1
|
Zhang S, Chen Z, Zhao J, Diao S, Tian L, Zhao Y, Li F, Zhu GP. Interfamily Grafted Hybrids Vitis vinifera/ Schisandra chinensis Resulted in Transcriptomic, Phenotypic, and Metabolic Changes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1676. [PMID: 38931108 PMCID: PMC11207768 DOI: 10.3390/plants13121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Long-distance transfer of genetic material and metabolites between rootstock and scions is well documented in homo-grafted hybrids but has rarely been reported in genetically-distant grafts where the rootstock and scion belong to different families. In this study, we grafted Vitis vinifera scions onto Schisandra chinensis stocks and obtained 20 vegetative hybrids, Vitis vinifera/Schisandra chinensis (Vs). After 25 years of growth, we found that the phenotypes of the leaves, internodes, and fruits of the Vs hybrids above the graft union resembled an intermediate phenotype between V. vinifera and S. chinensis, and the new traits were stable when propagated vegetatively. We further analyzed genetic differences between Vv plants and Vs hybrids using high-throughput sequencing, while metabolomes were analyzed by liquid chromatography-mass spectrometry (LC-MS). We found a total of 2113 differentially expressed genes (DEGs). GO annotation and KEGG pathway enrichment analysis showed that these DEGs enriched mainly in oxidation-reduction and metabolic processes. Seventy-nine differentially expressed miRNAs (DEMs) containing 27 known miRNAs and 52 novel miRNAs were identified. A degradation analysis detected 840 target genes corresponding to 252 miRNAs, of which 12 DEMs and their corresponding target gene expression levels were mostly negatively correlated. Furthermore, 1188 differential metabolic compounds were identified. In particular, in Vs hybrids, the abundance of the metabolites schizandrin and gomisin as the main medicinal ingredients in S. chinensis were down-regulated and up-regulated, respectively. Our data demonstrated the effects of interfamily grafts on the phenotype, transcript profile and metabolites of the scion, and also provided new insight into the genetic, phenotypic, and metabolic plasticity associated with genetically distant grafted hybrids.
Collapse
Affiliation(s)
- Shulin Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Zhuo Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Junhui Zhao
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming 650223, China
| | - Songfeng Diao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
| | - Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| | - Ying Zhao
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China;
| | - Fangdong Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
| | - Gao-Pu Zhu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China (Z.C.)
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China (F.L.)
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China;
| |
Collapse
|
2
|
Bogomolov A, Zolotareva K, Filonov S, Chadaeva I, Rasskazov D, Sharypova E, Podkolodnyy N, Ponomarenko P, Savinkova L, Tverdokhleb N, Khandaev B, Kondratyuk E, Podkolodnaya O, Zemlyanskaya E, Kolchanov NA, Ponomarenko M. AtSNP_TATAdb: Candidate Molecular Markers of Plant Advantages Related to Single Nucleotide Polymorphisms within Proximal Promoters of Arabidopsis thaliana L. Int J Mol Sci 2024; 25:607. [PMID: 38203780 PMCID: PMC10779315 DOI: 10.3390/ijms25010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
The mainstream of the post-genome target-assisted breeding in crop plant species includes biofortification such as high-throughput phenotyping along with genome-based selection. Therefore, in this work, we used the Web-service Plant_SNP_TATA_Z-tester, which we have previously developed, to run a uniform in silico analysis of the transcriptional alterations of 54,013 protein-coding transcripts from 32,833 Arabidopsis thaliana L. genes caused by 871,707 SNPs located in the proximal promoter region. The analysis identified 54,993 SNPs as significantly decreasing or increasing gene expression through changes in TATA-binding protein affinity to the promoters. The existence of these SNPs in highly conserved proximal promoters may be explained as intraspecific diversity kept by the stabilizing natural selection. To support this, we hand-annotated papers on some of the Arabidopsis genes possessing these SNPs or on their orthologs in other plant species and demonstrated the effects of changes in these gene expressions on plant vital traits. We integrated in silico estimates of the TBP-promoter affinity in the AtSNP_TATAdb knowledge base and showed their significant correlations with independent in vivo experimental data. These correlations appeared to be robust to variations in statistical criteria, genomic environment of TATA box regions, plants species and growing conditions.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Sergey Filonov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Bato Khandaev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Krasnoobsk 630501, Novosibirsk Region, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
- Natural Science Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia; (A.B.); (K.Z.); (S.F.); (I.C.); (D.R.); (E.S.); (N.P.); (P.P.); (L.S.); (N.T.); (B.K.); (E.K.); (O.P.); (E.Z.); (N.A.K.)
| |
Collapse
|
3
|
Lin Q, Gong J, Zhang Z, Meng Z, Wang J, Wang S, Sun J, Gu X, Jin Y, Wu T, yan N, Wang Y, Kai L, Jiang J, Qi S. The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI regulates primary root growth and lateral root elongation. FRONTIERS IN PLANT SCIENCE 2023; 13:1088278. [PMID: 36714693 PMCID: PMC9880472 DOI: 10.3389/fpls.2022.1088278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Roots are the main organs through which plants absorb water and nutrients. As the key phytohormone involved in root growth, auxin functions in plant environmental responses by modulating auxin synthesis, distribution and polar transport. The Arabidopsis thaliana trehalose-6-phosphate phosphatase gene AtTPPI can improve root architecture, and tppi1 mutants have significantly shortened primary roots. However, the mechanism underlying the short roots of the tppi1 mutant and the upstream signaling pathway and downstream genes regulated by AtTPPI are unclear. Here, we demonstrated that the AtTPPI gene could promote auxin accumulation in AtTPPI-overexpressing plants. By comparing the transcriptomic data of tppi1 and wild-type roots, we found several upregulations of auxin-related genes, including GH3.3, GH3.9 and GH3.12, may play an important role in the AtTPPI gene-mediated auxin transport signaling pathway, ultimately leading to changes in auxin content and primary root length. Moreover, increased AtTPPI expression can regulate primary root growth and lateral root elongation under different concentration of nitrate conditions. Overall, constitutive expression of AtTPPI increased auxin contents and improved lateral root elongation, constituting a new method for improving the nitrogen utilization efficiency of plants.
Collapse
Affiliation(s)
- Qingfang Lin
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jiaxin Gong
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zhiliang Zhang
- Institute of Genetic and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zizi Meng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jianyong Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Song Wang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Jing Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Xu Gu
- Technical Services and Sales Department, Zhengzhou Xuanyuan Biotechnology Co. LTD, Zhengzhou, Henan, China
| | - Yuting Jin
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Tong Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Nuo yan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jihong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shilian Qi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
4
|
Kim K, Choi BY, Kang J, Shim D, Martinoia E, Lee Y. Arabidopsis ABCG27 plays an essential role in flower and leaf development by modulating abscisic acid content. PHYSIOLOGIA PLANTARUM 2022; 174:e13734. [PMID: 35699652 DOI: 10.1111/ppl.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid (ABA) is a phytohormone that mediates stress responses and regulates plant development. Several ATP-binding cassette (ABC) transporters in the G subfamily of ABC (ABCG) proteins have been reported to transport ABA. We investigated whether there are any other ABCG proteins that mediate plant developmental processes regulated by ABA in Arabidopsis (Arabidopsis thaliana). The ABCG27 gene was upregulated in response to exogenous ABA treatment. The abcg27 knockout mutant exhibited two developmental defects: epinastic leaves and abnormally long pistils, which reduced fertility and silique length. ABCG27 expression was induced threefold when flower buds were exposed to exogenous ABA, and the promoter of ABCG27 had two ABA-responsive elements. ABA content in the pistil and true leaves were increased in the abcg27 knockout mutant. Detached abcg27 pistils exposed to exogenous ABA grew longer than those of the wild-type control. ABCG27 fused to GFP localized to the plasma membrane when expressed in Arabidopsis mesophyll protoplasts. A transcriptome analysis of the pistils and true leaves of the wild type and abcg27 knockout mutant revealed that the expression of organ development-related genes changed in the knockout mutant. In particular, the expression of trans-acting small interference (ta-si) RNA processing enzyme genes, which regulate flower and leaf development, was low in the knockout mutant. Together, these results suggest that ABCG27 most likely function as an ABA transporter at the plasma membrane, modulating ABA levels and thereby regulating the development of the pistils and leaves under normal, non-stressed conditions.
