1
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
2
|
Liew LC, You Y, Auroux L, Oliva M, Peirats-Llobet M, Ng S, Tamiru-Oli M, Berkowitz O, Hong UVT, Haslem A, Stuart T, Ritchie ME, Bassel GW, Lister R, Whelan J, Gouil Q, Lewsey MG. Establishment of single-cell transcriptional states during seed germination. NATURE PLANTS 2024; 10:1418-1434. [PMID: 39256563 PMCID: PMC11410669 DOI: 10.1038/s41477-024-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2024] [Indexed: 09/12/2024]
Abstract
Germination involves highly dynamic transcriptional programs as the cells of seeds reactivate and express the functions necessary for establishment in the environment. Individual cell types have distinct roles within the embryo, so must therefore have cell type-specific gene expression and gene regulatory networks. We can better understand how the functions of different cell types are established and contribute to the embryo by determining how cell type-specific transcription begins and changes through germination. Here we describe a temporal analysis of the germinating Arabidopsis thaliana embryo at single-cell resolution. We define the highly dynamic cell type-specific patterns of gene expression and how these relate to changing cellular function as germination progresses. Underlying these are unique gene regulatory networks and transcription factor activity. We unexpectedly discover that most embryo cells transition through the same initial transcriptional state early in germination, even though cell identity has already been established during embryogenesis. Cells later transition to cell type-specific gene expression patterns. Furthermore, our analyses support previous findings that the earliest events leading to the induction of seed germination take place in the vasculature. Overall, our study constitutes a general framework with which to characterize Arabidopsis cell transcriptional states through seed germination, allowing investigation of different genotypes and other plant species whose seed strategies may differ.
Collapse
Affiliation(s)
- Lim Chee Liew
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Yue You
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lucas Auroux
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Marina Oliva
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marta Peirats-Llobet
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Sophia Ng
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Muluneh Tamiru-Oli
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Oliver Berkowitz
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Uyen Vu Thuy Hong
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Asha Haslem
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Tim Stuart
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - James Whelan
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia.
- College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Quentin Gouil
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Mathew G Lewsey
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Plants for Space, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Sajeev N, Koornneef M, Bentsink L. A commitment for life: Decades of unraveling the molecular mechanisms behind seed dormancy and germination. THE PLANT CELL 2024; 36:1358-1376. [PMID: 38215009 PMCID: PMC11062444 DOI: 10.1093/plcell/koad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Seeds are unique time capsules that can switch between 2 complex and highly interlinked stages: seed dormancy and germination. Dormancy contributes to the survival of plants because it allows to delay germination to optimal conditions. The switch between dormancy and germination occurs in response to developmental and environmental cues. In this review we provide a comprehensive overview of studies that have helped to unravel the molecular mechanisms underlying dormancy and germination over the last decades. Genetic and physiological studies provided a strong foundation for this field of research and revealed the critical role of the plant hormones abscisic acid and gibberellins in the regulation of dormancy and germination, and later natural variation studies together with quantitative genetics identified previously unknown genetic components that control these processes. Omics technologies like transcriptome, proteome, and translatomics analysis allowed us to mechanistically dissect these processes and identify new components in the regulation of seed dormancy and germination.
Collapse
Affiliation(s)
- Nikita Sajeev
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, 6708PB Wageningen, the Netherlands
- Max Planck Institute for Plant Breeding Research, Former Department of Plant Breeding and Genetics, Koeln 50829, Germany
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, 6708PB Wageningen, the Netherlands
| |
Collapse
|
4
|
Tremblay BJM, Santini CP, Cheng Y, Zhang X, Rosa S, Qüesta JI. Interplay between coding and non-coding regulation drives the Arabidopsis seed-to-seedling transition. Nat Commun 2024; 15:1724. [PMID: 38409232 PMCID: PMC10897432 DOI: 10.1038/s41467-024-46082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Translation of seed stored mRNAs is essential to trigger germination. However, when RNAPII re-engages RNA synthesis during the seed-to-seedling transition has remained in question. Combining csRNA-seq, ATAC-seq and smFISH in Arabidopsis thaliana we demonstrate that active transcription initiation is detectable during the entire germination process. Features of non-coding regulation such as dynamic changes in chromatin accessible regions, antisense transcription, as well as bidirectional non-coding promoters are widespread throughout the Arabidopsis genome. We show that sensitivity to exogenous ABSCISIC ACID (ABA) during germination depends on proximal promoter accessibility at ABA-responsive genes. Moreover, we provide genetic validation of the existence of divergent transcription in plants. Our results reveal that active enhancer elements are transcribed producing non-coding enhancer RNAs (eRNAs) as widely documented in metazoans. In sum, this study defining the extent and role of coding and non-coding transcription during key stages of germination expands our understanding of transcriptional mechanisms underlying plant developmental transitions.
Collapse
Affiliation(s)
- Benjamin J M Tremblay
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Cristina P Santini
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Yajiao Cheng
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
| | - Xue Zhang
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Nogami R, Nagata M, Imada R, Kai K, Kawaguchi T, Tani S. Cycloheximide in the nanomolar range inhibits seed germination of Orobanche minor. JOURNAL OF PESTICIDE SCIENCE 2024; 49:22-30. [PMID: 38450089 PMCID: PMC10912901 DOI: 10.1584/jpestics.d23-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/29/2023] [Indexed: 03/08/2024]
Abstract
From the 992 samples of culture extracts of microorganisms isolated from soil in Japan, we found that the extract of Streptomyces sp. no. 226 inhibited Orobanche minor seed germination without significantly affecting the seed germination of Trifolium pratense and the growth of Aspergillus oryzae and Escherichia coli. Using ESI-MS, 1H-NMR, and 13C-NMR, we identified the active compound as cycloheximide. Cycloheximide had half-maximum inhibitory concentrations of 2.6 ng/mL for the inhibition of seed germination of O. minor and 2.5 µg/mL for that of the conidial germination of A. oryzae. Since cycloheximide is known to inhibit translation by interacting with ribosomal protein L28 (RPL28) in yeast, we investigated whether RPL protein of O. minor plays a critical role in the inhibition of O. minor seed germination. Our data suggested that O. minor RPL27A was not sensitive to cycloheximide by comparing it to the strain expressing S. cerevisiae RPL28. These findings suggest the presence of an unidentified mechanism by which cycloheximide hinders O. minor seed germination.
Collapse
Affiliation(s)
- Ryosuke Nogami
- Graduate School of Agriculture, Osaka Metropolitan University
| | - Mari Nagata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Risa Imada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Takashi Kawaguchi
- Graduate School of Agriculture, Osaka Metropolitan University
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| | - Shuji Tani
- Graduate School of Agriculture, Osaka Metropolitan University
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University
| |
Collapse
|
6
|
Zakrzewska-Placzek M, Golisz-Mocydlarz A, Krzyszton M, Piotrowska J, Lichocka M, Kufel J. The nucleolar protein NOL12 is required for processing of large ribosomal subunit rRNA precursors in Arabidopsis. BMC PLANT BIOLOGY 2023; 23:538. [PMID: 37919659 PMCID: PMC10623804 DOI: 10.1186/s12870-023-04561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND NOL12 5'-3' exoribonucleases, conserved among eukaryotes, play important roles in pre-rRNA processing, ribosome assembly and export. The most well-described yeast counterpart, Rrp17, is required for maturation of 5.8 and 25S rRNAs, whereas human hNOL12 is crucial for the separation of the large (LSU) and small (SSU) ribosome subunit rRNA precursors. RESULTS In this study we demonstrate that plant AtNOL12 is also involved in rRNA biogenesis, specifically in the processing of the LSU rRNA precursor, 27S pre-rRNA. Importantly, the absence of AtNOL12 alters the expression of many ribosomal protein and ribosome biogenesis genes. These changes could potentially exacerbate rRNA biogenesis defects, or, conversely, they might stem from the disturbed ribosome assembly caused by delayed pre-rRNA processing. Moreover, exposure of the nol12 mutant to stress factors, including heat and pathogen Pseudomonas syringae, enhances the observed molecular phenotypes, linking pre-rRNA processing to stress response pathways. The aberrant rRNA processing, dependent on AtNOL12, could impact ribosome function, as suggested by improved mutant resistance to ribosome-targeting antibiotics. CONCLUSION Despite extensive studies, the pre-rRNA processing pathway in plants remains insufficiently characterized. Our investigation reveals the involvement of AtNOL12 in the maturation of rRNA precursors, correlating this process to stress response in Arabidopsis. These findings contribute to a more comprehensive understanding of plant ribosome biogenesis.
Collapse
Affiliation(s)
- Monika Zakrzewska-Placzek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw, 02-106, Poland.
| | - Anna Golisz-Mocydlarz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw, 02-106, Poland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, 02-106, Poland
| | - Justyna Piotrowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, 02-106, Poland
| | - Malgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw, 02-106, Poland
| | - Joanna Kufel
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, Warsaw, 02-106, Poland.
| |
Collapse
|
7
|
Peirats-Llobet M, Yi C, Liew L, Berkowitz O, Narsai R, Lewsey M, Whelan J. Spatially resolved transcriptomic analysis of the germinating barley grain. Nucleic Acids Res 2023; 51:7798-7819. [PMID: 37351575 PMCID: PMC10450182 DOI: 10.1093/nar/gkad521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/24/2023] Open
Abstract
Seeds are a vital source of calories for humans and a unique stage in the life cycle of flowering plants. During seed germination, the embryo undergoes major developmental transitions to become a seedling. Studying gene expression in individual seed cell types has been challenging due to the lack of spatial information or low throughput of existing methods. To overcome these limitations, a spatial transcriptomics workflow was developed for germinating barley grain. This approach enabled high-throughput analysis of spatial gene expression, revealing specific spatial expression patterns of various functional gene categories at a sub-tissue level. This study revealed over 14 000 genes differentially regulated during the first 24 h after imbibition. Individual genes, such as the aquaporin gene family, starch degradation, cell wall modification, transport processes, ribosomal proteins and transcription factors, were found to have specific spatial expression patterns over time. Using spatial autocorrelation algorithms, we identified auxin transport genes that had increasingly focused expression within subdomains of the embryo over time, suggesting their role in establishing the embryo axis. Overall, our study provides an unprecedented spatially resolved cellular map for barley germination and identifies specific functional genomics targets to better understand cellular restricted processes during germination. The data can be viewed at https://spatial.latrobe.edu.au/.
