1
|
Žnidarič M, Zagorščak M, Ramšak Ž, Stare K, Chersicola M, Novak M, Kladnik A, Dermastia M. Chloroplast Vesiculation and Induced Chloroplast Vesiculation and Senescence-Associated Gene 12 Expression During Tomato Flower Pedicel Abscission. PLANT DIRECT 2025; 9:e70035. [PMID: 39790709 PMCID: PMC11710935 DOI: 10.1002/pld3.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Abscission is a tightly regulated process in which plants shed unnecessary, infected, damaged, or aging organs, as well as ripe fruits, through predetermined abscission zones in response to developmental, hormonal, and environmental signals. Despite its importance, the underlying mechanisms remain incompletely understood. This study highlights the deleterious effects of abscission on chloroplast ultrastructure in the cells of the tomato flower pedicel abscission zone, revealing spatiotemporal differential gene expression and key transcriptional networks involved in chloroplast vesiculation during abscission. Significant changes in chloroplast structure and vesicle formation were observed 8 and 14 h after abscission induction, coinciding with the differential expression of vesiculation-related genes, particularly with upregulation of Senescence-Associated Gene 12 (SAG12) and Chloroplast Vesiculation (CV). This suggests a possible vesicle transport of chloroplast degrading material for recycling by autophagy-independent senescence-associated vacuoles (SAVs) and CV-containing vesicles (CCVs). Ethylene signaling appears to be involved in the regulation of these processes, as treatment with a competitive inhibitor of ethylene action, 1-methylcyclopropene, delayed vesiculation, reduced the expression of SAG12, and increased expression of Curvature Thylakoid 1A (CURT1A). In addition, chloroplast vesiculation during abscission was associated with differential expression of photosynthesis-related genes, particularly those involved in light reactions, underscoring the possible functional impact of the observed structural changes. This work provides new insights into the molecular and ultrastructural mechanisms underlying abscission and offers potential new targets for agricultural or biotechnological applications.
Collapse
Affiliation(s)
- Magda Tušek Žnidarič
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Maja Zagorščak
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Živa Ramšak
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Katja Stare
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Marko Chersicola
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| | - Maruša Pompe Novak
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
- School of Viticulture and EnologyUniversity of Nova GoricaVipavaSlovenia
| | - Aleš Kladnik
- Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Marina Dermastia
- Department of Biotechnology and Systems BiologyNational Institute of BiologyLjubljanaSlovenia
| |
Collapse
|
2
|
Chotewutmontri P, Barkan A. Localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus to thylakoid subdomains in Arabidopsis. PLANT DIRECT 2024; 8:e70008. [PMID: 39544483 PMCID: PMC11560805 DOI: 10.1002/pld3.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 11/17/2024]
Abstract
Thylakoid membranes in chloroplasts and cyanobacteria harbor the multisubunit protein complexes that catalyze the light reactions of photosynthesis. In plant chloroplasts, the thylakoid membrane system comprises a highly organized network with several subcompartments that differ in composition and morphology: grana stacks, unstacked stromal lamellae, and grana margins at the interface between stacked and unstacked regions. The localization of components of the photosynthetic apparatus among these subcompartments has been well characterized. However, less is known about the localization of proteins involved in the biogenesis and repair of the photosynthetic apparatus, the partitioning of proteins between two recently resolved components of the traditional margin fraction (refined margins and curvature), and the effects of light on these features. In this study, we analyzed the partitioning of numerous thylakoid biogenesis and repair factors among grana, curvature, refined margin, and stromal lamellae fractions of Arabidopsis thylakoid membranes, comparing the results from illuminated and dark-adapted plants. Several proteins previously shown to localize to a margin fraction partitioned in varying ways among the resolved curvature and refined margin fractions. For example, the ALB3 insertase and FtsH protease involved in photosystem II (PSII) repair were concentrated in the refined margin fraction, whereas TAT translocon subunits and proteins involved in early steps in photosystem assembly were concentrated in the curvature fraction. By contrast, two photosystem assembly factors that facilitate late assembly steps were depleted from the curvature fraction. The enrichment of the PSII subunit OE23/PsbP in the curvature fraction set it apart from other PSII subunits, supporting the previous conjecture that OE23/PsbP assists in PSII biogenesis and/or repair. The PSII assembly factor PAM68 partitioned differently among thylakoid fractions from dark-adapted plants and illuminated plants and was the only analyzed protein to convincingly do so. These results demonstrate an unanticipated spatial heterogeneity of photosystem biogenesis and repair functions in thylakoid membranes and reveal the curvature fraction to be a focal point of early photosystem biogenesis.