Collapse
Affiliation(s)
- Kyungyoon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Bae Young Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Joohyun Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Youngsook Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
5
|
Yu CY, Zhang HK, Wang N, Sun J, Dong YX, Zhang XS, Gao XQ. Characterization of the ERP gene family in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1913301. [PMID: 33906568 PMCID: PMC8143257 DOI: 10.1080/15592324.2021.1913301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Plant genomes encode numerous proteins with obscure features (POFs) that lack recognized domains or motifs. However, there is little functional information for POFs even in Arabidopsis because biochemical, physiological, and genetic assay are required for the functional annotations of POFs. Here, we identified a small gene family, the endoplasmic reticulum-localized POF (ERP) family, in Arabidopsis. Phylogenetic analysis revealed that the number of ERP family members was conserved in the plant kingdom, suggesting strong selective pressure was imposed on ERP family during plant evolution. No recognizable domains were identified in the predicted ERP proteins, except for the N-terminal signal peptide. ERPs were found to be widely expressed during Arabidopsis development and showed endoplasmic reticulum localization. It was reported that ERP1 is an inositol-1,4,5-trisphosphate 5-phosphatase (5PTase), but ERP1 could not substitute for At5PTase12 in precocious pollen germination, indicating that ERP1 did not have the similar functions as At5PTase12 in inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] metabolism. Further studies are needed to dissect the functions of ERP family proteins in Arabidopsis development.
Collapse
Affiliation(s)
- Cai Yu Yu
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Huan Kai Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Ning Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Jing Sun
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yu Xiu Dong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xian Sheng Zhang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xin-Qi Gao
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| |
Collapse
|
6
|
Rausche J, Stenzel I, Stauder R, Fratini M, Trujillo M, Heilmann I, Rosahl S. A phosphoinositide 5-phosphatase from Solanum tuberosum is activated by PAMP-treatment and may antagonize phosphatidylinositol 4,5-bisphosphate at Phytophthora infestans infection sites. THE NEW PHYTOLOGIST 2021; 229:469-487. [PMID: 32762082 DOI: 10.1111/nph.16853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum) plants susceptible to late blight disease caused by the oomycete Phytophthora infestans display enhanced resistance upon infiltration with the pathogen-associated molecular pattern (PAMP), Pep-13. Here, we characterize a potato gene similar to Arabidopsis 5-phosphatases which was identified in transcript arrays performed to identify Pep-13 regulated genes, and termed StIPP. Recombinant StIPP protein specifically dephosphorylated the D5-position of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ) in vitro. Other phosphoinositides or soluble inositolpolyphosphates were not converted. When transiently expressed in tobacco (Nicotiana tabacum) pollen tubes, a StIPP-YFP fusion localized to the subapical plasma membrane and antagonized PtdIns(4,5)P2 -dependent effects on cell morphology, indicating in vivo functionality. Phytophthora infestans-infection of N. benthamiana leaf epidermis cells resulted in relocalization of StIPP-GFP from the plasma membrane to the extra-haustorial membrane (EHM). Colocalizion with the effector protein RFP-AvrBlb2 at infection sites is consistent with a role of StIPP in the plant-oomycete interaction. Correlation analysis of fluorescence distributions of StIPP-GFP and biosensors for PtdIns(4,5)P2 or phosphatidylinositol 4-phosphate (PtdIns4P) indicate StIPP activity predominantly at the EHM. In Arabidopsis protoplasts, expression of StIPP resulted in the stabilization of the PAMP receptor, FLAGELLIN-SENSITIVE 2, indicating that StIPP may act as a PAMP-induced and localized antagonist of PtdIns(4,5)P2 -dependent processes during plant immunity.
Collapse
Affiliation(s)
- Juliane Rausche
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany
| | - Ron Stauder
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Marta Fratini
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany
| | - Marco Trujillo
- Independent Research Group Protein Ubiquitinylation, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt Mothes-Str. 3, Halle (Saale), D-06120, Germany
| | - Sabine Rosahl
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), D-06120, Germany
| |
Collapse
|
7
|
Guo T, Chen HC, Lu ZQ, Diao M, Chen K, Dong NQ, Shan JX, Ye WW, Huang S, Lin HX. A SAC Phosphoinositide Phosphatase Controls Rice Development via Hydrolyzing PI4P and PI(4,5)P 2. PLANT PHYSIOLOGY 2020; 182:1346-1358. [PMID: 31882455 PMCID: PMC7054871 DOI: 10.1104/pp.19.01131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/12/2019] [Indexed: 05/06/2023]
Abstract
Phosphoinositides (PIs) as regulatory membrane lipids play essential roles in multiple cellular processes. Although the exact molecular targets of PI-dependent modulation remain largely elusive, the effects of disturbed PI metabolism could be employed to identify regulatory modules associated with particular downstream targets of PIs. Here, we identified the role of GRAIN NUMBER AND PLANT HEIGHT1 (GH1), which encodes a suppressor of actin (SAC) domain-containing phosphatase with unknown function in rice (Oryza sativa). Endoplasmic reticulum-localized GH1 specifically dephosphorylated and hydrolyzed phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Inactivation of GH1 resulted in massive accumulation of both PI4P and PI(4,5)P2, while excessive GH1 caused their depletion. Notably, superabundant PI4P and PI(4,5)P2 could both disrupt actin cytoskeleton organization and suppress cell elongation. Interestingly, both PI4P and PI(4,5)P2 inhibited actin-related protein2 and -3 (Arp2/3) complex-nucleated actin-branching networks in vitro, whereas PI(4,5)P2 showed more dramatic effects in a dose-dependent manner. Overall, the overaccumulation of PI(4,5)P2 resulting from dysfunction of SAC phosphatase possibly perturbs Arp2/3 complex-mediated actin polymerization, thereby disordering cell development. These findings imply that the Arp2/3 complex might be the potential molecular target of PI(4,5)P2-dependent modulation in eukaryotes, thereby providing insights into the relationship between PI homeostasis and plant growth and development.
Collapse
Affiliation(s)
- Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Hua-Chang Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Min Diao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ke Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics and Development, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academic of Sciences, Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jia Q, Kong D, Li Q, Sun S, Song J, Zhu Y, Liang K, Ke Q, Lin W, Huang J. The Function of Inositol Phosphatases in Plant Tolerance to Abiotic Stress. Int J Mol Sci 2019; 20:ijms20163999. [PMID: 31426386 PMCID: PMC6719168 DOI: 10.3390/ijms20163999] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Inositol signaling is believed to play a crucial role in various aspects of plant growth and adaptation. As an important component in biosynthesis and degradation of myo-inositol and its derivatives, inositol phosphatases could hydrolyze the phosphate of the inositol ring, thus affecting inositol signaling. Until now, more than 30 members of inositol phosphatases have been identified in plants, which are classified intofive families, including inositol polyphosphate 5-phosphatases (5PTases), suppressor of actin (SAC) phosphatases, SAL1 phosphatases, inositol monophosphatase (IMP), and phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-related phosphatases. The current knowledge was revised here in relation to their substrates and function in response to abiotic stress. The potential mechanisms were also concluded with the focus on their activities of inositol phosphatases. The general working model might be that inositol phosphatases would degrade the Ins(1,4,5)P3 or phosphoinositides, subsequently resulting in altering Ca2+ release, abscisic acid (ABA) signaling, vesicle trafficking or other cellular processes.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Defeng Kong
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinghua Li
- Putian Institute of Agricultural Sciences, Putian 351144, China
| | - Song Sun
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yebao Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingming Ke
- Putian Institute of Agricultural Sciences, Putian 351144, China
| | - Wenxiong Lin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
| | - Jinwen Huang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I. No Time to Waste: Transcriptome Study Reveals that Drought Tolerance in Barley May Be Attributed to Stressed-Like Expression Patterns that Exist before the Occurrence of Stress. FRONTIERS IN PLANT SCIENCE 2018; 8:2212. [PMID: 29375595 PMCID: PMC5767312 DOI: 10.3389/fpls.2017.02212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 05/24/2023]
Abstract
Plant survival in adverse environmental conditions requires a substantial change in the metabolism, which is reflected by the extensive transcriptome rebuilding upon the occurrence of the stress. Therefore, transcriptomic studies offer an insight into the mechanisms of plant stress responses. Here, we present the results of global gene expression profiling of roots and leaves of two barley genotypes with contrasting ability to cope with drought stress. Our analysis suggests that drought tolerance results from a certain level of transcription of stress-influenced genes that is present even before the onset of drought. Genes that predispose the plant to better drought survival play a role in the regulatory network of gene expression, including several transcription factors, translation regulators and structural components of ribosomes. An important group of genes is involved in signaling mechanisms, with significant contribution of hormone signaling pathways and an interplay between ABA, auxin, ethylene and brassinosteroid homeostasis. Signal transduction in a drought tolerant genotype may be more efficient through the expression of genes required for environmental sensing that are active already during normal water availability and are related to actin filaments and LIM domain proteins, which may function as osmotic biosensors. Better survival of drought may also be attributed to more effective processes of energy generation and more efficient chloroplasts biogenesis. Interestingly, our data suggest that several genes involved in a photosynthesis process are required for the establishment of effective drought response not only in leaves, but also in roots of barley. Thus, we propose a hypothesis that root plastids may turn into the anti-oxidative centers protecting root macromolecules from oxidative damage during drought stress. Specific genes and their potential role in building up a drought-tolerant barley phenotype is extensively discussed with special emphasis on processes that take place in barley roots. When possible, the interconnections between particular factors are emphasized to draw a broader picture of the molecular mechanisms of drought tolerance in barley.