Collapse
Affiliation(s)
- Marta Peirats-Llobet
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Changyu Yi
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe Institute for Sustainable Agriculture and Food, School of Agriculture, Biomedical and Environmental Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Research Centre for Engineering Biology, College of Life Science, Zhejiang University, 718 East Haizhou Road, Haining, Jiaxing, Zhejiang 314400, China
| |
Collapse
|
8
|
Pagano A, Macovei A, Balestrazzi A. Molecular dynamics of seed priming at the crossroads between basic and applied research. PLANT CELL REPORTS 2023; 42:657-688. [PMID: 36780009 PMCID: PMC9924218 DOI: 10.1007/s00299-023-02988-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The potential of seed priming is still not fully exploited. Our limited knowledge of the molecular dynamics of seed pre-germinative metabolism is the main hindrance to more effective new-generation techniques. Climate change and other recent global crises are disrupting food security. To cope with the current demand for increased food, feed, and biofuel production, while preserving sustainability, continuous technological innovation should be provided to the agri-food sector. Seed priming, a pre-sowing technique used to increase seed vigor, has become a valuable tool due to its potential to enhance germination and stress resilience under changing environments. Successful priming protocols result from the ability to properly act on the seed pre-germinative metabolism and stimulate events that are crucial for seed quality. However, the technique still requires constant optimization, and researchers are committed to addressing some key open questions to overcome such drawbacks. In this review, an update of the current scientific and technical knowledge related to seed priming is provided. The rehydration-dehydration cycle associated with priming treatments can be described in terms of metabolic pathways that are triggered, modulated, or turned off, depending on the seed physiological stage. Understanding the ways seed priming affects, either positively or negatively, such metabolic pathways and impacts gene expression and protein/metabolite accumulation/depletion represents an essential step toward the identification of novel seed quality hallmarks. The need to expand the basic knowledge on the molecular mechanisms ruling the seed response to priming is underlined along with the strong potential of applied research on primed seeds as a source of seed quality hallmarks. This route will hasten the implementation of seed priming techniques needed to support sustainable agriculture systems.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', Via Ferrata 1, 27100, Pavia, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| |
Collapse
|
9
|
Morgan BL, Donohue K. Parental methylation mediates how progeny respond to environments of parents and of progeny themselves. ANNALS OF BOTANY 2022; 130:883-899. [PMID: 36201313 PMCID: PMC9758305 DOI: 10.1093/aob/mcac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Environments experienced by both parents and offspring influence progeny traits, but the epigenetic mechanisms that regulate the balance of parental vs. progeny control of progeny phenotypes are not known. We tested whether DNA methylation in parents and/or progeny mediates responses to environmental cues experienced in both generations. METHODS Using Arabidopsis thaliana, we manipulated parental and progeny DNA methylation both chemically, via 5-azacytidine, and genetically, via mutants of methyltransferase genes, then measured progeny germination responses to simulated canopy shade in parental and progeny generations. KEY RESULTS We first found that germination of offspring responded to parental but not seed demethylation. We further found that parental demethylation reversed the parental effect of canopy in seeds with low (Cvi-1) to intermediate (Col) dormancy, but it obliterated the parental effect in seeds with high dormancy (Cvi-0). Demethylation did so by either suppressing germination of seeds matured under white-light (Cvi-1) or under canopy (Cvi-0), or by increasing the germination of seeds matured under canopy (Col). Disruption of parental methylation also prevented seeds from responding to their own light environment in one genotype (Cvi-0, most dormant), but it enabled seeds to respond to their own environment in another genotype (Cvi-1, least dormant). Using mutant genotypes, we found that both CG and non-CG DNA methylation were involved in parental effects on seed germination. CONCLUSIONS Parental methylation state influences seed germination more strongly than does the progeny's own methylation state, and it influences how seeds respond to environments of parents and progeny in a genotype-specific manner.
Collapse
Affiliation(s)
- Britany L Morgan
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kathleen Donohue
- University Program in Ecology Duke University, Durham, NC 27705, USA
- Biology Department, Duke University, Durham, NC 27705, USA
| |
Collapse
|
10
|
Zhao T, Lu J, Zhang H, Xue M, Pan J, Ma L, Berger F, Jiang D. Histone H3.3 deposition in seed is essential for the post-embryonic developmental competence in Arabidopsis. Nat Commun 2022; 13:7728. [PMID: 36513677 PMCID: PMC9747979 DOI: 10.1038/s41467-022-35509-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
The acquisition of germination and post-embryonic developmental ability during seed maturation is vital for seed vigor, an important trait for plant propagation and crop production. How seed vigor is established in seeds is still poorly understood. Here, we report the crucial function of Arabidopsis histone variant H3.3 in endowing seeds with post-embryonic developmental potentials. H3.3 is not essential for seed formation, but loss of H3.3 results in severely impaired germination and post-embryonic development. H3.3 exhibits a seed-specific 5' gene end distribution and facilitates chromatin opening at regulatory regions in seeds. During germination, H3.3 is essential for proper gene transcriptional regulation. Moreover, H3.3 is constantly loaded at the 3' gene end, correlating with gene body DNA methylation and the restriction of chromatin accessibility and cryptic transcription at this region. Our results suggest a fundamental role of H3.3 in initiating chromatin accessibility at regulatory regions in seed and licensing the embryonic to post-embryonic transition.
Collapse
Affiliation(s)
- Ting Zhao
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Lu
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Mande Xue
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jie Pan
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Ma
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Frédéric Berger
- grid.24194.3a0000 0000 9669 8503Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Danhua Jiang
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Liu H, Yuan L, Guo W, Wu W. Transcription factor TERF1 promotes seed germination under osmotic conditions by activating gibberellin acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111350. [PMID: 35709980 DOI: 10.1016/j.plantsci.2022.111350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Seed germination is the first step of seedling establishment, which is particularly sensitive to drought stress. Elucidating the mechanism regulating seed germination under drought stress is of great importance. We showed that overexpressing Tomato Ethylene Responsive Factor 1 (TERF1), an ERF transcription factor in the ethylene signaling pathway, significantly reduced seed sensitivity to mannitol treatment during seed germination. Germination assay demonstrated that TERF1 could activate gibberellin acid (GA) signaling pathway independent on GA metabolism during germination. By comparative transcriptome analysis (mannitol vs normal germination condition, mannitol vs mannitol plus paclobutrazol (PAC, an inhibitor of GA biosynthesis)) we identified the genes regulated by TERF1 specifically under mannitol treatment and confirmed that TERF1 could activate GA signaling pathway independent on GA metabolism, which were consistent with the germination assay with mannitol and mannitol plus PAC treatment. Based on sugar, gene expression and germination analysis we proved that TERF1 promoted seed germination through glucose signaling pathway mediated by GA. Thus our study provides an underlying mechanism for activating GA signaling pathway by TERF1 during seed germination under osmotic conditions.
Collapse
Affiliation(s)
- Hongzhi Liu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Long Yuan
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China
| | - Wei Guo
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| | - Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| |
Collapse
|
12
|
Ciacka K, Tyminski M, Wal A, Gniazdowska A, Krasuska U. Nitric oxide-an antidote to seed aging modifies meta-tyrosine content and expression of aging-linked genes in apple embryos. FRONTIERS IN PLANT SCIENCE 2022; 13:929245. [PMID: 36110361 PMCID: PMC9468924 DOI: 10.3389/fpls.2022.929245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Short-term (3 h) treatment of embryos isolated from accelerated aged apple seeds (Malus domestica Borkh.) with nitric oxide (NO) partially reduced the effects of aging. The study aimed to investigate the impact of the short-term NO treatment of embryos isolated from apple seeds subjected to accelerated aging on the expression of genes potentially linked to the regulation of seed aging. Apple seeds were artificially aged for 7, 14, or 21 days. Then, the embryos were isolated from the seeds, treated with NO, and cultured for 48 h. Progression of seed aging was associated with the decreased transcript levels of most of the analyzed genes (Lea1, Lea2a, Lea4, Hsp70b, Hsp20a, Hsp20b, ClpB1, ClpB4, Cpn60a, Cpn60b, Raptor, and Saur). The role of NO in the mitigation of seed aging depended on the duration of the aging. After 7 and 14 days of seed aging, a decreased expression of genes potentially associated with the promotion of aging (Tor, Raptor, Saur) was noted. NO-dependent regulation of seed aging was associated with the stimulation of the expression of genes encoding chaperones and proteins involved in the repair of damaged proteins. After NO application, the greatest upregulation of ClpB, Pimt was noted in the embryos isolated from seeds subjected to 7-day long accelerated aging, Hsp70b, Hsp70c, and Cpn in the embryos of seeds aged for 14 days, and Lea2a in the embryos of seeds after 21 days of aging. We also demonstrated the increased meta-tyrosine concentration depending or in respect the progression of artificial aging, and the NO-induced increased phenylalanine content in seeds artificially aged for 21 days. In the NO-treated embryos of seeds aged for 7 and 21 days, the level of tyrosine was almost doubled compared to the aged tissue. Our data confirmed the usage of meta-tyrosine as a marker of seed aging and indicated that the increased meta-tyrosine/tyrosine ratio could be related to the loss of seed viability.
Collapse
|
13
|
Methods to promote seed germination in the lacquer tree, Toxicodendron vernicifluum (Stokes) F.A. Barkley. PLoS One 2022; 17:e0272665. [PMID: 35951616 PMCID: PMC9371279 DOI: 10.1371/journal.pone.0272665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/24/2022] [Indexed: 11/19/2022] Open
Abstract
The lacquer tree, Toxicodendron vernicifluum, is a common industrial crop in East Asia. However, T. vernicifluum seeds are extremely difficult to germinate, which poses a major obstacle to establishing seedlings for sap production. In this study, we examined the germination properties of T. vernicifluum seeds in order to establish an inexpensive and effective method to promote seed germination. The seeds are covered with a hard endocarp, which we degrade using conventional sulfuric acid-based methods. Although sulfuric acid was effective in promoting seed germination, the germination rate was less than 5%. In addition to treatment with sulfuric acid, co-treatment with cold temperatures or the phytohormone gibberellic acid increased the germination rate to 22–35%. Seed viability analysis combined with specific gravity-based seed selection revealed that more than half of the seeds housed embryos that were incapable of germination. In additions, specific gravity-based seed selection aided in the selection of seeds capable of germination and improved the germination rate to approximately 47%. Taken together, our results suggest that the low germination rate of T. vernicifluum seeds is due to deep seed dormancy—which is controlled by physical and physiological mechanisms—and low embryo viability. To improve the germination rate of T. vernicifluum seeds, we propose an effective method whereby seeds with good germination capacity are selected based on specific gravity, following which their physiological dormancy is inactivated through cold pretreatment.
Collapse
|
14
|
Ramtekey V, Cherukuri S, Kumar S, V. SK, Sheoran S, K. UB, K. BN, Kumar S, Singh AN, Singh HV. Seed Longevity in Legumes: Deeper Insights Into Mechanisms and Molecular Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:918206. [PMID: 35968115 PMCID: PMC9364935 DOI: 10.3389/fpls.2022.918206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Sustainable agricultural production largely depends upon the viability and longevity of high-quality seeds during storage. Legumes are considered as rich source of dietary protein that helps to ensure nutritional security, but associated with poor seed longevity that hinders their performance and productivity in farmer's fields. Seed longevity is the key determinant to assure proper seed plant value and crop yield. Thus, maintenance of seed longevity during storage is of prime concern and a pre-requisite for enhancing crop productivity of legumes. Seed longevity is significantly correlated with other seed quality parameters such as germination, vigor, viability and seed coat permeability that affect crop growth and development, consequently distressing crop yield. Therefore, information on genetic basis and regulatory networks associated with seed longevity, as well as molecular dissection of traits linked to longevity could help in developing crop varieties with good storability. Keeping this in view, the present review focuses towards highlighting the molecular basis of seed longevity, with special emphasis on candidate genes and proteins associated with seed longevity and their interplay with other quality parameters. Further, an attempt was made to provide information on 3D structures of various genetic loci (genes/proteins) associated to seed longevity that could facilitate in understanding the interactions taking place within the seed at molecular level. This review compiles and provides information on genetic and genomic approaches for the identification of molecular pathways and key players involved in the maintenance of seed longevity in legumes, in a holistic manner. Finally, a hypothetical fast-forward breeding pipeline has been provided, that could assist the breeders to successfully develop varieties with improved seed longevity in legumes.
