin. The formation of these symbiosomes requires a complex and coordinated interaction between the two partners during all stages of nodule development as any failure in the differentiation of either symbiotic partner, the bacterium or the plant cell prevents the subsequent transcriptional and developmental steps resulting in early senescence of the nodules. Certain legume hosts impose irreversible terminal differentiation onto bacteria. In the inverted repeat-lacking clade (IRLC) of legumes, host dominance is achieved by nodule-specific cysteine-rich peptides that resemble defensin-like antimicrobial peptides, the known effector molecules of animal and plant innate immunity. This article provides an overview on the bacteroid and symbiosome development including the terminal differentiation of bacteria in IRLC legumes as well as the bacterial and plant genes and proteins participating in these processes.
Collapse
|
41
|
Rightmyer AP, Long SR. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1372-84. [PMID: 21809981 DOI: 10.1094/mpmi-04-11-0103] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rhizobium and allied bacteria form symbiotic nitrogen-fixing nodules on legume roots. Plant hormones play key roles in nodule formation. We treated Medicago truncatula roots with auxin transport inhibitors (ATI) N-(1-naphthyl)phthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA) to induce the formation of pseudonodules. M. truncatula mutants defective for rhizobial Nod factor signal transduction still formed pseudonodules in response to ATI. However, a M. truncatula ethylene-insensitive supernodulator, sickle 1-1, did not form pseudonodules in response to TIBA, suggesting that the ethylene response pathway is involved in ATI-induced pseudonodule formation. We compared the transcriptional responses of M. truncatula roots treated with ATI to roots inoculated with Sinorhizobium meliloti. Some genes showed consistently parallel expression in ATI-induced and Rhizobium-induced nodules. For other genes, the transcriptional response of M. truncatula roots 1 and 7 days after ATI treatment was in the opposite direction to roots treated with S. meliloti; then, by 21 days, the transcriptional patterns for the two conditions became similar. We silenced 17 genes that were upregulated in both ATI and S. meliloti treatments to determine their effect on nodule formation. Some gene-silenced roots showed a decrease in nodulation efficiency, suggesting a role in nodule formation but not in later nodule functions.
Collapse
|
42
|
El Msehli S, Lambert A, Baldacci-Cresp F, Hopkins J, Boncompagni E, Smiti SA, Hérouart D, Frendo P. Crucial role of (homo)glutathione in nitrogen fixation in Medicago truncatula nodules. THE NEW PHYTOLOGIST 2011; 192:496-506. [PMID: 21726232 DOI: 10.1111/j.1469-8137.2011.03810.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Legumes form a symbiotic interaction with bacteria of the Rhizobiaceae family to produce nitrogen-fixing root nodules under nitrogen-limiting conditions. We examined the importance of glutathione (GSH) and homoglutathione (hGSH) during the nitrogen fixation process. Spatial patterns of the expression of the genes involved in the biosynthesis of both thiols were studied using promoter-GUS fusion analysis. Genetic approaches using the nodule nitrogen-fixing zone-specific nodule cysteine rich (NCR001) promoter were employed to determine the importance of (h)GSH in biological nitrogen fixation (BNF). The (h)GSH synthesis genes showed a tissue-specific expression pattern in the nodule. Down-regulation of the γ-glutamylcysteine synthetase (γECS) gene by RNA interference resulted in significantly lower BNF associated with a significant reduction in the expression of the leghemoglobin and thioredoxin S1 genes. Moreover, this lower (h)GSH content was correlated with a reduction in the nodule size. Conversely, γECS overexpression resulted in an elevated GSH content which was correlated with increased BNF and significantly higher expression of the sucrose synthase-1 and leghemoglobin genes. Taken together, these data show that the plant (h)GSH content of the nodule nitrogen-fixing zone modulates the efficiency of the BNF process, demonstrating their important role in the regulation of this process.