Collapse
Affiliation(s)
- Agnieszka Janiak
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Marta Sowa
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Gajek
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Żmuda
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Janusz Kościelniak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture of Krakow, Kraków, Poland
| | - Iwona Szarejko
- Department of Genetics, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
10
|
Golani Y, Kaye Y, Gilhar O, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5ptase9) controls plant salt tolerance by regulating endocytosis. MOLECULAR PLANT 2013; 6:1781-1794. [PMID: 23658066 DOI: 10.1093/mp/sst072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Phosphatidylinositol 5-phosphatases (5PTases) that hydrolyze the 5' position of the inositol ring are key components of membrane trafficking system. Recently, we reported that mutation in At5PTase7 gene reduced production of reactive oxygen species (ROS) and decreased expression of stress-responsive genes, resulting in increased salt sensitivity. Here, we describe an even more salt-sensitive 5ptase mutant, At5ptase9, which also hydrolyzes the 5' phosphate groups specifically from membrane-bound phosphatidylinositides. Interestingly, the mutants were more tolerant to osmotic stress. We analyzed the main cellular processes that may be affected by the mutation, such as production of ROS, influx of calcium, and induction of salt-response genes. The At5ptase9 mutants showed reduced ROS production and Ca(2+) influx, as well as decreased fluid-phase endocytosis. Inhibition of endocytosis by phenylarsine oxide or Tyrphostin A23 in wild-type plants blocked these responses. Induction of salt-responsive genes in wild-type plants was also suppressed by the endocytosis inhibitors. Thus, inhibition of endocytosis in wild-type plants mimicked the salt stress responses, observed in the At5ptase9 mutants. In summary, our results show a key non-redundant role of At5PTase7 and 9 isozymes, and underscore the localization of membrane-bound PtdIns in regulating plant salt tolerance by coordinating the endocytosis, ROS production, Ca(2+) influx, and induction of stress-responsive genes.
Collapse
Affiliation(s)
- Yael Golani
- a Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Givat-Ram Campus, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
11
|
Ku YS, Koo NSC, Li FWY, Li MW, Wang H, Tsai SN, Sun F, Lim BL, Ko WH, Lam HM. GmSAL1 hydrolyzes inositol-1,4,5-trisphosphate and regulates stomatal closure in detached leaves and ion compartmentalization in plant cells. PLoS One 2013; 8:e78181. [PMID: 24167607 PMCID: PMC3805524 DOI: 10.1371/journal.pone.0078181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
Inositol polyphosphatases are important regulators since they control the catabolism of phosphoinositol derivatives, which are often signaling molecules for cellular processes. Here we report on the characterization of one of their members in soybean, GmSAL1. In contrast to the substrate specificity of its Arabidopsis homologues (AtSAL1 and AtSAL2), GmSAL1 only hydrolyzes inositol-1,4,5-trisphosphate (IP3) but not inositol-1,3,4-trisphosphate or inositol-1,4-bisphosphate.The ectopic expression of GmSAL1 in transgenic Arabidopsis thaliana led to a reduction in IP3 signals, which was inferred from the reduction in the cytoplasmic signals of the in vivo biomarker pleckstrin homology domain-green florescent protein fusion protein and the suppression of abscisic acid-induced stomatal closure. At the cellular level, the ectopic expression of GmSAL1 in transgenic BY-2 cells enhanced vacuolar Na(+) compartmentalization and therefore could partially alleviate salinity stress.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Nicolas Siu-Chung Koo
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Francisca Wing-Yen Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hongmei Wang
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Sau-Na Tsai
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Feng Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Boon Leong Lim
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR
| |
Collapse
|
12
|
Donahue JL, Ercetin M, Gillaspy GE. Assaying inositol and phosphoinositide phosphatase enzymes. Methods Mol Biol 2013; 1009:175-85. [PMID: 23681533 DOI: 10.1007/978-1-62703-401-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
One critical aspect of phosphoinositide signaling is the turnover of signaling molecules in the pathway. These signaling molecules include the phosphatidylinositol phosphates (PtdInsPs) and inositol phosphates (InsPs). The enzymes that catalyze the breakdown of these molecules are thus important potential regulators of signaling, and in many cases the activity of such enzymes needs to be measured and compared to other enzymes. PtdInsPs and InsPs are broken down by sequential dephosphorylation reactions which are catalyzed by a set of specific phosphatases. Many of the phosphatases can act on both PtdInsP and InsP substrates. The protocols described in this chapter detail activity assays that allow for the measurement of PtdInsP and InsP phosphatase activities in vitro starting with native or recombinant enzymes. Three different assays are described that have different equipment requirements and allow one to test a range of PtdInsP and InsP phosphatases that act on different substrates.
Collapse
|
13
|
Ho YP, Tan CM, Li MY, Lin H, Deng WL, Yang JY. The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:419-30. [PMID: 23252460 DOI: 10.1094/mpmi-06-12-0164-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant disease induced by Xanthomonas campestris pv. campestris depends on type III effectors but the molecular basis is poorly understood. Here, AvrXccC8004 was characterized, and it was found that the AvrB_AvrC domain was essential and sufficient to elicit defense responses in an Arabidopsis-resistant ecotype (Col-0). An upregulation of genes in responding to the AvrB_AvrC domain of AvrXccC8004 was shown in a profile of host gene expression. The molecular changes were correlated with morphological changes observed in phenotypic and ultrastructural characterizations. Interestingly, the abscisic acid (ABA)-signaling pathway was also a prominent target for the AvrB_AvrC domain of AvrXccC8004. The highly elicited NCED5, encoding a key enzyme of ABA biosynthesis, was increased in parallel with ABA levels in AvrXccC8004 transgenic plants. Consistently, the X. campestris pv. campestris 8004 ΔavrXccC mutant was severely impaired in the ability to manipulate the accumulation of ABA and induction of ABA-related genes in challenged leaves. Moreover, exogenous application of ABA also enhanced the susceptibility of Arabidopsis to the X. campestris pv. campestris strains. These results indicate that the AvrB_AvrC domain of AvrXccC8004 alone has the activity to manipulate ABA homeostasis, which plays an important role in regulating the interactions of X. campestris pv. campestris and Arabidopsis.