Collapse
Affiliation(s)
| | | | - Sunil Kumar
- Indian Agricultural Statistics Research Institute-IASRI, New Delhi, India
| | | | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, India
| | - Udaya Bhaskar K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Bhojaraja Naik K.
- ICAR-Indian Institute of Seed Science, Regional Station, Bengaluru, India
| | - Sanjay Kumar
- ICAR-Indian Institute of Seed Science, Mau, India
| | | | | |
Collapse
|
15
|
Sano N, Lounifi I, Cueff G, Collet B, Clément G, Balzergue S, Huguet S, Valot B, Galland M, Rajjou L. Multi-Omics Approaches Unravel Specific Features of Embryo and Endosperm in Rice Seed Germination. FRONTIERS IN PLANT SCIENCE 2022; 13:867263. [PMID: 35755645 PMCID: PMC9225960 DOI: 10.3389/fpls.2022.867263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Seed germination and subsequent seedling growth affect the final yield and quality of the crop. Seed germination is defined as a series of processes that begins with water uptake by a quiescent dry seed and ends with the elongation of embryonic axis. Rice is an important cereal crop species, and during seed germination, two tissues function in a different manner; the embryo grows into a seedling as the next generation and the endosperm is responsible for nutritional supply. Toward understanding the integrated roles of each tissue at the transcriptional, translational, and metabolic production levels during germination, an exhaustive "multi-omics" analysis was performed by combining transcriptomics, label-free shotgun proteomics, and metabolomics on rice germinating embryo and endosperm, independently. Time-course analyses of the transcriptome and metabolome in germinating seeds revealed a major turning point in the early phase of germination in both embryo and endosperm, suggesting that dramatic changes begin immediately after water imbibition in the rice germination program at least at the mRNA and metabolite levels. In endosperm, protein profiles mostly showed abundant decreases corresponding to 90% of the differentially accumulated proteins. An ontological classification revealed the shift from the maturation to the germination process where over-represented classes belonged to embryonic development and cellular amino acid biosynthetic processes. In the embryo, 19% of the detected proteins are differentially accumulated during germination. Stress response, carbohydrate, fatty acid metabolism, and transport are the main functional classes representing embryo proteome change. Moreover, proteins specific to the germinated state were detected by both transcriptomic and proteomic approaches and a major change in the network operating during rice germination was uncovered. In particular, concomitant changes of hormonal metabolism-related proteins (GID1L2 and CNX1) implicated in GAs and ABA metabolism, signaling proteins, and protein turnover events emphasized the importance of such biological networks in rice seeds. Using metabolomics, we highlighted the importance of an energetic supply in rice seeds during germination. In both embryo and endosperm, starch degradation, glycolysis, and subsequent pathways related to these cascades, such as the aspartate-family pathway, are activated during germination. A relevant number of accumulated proteins and metabolites, especially in embryos, testifies the pivotal role of energetic supply in the preparation of plant growth. This article summarizes the key genetic pathways in embryo and endosperm during rice seed germination at the transcriptional, translational, and metabolite levels and thereby, emphasizes the value of combined multi-omics approaches to uncover the specific feature of tissues during germination.
Collapse
Affiliation(s)
- Naoto Sano
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Imen Lounifi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- MBCC Group, Master Builders Construction Chemical, Singapore, Singapore
| | - Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Boris Collet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sandrine Balzergue
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Stéphanie Huguet
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Benoît Valot
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, PAPPSO, Plateforme d'Analyse de Proteomique Paris-Sud-Ouest, Gif-sur-Yvette, France
- Chrono-Environnement Research Team UMR/CNRS-6249, Bourgogne-Franche-Comté University, Besançon, France
| | - Marc Galland
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
16
|
Cueff G, Rajjou L, Hoang HH, Bailly C, Corbineau F, Leymarie J. In-Depth Proteomic Analysis of the Secondary Dormancy Induction by Hypoxia or High Temperature in Barley Grains. PLANT & CELL PHYSIOLOGY 2022; 63:550-564. [PMID: 35139224 DOI: 10.1093/pcp/pcac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
In barley, incubation of primary dormant (D1) grains on water under conditions that do not allow germination, i.e. 30°C in air and 15°C or 30°C in 5% O2, induces a secondary dormancy (D2) expressed as a loss of the ability to germinate at 15°C in air. The aim of this study was to compare the proteome of barley embryos isolated from D1 grains and D2 ones after induction of D2 at 30°C or in hypoxia at 15°C or 30°C. Total soluble proteins were analyzed by 2DE gel-based proteomics, allowing the selection of 130 differentially accumulated proteins (DAPs) among 1,575 detected spots. According to the protein abundance profiles, the DAPs were grouped into six abundance-based similarity clusters. Induction of D2 is mainly characterized by a down-accumulation of proteins belonging to cluster 3 (storage proteins, proteases, alpha-amylase inhibitors and histone deacetylase HD2) and an up-accumulation of proteins belonging to cluster 4 (1-Cys peroxiredoxin, lipoxygenase2 and caleosin). The correlation-based network analysis for each cluster highlighted central protein hub. In addition, most of genes encoding DAPs display high co-expression degree with 19 transcription factors. Finally, this work points out that similar molecular events accompany the modulation of dormancy cycling by both temperature and oxygen, including post-translational, transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
- Gwendal Cueff
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint-Cyr, Versailles 78000, France
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Route de Saint-Cyr, Versailles 78000, France
| | - Hai Ha Hoang
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Christophe Bailly
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Françoise Corbineau
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
| | - Juliette Leymarie
- UMR7622 CNRS-UPMC Biologie du Développement, Biologie des semences, Sorbonne Université, boîte 24, 4 place Jussieu, Paris 75005, France
- Univ Paris Est Creteil, CNRS, INRAE, IRD, IEES Paris-Institut d'Ecologie et des Sciences de l'Environnement de Paris, 61 avenue du Général de Gaulle, Créteil 94010, France
| |
Collapse
|
17
|
Rutley N, Harper JF, Miller G. Reproductive resilience: putting pollen grains in two baskets. TRENDS IN PLANT SCIENCE 2022; 27:237-246. [PMID: 34627662 DOI: 10.1016/j.tplants.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
To ensure reproductive success, flowering plants produce an excess of pollen to fertilize a limited number of ovules. Pollen grains mature into two distinct subpopulations - those that display high metabolic activity and elevated reactive oxygen species (ROS) levels immediately after hydration (high-ROS/active), and those that maintain an extended period of dormancy with low metabolic activity (low-ROS/inactive/arrested/dormant). We propose that the dormant pollen serves as a backup to provide a second chance for successful fertilization when the 'first wave' of pollen encounters an unpredictable growth condition such as heat stress. This model provides a framework for considering the role of dormancy in reproductive stress tolerance as well as strategies for mitigating pollen thermovulnerability to daytime and night-time warming that is associated with global climate change.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Jeffery F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada at Reno, NV 89557, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
18
|
Kalemba EM, Valot B, Job D, Bailly C, Meimoun P. Are Methionine Sulfoxide-Containing Proteins Related to Seed Longevity? A Case Study of Arabidopsisthaliana Dry Mature Seeds Using Cyanogen Bromide Attack and Two-Dimensional-Diagonal Electrophoresis. PLANTS (BASEL, SWITZERLAND) 2022; 11:569. [PMID: 35214905 PMCID: PMC8875303 DOI: 10.3390/plants11040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
In recent years, several reports pointed out the role of protein oxidation in seed longevity, notably regarding the oxidation of methionine (Met) residues to methionine sulfoxide (MetO) in proteins. To further consider this question, we present a handy proteomic method based on the use of two-dimensional diagonal electrophoresis (2Dd) and cyanogen bromide (CNBr) cleavage, which we refer to as 2Dd-CNBr. CNBr treatment of proteins causes the non-enzymatic hydrolysis of peptide bonds on the carboxyl side of reduced Met residues. However, Met oxidation causes a lack of cleavage, thus modifying the electrophoretic mobility of CNBr-induced peptides. This approach was first validated using bovine serum albumin as a model protein, which confirmed the possibility of distinguishing between oxidized and non-oxidized forms of Met-containing peptides in gels. Then, the 2Dd-CNBr method was applied to the Arabidopsis thaliana seed protein extract in a control (non-oxidized) condition and in an oxidized one (as obtained following hypochlorous acid treatment). Twenty-four oxidized Met residues in 19 proteins identified by mass spectrometry were found to be surface exposed in these proteins. In the three-dimensional environment of the oxidized Met, we detected amino acid residues that could be converted by oxidation (carbonylation) or by phosphorylation, suggesting a possible interplay between Met oxidation and the other protein modifications. The identification of the proteins oxidatively modified in Met residues revealed the finding that MetO-containing proteins are related to seed longevity. Based on these results, we suggest that the method presently described also has the potential for wider applications.
Collapse
Affiliation(s)
- Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland;
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| | - Benoît Valot
- PAPPSO, INRA, CNRS, AgroParisTech, Université Paris-Saclay, GQE-Le Moulon, 91190 Gif-sur-Yvette, France;
- UMR CNRS 6249 Chrono-Environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Dominique Job
- UMR5240, CNRS, Université Claude Bernarnard Lyon 1, INSA, Bayer CropScience, 69622 Lyon, France;
| | - Christophe Bailly
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| | - Patrice Meimoun
- UMR 7622 Biologie du Développement, IBPS, Sorbonne Université, CNRS, F-75005 Paris, France;
| |
Collapse
|
19
|
Matilla AJ. Exploring Breakthroughs in Three Traits Belonging to Seed Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040490. [PMID: 35214823 PMCID: PMC8875957 DOI: 10.3390/plants11040490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 05/06/2023]
Abstract
Based on prior knowledge and with the support of new methodology, solid progress in the understanding of seed life has taken place over the few last years. This update reflects recent advances in three key traits of seed life (i.e., preharvest sprouting, genomic imprinting, and stored-mRNA). The first breakthrough refers to cloning of the mitogen-activated protein kinase-kinase 3 (MKK3) gene in barley and wheat. MKK3, in cooperation with ABA signaling, controls seed dormancy. This advance has been determinant in producing improved varieties that are resistant to preharvest sprouting. The second advance concerns to uniparental gene expression (i.e., imprinting). Genomic imprinting primarily occurs in the endosperm. Although great advances have taken place in the last decade, there is still a long way to go to complete the puzzle regarding the role of genomic imprinting in seed development. This trait is probably one of the most important epigenetic facets of developing endosperm. An example of imprinting regulation is polycomb repressive complex 2 (PRC2). The mechanism of PRC2 recruitment to target endosperm with specific genes is, at present, robustly studied. Further progress in the knowledge of recruitment of PRC2 epigenetic machinery is considered in this review. The third breakthrough referred to in this update involves stored mRNA. The role of the population of this mRNA in germination is far from known. Its relations to seed aging, processing bodies (P bodies), and RNA binding proteins (RBPs), and how the stored mRNA is targeted to monosomes, are aspects considered here. Perhaps this third trait is the one that will require greater experimental dedication in the future. In order to make progress, herein are included some questions that are needed to be answered.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional (Área Fisiología Vegetal), Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
20
|
Zhao S, Zou H, Jia Y, Pan X, Huang D. Carrot ( Daucus carota L.) Seed Germination Was Promoted by Hydro-Electro Hybrid Priming Through Regulating the Accumulation of Proteins Involved in Carbohydrate and Protein Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:824439. [PMID: 35222483 PMCID: PMC8868939 DOI: 10.3389/fpls.2022.824439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Asynchronized and non-uniform seed germination is causing obstacles to the large-scale cultivation of carrot (Daucus carota L.). In the present study, the combination of high voltage electrostatic field treatment (EF) with hydropriming (HYD), namely hydro-electro hybrid priming (HEHP), significantly improved all germination indicators of carrot seeds, and the promoting effect was superior to that of the HYD treatment. A tandem mass tags (TMT)-based proteomic analysis identified 4,936 proteins from the seeds, and the maximum number of differentially abundant proteins (DAPs) appeared between CK and HEHP. KEGG analysis revealed that the upregulated DAPs were mainly enriched in the pathways related to protein synthesis and degradation such as "ribosome" and "proteasome," while the downregulated DAPs were mainly enriched in photosynthesis-related pathways. Furthermore, the maximum DAPs were annotated in carbohydrate metabolism. Some proteins identified as key enzymes of the glyoxylate cycle, the tricarboxylate cycle, glycolysis and the pentose phosphate pathway showed enhanced abundance in priming treatments. The activities of several key enzymes involved in carbohydrate metabolism were also enhanced by the priming treatments, especially the HEHP treatment. Real-time quantitative PCR (qRT-PCR) analysis revealed that the effect of priming is mainly reflected before sowing. In conclusion, the optimal effect of HEHP is to regulate the synthesis and degradation of proteins in seeds to meet the requirements of germination and initiate the utilization of seed storage reserves and respiratory metabolism. The present work expanded the understanding of the response mechanism of carrot seed germination to priming and the biological effects of high voltage electrostatic field.