Collapse
Affiliation(s)
- Sarra El Msehli
- UMR Interactions Biotiques et Santé Végétale, Université de Nice-Sophia Antipolis, Sophia-Antipolis cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Haney CH, Riely BK, Tricoli DM, Cook DR, Ehrhardt DW, Long SR. Symbiotic rhizobia bacteria trigger a change in localization and dynamics of the Medicago truncatula receptor kinase LYK3. THE PLANT CELL 2011; 23:2774-87. [PMID: 21742993 PMCID: PMC3226205 DOI: 10.1105/tpc.111.086389] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/07/2011] [Accepted: 06/16/2011] [Indexed: 05/20/2023]
Abstract
To form nitrogen-fixing symbioses, legume plants recognize a bacterial signal, Nod Factor (NF). The legume Medicago truncatula has two predicted NF receptors that direct separate downstream responses to its symbiont Sinorhizobium meliloti. NOD FACTOR PERCEPTION encodes a putative low-stringency receptor that is responsible for calcium spiking and transcriptional responses. LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) encodes a putative high-stringency receptor that mediates bacterial infection. We localized green fluorescent protein (GFP)-tagged LYK3 in M. truncatula and found that it has a punctate distribution at the cell periphery consistent with a plasma membrane or membrane-tethered vesicle localization. In buffer-treated control roots, LYK3:GFP puncta are dynamic. After inoculation with compatible S. meliloti, LYK3:GFP puncta are relatively stable. We show that increased LYK3:GFP stability depends on bacterial NF and NF structure but that NF is not sufficient for the change in LYK3:GFP dynamics. In uninoculated root hairs, LYK3:GFP has little codistribution with mCherry-tagged FLOTILLIN4 (FLOT4), another punctate plasma membrane-associated protein required for infection. In inoculated root hairs, we observed an increase in FLOT4:mCherry and LYK3:GFP colocalization; both proteins localize to positionally stable puncta. We also demonstrate that the localization of tagged FLOT4 is altered in plants carrying a mutation that inactivates the kinase domain of LYK3. Our work indicates that LYK3 protein localization and dynamics are altered in response to symbiotic bacteria.
Collapse
Affiliation(s)
- Cara H. Haney
- Department of Biology, Stanford University, Stanford, California 94305
| | - Brendan K. Riely
- Department of Plant Pathology, University of California, Davis, California 95616
| | - David M. Tricoli
- Department of Plant Pathology, University of California, Davis, California 95616
- The Ralph M. Parsons Foundation Plant Transformation Facility, University of California, Davis, California 95616
| | - Doug R. Cook
- Department of Plant Pathology, University of California, Davis, California 95616
| | - David W. Ehrhardt
- Department of Biology, Stanford University, Stanford, California 94305
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, California 94305
- Address correspondence to
| |
Collapse
|
44
|
Saeki K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation: a focus on two legume-rhizobium model systems. Cell Mol Life Sci 2011; 68:1327-39. [PMID: 21365276 PMCID: PMC11114668 DOI: 10.1007/s00018-011-0650-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
The establishment and maintenance of rhizobium-legume symbioses require a sequence of highly regulated and coordinated events between the organisms. Although the interaction is mutually beneficial under nitrogen-limited conditions, it can resemble a pathogenic infection at some stages. Some host legumes mount defense reactions, including the production of reactive oxygen species (ROS) and defensin-like antimicrobial compounds. To subvert these host defenses, the infecting rhizobial cells can use measures to passively protect themselves and actively modulate host functions. This review first describes the establishment and maintenance of active nodules, as well as the external and endogenous attack and threat stages. Next, recent studies of ROS scavenging enzymes, the BacA protein originally found in Sinorhizobium meliloti, and the type III/IV secretion systems are discussed, with a focus on two legume-rhizobium model systems.
Collapse
Affiliation(s)
- Kazuhiko Saeki
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoya Nishimachi, Nara, Japan.
| |
Collapse
|
45
|
Dolgikh EA, Leppyanen IV, Osipova MA, Savelyeva NV, Borisov AY, Tsyganov VE, Geurts R, Tikhonovich IA. Genetic dissection of Rhizobium-induced infection and nodule organogenesis in pea based on ENOD12A and ENOD5 expression analysis. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:285-96. [PMID: 21309975 DOI: 10.1111/j.1438-8677.2010.00372.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In legumes, perception of rhizobial lipochitooligosacharide-based molecules (Nod factors) and subsequent signal transduction triggers transcription of plant symbiosis-specific genes (early nodulins). We present genetic dissection of Nod factor-controlled processes in Pisum sativum using two early nodulin genes PsENOD12a and PsENOD5, that are differentially up-regulated during symbiosis. A novel set of non-nodulating pea mutants in fourteen loci was examined, among which seven loci are not described in Lotus japonicus and Medicago truncatula. Mutants defective in Pssym10, Pssym8, Pssym19, Pssym9 and Pssym7 exhibited no PsENOD12a and PsENOD5 activation in response to Nod factor-producing rhizobia. Thus, a conserved signalling module from the LysM receptor kinase encoded by Pssym10 down to the GRAS transcription factor encoded by Pssym7 is essential for Nod factor-induced gene expression. Of the two investigated genes, PsENOD5 was more strictly regulated; not only requiring the SYM10-SYM7 module, but also SYM35 (NIN transcription factor), SYM14, SYM16 and SYM34. Since Pssym35, Pssym14, Pssym34 and Pssym16 mutants show arrested infection and nodule formation at various stages, PsENOD5 expression seems to be essential for later symbiotic events, when rhizobia enter into plant tissues. Activation of PsENOD12a only requires components involved in early steps of signalling and can be considered as a marker of early symbiotic events preceding infection.