Collapse
Affiliation(s)
- Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Gillaspy GE. The Role of Phosphoinositides and Inositol Phosphates in Plant Cell Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:141-57. [DOI: 10.1007/978-94-007-6331-9_8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Sato-Izawa K, Nakaba S, Tamura K, Yamagishi Y, Nakano Y, Nishikubo N, Kawai S, Kajita S, Ashikari M, Funada R, Katayama Y, Kitano H. DWARF50 (D50), a rice (Oryza sativa L.) gene encoding inositol polyphosphate 5-phosphatase, is required for proper development of intercalary meristem. PLANT, CELL & ENVIRONMENT 2012; 35:2031-44. [PMID: 22574770 DOI: 10.1111/j.1365-3040.2012.02534.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Rice internodes are vital for supporting high-yield panicles, which are controlled by various factors such as cell division, cell elongation and cell wall biosynthesis. Therefore, formation and regulation of the internode cell-producing intercalary meristem (IM) are important for determining the shape of internodes. To understand the regulation of internode development, we analysed a rice dwarf mutant, dwarf 50 (d50). Previously, we reported that parenchyma cells in the elongated internodes of d50 ectopically deposit cell wall phenolics. In this study, we revealed that D50 encodes putative inositol polyphosphate 5-phosphatase (5PTase), which may be involved in phosphoinositide signalling required for many essential cellular functions, such as cytoskeleton organization, endocytosis and vesicular trafficking in eukaryotes. Analysis of the rice genome revealed 20 putative 5PTases including D50. The d50 mutation induced abnormally oriented cell division, irregular deposition of cell wall pectins and thick actin bundles in the parenchyma cells of the IM, resulting in abnormally organized cell files of the internode parenchyma and dwarf phenotype. Our results suggest that the putative 5PTase, encoded by D50, is essential for IM formation, including the direction of cell division, deposition of cell wall pectins and control of actin organization.
Collapse
Affiliation(s)
- Kanna Sato-Izawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Chu YJ, Xue HW. Inositol polyphosphate 5-phosphatase-controlled Ins(1,4,5)P3/Ca2+ is crucial for maintaining pollen dormancy and regulating early germination of pollen. Development 2012; 139:2221-33. [DOI: 10.1242/dev.081224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Appropriate pollen germination is crucial for plant reproduction. Previous studies have revealed the importance of dehydration in maintaining pollen dormancy; here, we show that phosphatidylinositol pathway-controlled Ins(1,4,5)P3/Ca2+ levels are crucial for maintaining pollen dormancy in Arabidopsis thaliana. An interesting phenotype, precocious pollen germination within anthers, results from a disruption of inositol polyphosphate 5-phosphatase 12 (5PT12). The knockout mutant 5pt12 has normal early pollen development and pollen dehydration, and exhibits hypersensitive ABA responses, indicating that precocious pollen germination is not caused either by abnormal dehydration or by suppressed ABA signaling. Deficiency of 5PT13 (a close paralog of 5PT12) synergistically enhances precocious pollen germination. Both basal Ins(1,4,5)P3 levels and endogenous Ca2+ levels are elevated in pollen from 5pt12 mutants, and 5pt12 5pt13 double mutants show an even higher precocious germination rate along with much higher levels of Ins(1,4,5)P3/Ca2+. Strikingly, exogenous Ca2+ stimulates the germination of wild-type pollen at floral stage 12, even in very low humidity, both in vitro and in vivo, and treatment with BAPTA, a [Ca2+]cyt inhibitor, reduces the precocious pollen germination rates of 5pt12, 5pt13 and 5pt12 5pt13 mutants. These results indicate that the increase in the levels of Ins(1,4,5)P3/Ca2+ caused by deficiency of inositol polyphosphate 5-phosphatases is sufficient to break pollen dormancy and to trigger early germination. The study reveals that independent of dehydration, the control of Ins(1,4,5)P3/Ca2+ levels by Inositol polyphosphate 5-phosphatases is crucial for maintaining pollen dormancy.
Collapse
Affiliation(s)
- Yuan Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Yu-Jia Chu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
17
|
Abstract
The simple polyol, myo-inositol, is used as a building block of a cellular language that plays various roles in signal transduction. This review describes the terminology used to denote myo-inositol-containing molecules, with an emphasis on how phosphate and fatty acids are added to create second messengers used in signaling. Work in model systems has delineated the genes and enzymes required for synthesis and metabolism of many myo-inositol-containing molecules, with genetic mutants and measurement of second messengers playing key roles in developing our understanding. There is increasing evidence that molecules such as myo- inositol(1,4,5)trisphosphate and phosphatidylinositol(4,5)bisphosphate are synthesized in response to various signals plants encounter. In particular, the controversial role of myo-inositol(1,4,5)trisphosphate is addressed, accompanied by a discussion of the multiple enzymes that act to regulate this molecule. We are also beginning to understand new connections of myo-inositol signaling in plants. These recent discoveries include the novel roles of inositol phosphates in binding to plant hormone receptors and that of phosphatidylinositol(3)phosphate binding to pathogen effectors.
Collapse
Affiliation(s)
- Glenda E Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
18
|
Kaye Y, Golani Y, Singer Y, Leshem Y, Cohen G, Ercetin M, Gillaspy G, Levine A. Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:229-41. [PMID: 21677096 PMCID: PMC3165872 DOI: 10.1104/pp.111.176883] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants possess remarkable ability to adapt to adverse environmental conditions. The adaptation process involves the removal of many molecules from organelles, especially membranes, and replacing them with new ones. The process is mediated by an intracellular vesicle-trafficking system regulated by phosphatidylinositol (PtdIns) kinases and phosphatases. Although PtdIns comprise a fraction of membrane lipids, they function as major regulators of stress signaling. We analyzed the role of PtdIns 5-phosphatases (5PTases) in plant salt tolerance. The Arabidopsis (Arabidopsis thaliana) genome contains 15 At5PTases. We analyzed salt sensitivity in nine At5ptase mutants and identified one (At5ptase7) that showed increased sensitivity, which was improved by overexpression. At5ptase7 mutants demonstrated reduced production of reactive oxygen species (ROS). Supplementation of mutants with exogenous PtdIns dephosphorylated at the D5' position restored ROS production, while PtdIns(4,5)P(2), PtdIns(3,5)P(2), or PtdIns(3,4,5)P(3) were ineffective. Compromised salt tolerance was also observed in mutant NADPH Oxidase, in agreement with the low ROS production and salt sensitivity of PtdIns 3-kinase mutants and with the inhibition of NADPH oxidase activity in wild-type plants. Localization of green fluorescent protein-labeled At5PTase7 occurred in the plasma membrane and nucleus, places that coincided with ROS production. Analysis of salt-responsive gene expression showed that mutants failed to induce the RD29A and RD22 genes, which contain several ROS-dependent elements in their promoters. Inhibition of ROS production by diphenylene iodonium suppressed gene induction. In summary, our results show a nonredundant function of At5PTase7 in salt stress response by regulating ROS production and gene expression.
Collapse
|
19
|
Donahue JL, Alford SR, Torabinejad J, Kerwin RE, Nourbakhsh A, Ray WK, Hernick M, Huang X, Lyons BM, Hein PP, Gillaspy GE. The Arabidopsis thaliana Myo-inositol 1-phosphate synthase1 gene is required for Myo-inositol synthesis and suppression of cell death. THE PLANT CELL 2010; 22:888-903. [PMID: 20215587 PMCID: PMC2861443 DOI: 10.1105/tpc.109.071779] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/28/2010] [Accepted: 02/18/2010] [Indexed: 05/19/2023]
Abstract
l-myo-inositol 1-phosphate synthase (MIPS; EC 5.5.1.4) catalyzes the rate-limiting step in the synthesis of myo-inositol, a critical compound in the cell. Plants contain multiple MIPS genes, which encode highly similar enzymes. We characterized the expression patterns of the three MIPS genes in Arabidopsis thaliana and found that MIPS1 is expressed in most cell types and developmental stages, while MIPS2 and MIPS3 are mainly restricted to vascular or related tissues. MIPS1, but not MIPS2 or MIPS3, is required for seed development, for physiological responses to salt and abscisic acid, and to suppress cell death. Specifically, a loss in MIPS1 resulted in smaller plants with curly leaves and spontaneous production of lesions. The mips1 mutants have lower myo-inositol, ascorbic acid, and phosphatidylinositol levels, while basal levels of inositol (1,4,5)P(3) are not altered in mips1 mutants. Furthermore, mips1 mutants exhibited elevated levels of ceramides, sphingolipid precursors associated with cell death, and were complemented by a MIPS1-green fluorescent protein (GFP) fusion construct. MIPS1-, MIPS2-, and MIPS3-GFP each localized to the cytoplasm. Thus, MIPS1 has a significant impact on myo-inositol levels that is critical for maintaining levels of ascorbic acid, phosphatidylinositol, and ceramides that regulate growth, development, and cell death.