Collapse
Affiliation(s)
- Shuo Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zou
- School of Mechanical Engineering, Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjie Jia
- Shanghai Vegetable Research Institute, Shanghai, China
| | - Xueqin Pan
- Shanghai Vegetable Research Institute, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Vegetable Research Institute, Shanghai, China
| |
Collapse
|
21
|
Lee J, Hanh Nguyen H, Park Y, Lin J, Hwang I. Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:816-830. [PMID: 34797009 DOI: 10.1111/tpj.15593] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.
Collapse
Affiliation(s)
- Jihyeong Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Hong Hanh Nguyen
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Youngmin Park
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
- Bioapplications, Pohang, Korea
| | - Jinxing Lin
- Key Lab of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Inhwan Hwang
- Department of Life Science, Pohang University of Science and Technology, Pohang, 790-784, Korea
| |
Collapse
|
22
|
Debouza NE, Babu Thruppoyil S, Gopi K, Zain S, Ksiksi T. Plant and seed germination responses to global change, with a focus on CO2: A review. ONE ECOSYSTEM 2021. [DOI: 10.3897/oneeco.6.e74260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Earth atmospheric CO2 concentration has risen by over 35% since 1750 and is presently increasing by about 2 parts per million (ppm) every year. Due to contributions from human activity, CO2 is projected to keep rising in the predictable future and to double sometime during this century if fossil fuels burning remains. As a result, air temperature is projected to rise from 2 to 5 °C by 2100. Following this rise in CO2, some ecosystems will face challenges in the next few decades as plants will live in warmer temperatures, higher evaporating demand and widespread changes in drought lengths and severity. To yield healthy crops and forests in changing climate surroundings, it is vital to define whether elevated CO2 disturbs seed germination and plant formation, but even more, the physiological traits conferring drought tolerance. Here, we review the current understanding on the role that CO2 plays on plant growth and seed germination, as well as its impact during the exposure of abiotic stresses like drought and salinity.
Collapse
|
23
|
Yu K, He Y, Li Y, Li Z, Zhang J, Wang X, Tian E. Quantitative Trait Locus Mapping Combined with RNA Sequencing Reveals the Molecular Basis of Seed Germination in Oilseed Rape. Biomolecules 2021; 11:biom11121780. [PMID: 34944424 PMCID: PMC8698463 DOI: 10.3390/biom11121780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Rapid and uniform seed germination improves mechanized oilseed rape production in modern agricultural cultivation practices. However, the molecular basis of seed germination is still unclear in Brassica napus. A population of recombined inbred lines of B. napus from a cross between the lower germination rate variety ‘APL01’ and the higher germination rate variety ‘Holly’ was used to study the genetics of seed germination using quantitative trait locus (QTL) mapping. A total of five QTLs for germination energy (GE) and six QTLs for germination percentage (GP) were detected across three seed lots, respectively. In addition, six epistatic interactions between the QTLs for GE and nine epistatic interactions between the QTLs for GP were detected. qGE.C3 for GE and qGP.C3 for GP were co-mapped to the 28.5–30.5 cM interval on C3, which was considered to be a novel major QTL regulating seed germination. Transcriptome analysis revealed that the differences in sugar, protein, lipid, amino acid, and DNA metabolism and the TCA cycle, electron transfer, and signal transduction potentially determined the higher germination rate of ‘Holly’ seeds. These results contribute to our knowledge about the molecular basis of seed germination in rapeseed.
Collapse
Affiliation(s)
- Kunjiang Yu
- Department of Agronomy, College of Agriculture, Guizhou University, Guiyang 550025, China; (K.Y.); (Y.H.); (Y.L.); (Z.L.)
| | - Yuqi He
- Department of Agronomy, College of Agriculture, Guizhou University, Guiyang 550025, China; (K.Y.); (Y.H.); (Y.L.); (Z.L.)
| | - Yuanhong Li
- Department of Agronomy, College of Agriculture, Guizhou University, Guiyang 550025, China; (K.Y.); (Y.H.); (Y.L.); (Z.L.)
| | - Zhenhua Li
- Department of Agronomy, College of Agriculture, Guizhou University, Guiyang 550025, China; (K.Y.); (Y.H.); (Y.L.); (Z.L.)
| | - Jiefu Zhang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xiaodong Wang
- Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence: (X.W.); (E.T.)
| | - Entang Tian
- Department of Agronomy, College of Agriculture, Guizhou University, Guiyang 550025, China; (K.Y.); (Y.H.); (Y.L.); (Z.L.)
- Correspondence: (X.W.); (E.T.)
| |
Collapse
|
24
|
Ríos-Meléndez S, Valadez-Hernández E, Delgadillo C, Luna-Guevara ML, Martínez-Núñez MA, Sánchez-Pérez M, Martínez-Y-Pérez JL, Arroyo-Becerra A, Cárdenas L, Bibbins-Martínez M, Maldonado-Mendoza IE, Villalobos-López MA. Pseudocrossidium replicatum (Taylor) R.H. Zander is a fully desiccation-tolerant moss that expresses an inducible molecular mechanism in response to severe abiotic stress. PLANT MOLECULAR BIOLOGY 2021; 107:387-404. [PMID: 34189708 PMCID: PMC8648698 DOI: 10.1007/s11103-021-01167-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/10/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The moss Pseudocrossidium replicatum is a desiccation-tolerant species that uses an inducible system to withstand severe abiotic stress in both protonemal and gametophore tissues. Desiccation tolerance (DT) is the ability of cells to recover from an air-dried state. Here, the moss Pseudocrossidium replicatum was identified as a fully desiccation-tolerant (FDT) species. Its gametophores rapidly lost more than 90% of their water content when exposed to a low-humidity atmosphere [23% relative humidity (RH)], but abscisic acid (ABA) pretreatment diminished the final water loss after equilibrium was reached. P. replicatum gametophores maintained good maximum photosystem II (PSII) efficiency (Fv/Fm) for up to two hours during slow dehydration; however, ABA pretreatment induced a faster decrease in the Fv/Fm. ABA also induced a faster recovery of the Fv/Fm after rehydration. Protein synthesis inhibitor treatment before dehydration hampered the recovery of the Fv/Fm when the gametophores were rehydrated after desiccation, suggesting the presence of an inducible protective mechanism that is activated in response to abiotic stress. This observation was also supported by accumulation of soluble sugars in gametophores exposed to ABA or NaCl. Exogenous ABA treatment delayed the germination of P. replicatum spores and induced morphological changes in protonemal cells that resembled brachycytes. Transcriptome analyses revealed the presence of an inducible molecular mechanism in P. replicatum protonemata that was activated in response to dehydration. This study is the first RNA-Seq study of the protonemal tissues of an FDT moss. Our results suggest that P. replicatum is an FDT moss equipped with an inducible molecular response that prepares this species for severe abiotic stress and that ABA plays an important role in this response.
Collapse
Affiliation(s)
- Selma Ríos-Meléndez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Emmanuel Valadez-Hernández
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Claudio Delgadillo
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria L Luna-Guevara
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, C.P. 72000, Puebla, Puebla, México
| | - Mario A Martínez-Núñez
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 97302, Mérida, Yucatán, México
| | - Mishael Sánchez-Pérez
- Unidad de Análisis Bioinformáticos, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - José L Martínez-Y-Pérez
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, C.P. 90210, Ixtacuixtla, Tlaxcala, México
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Luis Cárdenas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, C.P. 62210, Cuernavaca, Morelos, México
| | - Martha Bibbins-Martínez
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México
| | - Ignacio E Maldonado-Mendoza
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional, C.P. 81049, Guasave, Sinaloa, México
| | - Miguel Angel Villalobos-López
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, C.P. 90700, Tepetitla de Lardizábal, Tlaxcala, México.
| |
Collapse
|
25
|
Chen X, Yoong FY, O'Neill CM, Penfield S. Temperature during seed maturation controls seed vigour through ABA breakdown in the endosperm and causes a passive effect on DOG1 mRNA levels during entry into quiescence. THE NEW PHYTOLOGIST 2021; 232:1311-1322. [PMID: 34314512 DOI: 10.1111/nph.17646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 05/08/2023]
Abstract
Temperature variation during seed set is an important modulator of seed dormancy and impacts the performance of crop seeds through effects on establishment rate. It remains unclear how changing temperature during maturation leads to dormancy and growth vigour differences in nondormant seedlings. Here we take advantage of the large seed size in Brassica oleracea to analyse effects of temperature on individual seed tissues. We show that warm temperature during seed maturation promotes seed germination, while removal of the endosperm from imbibed seeds abolishes temperature-driven effects on germination. We demonstrate that cool temperatures during early seed maturation lead to abscisic acid (ABA) retention specifically in the endosperm at desiccation. During this time temperature affects ABA dynamics in individual seed tissues and regulates ABA catabolism. We also show that warm-matured seeds preinduce a subset of germination-related programmes in the endosperm, whereas cold-matured seeds continue to store maturation-associated transcripts including DOG1 because of effects on mRNA degradation before quiescence, rather than because of the effect of temperature on transcription. We propose that effects of temperature on seed vigour are explained by endospermic ABA breakdown and the divergent relationships between temperature and mRNA breakdown and between temperature, seed moisture and the glass transition.