Collapse
Affiliation(s)
- E A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P. Transcription reprogramming during root nodule development in Medicago truncatula. PLoS One 2011. [PMID: 21304580 DOI: 10.1371/journal.pone.00116463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula have been described. However information on precise stages of activation of these genes and their corresponding transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs also remains an open question. Here detailed microarray analyses have been used to study the transcriptome of root nodules induced by either wild type or mutant strains of Sinorhizobium meliloti. In this way we have defined eight major activation patterns in nodules and identified associated potential regulatory genes. We have shown that transcription reprogramming during consecutive stages of nodule differentiation occurs in four major phases, respectively associated with (i) early signalling events and/or bacterial infection; plant cell differentiation that is either (ii) independent or (iii) dependent on bacteroid differentiation; (iv) nitrogen fixation. Differential expression of several genes involved in cytokinin biosynthesis was observed in early symbiotic nodule zones, suggesting that cytokinin levels are actively controlled in this region. Taking advantage of databases recently developed for M. truncatula, we identified a small subset of gene expression regulators that were exclusively or predominantly expressed in nodules, whereas most other regulators were also activated under other conditions, and notably in response to abiotic or biotic stresses. We found evidence suggesting the activation of the jasmonate pathway in both wild type and mutant nodules, thus raising questions about the role of jasmonate during nodule development. Finally, quantitative RT-PCR was used to analyse the expression of a series of nodule regulator and marker genes at early symbiotic stages in roots and allowed us to distinguish several early stages of gene expression activation or repression.
Collapse
Affiliation(s)
- Sandra Moreau
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P. Transcription reprogramming during root nodule development in Medicago truncatula. PLoS One 2011; 6:e16463. [PMID: 21304580 PMCID: PMC3029352 DOI: 10.1371/journal.pone.0016463] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/17/2010] [Indexed: 12/28/2022] Open
Abstract
Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula have been described. However information on precise stages of activation of these genes and their corresponding transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs also remains an open question. Here detailed microarray analyses have been used to study the transcriptome of root nodules induced by either wild type or mutant strains of Sinorhizobium meliloti. In this way we have defined eight major activation patterns in nodules and identified associated potential regulatory genes. We have shown that transcription reprogramming during consecutive stages of nodule differentiation occurs in four major phases, respectively associated with (i) early signalling events and/or bacterial infection; plant cell differentiation that is either (ii) independent or (iii) dependent on bacteroid differentiation; (iv) nitrogen fixation. Differential expression of several genes involved in cytokinin biosynthesis was observed in early symbiotic nodule zones, suggesting that cytokinin levels are actively controlled in this region. Taking advantage of databases recently developed for M. truncatula, we identified a small subset of gene expression regulators that were exclusively or predominantly expressed in nodules, whereas most other regulators were also activated under other conditions, and notably in response to abiotic or biotic stresses. We found evidence suggesting the activation of the jasmonate pathway in both wild type and mutant nodules, thus raising questions about the role of jasmonate during nodule development. Finally, quantitative RT-PCR was used to analyse the expression of a series of nodule regulator and marker genes at early symbiotic stages in roots and allowed us to distinguish several early stages of gene expression activation or repression.