Collapse
Affiliation(s)
- Prakitchai Chotewutmontri
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
- Present address:
Crop Improvement and Genetics Research, Western Regional Research CenterUnited States Department of Agriculture—Agricultural Research ServiceAlbanyCaliforniaUSA
| | - Alice Barkan
- Institute of Molecular BiologyUniversity of OregonEugeneOregonUSA
| |
Collapse
|
3
|
Susila H, Gawarecka K, Youn G, Jurić S, Jeong H, Ahn JH. THYLAKOID FORMATION 1 interacts with FLOWERING LOCUS T and modulates temperature-responsive flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:60-75. [PMID: 39136360 DOI: 10.1111/tpj.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/25/2024] [Indexed: 09/27/2024]
Abstract
The intracellular localization of the florigen FLOWERING LOCUS T (FT) is important for its long-distance transport toward the shoot apical meristem. However, the mechanisms regulating the FT localization remain poorly understood. Here, we discovered that in Arabidopsis thaliana, the chloroplast-localized protein THYLAKOID FORMATION 1 (THF1) physically interacts with FT, sequestering FT in the outer chloroplast envelope. Loss of THF1 function led to temperature-insensitive flowering, resulting in early flowering, especially under low ambient temperatures. THF1 mainly acts in the leaf vasculature and shoot apex to prevent flowering. Mutation of CONSTANS or FT completely suppressed the early flowering of thf1-1 mutants. FT and THF1 interact via their anion binding pocket and coiled-coil domain (CCD), respectively. Deletion of the CCD in THF1 by gene editing caused temperature-insensitive early flowering similar to that observed in the thf1-1 mutant. FT levels in the outer chloroplast envelope decreased in the thf1-1 mutant, suggesting that THF1 is important for sequestering FT. Furthermore, THF1 protein levels decreased in seedlings grown at high ambient temperature, suggesting an explanation for its role in plant responses to ambient temperature. A thf1-1 phosphatidylglycerolphosphate synthase 1 (pgp1) double mutant exhibited additive acceleration of flowering at 23 and 16°C, compared to the single mutants, indicating that THF1 and phosphatidylglycerol (PG) act as independent but synergistic regulators of temperature-responsive flowering. Collectively, our results provide an understanding of the genetic pathway involving THF1 and its role in temperature-responsive flowering and reveal a previously unappreciated additive interplay between THF1 and PG in temperature-responsive flowering.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- ARC Training Centre for Accelerated Future Crops Development, The Australian National University, Canberra, Australian Capital Territory, 6201, Australia
| | - Katarzyna Gawarecka
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Geummin Youn
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Snježana Jurić
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Hyewon Jeong
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hoon Ahn
- Department of Molecular Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Huo J, Zhang N, Gong Y, Bao Y, Li Y, Zhang L, Nie S. Effects of different light intensity on leaf color changes in a Chinese cabbage yellow cotyledon mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1371451. [PMID: 38689838 PMCID: PMC11058996 DOI: 10.3389/fpls.2024.1371451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Leaf color is one of the most important phenotypic features in horticultural crops and directly related to the contents of photosynthetic pigments. Most leaf color mutants are determined by the altered chlorophyll or carotenoid, which can be affected by light quality and intensity. Our previous study obtained a Chinese cabbage yellow cotyledon mutant that exhibited obvious yellow phenotypes in the cotyledons and the new leaves. However, the underlying mechanisms in the formation of yellow cotyledons and leaves remain unclear. In this study, the Chinese cabbage yellow cotyledon mutant 19YC-2 exhibited obvious difference in leaf color and abnormal chloroplast ultrastructure compared to the normal green cotyledon line 19GC-2. Remarkably, low-intensity