Collapse
Affiliation(s)
- Xiaochao Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Fei-Yian Yoong
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Carmel M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
26
|
Characterization of the Heat-Stable Proteome during Seed Germination in Arabidopsis with Special Focus on LEA Proteins. Int J Mol Sci 2021; 22:ijms22158172. [PMID: 34360938 PMCID: PMC8347141 DOI: 10.3390/ijms22158172] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/22/2022] Open
Abstract
During seed germination, desiccation tolerance is lost in the radicle with progressing radicle protrusion and seedling establishment. This process is accompanied by comprehensive changes in the metabolome and proteome. Germination of Arabidopsis seeds was investigated over 72 h with special focus on the heat-stable proteome including late embryogenesis abundant (LEA) proteins together with changes in primary metabolites. Six metabolites in dry seeds known to be important for seed longevity decreased during germination and seedling establishment, while all other metabolites increased simultaneously with activation of growth and development. Thermo-stable proteins were associated with a multitude of biological processes. In the heat-stable proteome, a relatively similar proportion of fully ordered and fully intrinsically disordered proteins (IDP) was discovered. Highly disordered proteins were found to be associated with functional categories development, protein, RNA and stress. As expected, the majority of LEA proteins decreased during germination and seedling establishment. However, four germination-specific dehydrins were identified, not present in dry seeds. A network analysis of proteins, metabolites and amino acids generated during the course of germination revealed a highly connected LEA protein network.
Collapse
|
27
|
Vinje MA, Henson CA, Duke SH, Simmons CH, Le K, Hall E, Hirsch CD. Description and functional analysis of the transcriptome from malting barley. Genomics 2021; 113:3310-3324. [PMID: 34273497 DOI: 10.1016/j.ygeno.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
The present study aimed to establish an early model of the malting barley transcriptome, which describes the expression of genes and their ontologies, identify the period during malting with the largest dynamic shift in gene expression for future investigation, and to determine the expression patterns of all starch degrading enzyme genes relevant to the malting and brewing industry. Large dynamic increases in gene expression occurred early in malting with differential expressed genes enriched for cell wall and starch hydrolases amongst many malting related categories. Twenty-five of forty starch degrading enzyme genes were differentially expressed in the malting barley transcriptome including eleven α-amylase genes, six β-amylase genes, three α-glucosidase genes, and all five starch debranching enzyme genes. Four new or novel α-amylase genes, one β-amylase gene (Bmy3), three α-glucosidase genes, and two isoamylase genes had appreciable expression that requires further exploration into their potential relevance to the malting and brewing industry.
Collapse
Affiliation(s)
- Marcus A Vinje
- USDA, Agricultural Research Service, Cereal Crops Research Unit, Madison, WI 53726, USA.
| | - Cynthia A Henson
- USDA, Agricultural Research Service, Cereal Crops Research Unit, Madison, WI 53726, USA; University of Wisconsin-Madison, Department of Agronomy, Madison, WI 53706, USA
| | - Stanley H Duke
- University of Wisconsin-Madison, Department of Agronomy, Madison, WI 53706, USA
| | - Carl H Simmons
- USDA, Agricultural Research Service, Cereal Crops Research Unit, Madison, WI 53726, USA
| | - Khoa Le
- University of Minnesota, Department of Plant Pathology, St. Paul, MN 55108, USA
| | - Evan Hall
- University of Minnesota, Department of Plant Pathology, St. Paul, MN 55108, USA
| | - Cory D Hirsch
- University of Minnesota, Department of Plant Pathology, St. Paul, MN 55108, USA
| |
Collapse
|
28
|
Srivastava AK, Suresh Kumar J, Suprasanna P. Seed 'primeomics': plants memorize their germination under stress. Biol Rev Camb Philos Soc 2021; 96:1723-1743. [PMID: 33961327 DOI: 10.1111/brv.12722] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Seed priming is a pre-germination treatment administered through various chemical, physical and biological agents, which induce mild stress during the early phases of germination. Priming facilitates synchronized seed germination, better seedling establishment, improved plant growth and enhanced yield, especially in stressful environments. In parallel, the phenomenon of 'stress memory' in which exposure to a sub-lethal stress leads to better responses to future or recurring lethal stresses has gained widespread attention in recent years. The versatility and realistic yield gains associated with seed priming and its connection with stress memory make a critical examination useful for the design of robust approaches for maximizing future yield gains. Herein, a literature review identified selenium, salicylic acid, poly-ethylene glycol, CaCl2 and thiourea as the seed priming agents (SPRs) for which the most studies have been carried out. The average priming duration for SPRs generally ranged from 2 to 48 h, i.e. during phase I/II of germination. The major signalling events for regulating early seed germination, including the DOG1 (delay of germination 1)-abscisic acid (ABA)-heme regulatory module, ABA-gibberellic acid antagonism and nucleus-organelle communication are detailed. We propose that both seed priming and stress memory invoke a 'bet-hedging' strategy in plants, wherein their growth under optimal conditions is compromised in exchange for better growth under stressful conditions. The molecular basis of stress memory is explained at the level of chromatin reorganization, alternative transcript splicing, metabolite accumulation and autophagy. This provides a useful framework to study similar mechanisms operating during seed priming. In addition, we highlight the potential for merging findings on seed priming with those of stress memory, with the dual benefit of advancing fundamental research and boosting crop productivity. Finally, a roadmap for future work, entailing identification of SPR-responsive varieties and the development of dual/multiple-benefit SPRs, is proposed for enhancing SPR-mediated agricultural productivity worldwide.
Collapse
Affiliation(s)
- Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Jisha Suresh Kumar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|
29
|
Layat E, Bourcy M, Cotterell S, Zdzieszyńska J, Desset S, Duc C, Tatout C, Bailly C, Probst AV. The Histone Chaperone HIRA Is a Positive Regulator of Seed Germination. Int J Mol Sci 2021; 22:ijms22084031. [PMID: 33919775 PMCID: PMC8070706 DOI: 10.3390/ijms22084031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Histone chaperones regulate the flow and dynamics of histone variants and ensure their assembly into nucleosomal structures, thereby contributing to the repertoire of histone variants in specialized cells or tissues. To date, not much is known on the distribution of histone variants and their modifications in the dry seed embryo. Here, we bring evidence that genes encoding the replacement histone variant H3.3 are expressed in Arabidopsis dry seeds and that embryo chromatin is characterized by a low H3.1/H3.3 ratio. Loss of HISTONE REGULATOR A (HIRA), a histone chaperone responsible for H3.3 deposition, reduces cellular H3 levels and increases chromatin accessibility in dry seeds. These molecular differences are accompanied by increased seed dormancy in hira-1 mutant seeds. The loss of HIRA negatively affects seed germination even in the absence of HISTONE MONOUBIQUITINATION 1 or TRANSCRIPTION ELONGATION FACTOR II S, known to be required for seed dormancy. Finally, hira-1 mutant seeds show lower germination efficiency when aged under controlled deterioration conditions or when facing unfavorable environmental conditions such as high salinity. Altogether, our results reveal a dependency of dry seed chromatin organization on the replication-independent histone deposition pathway and show that HIRA contributes to modulating seed dormancy and vigor.
Collapse
Affiliation(s)
- Elodie Layat
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Marie Bourcy
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Sylviane Cotterell
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Julia Zdzieszyńska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences–SGGW, 02-776 Warsaw, Poland;
| | - Sophie Desset
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Céline Duc
- UFIP UMR-CNRS 6286, Épigénétique et Dynamique de la Chromatine, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France;
| | - Christophe Tatout
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
| | - Christophe Bailly
- IBPS, UMR 7622 Biologie du Développement, CNRS, Sorbonne Université, 75005 Paris, France; (E.L.); (M.B.); (C.B.)
| | - Aline V. Probst
- iGReD, CNRS, Inserm, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (S.C.); (S.D.); (C.T.)
- Correspondence:
| |
Collapse
|
30
|
Zhang M, Cui G, Bai X, Ye Z, Zhang S, Xie K, Sun F, Zhang C, Xi Y. Regulatory Network of Preharvest Sprouting Resistance Revealed by Integrative Analysis of mRNA, Noncoding RNA, and DNA Methylation in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4018-4035. [PMID: 33769818 DOI: 10.1021/acs.jafc.1c00050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Preharvest sprouting (PHS) of grain occurs universally and sharply decreases grain quality and yield, but the mechanism remains unclear. MingXian169, a breeding inducer wheat for stripe rust, is widely used in the Huanghuai wheat-producing region, China. In this study, we found that MingXian169 could be considered an ideal material for PHS research because of its high PHS resistance. To further analyze the network of PHS, transcriptome sequencing of mRNA, noncoding RNA (ncRNA), and DNA methylome data were used to comparison germination seeds (GS) and dormant seeds (DS); 3027, 1516, and 22 genes and 95 103 methylation regions were identified as differentially expressed mRNA, DE-microRNAs (DE-miRNA), DE-long noncoding RNAs (DE-lncRNA), and differentially methylated regions (DMRs). Pathway enrichment tests highlighted plant hormone biosynthesis and signal transduction, glutathione-ascorbate metabolism, and starch and sucrose metabolism processes related to PHS mechanisms. Further analysis demonstrated that long noncoding RNA, miRNA, and DNA methylation played critical roles in transcriptional regulation of critical pathways during PHS by modifying and interacting with target genes. Quantitative real-time polymerase chain reaction (PCR) analyses of mRNA and miRNA confirmed the sequencing results. In the phytohormone content assay, abscisic acid (ABA) and jasmonic acid (JA) increased significantly in DS, and GA19 increased in GS. The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and β-d-glucosidase (BGLU) enzyme activities and the substance content of glutathione and sucrose were significantly higher in GS than in DS, implying that they were responsible for increasing PHS in MingXian169. Our results provide new insights into wheat PHS resistance at mRNA, ncRNA, and DNA methylation levels, with suggestions for crop breeding and production.
Collapse
Affiliation(s)
- Mingting Zhang
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Guibin Cui
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xinchen Bai
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Zi Ye
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Shumeng Zhang
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Kunliang Xie
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Fengli Sun
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Chao Zhang
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Yajun Xi
- State Key Lab Crop Stress Biology Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| |
Collapse
|
31
|
Fabrissin I, Sano N, Seo M, North HM. Ageing beautifully: can the benefits of seed priming be separated from a reduced lifespan trade-off? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2312-2333. [PMID: 33512455 DOI: 10.1093/jxb/erab004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/12/2021] [Indexed: 05/15/2023]
Abstract
Germination performance is affected following seed exposure to a combination of temperature fluctuations and cycles of hydration and dehydration. This has long been exploited in a seed technology termed priming, which increases germination speed and seedling vigour, but these benefits have often been associated with effects on seed lifespan, or longevity, with conflicting evidence for positive and negative effects. Seed longevity is a key seed trait influencing not only the storage of commercial stocks but also in situ and ex situ seed conservation. In the context of increasingly variable environmental conditions faced by both crops and wild species, this has led to renewed interest in understanding the molecular factors that underlie priming. Here, we provide an overview of the literature relating to the effect of priming on seed lifespan, and catalogue the different parameters used for priming treatments and their consequences on longevity for a range of species. Our current limited understanding of the molecular basis for priming effects is also outlined, with an emphasis on recent advances and promising approaches that should lead towards the application and monitoring of the priming process in a less empirical manner.