Collapse
Affiliation(s)
- Janet L. Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Shannon R. Alford
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Javad Torabinejad
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Rachel E. Kerwin
- Department of Plant Biology, University of California, Davis, California 95616
| | - Aida Nourbakhsh
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - W. Keith Ray
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Marcy Hernick
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Xinyi Huang
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Blair M. Lyons
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Pyae P. Hein
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Glenda E. Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
- Address correspondence to
| |
Collapse
|
20
|
Khodakovskaya M, Sword C, Wu Q, Perera IY, Boss WF, Brown CS, Winter Sederoff H. Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:170-183. [PMID: 20040061 DOI: 10.1111/j.1467-7652.2009.00472.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Inositol-(1,4,5)-trisphosphate (InsP(3)) is a second messenger in plants that increases in response to many stimuli. The metabolic consequences of this signalling pathway are not known. We reduced the basal level of InsP(3) in tomato (Solanum lycopersicum cv. Micro-Tom) by expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) gene. Transgenic lines producing InsP 5-ptase protein had between 15% and 30% of the basal InsP(3) level of control plants. This increased hydrolysis of InsP(3) caused dramatic increases in drought tolerance, vegetative biomass and lycopene and hexose concentrations in the fruits. Transcript profiling of root, leaf and fruit tissues identified a small group of genes, including a cell-wall invertase inhibitor gene, that were differentially regulated in all tissues of the InsP 5-ptase expressing plants. Significant differences were found in the amounts of carbohydrates and organic phosphate in these plants. Plants with increased hydrolysis of InsP(3) in the cytosol also showed increased net CO(2)-fixation and sucrose export into sink tissue and storage of hexoses in the source leaves. The increase in biomass was dependent on the supply of inorganic phosphate in the nutrient medium. Uptake and storage of phosphate was increased in the transgene expressing lines. This suggests that in tomato, increased flux through the inositol phosphate pathway uncoupled phosphate sensing from phosphate metabolism. Altering the second messenger, InsP(3), revealed multiple coordinated changes in development and metabolism in tomato that have potential for crop improvement.
Collapse
|
21
|
|
22
|
The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Res 2009; 19:1191-204. [PMID: 19736566 DOI: 10.1038/cr.2009.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inositol polyphosphate 5-phosphatases (5PTases) are enzymes of phosphatidylinositol metabolism that affect various aspects of plant growth and development. Arabidopsis 5PTase13 regulates auxin homeostasis and hormone-related cotyledon vein development, and here we demonstrate that its knockout mutant 5pt13 has elevated sensitivity to gravistimulation in root gravitropic responses. The altered responses of 5pt13 mutants to 1-N-naphthylphthalamic acid (an auxin transport inhibitor) indicate that 5PTase13 might be involved in the regulation of auxin transport. Indeed, the auxin efflux carrier PIN2 is expressed more broadly under 5PTase13 deficiency, and observations of the internalization of the membrane-selective dye FM4-64 reveal altered vesicle trafficking in 5pt13 mutants. Compared with wild-type, 5pt13 mutant seedlings are less sensitive to the inhibition by brefeldin A of vesicle cycling, seedling growth, and the intracellular cycling of the PIN1 and PIN2 proteins. Further, auxin redistribution upon gravitropic stimulation is stimulated under 5PTase13 deficiency. These results suggest that 5PTase13 may modulate auxin transport by regulating vesicle trafficking and thereby play a role in root gravitropism.
Collapse
|
23
|
Carland F, Nelson T. CVP2- and CVL1-mediated phosphoinositide signaling as a regulator of the ARF GAP SFC/VAN3 in establishment of foliar vein patterns. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:895-907. [PMID: 19473324 DOI: 10.1111/j.1365-313x.2009.03920.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In foliar organs of dicots, veins are arranged in a highly branched or reticulated pattern for efficient distribution of water, photosynthates and signaling molecules. Recent evidence suggests that the patterns rely in part on regulation of intracellular vesicle transport and cell polarity in selected cells during leaf development. The sorting of vesicle cargos to discrete cellular sites is regulated in yeast and animal cells by the binding of specific phosphoinositides (PIs). We report here that, in the plant Arabidopsis, specific PIs guide the vesicle traffic that is essential for polarized and continuous vein pattern formation. Mutations in SFC/VAN3, an ADP-ribosylation factor GTPase-activating protein (ARF GAP) with a PI-binding pleckstrin homology domain, result in discontinuous vein patterns. Plants with mutations in both CVP2 and CVL1, which encode inositol polyphosphate 5'-phosphatases that generate the specific PI ligand for the pleckstrin homology domain of SFC/VAN3, phosphatidylinositol-4-monophosphate (PI(4)P), have a discontinuous vein phenotype identical to that of sfc/van3 mutants. Single cvp2 or cvl1 mutants show weak and no discontinuous vein phenotypes, respectively, suggesting that they act redundantly. We propose that these two 5'-phosphatases regulate vein continuity and cell polarity by generating a specific PI ligand for SFC/VAN3.
Collapse
Affiliation(s)
- Francine Carland
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
24
|
Heilmann I. Using genetic tools to understand plant phosphoinositide signalling. TRENDS IN PLANT SCIENCE 2009; 14:171-9. [PMID: 19217341 DOI: 10.1016/j.tplants.2008.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/28/2008] [Accepted: 12/09/2008] [Indexed: 05/07/2023]
Abstract
Phosphoinositides (PIs) are regulatory lipids that control various physiological processes in eukaryotic organisms. As in other eukaryotes, the plant PI system is a central regulator of metabolism. The analysis of mutant plants that lack certain PI species has revealed their physiological relevance; however, knowledge of the factors controlling the distribution of PIs and the effects on their target proteins is still limited. To understand PI functions better, genetic approaches should be combined with biochemical analyses and cell biology, as has been done in several recent publications. Here, I highlight plant-specific physiological processes that are controlled by PIs and suggest future avenues of research. A detailed understanding of the functions and effects of PIs might offer new opportunities for modulating plant growth and hardiness against environmental influences.
Collapse
Affiliation(s)
- Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
25
|
Fleet CM, Ercetin ME, Gillaspy GE. Inositol phosphate signaling and gibberellic acid. PLANT SIGNALING & BEHAVIOR 2009; 4:73-74. [PMID: 19704714 PMCID: PMC2634079 DOI: 10.4161/psb.4.1.7418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 05/28/2023]
Abstract
To respond to physical signals and endogenous hormones, plants use specific signal transduction pathways. We and others have previously shown that second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] is used in abscisic acid (ABA) signaling, and that some mutants with altered Ins(1,4,5)P(3) have altered responses to ABA. Specifically, mutants defective in the myo-inositol polyphosphate 5-phosphatases (5PTases) 1 and 2 genes that hydrolyze 5-phosphates from Ins(1,4,5)P(3) and other PtdInsP and InsP substrates, have elevated Ins (1,4,5)P(3), and are ABA-hypersensitive. Given the antagonistic relationship between ABA and gibberellic acid (GA), we tested the response of these same mutants to a GA synthesis inhibitor, paclobutrazol (PAC). We report here that 5ptase1, 5ptase2 and 5ptase11 mutants are hypersensitive to PAC, suggesting a relationship between elevated Ins(1,4,5)P(3) and decreased GA signal transduction. These data provide insight into signaling cross-talk between ABA and GA pathways.