light treatment caused turn-green leaves and a significant decrease in carotenoid content in 19YC-2. RNA-seq analysis revealed that the pathways of photosynthesis antenna proteins and carotenoid biosynthesis were significantly enriched during the process of leaf color changes, and many differentially expressed genes related to the two pathways were identified to respond to different light intensities. Remarkably, BrPDS and BrLCYE genes related to carotenoid biosynthesis showed significantly higher expression in 19YC-2 than that in 19GC-2, which was positively related to the higher carotenoid content in 19YC-2. In addition, several differentially expressed transcription factors were also identified and highly correlated to the changes in carotenoid content, suggesting that they may participate in the regulatory pathway of carotenoid biosynthesis. These findings provide insights into the molecular mechanisms of leaf color changes in yellow cotyledon mutant 19YC-2 of Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | | | | | - Lugang Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Shanshan Nie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Su J, Jiao Q, Jia T, Hu X. The photosystem-II repair cycle: updates and open questions. PLANTA 2023; 259:20. [PMID: 38091081 DOI: 10.1007/s00425-023-04295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION The photosystem-II (PSII) repair cycle is essential for the maintenance of photosynthesis in plants. A number of novel findings have illuminated the regulatory mechanisms of the PSII repair cycle. Photosystem II (PSII) is a large pigment-protein complex embedded in the thylakoid membrane. It plays a vital role in photosynthesis by absorbing light energy, splitting water, releasing molecular oxygen, and transferring electrons for plastoquinone reduction. However, PSII, especially the PsbA (D1) core subunit, is highly susceptible to oxidative damage. To prevent irreversible damage, plants have developed a repair cycle. The main objective of the PSII repair cycle is the degradation of photodamaged D1 and insertion of newly synthesized D1 into the PSII complex. While many factors are known to be involved in PSII repair, the exact mechanism is still under investigation. In this review, we discuss the primary steps of PSII repair, focusing on the proteolytic degradation of photodamaged D1 and the factors involved.
Collapse
Affiliation(s)
- Jinling Su
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Lindbäck LN, Ji Y, Cervela-Cardona L, Jin X, Pedmale UV, Strand Å. An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1082-1096. [PMID: 37602940 PMCID: PMC10592178 DOI: 10.1111/nph.19219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/20/2023] [Indexed: 08/22/2023]
Abstract
The development of a seedling into a photosynthetically active plant is a crucial process. Despite its importance, we do not fully understand the regulatory mechanisms behind the establishment of functional chloroplasts. We herein provide new insight into the early light response by identifying the function of three basic region/leucine zipper (bZIP) transcription factors: bZIP16, bZIP68, and GBF1. These proteins are involved in the regulation of key components required for the establishment of photosynthetically active chloroplasts. The activity of these bZIPs is dependent on the redox status of a conserved cysteine residue, which provides a mechanism to finetune light-responsive gene expression. The blue light cryptochrome (CRY) photoreceptors provide one of the major light-signaling pathways, and bZIP target genes overlap with one-third of CRY-regulated genes with an enrichment for photosynthesis/chloroplast-associated genes. bZIP16, bZIP68, and GBF1 were demonstrated as novel interaction partners of CRY1. The interaction between CRY1 and bZIP16 was stimulated by blue light. Furthermore, we demonstrate a genetic link between the bZIP proteins and cryptochromes as the cry1cry2 mutant is epistatic to the cry1cry2bzip16bzip68gbf1 mutant. bZIP16, bZIP68, and GBF1 regulate a subset of photosynthesis associated genes in response to blue light critical for a proper greening process in Arabidopsis.