Collapse
Affiliation(s)
- Isabelle Fabrissin
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Naoto Sano
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Helen M North
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
32
|
Bai B, van der Horst N, Cordewener JH, America AHP, Nijveen H, Bentsink L. Delayed Protein Changes During Seed Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:735719. [PMID: 34603360 PMCID: PMC8480309 DOI: 10.3389/fpls.2021.735719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/05/2021] [Indexed: 05/12/2023]
Abstract
Over the past decade, ample transcriptome data have been generated at different stages during seed germination; however, far less is known about protein synthesis during this important physiological process. Generally, the correlation between transcript levels and protein abundance is low, which strongly limits the use of transcriptome data to accurately estimate protein expression. Polysomal profiling has emerged as a tool to identify mRNAs that are actively translated. The association of the mRNA to the polysome, also referred to as translatome, provides a proxy for mRNA translation. In this study, the correlation between the changes in total mRNA, polysome-associated mRNA, and protein levels across seed germination was investigated. The direct correlation between polysomal mRNA and protein abundance at a single time-point during seed germination is low. However, once the polysomal mRNA of a time-point is compared to the proteome of the next time-point, the correlation is much higher. 35% of the investigated proteome has delayed changes at the protein level. Genes have been classified based on their delayed protein changes, and specific motifs in these genes have been identified. Moreover, mRNA and protein stability and mRNA length have been found as important predictors for changes in protein abundance. In conclusion, polysome association and/or dissociation predicts future changes in protein abundance in germinating seeds.
Collapse
Affiliation(s)
- Bing Bai
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Bing Bai,
| | | | - Jan H. Cordewener
- BU Bioscience, Wageningen Plant Research, Wageningen, Netherlands
- Centre for BioSystems Genomics, Wageningen, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Antoine H. P. America
- BU Bioscience, Wageningen Plant Research, Wageningen, Netherlands
- Centre for BioSystems Genomics, Wageningen, Netherlands
- Netherlands Proteomics Centre, Utrecht, Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Leónie Bentsink
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
- Leónie Bentsink,
| |
Collapse
|
33
|
Longo C, Holness S, De Angelis V, Lepri A, Occhigrossi S, Ruta V, Vittorioso P. From the Outside to the Inside: New Insights on the Main Factors That Guide Seed Dormancy and Germination. Genes (Basel) 2020; 12:genes12010052. [PMID: 33396410 PMCID: PMC7824603 DOI: 10.3390/genes12010052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The transition from a dormant to a germinating seed represents a crucial developmental switch in the life cycle of a plant. Subsequent transition from a germinating seed to an autotrophic organism also requires a robust and multi-layered control. Seed germination and seedling growth are multistep processes, involving both internal and external signals, which lead to a fine-tuning control network. In recent years, numerous studies have contributed to elucidate the molecular mechanisms underlying these processes: from light signaling and light-hormone crosstalk to the effects of abiotic stresses, from epigenetic regulation to translational control. However, there are still many open questions and molecular elements to be identified. This review will focus on the different aspects of the molecular control of seed dormancy and germination, pointing out new molecular elements and how these integrate in the signaling pathways already known.
Collapse
|
34
|
Analysis of Stored mRNA Degradation in Acceleratedly Aged Seeds of Wheat and Canola in Comparison to Arabidopsis. PLANTS 2020; 9:plants9121707. [PMID: 33291562 PMCID: PMC7761881 DOI: 10.3390/plants9121707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Seed aging has become a topic of renewed interest but its mechanism remains poorly understood. Our recent analysis of stored mRNA degradation in aged Arabidopsis seeds found that the stored mRNA degradation rates (estimated as the frequency of breakdown per nucleotide per day or β value) were constant over aging time under stable conditions. However, little is known about the generality of this finding to other plant species. We expanded the analysis to aged seeds of wheat (Triticum aestivum) and canola (Brassica napus). It was found that wheat and canola seeds required much longer periods than Arabidopsis seeds to lose seed germination ability completely under the same aging conditions. As what had been observed for Arabidopsis, stored mRNA degradation (∆Ct value in qPCR) in wheat and canola seeds correlated linearly and tightly with seed aging time or mRNA fragment size, while the quality of total RNA showed little change during seed aging. The generated β values reflecting the rate of stored mRNA degradation in wheat or canola seeds were similar for different stored mRNAs assayed and constant over seed aging time. The overall β values for aged seeds of wheat and canola showed non-significant differences from that of Arabidopsis when aged under the same conditions. These results are significant, allowing for better understanding of controlled seed aging for different species at the molecular level and for exploring the potential of stored mRNAs as seed aging biomarkers.
Collapse
|
35
|
Network Analysis Prioritizes DEWAX and ICE1 as the Candidate Genes for Major eQTL Hotspots in Seed Germination of Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2020; 10:4215-4226. [PMID: 32963085 PMCID: PMC7642920 DOI: 10.1534/g3.120.401477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Seed germination is characterized by a constant change of gene expression across different time points. These changes are related to specific processes, which eventually determine the onset of seed germination. To get a better understanding on the regulation of gene expression during seed germination, we performed a quantitative trait locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-ripened, six-hour after imbibition, and radicle protrusion stage) using Arabidopsis thaliana Bay x Sha recombinant inbred lines (RILs). The mapping displayed the distinctness of the eQTL landscape for each stage. We found several eQTL hotspots across stages associated with the regulation of expression of a large number of genes. Interestingly, an eQTL hotspot on chromosome five collocates with hotspots for phenotypic and metabolic QTL in the same population. Finally, we constructed a gene co-expression network to prioritize the regulatory genes for two major eQTL hotspots. The network analysis prioritizes transcription factors DEWAX and ICE1 as the most likely regulatory genes for the hotspot. Together, we have revealed that the genetic regulation of gene expression is dynamic along the course of seed germination.
Collapse
|
36
|
Puchta M, Boczkowska M, Groszyk J. Low RIN Value for RNA-Seq Library Construction from Long-Term Stored Seeds: A Case Study of Barley Seeds. Genes (Basel) 2020; 11:E1190. [PMID: 33066221 PMCID: PMC7650657 DOI: 10.3390/genes11101190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Seed aging is a complex biological process and its fundamentals and mechanisms have not yet been fully recognized. This is a key issue faced by research teams involved in the collection and storage of plant genetic resources in gene banks every day. Transcriptomic changes associated with seed aging in the dry state have barely been studied. The aim of the study was to develop an efficient protocol for construction of RNA-Seq libraries from long-term stored seeds with very low viability and low RNA integrity number (RIN). Here, barley seeds that have almost completely lost their viability as a result of long-term storage were used. As a control, fully viable seeds obtained in the course of field regeneration were used. The effectiveness of protocols dedicated to RNA samples with high and low RIN values was compared. The experiment concluded that library construction from low viable or long-term stored seeds with degraded RNA (RIN < 3) should be carried out with extraordinary attention due to the possibility of uneven degradation of different RNA fractions.
Collapse
Affiliation(s)
| | - Maja Boczkowska
- National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization National Research Institute, Radzików, 05-870 Błonie, Poland; (M.P.); (J.G.)
| | | |
Collapse
|
37
|
Lou L, Ding L, Wang T, Xiang Y. Emerging Roles of RNA-Binding Proteins in Seed Development and Performance. Int J Mol Sci 2020; 21:ijms21186822. [PMID: 32957608 PMCID: PMC7555721 DOI: 10.3390/ijms21186822] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023] Open
Abstract
Seed development, dormancy, and germination are key physiological events that are not only important for seed generation, survival, and dispersal, but also contribute to agricultural production. RNA-binding proteins (RBPs) directly interact with target mRNAs and fine-tune mRNA metabolism by governing post-transcriptional regulation, including RNA processing, intron splicing, nuclear export, trafficking, stability/decay, and translational control. Recent studies have functionally characterized increasing numbers of diverse RBPs and shown that they participate in seed development and performance, providing significant insight into the role of RBP-mRNA interactions in seed processes. In this review, we discuss recent research progress on newly defined RBPs that have crucial roles in RNA metabolism and affect seed development, dormancy, and germination.
Collapse
|
38
|
Sánchez-Camargo VA, Suárez-Espinoza C, Romero-Rodríguez S, Garza-Aguilar SM, Stam M, García-Ramírez E, Lara-Núñez A, Vázquez-Ramos JM. Maize E2F transcription factors. Expression, association to promoters of S-phase genes and interaction with the RBR1 protein in chromatin during seed germination. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110491. [PMID: 32540010 DOI: 10.1016/j.plantsci.2020.110491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
For seed germination, it is necessary to restart the cell cycle, a process regulated at multiple levels including transcriptional control, that is executed by the E2F family of transcription factors. We identified 12 genes of the E2F family in maize that are expressed differentially during the first 28 h post imbibition (HAI). E2Fa/b1;1 and E2Fc proteins were characterized as an activator and a putative repressor respectively, both forming heterodimers with DPb2 that bind differentially to consensus E2F response elements in promoters of E2F target genes. Transcripts of target genes for these transcription factors accumulate during germination; in dry seeds E2Fc protein is enriched in the target promoters and is replaced by E2Fa/b1;1 as germination advances. RBR1 is found in the same promoters in non-imbibed and 28 HAI seeds, when DNA replication has concluded, and transcription of the E2F targets should stop. During germination promoters of these target genes seem to be decorated with histone marks related to relaxed chromatin structure. Therefore, E2Fs appear to occupy their target genes in a context of open chromatin, with RBR1 fine tuning the progression between the phases.
Collapse
Affiliation(s)
- Víctor A Sánchez-Camargo
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Cassandra Suárez-Espinoza
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Samantha Romero-Rodríguez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Sara M Garza-Aguilar
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Elpidio García-Ramírez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Aurora Lara-Núñez
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico
| | - Jorge M Vázquez-Ramos
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, Ciudad de México 04510, Mexico.
| |
Collapse
|
39
|
Carrera-Castaño G, Calleja-Cabrera J, Pernas M, Gómez L, Oñate-Sánchez L. An Updated Overview on the Regulation of Seed Germination. PLANTS 2020; 9:plants9060703. [PMID: 32492790 PMCID: PMC7356954 DOI: 10.3390/plants9060703] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
The ability of a seed to germinate and establish a plant at the right time of year is of vital importance from an ecological and economical point of view. Due to the fragility of these early growth stages, their swiftness and robustness will impact later developmental stages and crop yield. These traits are modulated by a continuous interaction between the genetic makeup of the plant and the environment from seed production to germination stages. In this review, we have summarized the established knowledge on the control of seed germination from a molecular and a genetic perspective. This serves as a “backbone” to integrate the latest developments in the field. These include the link of germination to events occurring in the mother plant influenced by the environment, the impact of changes in the chromatin landscape, the discovery of new players and new insights related to well-known master regulators. Finally, results from recent studies on hormone transport, signaling, and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific regulation and the interplay of signals in this crucial developmental process.