Collapse
Affiliation(s)
- Sandra Moreau
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Marion Verdenaud
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Thomas Ott
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Sébastien Letort
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Françoise de Billy
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Jérôme Gouzy
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Fernanda de Carvalho-Niebel
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Pascal Gamas
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
48
|
Murray JD, Muni RRD, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK. Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:244-52. [PMID: 21223389 DOI: 10.1111/j.1365-313x.2010.04415.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Intracellular invasion of root cells is required for the establishment of successful endosymbioses in legumes of both arbuscular mycorrhizal (AM) fungi and rhizobial bacteria. In both interactions a requirement for successful entry is the activation of a common signalling pathway that includes five genes required to generate calcium oscillations and two genes required for the perception of the calcium response. Recently, it has been discovered that in Medicago truncatula, the Vapyrin (VPY) gene is essential for the establishment of the arbuscular mycorrhizal symbiosis. Here, we show by analyses of mutants that the same gene is also required for rhizobial colonization and nodulation. VPY encodes a protein featuring a Major Sperm Protein domain, typically featured on proteins involved in membrane trafficking and biogenesis, and a series of ankyrin repeats. Plants mutated in this gene have abnormal rhizobial infection threads and fewer nodules, and in the case of interactions with AM fungi, epidermal penetration defects and aborted arbuscule formation. Calcium spiking in root hairs in response to supplied Nod factors is intact in the vpy-1 mutant. This, and the elevation of VPY transcripts upon application of Nod factors which we show to be dependent on NFP, DMI1, and DMI3, indicates that VPY acts downstream of the common signalling pathway.
Collapse
Affiliation(s)
- Jeremy D Murray
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Delis C, Krokida A, Georgiou S, Peña-Rodríguez LM, Kavroulakis N, Ioannou E, Roussis V, Osbourn AE, Papadopoulou KK. Role of lupeol synthase in Lotus japonicus nodule formation. THE NEW PHYTOLOGIST 2011; 189:335-46. [PMID: 20868395 DOI: 10.1111/j.1469-8137.2010.03463.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
• Triterpenes are plant secondary metabolites, derived from the cyclization of 2,3-oxidosqualene by oxidosqualene cyclases (OSCs). Here, we investigated the role of lupeol synthase, encoded by OSC3, and its product, lupeol, in developing roots and nodules of the model legume Lotus japonicus. • The expression patterns of OSC3 in different developmental stages of uninfected roots and in roots infected with Mesorhizobium loti were determined. The tissue specificity of OSC3 expression was analysed by in situ hybridization. Functional analysis, in which transgenic L. japonicus roots silenced for OSC3 were generated, was performed. The absence of lupeol in the silenced plant lines was determined by GC-MS. • The expression of ENOD40, a marker gene for nodule primordia initiation, was increased significantly in the OSC3-silenced plant lines, suggesting that lupeol influences nodule formation. Silenced plants also showed a more rapid nodulation phenotype, consistent with this. Exogenous application of lupeol to M. loti-infected wild-type plants provided further evidence for a negative regulatory effect of lupeol on the expression of ENOD40. • The synthesis of lupeol in L. japonicus roots and nodules can be solely attributed to OSC3. Taken together, our data suggest a role for lupeol biosynthesis in nodule formation through the regulation of ENOD40 gene expression.
Collapse
Affiliation(s)
- Costas Delis
- Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li H, Deng Y, Wu T, Subramanian S, Yu O. Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. PLANT PHYSIOLOGY 2010; 153:1759-70. [PMID: 20508137 PMCID: PMC2923892 DOI: 10.1104/pp.110.156950] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 05/20/2010] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of plant growth and development. Previously, we identified a group of conserved and novel miRNA families from soybean (Glycine max) roots. Many of these miRNAs are specifically induced during soybean-Bradyrhizobium japonicum interactions. Here, we examined the gene expression levels of six families of novel miRNAs and investigated their functions in nodule development. We used northern-blot analyses to study the tissue specificity and time course of miRNA expression. Transgenic expression of miR482, miR1512, and miR1515 led to significant increases of nodule numbers, while root length, lateral root density, and the number of nodule primordia were not altered in all tested miRNA lines. We also found differential expression of these miRNAs in nonnodulating and supernodulating soybean mutants. The expression levels of 22 predicted target genes regulated by six novel miRNAs were studied by real-time polymerase chain reaction and quantitative real-time polymerase chain reaction. These results suggested that miRNAs play important roles in soybean nodule development.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Yu
- Shanghai JiaoTong University, School of Agriculture and Biology, Shanghai 200240, China (H.L., T.W.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (Y.D., S.S., O.Y.); Plant Science Department, South Dakota State University, Brookings, South Dakota 57007 (S.S.)
| |
Collapse
|