Collapse
Affiliation(s)
- Christine M Fleet
- Department of Biology, Emory and Henry College, Emory, Virginia, USA
| | | | | |
Collapse
|
26
|
|
27
|
Abstract
Since the discovery of the phosphoinositide/phospholipase C (PI/PLC) system in animal systems, we know that phospholipids are much more then just structural components of biological membranes. In the beginning, this idea was fairly straightforward. Receptor stimulation activates PLC, which hydrolyses phosphatidylinositol4,5-bisphosphate [PtdIns(4,5)P2] into two second messengers: inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DG). While InsP3 difuses into the cytosol and triggers the release of calcium from an internal store via ligand-gated calcium channels, DG remains in the membrane where it recruits and activates members of the PKC family. The increase in calcium, together with the change in phosphorylation status, (in)activates a variety of protein targets, leading to a massive reprogramming, allowing the cell to appropriately respond to the extracellular stimulus. Later, it became obvious that not just PLC, but a variety of other phospholipid-metabolizing enzymes were activated, including phospholipase A, phospholipase D, and PI 3-kinase. More recently, it has become apparent that PtdIns4P and PtdIns(4,5)P2 are not just signal precursors but can also function as signaling molecules themselves. While plants contain most of the components described above, and evidence for their role in cell signaling is progressively increasing, major differences between plants and the mammalian paradigms exist. Below, these are described "in a nutshell."
Collapse
Affiliation(s)
- Teun Munnik
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, NL-1098SM, Amsterdam, The Netherlands.
| | | |
Collapse
|
28
|
Ischebeck T, Stenzel I, Heilmann I. Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. THE PLANT CELL 2008; 20:3312-30. [PMID: 19060112 PMCID: PMC2630452 DOI: 10.1105/tpc.108.059568] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 11/13/2008] [Accepted: 11/21/2008] [Indexed: 05/18/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P(2)] occurs in the apical plasma membrane of growing pollen tubes. Because enzymes responsible for PtdIns(4,5)P(2) production at that location are uncharacterized, functions of PtdIns(4,5)P(2) in pollen tube tip growth are unresolved. Two candidate genes encoding pollen-expressed Arabidopsis thaliana phosphatidylinositol-4-phosphate 5-kinases (PI4P 5-kinases) of Arabidopsis subfamily B were identified (PIP5K4 and PIP5K5), and their recombinant proteins were characterized as being PI4P 5-kinases. Pollen of T-DNA insertion lines deficient in both PIP5K4 and PIP5K5 exhibited reduced pollen germination and defects in pollen tube elongation. Fluorescence-tagged PIP5K4 and PIP5K5 localized to an apical plasma membrane microdomain in Arabidopsis and tobacco (Nicotiana tabacum) pollen tubes, and overexpression of either PIP5K4 or PIP5K5 triggered multiple tip branching events. Further studies using the tobacco system revealed that overexpression caused massive apical pectin deposition accompanied by plasma membrane invaginations. By contrast, callose deposition and cytoskeletal structures were unaltered in the overexpressors. Morphological effects depended on PtdIns(4,5)P(2) production, as an inactive enzyme variant did not produce any effects. The data indicate that excessive PtdIns(4,5)P(2) production by type B PI4P 5-kinases disturbs the balance of membrane trafficking and apical pectin deposition. Polar tip growth of pollen tubes may thus be modulated by PtdIns(4,5)P(2) via regulatory effects on membrane trafficking and/or apical pectin deposition.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, 37077 Göttingen, Germany
| | | | | |
Collapse
|
29
|
Perera IY, Hung CY, Moore CD, Stevenson-Paulik J, Boss WF. Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. THE PLANT CELL 2008; 20:2876-93. [PMID: 18849493 PMCID: PMC2590728 DOI: 10.1105/tpc.108.061374] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/13/2008] [Accepted: 09/16/2008] [Indexed: 05/18/2023]
Abstract
The phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP(3)) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP(3)-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically hydrolyzes soluble inositol phosphates and terminates the signal. Rapid transient Ca(2+) responses to a cold or salt stimulus were reduced by approximately 30% in these transgenic plants. Drought stress studies revealed, surprisingly, that the InsP 5-ptase plants lost less water and exhibited increased drought tolerance. The onset of the drought stress was delayed in the transgenic plants, and abscisic acid (ABA) levels increased less than in the wild-type plants. Stomatal bioassays showed that transgenic guard cells were less responsive to the inhibition of opening by ABA but showed an increased sensitivity to ABA-induced closure. Transcript profiling revealed that the drought-inducible ABA-independent transcription factor DREB2A and a subset of DREB2A-regulated genes were basally upregulated in the InsP 5-ptase plants, suggesting that InsP(3) is a negative regulator of these DREB2A-regulated genes. These results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via a DREB2A-dependent pathway and that constitutive dampening of the InsP(3) signal reveals unanticipated interconnections between signaling pathways.
Collapse
Affiliation(s)
- Imara Y Perera
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | | | |
Collapse
|
30
|
Ercetin ME, Ananieva EA, Safaee NM, Torabinejad J, Robinson JY, Gillaspy GE. A phosphatidylinositol phosphate-specific myo-inositol polyphosphate 5-phosphatase required for seedling growth. PLANT MOLECULAR BIOLOGY 2008; 67:375-88. [PMID: 18392779 DOI: 10.1007/s11103-008-9327-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 03/19/2008] [Indexed: 05/19/2023]
Abstract
The phosphatidylinositol phosphate signaling pathway is involved in many crucial cellular functions. The myo-inositol polyphosphate 5-phosphatases (5PTases) (E.C. 3.1.3.56) comprise a large protein family that hydrolyze 5-phosphates from a variety of phosphatidylinositol phosphate and inositol phosphate substrates. We previously reported that the At5PTase11 enzyme (At1g47510), which is one of the smallest predicted 5PTases found in any organism, encodes an active 5PTase whose activity is restricted to tris- and bis-, but not mono-phosphorylated phosphatidylinositol phosphate substrates containing a 5-phosphate. This is in contrast to other unrestricted Arabidopsis 5PTases, which also hydrolyze tris- and bis inositol phosphate molecules. To further explore the function of At5PTase11, we have characterized two T-DNA mutants in the At5PTase11 gene, and have complemented this mutant. Seed from 5ptase11 mutants germinate slower than wildtype seed and mutant seedlings have decreased hypocotyl growth as compared to wildtype seedlings when grown in the dark. This phenotype is the opposite of the increased hypocotyl growth phenotype previously described for other 5ptase mutants defective in inositol phosphate-specific 5PTase enzymes. By labeling the endogenous myo-inositol pool in 5ptase11 mutants, we correlated these hypocotyl growth changes with a small increase in the 5PTase11 substrate, phosphatidylinositol (4,5) bisphosphate, and decreases in the potential products of 5PTase11, phosphatidylinositol (3) phosphate and phosphatidylinositol (4) phosphate. Surprisingly, we also found that dark-grown 5ptase11 mutants contain increases in inositol (1,4,5) trisphosphate and an inositol bisphosphate that is not a substrate for recombinant 5PTase11. We present a model for regulation of hypocotyl growth by specific molecules found in this pathway.
Collapse
Affiliation(s)
- Mustafa E Ercetin
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
31
|
Lee Y, Lee Y. Roles of phosphoinositides in regulation of stomatal movements. PLANT SIGNALING & BEHAVIOR 2008; 3:211-3. [PMID: 19513215 PMCID: PMC2634180 DOI: 10.4161/psb.3.4.5557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 11/01/2008] [Indexed: 05/04/2023]
Abstract
Guard cells sense various environmental and internal stimuli and, in response, modulate the stomatal aperture to a size optimal for growth and adaptation. Among the many factors involved in the fine regulation of stomata, we have focused our studies on the role of phosphoinositides. Our recent study published in the Plant Journal (52:803-16) provides evidence for an important role for phosphatidylinositol 4,5-bis-phosphate (PtdIns(4,5)P(2)) in inducing stomatal opening. Light induces translocation of a PtdIns(4,5)P(2)-binding protein from the cytosol to the plasma membrane and treatments that increase the intracellular PtdIns(4,5)P(2) level induce stomatal opening in the absence of light irradiation. Inhibition of anion channel activity, a negative regulator for stomatal opening, was suggested as a mechanism of PtdIns(4,5)P(2)-induced stomatal opening. We also reported that phosphatidylinositol 3-phosphate (PtdIns(3)P) and phosphatidylinositol 4-phosphate (PtdIns(4)P) regulate actin dynamics in guard cells. The effects of the phosphoinositides were specific, and were not induced by other lipids with similar structures. The roles of different interacting partners are likely to be important for these lipids to produce specific changes in guard cell activity.