Collapse
|
40
|
Lando AP, Viana WG, Vale EM, Santos M, Silveira V, Steiner N. Cellular alteration and differential protein profile explain effects of GA 3 and ABA and their inhibitor on Trichocline catharinensis (Asteraceae) seed germination. PHYSIOLOGIA PLANTARUM 2020; 169:258-275. [PMID: 32065665 DOI: 10.1111/ppl.13076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Seed physiology of wild species has not been studied as deeply as that of domesticated crop species. Trichocline catharinensis (Asteraceae) is an endemic wildflower species from the high-altitude fields of southern Brazil. This species is of interest as a source of genes to improve cultivated Asteraceae because of its ornamental features, disease resistance and ability to tolerate drought and poor soil conditions. We studied the effects of abscisic acid (ABA) and gibberellic acid (GA3 ) and their inhibitors, fluridone (FLU) and paclobutrazol (PAC), on seed germination. We individually assessed ultrastructural changes and differential protein accumulation. The principal component analysis explained 69.66% of differential accumulation for 32 proteins at phase II of seed germination in response to hormone and inhibitor treatment. GA3 -imbibed seed germination (98.75%) resulted in increased protein accumulation to meet energy demand, redox regulation, and reserve metabolism activation. FLU-imbibed seeds showed a higher germination speed index as a consequence of metabolism activation. ABA-imbibed seeds (58.75%) showed osmotolerance and flattened cells in the hypocotyl-radicular axis, suggesting that ABA inhibits cell expansion. PAC-imbibed seeds remained at phase II for 300 h, and germination was suppressed (7.5%) because of the increased signaling proteins and halted reserve mobilization. Therefore, our findings provide insight into the behavior of Asteraceae non-dormant seed germination, which broadens our knowledge of seed germination in a wild and endemic plant species from a threatened ecosystem.
Collapse
Affiliation(s)
- Ana P Lando
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Willian G Viana
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ellen M Vale
- Laboratory of Biotechnology, Center for Biosciences and Biotechnology (CBB), State University of Northern Rio de Janeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
- Unit of Integrative Biology, Genomic and Proteomics Sector, UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marisa Santos
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Center for Biosciences and Biotechnology (CBB), State University of Northern Rio de Janeiro (UENF), Campos dos Goytacazes, RJ, 28013-602, Brazil
- Unit of Integrative Biology, Genomic and Proteomics Sector, UENF, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Neusa Steiner
- Plant Physiology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
41
|
Lost in Translation: Physiological Roles of Stored mRNAs in Seed Germination. PLANTS 2020; 9:plants9030347. [PMID: 32164149 PMCID: PMC7154877 DOI: 10.3390/plants9030347] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Seeds characteristics such as germination ability, dormancy, and storability/longevity are important traits in agriculture, and various genes have been identified that are involved in its regulation at the transcriptional and post-transcriptional level. A particularity of mature dry seeds is a special mechanism that allows them to accumulate more than 10,000 mRNAs during seed maturation and use them as templates to synthesize proteins during germination. Some of these stored mRNAs are also referred to as long-lived mRNAs because they remain translatable even after seeds have been exposed to long-term stressful conditions. Mature seeds can germinate even in the presence of transcriptional inhibitors, and this ability is acquired in mid-seed development. The type of mRNA that accumulates in seeds is affected by the plant hormone abscisic acid and environmental factors, and most of them accumulate in seeds in the form of monosomes. Release of seed dormancy during after-ripening involves the selective oxidation of stored mRNAs and this prevents translation of proteins that function in the suppression of germination after imbibition. Non-selective oxidation and degradation of stored mRNAs occurs during long-term storage of seeds so that the quality of stored RNAs is linked to the degree of seed deterioration. After seed imbibition, a population of stored mRNAs are selectively loaded into polysomes and the mRNAs, involved in processes such as redox, glycolysis, and protein synthesis, are actively translated for germination.
Collapse
|
42
|
Choi SW, Ryu MY, Viczián A, Jung HJ, Kim GM, Arce AL, Achkar NP, Manavella P, Dolde U, Wenkel S, Molnár A, Nagy F, Cho SK, Yang SW. Light Triggers the miRNA-Biogenetic Inconsistency for De-etiolated Seedling Survivability in Arabidopsis thaliana. MOLECULAR PLANT 2020; 13:431-445. [PMID: 31678531 DOI: 10.1016/j.molp.2019.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
The shift of dark-grown seedlings into light causes enormous transcriptome changes followed by a dramatic developmental transition. Here, we show that microRNA (miRNA) biogenesis also undergoes regulatory changes during de-etiolation. Etiolated seedlings maintain low levels of primary miRNAs (pri-miRNAs) and miRNA processing core proteins, such as Dicer-like 1, SERRATE, and HYPONASTIC LEAVES 1, whereas during de-etiolation both pri-miRNAs and the processing components accumulate to high levels. However, the levels of most miRNAs do not notably increase in response to light. To reconcile this inconsistency, we demonstrated that an unknown suppressor decreases miRNA-processing activity and light-induced SMALL RNA DEGRADING NUCLEASE 1 shortens the half-life of several miRNAs in de-etiolated seedlings. Taken together, these data suggest a novel mechanism, miRNA-biogenetic inconsistency, which accounts for the intricacy of miRNA biogenesis during de-etiolation. This mechanism is essential for the survival of de-etiolated seedlings after long-term skotomorphogenesis and their optimal adaptation to ever-changing light conditions.
Collapse
Affiliation(s)
- Suk Won Choi
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Moon Young Ryu
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - András Viczián
- Institute of Plant Biology, Biological Research Centre (BRC), Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Hyun Ju Jung
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Gu Min Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Agustin L Arce
- Instituto de Agrobiotecnología del Litoral (IAL) Centro Científico Tecnológico Santa Fe (CCT), Santa Fe, Argentina
| | - Natalia P Achkar
- Instituto de Agrobiotecnología del Litoral (IAL) Centro Científico Tecnológico Santa Fe (CCT), Santa Fe, Argentina
| | - Pablo Manavella
- Instituto de Agrobiotecnología del Litoral (IAL) Centro Científico Tecnológico Santa Fe (CCT), Santa Fe, Argentina
| | - Ulla Dolde
- Laboratoire de Recherche en Sciences Végétales, 24, chemin de Borde-Rouge, BP 42617 Auzeville, Castanet-Tolosan 31326, France
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 1871, Denmark
| | - Attila Molnár
- Institute of Molecular Plant Sciences, School of Biological Sciences, The King's Buildings, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre (BRC), Hungarian Academy of Sciences, Temesvári krt. 62, Szeged 6726, Hungary
| | - Seok Keun Cho
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea.
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 1871, Denmark.
| |
Collapse
|
43
|
Liew LC, Narsai R, Wang Y, Berkowitz O, Whelan J, Lewsey MG. Temporal tissue-specific regulation of transcriptomes during barley (Hordeum vulgare) seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:700-715. [PMID: 31628689 DOI: 10.1111/tpj.14574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
The distinct functions of individual cell types require cells to express specific sets of genes. The germinating seed is an excellent model to study genome regulation between cell types since the majority of the transcriptome is differentially expressed in a short period, beginning from a uniform, metabolically inactive state. In this study, we applied laser-capture microdissection RNA-sequencing to small numbers of cells from the plumule, radicle tip and scutellum of germinating barley seeds every 8 h, over a 48 h time course. Tissue-specific gene expression was notably common; 25% (910) of differentially expressed transcripts in plumule, 34% (1876) in radicle tip and 41% (2562) in scutellum were exclusive to that organ. We also determined that tissue-specific storage of transcripts occurs during seed development and maturation. Co-expression of genes had strong spatiotemporal structure, with most co-expression occurring within one organ and at a subset of specific time points during germination. Overlapping and distinct enrichment of functional categories were observed in the tissue-specific profiles. We identified candidate transcription factors amongst these that may be regulators of spatiotemporal gene expression programs. Our findings contribute to the broader goal of generating an integrative model that describes the structure and function of individual cells within seeds during germination.
Collapse
Affiliation(s)
- Lim Chee Liew
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic., 3086, Australia
| |
Collapse
|
44
|
Xu P, Tang G, Cui W, Chen G, Ma CL, Zhu J, Li P, Shan L, Liu Z, Wan S. Transcriptional Differences in Peanut (Arachis hypogaea L.) Seeds at the Freshly Harvested, After-ripening and Newly Germinated Seed Stages: Insights into the Regulatory Networks of Seed Dormancy Release and Germination. PLoS One 2020; 15:e0219413. [PMID: 31899920 PMCID: PMC6941926 DOI: 10.1371/journal.pone.0219413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
Seed dormancy and germination are the two important traits related to plant survival, reproduction and crop yield. To understand the regulatory mechanisms of these traits, it is crucial to clarify which genes or pathways participate in the regulation of these processes. However, little information is available on seed dormancy and germination in peanut. In this study, seeds of the variety Luhua No.14, which undergoes nondeep dormancy, were selected, and their transcriptional changes at three different developmental stages, the freshly harvested seed (FS), the after-ripening seed (DS) and the newly germinated seed (GS) stages, were investigated by comparative transcriptomic analysis. The results showed that genes with increased transcription in the DS vs FS comparison were overrepresented for oxidative phosphorylation, the glycolysis pathway and the tricarboxylic acid (TCA) cycle, suggesting that after a period of dry storage, the intermediates stored in the dry seeds were rapidly mobilized by glycolysis, the TCA cycle, the glyoxylate cycle, etc.; the electron transport chain accompanied by respiration was reactivated to provide ATP for the mobilization of other reserves and for seed germination. In the GS vs DS pairwise comparison, dozens of the upregulated genes were related to plant hormone biosynthesis and signal transduction, including the majority of components involved in the auxin signal pathway, brassinosteroid biosynthesis and signal transduction as well as some GA and ABA signal transduction genes. During seed germination, the expression of some EXPANSIN and XYLOGLUCAN ENDOTRANSGLYCOSYLASE genes was also significantly enhanced. To investigate the effects of different hormones during seed germination, the contents and differential distribution of ABA, GAs, BRs and IAA in the cotyledons, hypocotyls and radicles, and plumules of three seed sections at different developmental stages were also investigated. Combined with previous data in other species, it was suggested that the coordination of multiple hormone signal transduction nets plays a key role in radicle protrusion and seed germination.
Collapse
Affiliation(s)
- Pingli Xu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
| | - Guiying Tang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
| | - Weipei Cui
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | | | - Chang-Le Ma
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Jieqiong Zhu
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Pengxiang Li
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
| | - Lei Shan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| | - Zhanji Liu
- Shandong Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| | - Shubo Wan
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences / Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, Shandong, China
- College of Life Science, Shandong Normal University, Jinan, Shandong, China
- * E-mail: (LS); (ZL); (SW)
| |
Collapse
|
45
|
Bai B, van der Horst S, Cordewener JHG, America TAHP, Hanson J, Bentsink L. Seed-Stored mRNAs that Are Specifically Associated to Monosomes Are Translationally Regulated during Germination. PLANT PHYSIOLOGY 2020; 182:378-392. [PMID: 31527088 PMCID: PMC6945870 DOI: 10.1104/pp.19.00644] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/01/2019] [Indexed: 05/20/2023]
Abstract
The life cycle of many organisms includes a quiescent stage, such as bacterial or fungal spores, insect larvae, or plant seeds. Common to these stages is their low water content and high survivability during harsh conditions. Upon rehydration, organisms need to reactivate metabolism and protein synthesis. Plant seeds contain many mRNAs that are transcribed during seed development. Translation of these mRNAs occurs during early seed germination, even before the requirement of transcription. Therefore, stored mRNAs are postulated to be important for germination. How these mRNAs are stored and protected during long-term storage is unknown. The aim of this study was to investigate how mRNAs are stored in dry seeds and whether they are indeed translated during seed germination. We investigated seed polysome profiles and the mRNAs and protein complexes that are associated with these ribosomes in seeds of the model organism Arabidopsis (Arabidopsis thaliana). We showed that most stored mRNAs are associated with monosomes in dry seeds; therefore, we focus on monosomes in this study. Seed ribosome complexes are associated with mRNA-binding proteins, stress granule, and P-body proteins, which suggests regulated packing of seed mRNAs. Interestingly, ∼17% of the mRNAs that are specifically associated with monosomes are translationally up-regulated during seed germination. These mRNAs are transcribed during seed maturation, suggesting a role for this developmental stage in determining the translational fate of mRNAs during early germination.