Collapse
Affiliation(s)
- Yuree Lee
- POSTECH-UZH Global Research Lab; Division of Molecular Life Sciences; POSTECH; Pohang, Korea
| | | |
Collapse
|
32
|
Lang RD, Volkov AG. Solitary waves in soybean induced by localized thermal stress. PLANT SIGNALING & BEHAVIOR 2008; 3:224-8. [PMID: 19513218 PMCID: PMC2634183 DOI: 10.4161/psb.3.4.5586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 01/14/2007] [Indexed: 05/08/2023]
Abstract
Action potentials in higher plants are believed to be the information carriers in intercellular and intracellular communication in the presence of an environmental stressor. Plant electrophysiologists have recorded long distance electrical signaling in higher plants during the last two hundred years. Reproducing the duration, speed of propagation, and the shape of the action potential is challenging. Early measurements revealed that the speed of action potential propagation in plants is extremely slow - from 0.1 mm/s to 20 cm/s, although many faster plant responses to stress have been recorded as well. We hypothesized that this discrepancy is most likely due to the artifacts of aliasing from slow registration systems. In this study, we employ real time measurements using modern data acquisition techniques to detect ultra fast action potentials in green plants induced by localized heat stress. Thermal shock or heat stress is the most common environmental stress. Based on more sophisticated measuring techniques, we show that plants transmit solitary waves and that the speed of action potential propagation in green plants is similar to the speed of action potentials in mammalians, varying from a few meters per second up to 105 m/s. Possible pathways for electrical signal propagation in vascular plants are discussed.
Collapse
Affiliation(s)
- Ryan D Lang
- Department of Chemistry and Biochemistry; Oakwood University; Huntsville, Alabama USA
| | | |
Collapse
|
33
|
Regente M, Corti Monzón G, de la Canal L. Phospholipids are present in extracellular fluids of imbibing sunflower seeds and are modulated by hormonal treatments. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:553-62. [PMID: 18212025 DOI: 10.1093/jxb/erm329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phospholipids are well known messengers involved in developmental and stress responses mediating intracellular signalling. It has been hypothesized that phospholipids exist which could participate in intercellular communication events through the apoplast of sunflower (Helianthus annuus) seeds. Here it is shown that extracellular washing fluids (EWFs) obtained from seeds imbibed for 2 h contain diverse phospholipids. Lipid profiling by electrospray ionization tandem mass spectrometry revealed that the EWFs have a particular composition, with phosphatidic acid (PA) and phosphatidylinositol (PI) being the major phospholipids. These profiles are clearly distinct from those of seed extract (SE), and comparative SDS-PAGE of EWF and SE, followed by intracellular and plasma membrane marker analyses, allowed a significant contamination of the EWF to be discarded. Treatment of the seeds with 100 microM jasmonic acid (JA) induces changes in the profile of EWF phospholipids, leading to a decrease in PI content, while the accumulation of phosphatidylinositol 4-phosphate (PI4P) and specific PA species is observed. On the other hand, the EWF from seeds subjected to 50 microM abscisic acid (ABA) treatment exhibit an increase in PA and phosphatidylglycerol levels. To our knowledge, this is the first report on the existence of phospholipids as extracellular components of seeds. Moreover, the modulation of PA, PI, and PI4P levels by hormonal treatments further suggests their contribution to intercellular communication in planta.
Collapse
Affiliation(s)
- Mariana Regente
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Buenos Aires, Argentina.
| | | | | |
Collapse
|
34
|
Im YJ, Perera IY, Brglez I, Davis AJ, Stevenson-Paulik J, Phillippy BQ, Johannes E, Allen NS, Boss WF. Increasing plasma membrane phosphatidylinositol(4,5)bisphosphate biosynthesis increases phosphoinositide metabolism in Nicotiana tabacum. THE PLANT CELL 2007; 19:1603-16. [PMID: 17496116 PMCID: PMC1913725 DOI: 10.1105/tpc.107.051367] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 04/18/2007] [Accepted: 04/23/2007] [Indexed: 05/15/2023]
Abstract
A genetic approach was used to increase phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P2] biosynthesis and test the hypothesis that PtdInsP kinase (PIPK) is flux limiting in the plant phosphoinositide (PI) pathway. Expressing human PIPKIalpha in tobacco (Nicotiana tabacum) cells increased plasma membrane PtdIns(4,5)P2 100-fold. In vivo studies revealed that the rate of 32Pi incorporation into whole-cell PtdIns(4,5)P2 increased >12-fold, and the ratio of [3H]PtdInsP2 to [3H]PtdInsP increased 6-fold, but PtdInsP levels did not decrease, indicating that PtdInsP biosynthesis was not limiting. Both [3H]inositol trisphosphate and [3H]inositol hexakisphosphate increased 3-and 1.5-fold, respectively, in the transgenic lines after 18 h of labeling. The inositol(1,4,5)trisphosphate [Ins(1,4,5)P3] binding assay showed that total cellular Ins(1,4,5)P3/g fresh weight was >40-fold higher in transgenic tobacco lines; however, even with this high steady state level of Ins(1,4,5)P3, the pathway was not saturated. Stimulating transgenic cells with hyperosmotic stress led to another 2-fold increase, suggesting that the transgenic cells were in a constant state of PI stimulation. Furthermore, expressing Hs PIPKIalpha increased sugar use and oxygen uptake. Our results demonstrate that PIPK is flux limiting and that this high rate of PI metabolism increased the energy demands in these cells.
Collapse
Affiliation(s)
- Yang Ju Im
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gunesekera B, Torabinejad J, Robinson J, Gillaspy GE. Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. PLANT PHYSIOLOGY 2007; 143:1408-17. [PMID: 17237190 PMCID: PMC1820906 DOI: 10.1104/pp.106.089474] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Signals can be perceived and amplified at the cell membrane by receptors coupled to the production of a variety of second messengers, including myoinositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]. The myoinositol polyphosphate 5-phosphatases (5PTases; EC 3.1.3.56) comprise a large protein family that hydrolyzes 5-phosphates from a variety of myoinositol phosphate (InsP) and phosphoinositide phosphate (PtdInsP) substrates. Arabidopsis thaliana has 15 genes encoding 5PTases. Biochemical analyses of a subgroup of 5PTase enzymes suggest that these enzymes have both overlapping and unique substrate preferences. Ectopic expression of these genes in transgenic plants can reduce Ins(1,4,5)P(3) levels and alter abscisic acid (ABA) signaling. To further explore the function of 5PTases in signaling, we have identified and characterized T-DNA insertional mutants for 5PTase1 and 5PTase2 and produced a double mutant. When grown in the dark, the seeds from these mutants germinate faster than wild-type seeds and the mutant seedlings have longer hypocotyls than wild-type seedlings. Seeds from these mutant lines also demonstrate an increase in sensitivity to ABA. These changes in early seedling growth are accompanied by mass increases in Ins(1,4,5)P(3), but not by changes in endogenous ABA content. By labeling the endogenous myoinositol pool in 5ptase1 and 5ptase2 mutants, we detected increases in Ins(1,4,5)P(3) and a decrease in PtdIns, PtdIns(4)P, and phosphatidylinositol (4,5) bisphosphate. Taken together, these data indicate that the At5PTase1 and At5PTase2 genes have nonredundant roles in hydrolyzing inositol second-messenger substrates and that regulation of Ins(1,4,5)P(3) levels is important during germination and early seedling development.