Collapse
Affiliation(s)
- Bing Bai
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Sjors van der Horst
- Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan H G Cordewener
- BU Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Proteomics Centre, 3508 TB Utrecht, The Netherlands
| | - Twan A H P America
- BU Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Netherlands Proteomics Centre, 3508 TB Utrecht, The Netherlands
| | - Johannes Hanson
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Leónie Bentsink
- Wageningen Seed Laboratory, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
46
|
Ju C, Kong D, Lee Y, Ge G, Song Y, Liu J, Kwak JM. Methionine synthase 1 provides methionine for activation of the GLR3.5 Ca2+ channel and regulation of germination in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:178-187. [PMID: 31563952 PMCID: PMC6913737 DOI: 10.1093/jxb/erz431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/11/2019] [Indexed: 05/09/2023]
Abstract
Seed germination is a developmental process regulated by numerous internal and external cues. Our previous studies have shown that calcium influx mediated by the Arabidopsis glutamate receptor homolog 3.5 (AtGLR3.5) modulates the expression of the ABSCISIC ACID INSENSITIVE 4 (ABI4) transcription factor during germination and that L-methionine (L-Met) activates AtGLR3.1/3.5 Ca2+ channels in guard cells. However, it is not known whether L-Met participates in regulation of germination and what cellular mechanism is responsible for Met production during germination. Here, we describe Arabidopsis methionine synthase 1 (AtMS1), which acts in the final step of Met biosynthesis, synthesizes the Met required for the activation of AtGLR3.5 Ca2+ channels whose expression is up-regulated during germination, leading to the regulation of seed germination. We show that exogenous L-Met promotes germination in an AtGRL3.5-dependent manner. We also demonstrate that L-Met directly regulates the AtGLR3.5-mediated increase in cytosolic Ca2+ level in seedlings. We provide pharmacological and genetic evidence that Met synthesized via AtMS1 acts upstream of the AtGLR3.5-mediated Ca2+ signal and regulates the expression of ABI4, a major regulator in the abscisic acid response in seeds. Overall, our results link AtMS1, L-Met, the AtGLR3.5 Ca2+ channel, Ca2+ signals, and ABI4, and shed light on the physiological role and molecular mechanism of L-Met in germination.
Collapse
Affiliation(s)
- Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing, China
- Correspondence: or
| | - Dongdong Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuree Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Gege Ge
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yanan Song
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jiawen Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Correspondence: or
| |
Collapse
|
47
|
Song Y, Zhu J. The roles of metabolic pathways in maintaining primary dormancy of Pinus koraiensis seeds. BMC PLANT BIOLOGY 2019; 19:550. [PMID: 31829143 PMCID: PMC6907207 DOI: 10.1186/s12870-019-2167-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/26/2019] [Indexed: 06/02/2023]
Abstract
BACKGROUND Korean pine seeds have primary dormancy following dispersal, leading to poor seed germination and seedling establishment. Metabolic homeostasis determines whether the seeds are dormant or non-dormant. However, the specific metabolic pathways that maintain the primary dormancy of pine seeds are poorly understood. RESULTS Metabolic analysis was employed on the embryos of PDRS (seeds released from primary dormancy) and PDS (primary dormant seeds) on days 0, 5 and 11 after incubation under a germination-inductive temperature. A larger metabolic switch occurred in PDRS embryos from days 0 to 11. The contents of ninety metabolites were significantly changed from days 0 to 5, 83% of which (including most sugars, organic acids and amino acids) increased, reflecting that biosynthetic metabolism processes are initiated. The contents of ninety-two metabolites showed distinct variations from days 5 to 11, 71% of which (including most organic acids and almost all amino acids) reduced substantially. Fructose 6-phosphate, inositol-3-phosphate, 3-phosphoglyceric and D-glucose-6-phosphate contents showed the most decrease with decreasing 409-, 75-, 58- and 41-fold, indicating that the glycolysis and tricarboxylic acid (TCA) cycle strongly slowed down. The contents of the most metabolites in PDS embryos also displayed a relatively larger alteration only from days 0 to 5. Although 64% of metabolites increased from days 0 to 5, their levels were still lower compared with PDRS embryos. Furthermore, most metabolites were not further accumulated from days 5 to 11. Unlike PDRS embryos, almost all amino acids in PDS embryos did not exhibit a substantial decrease from days 5 to 11. Also, there was not a major decrease in the levels of metabolites involved mainly in glycolysis and TCA cycle, while some intermediates even increased. CONCLUSIONS The attenuated biosynthetic metabolism processes, the lower utilization rate of amino acids and the higher operation rate of glycolysis and TCA in embryos maintain primary dormancy.
Collapse
Affiliation(s)
- Yuan Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaojun Zhu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China.
- Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
48
|
Sano N, Takebayashi Y, To A, Mhiri C, Rajjou LC, Nakagami H, Kanekatsu M. Shotgun Proteomic Analysis Highlights the Roles of Long-Lived mRNAs and De Novo Transcribed mRNAs in Rice Seeds upon Imbibition. PLANT & CELL PHYSIOLOGY 2019; 60:2584-2596. [PMID: 31373371 DOI: 10.1093/pcp/pcz152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/27/2019] [Indexed: 05/22/2023]
Abstract
During seed germination, proteins are translated not only from mRNAs newly transcribed upon imbibition but also from long-lived mRNAs that are synthesized during seed maturation and stored in the mature dry seeds. To clarify the distinct roles of proteins translated from long-lived mRNAs and de novo transcribed mRNAs in germinating rice embryos, proteome analysis based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) combining the use of a transcriptional inhibitor was performed. We observed that α-amanitin significantly represses transcription in germinating embryos; nevertheless, the embryos could germinate, albeit slowly. The proteomic analysis revealed that a total of 109 proteins were translated from long-lived mRNAs associated with germination as well as 222 proteins whose expression were dependent on de novo transcription upon imbibition. Transcriptomic datasets available in public databases demonstrated that mRNAs of the 222 proteins notably increased during germination while those of the 109 proteins highly accumulated in dry embryos and constitutively expressed upon imbibition. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that many of the 109 proteins from long-lived mRNAs are implicated in energy production such as glycolysis or annotated as nucleotide binding proteins, while the 222 proteins are involved in pathways such as pyruvate metabolism and TCA cycle following glycolysis, and momilactones biosynthesis. We propose that long-lived mRNAs support initial energy production and activation of translational machinery upon imbibition whereas de novo transcription accelerates the energy production after glycolysis, which enables rice seeds to germinate vigorously.
Collapse
Affiliation(s)
- Naoto Sano
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Alexandra To
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Corinne Mhiri
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Loï C Rajjou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Universit� Paris-Saclay, Versailles, France
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, Germany
| | - Motoki Kanekatsu
- Department of Plant Production, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
49
|
Li Y, Xu J, Li G, Wan S, Batistič O, Sun M, Zhang Y, Scott R, Qi B. Protein S-acyl transferase 15 is involved in seed triacylglycerol catabolism during early seedling growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5205-5216. [PMID: 31199467 DOI: 10.1093/jxb/erz282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Seeds of Arabidopsis contain ~40% oil, which is primarily in the form of triacylglycerol and it is converted to sugar to support post-germination growth. We identified an Arabidopsis T-DNA knockout mutant that is sugar-dependent during early seedling establishment and determined that the β-oxidation process involved in catabolising the free fatty acids released from the seed triacylglycerol is impaired. The mutant was confirmed to be transcriptional null for Protein Acyl Transferase 15, AtPAT15 (At5g04270), one of the 24 protein acyl transferases in Arabidopsis. Although it is the shortest, AtPAT15 contains the signature 'Asp-His-His-Cys cysteine-rich domain' that is essential for the enzyme activity of this family of proteins. The function of AtPAT15 was validated by the fact that it rescued the growth defect of the yeast protein acyl transferase mutant akr1 and it was also auto-acylated in vitro. Transient expression in Arabidopsis and tobacco localised AtPAT15 in the Golgi apparatus. Taken together, our data demonstrate that AtPAT15 is involved in β-oxidation of triacylglycerol, revealing the importance of protein S-acylation in the breakdown of seed-storage lipids during early seedling growth of Arabidopsis.
Collapse
Affiliation(s)
- Yaxiao Li
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Xu
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Gang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Si Wan
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Muenster, Germany
| | - Meihong Sun
- College of Horticulture, Shandong Agricultural University, Tai'an, China
| | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Rod Scott
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Baoxiu Qi
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Pharmacy and Biomolecular Sciences, James Parsons Building, Byrom Street, Liverpool, UK
| |
Collapse
|
50
|
Li PC, Ma JJ, Zhou XM, Li GH, Zhao CZ, Xia H, Fan SJ, Wang XJ. Arabidopsis MDN1 Is Involved in the Establishment of a Normal Seed Proteome and Seed Germination. FRONTIERS IN PLANT SCIENCE 2019; 10:1118. [PMID: 31552080 PMCID: PMC6746975 DOI: 10.3389/fpls.2019.01118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/14/2019] [Indexed: 05/25/2023]
Abstract
Seed germination and formation are the beginning and ending, respectively, of a plant life cycle. These two processes are under fine regulation by the internal genetic information. Previously, we demonstrated that Arabidopsis MIDASIN 1 (MDN1) is required for ribosome biogenesis, and its dysfunction leads to pleiotropic developmental phenotypes, including impaired embryogenesis and slow seed germination. In this study, we further found that the weak mutant of MDN1, mdn1-1, exhibits an increased seed size phenotype. Seed proteomic analysis reveals that a number of proteins involved in seed development and response to external environments are mis-regulated by the MDN1 dysfunction. Many 2S seed storage proteins (SSPs) and late embryogenesis abundant (LEA) proteins are over-accumulated in the dry seeds of mdn1-1. Further, some genes encoding seed storage reserves are also upregulated in mdn1-1 seedlings. More interestingly, abscisic acid-insensitive 5 (ABI5) is over-accumulated in mdn1-1 seeds, and the loss of its function partially rescues the low seed germination rate of mdn1-1. Together, this study further demonstrates that MDN1 is essential for establishing a normal seed proteome, and its mutation triggers ABI5-mediated repression of seed germination.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Jun-Jie Ma
- College of Life Science, Shandong University, Qingdao, China
| | - Xi-Meng Zhou
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guang-Hui Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Chuan-Zhi Zhao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Han Xia
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Shou-Jin Fan
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xing-Jun Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| |
Collapse
|