Collapse
Affiliation(s)
- Bhadra Gunesekera
- Department of Biochemistry and Fralin Biotechnology Center, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Victor Raboy
- USDA-ARS and University of Idaho, Aberdeen, Idaho 83210, USA
| | | |
Collapse
|
37
|
Zonia L, Munnik T. Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. Subcell Biochem 2006; 39:207-37. [PMID: 17121277 DOI: 10.1007/0-387-27600-9_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Zonia
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | |
Collapse
|
38
|
Affiliation(s)
- Frank A Loewus
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| |
Collapse
|
39
|
Lin WH, Wang Y, Mueller-Roeber B, Brearley CA, Xu ZH, Xue HW. At5PTase13 modulates cotyledon vein development through regulating auxin homeostasis. PLANT PHYSIOLOGY 2005; 139:1677-91. [PMID: 16299182 PMCID: PMC1310551 DOI: 10.1104/pp.105.067140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phosphatidylinositol signaling pathway and the relevant metabolites are known to be critical to the modulation of different aspects of plant growth, development, and stress responses. Inositol polyphosphate 5-phosphatase is a key enzyme involved in phosphatidylinositol metabolism and is encoded by an At5PTase gene family in Arabidopsis thaliana. A previous study shows that At5PTase11 mediates cotyledon vascular development probably through the regulation of intracellular calcium levels. In this study, we provide evidence that At5PTase13 modulates the development of cotyledon veins through its regulation of auxin homeostasis. A T-DNA insertional knockout mutant, At5pt13-1, showed a defect in development of the cotyledon vein, which was rescued completely by exogenous auxin and in part by brassinolide, a steroid hormone. Furthermore, the mutant had reduced auxin content and altered auxin accumulation in seedlings revealed by the DR5:beta-glucuronidase fusion construct in seedlings. In addition, microarray analysis shows that the transcription of key genes responsible for auxin biosynthesis and transport was altered in At5pt13-1. The At5pt13-1 mutant was also less sensitive to auxin inhibition of root elongation. These results suggest that At5PTase13 regulates the homeostasis of auxin, a key hormone controlling vascular development in plants.
Collapse
Affiliation(s)
- Wen-Hui Lin
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Williams ME, Torabinejad J, Cohick E, Parker K, Drake EJ, Thompson JE, Hortter M, Dewald DB. Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. PLANT PHYSIOLOGY 2005; 138:686-700. [PMID: 15923324 PMCID: PMC1150389 DOI: 10.1104/pp.105.061317] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/25/2005] [Accepted: 03/28/2005] [Indexed: 05/02/2023]
Abstract
Phosphoinositides (PIs) are signaling molecules that regulate cellular events including vesicle targeting and interactions between membrane and cytoskeleton. Phosphatidylinositol (PtdIns)(4,5)P(2) is one of the best characterized PIs; studies in which PtdIns(4,5)P(2) localization or concentration is altered lead to defects in the actin cytoskeleton and exocytosis. PtdIns(4,5)P(2) and its derivative Ins(1,4,5)P(3) accumulate in salt, cold, and osmotically stressed plants. PtdIns(4,5)P(2) signaling is terminated through the action of inositol polyphosphate phosphatases and PI phosphatases including supressor of actin mutation (SAC) domain phosphatases. In some cases, these phosphatases also act on Ins(1,4,5)P(3). We have characterized the Arabidopsis (Arabidopsis thaliana) sac9 mutants. The SAC9 protein is different from other SAC domain proteins in several ways including the presence of a WW protein interaction domain within the SAC domain. The rice (Oryza sativa) and Arabidopsis SAC9 protein sequences are similar, but no apparent homologs are found in nonplant genomes. High-performance liquid chromatography studies show that unstressed sac9 mutants accumulate elevated levels of PtdIns(4,5)P(2) and Ins(1,4,5)P(3) as compared to wild-type plants. The sac9 mutants have characteristics of a constitutive stress response, including dwarfism, closed stomata, and anthocyanin accumulation, and they overexpress stress-induced genes and overaccumulate reactive-oxygen species. These results suggest that the SAC9 phosphatase is involved in modulating phosphoinsitide signals during the stress response.
Collapse
|
41
|
Zhong R, Burk DH, Nairn CJ, Wood-Jones A, Morrison WH, Ye ZH. Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization. THE PLANT CELL 2005; 17:1449-66. [PMID: 15805481 PMCID: PMC1091767 DOI: 10.1105/tpc.105.031377] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 02/23/2005] [Indexed: 05/17/2023]
Abstract
SAC (for suppressor of actin) domain proteins in yeast and animals have been shown to modulate the levels of phosphoinositides, thereby regulating several cellular activities such as signal transduction, actin cytoskeleton organization, and vesicle trafficking. Nine genes encoding SAC domain-containing proteins are present in the Arabidopsis thaliana genome, but their roles in plant cellular functions and plant growth and development have not been characterized. In this report, we demonstrate the essential roles of one of the Arabidopsis SAC domain proteins, AtSAC1, in plant cellular functions. Mutation of the AtSAC1 gene in the fragile fiber7 (fra7) mutant caused a dramatic decrease in the wall thickness of fiber cells and vessel elements, thus resulting in a weak stem phenotype. The fra7 mutation also led to reduced length and aberrant shapes in fiber cells, pith cells, and trichomes and to an alteration in overall plant architecture. The AtSAC1 gene was found to be expressed in all tissues in elongating organs; however, it showed predominant expression in vascular tissues and fibers in nonelongating parts of stems. In vitro activity assay demonstrated that AtSAC1 exhibited phosphatase activity toward phosphatidylinositol 3,5-biphosphate. Subcellular localization studies showed that AtSAC1 was colocalized with a Golgi marker. Truncation of the C terminus by the fra7 mutation resulted in its localization in the cytoplasm but had no effect on phosphatase activity. Furthermore, examination of the cytoskeleton organization revealed that the fra7 mutation caused the formation of aberrant actin cables in elongating cells but had no effect on the organization of cortical microtubules. Together, these results provide genetic evidence that AtSAC1, a SAC domain phosphoinositide phosphatase, is required for normal cell morphogenesis, cell wall synthesis, and actin organization.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | | | | | | | | | | |
Collapse
|
42
|
Bothwell JHF, Ng CKY. The evolution of Ca2+ signalling in photosynthetic eukaryotes. THE NEW PHYTOLOGIST 2005; 166:21-38. [PMID: 15760348 DOI: 10.1111/j.1469-8137.2004.01312.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It is likely that cytosolic Ca2+ elevations have played a part in eukaryotic signal transduction for about the last 2 Gyr, being mediated by a group of molecules which are collectively known as the [Ca2+]cyt signalling toolkit. Different eukaryotes often display strikingly similar [Ca2+]cyt signalling elevations, which may reflect conservation of toolkit components (homology) or similar constraints acting on different toolkits (homoplasy). Certain toolkit components, which are presumably ancestral, are shared by plants and animals, but some components are unique to photosynthetic organisms. We propose that the structure of modern plant [Ca2+]cyt signalling toolkits may be explained by their modular adaptation from earlier pathways.
Collapse
Affiliation(s)
- John H F Bothwell
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.
| | | |
Collapse
|
43
|
Zhong R, Burk DH, Morrison WH, Ye ZH. FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. THE PLANT CELL 2004; 16:3242-59. [PMID: 15539468 PMCID: PMC535871 DOI: 10.1105/tpc.104.027466] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Type II inositol polyphosphate 5-phosphatases (5PTases) in yeast and animals have been known to regulate the level of phosphoinositides and thereby influence various cellular activities, such as vesicle trafficking and actin organization. In plants, little is known about the phosphatases involved in hydrolysis of phosphoinositides, and roles of type II 5PTases in plant cellular functions have not yet been characterized. In this study, we demonstrate that the FRAGILE FIBER3 (FRA3) gene of Arabidopsis thaliana, which encodes a type II 5PTase, plays an essential role in the secondary wall synthesis in fiber cells and xylem vessels. The fra3 mutations caused a dramatic reduction in secondary wall thickness and a concomitant decrease in stem strength. These phenotypes were associated with an alteration in actin organization in fiber cells. Consistent with the defective fiber and vessel phenotypes, the FRA3 gene was found to be highly expressed in fiber cells and vascular tissues in stems. The FRA3 protein is composed of two domains, an N-terminal localized WD-repeat domain and a C-terminal localized 5PTase catalytic domain. In vitro activity assay demonstrated that recombinant FRA3 exhibited phosphatase activity toward PtdIns(4,5)P2, PtdIns(3,4,5)P3, and Ins(1,4,5)P3, with the highest substrate affinity toward PtdIns(4,5)P2. The fra3 missense mutation, which caused an amino acid substitution in the conserved motif II of the 5PTase catalytic domain, completely abolished the FRA3 phosphatase activity. Moreover, the endogenous levels of PtdIns(4,5)2 and Ins(1,4,5)P3 were found to be elevated in fra3 stems. Together, our findings suggest that the FRA3 type II 5PTase is involved in phosphoinositide metabolism and influences secondary wall synthesis and actin organization.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|