Collapse
Affiliation(s)
- Louise Norén Lindbäck
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Yan Ji
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Luis Cervela-Cardona
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Xu Jin
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
7
|
An H, Ke X, Li L, Liu Y, Yuan S, Wang Q, Hou X, Zhao J. ALBINO EMBRYO AND SEEDLING is required for RNA splicing and chloroplast homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:483-501. [PMID: 37311175 DOI: 10.1093/plphys/kiad341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins form a large protein family and have diverse functions in plant development. Here, we identified an ALBINO EMBRYO AND SEEDLING (AES) gene that encodes a P-type PPR protein expressed in various tissues, especially the young leaves of Arabidopsis (Arabidopsis thaliana). Its null mutant aes exhibited a collapsed chloroplast membrane system, reduced pigment content and photosynthetic activity, decreased transcript levels of PEP (plastid-encoded polymerase)-dependent chloroplast genes, and defective RNA splicing. Further work revealed that AES could directly bind to psbB-psbT, psbH-petB, rps8-rpl36, clpP, ycf3, and ndhA in vivo and in vitro and that the splicing efficiencies of these genes and the expression levels of ycf3, ndhA, and cis-tron psbB-psbT-psbH-petB-petD decreased dramatically, leading to defective PSI, PSII, and Cyt b6f in aes. Moreover, AES could be transported into the chloroplast stroma via the TOC-TIC channel with the assistance of Tic110 and cpSRP54 and may recruit HCF244, SOT1, and CAF1 to participate in the target RNA process. These findings suggested that AES is an essential protein for the assembly of photosynthetic complexes, providing insights into the splicing of psbB operon (psbB-psbT-psbH-petB-petD), ycf3, and ndhA, as well as maintaining chloroplast homeostasis.
Collapse
Affiliation(s)
- Hongqiang An
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Xiaolong Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Lu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Sihui Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Qiuyu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
8
|
Di T, Wu Y, Peng J, Wang J, Wang H, He M, Li N, Hao X, Yang Y, Ni D, Wang L, Wang X. CsCIPK11-Regulated Metalloprotease CsFtsH5 Mediates the Cold Response of Tea Plants. Int J Mol Sci 2023; 24:ijms24076288. [PMID: 37047263 PMCID: PMC10094637 DOI: 10.3390/ijms24076288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Photosystem II repair in chloroplasts is a critical process involved in maintaining a plant’s photosynthetic activity under cold stress. FtsH (filamentation temperature-sensitive H) is an essential metalloprotease that is required for chloroplast photosystem II repair. However, the role of FtsH in tea plants and its regulatory mechanism under cold stress remains elusive. In this study, we cloned a FtsH homolog gene in tea plants, named CsFtsH5, and found that CsFtsH5 was located in the chloroplast and cytomembrane. RT-qPCR showed that the expression of CsFtsH5 was increased with leaf maturity and was significantly induced by light and cold stress. Transient knockdown CsFtsH5 expression in tea leaves using antisense oligonucleotides resulted in hypersensitivity to cold stress, along with higher relative electrolyte leakage and lower Fv/Fm values. To investigate the molecular mechanism underlying CsFtsH5 involvement in the cold stress, we focused on the calcineurin B-like-interacting protein kinase 11 (CsCIPK11), which had a tissue expression pattern similar to that of CsFtsH5 and was also upregulated by light and cold stress. Yeast two-hybrid and dual luciferase (Luc) complementation assays revealed that CsFtsH5 interacted with CsCIPK11. Furthermore, the Dual-Luc assay showed that CsCIPK11-CsFtsH5 interaction might enhance CsFtsH5 stability. Altogether, our study demonstrates that CsFtsH5 is associated with CsCIPK11 and plays a positive role in maintaining the photosynthetic activity of tea plants in response to low temperatures.
Collapse
|
9
|
Ho J, Kwan W, Li V, Theg SM. Characterization of thylakoid division using chloroplast dividing mutants in Arabidopsis. PHOTOSYNTHESIS RESEARCH 2023:10.1007/s11120-023-01002-4. [PMID: 36856939 DOI: 10.1007/s11120-023-01002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Chloroplasts are double membrane bound organelles that are found in plants and algae. Their division requires a number of proteins to assemble into rings along the center of the organelle and to constrict in synchrony. Chloroplasts possess a third membrane system, the thylakoids, which house the majority of proteins responsible for the light-dependent reactions. The mechanism that allows chloroplasts to sort out and separate the intricate thylakoid membrane structures during organelle division remain unknown. By characterizing the sizes of thylakoids found in a number of different chloroplast division mutants in Arabidopsis, we show that thylakoids do not divide independently of the chloroplast division cycle. More specifically, we show that thylakoid division requires the formation of both the inner and the outer contractile rings of the chloroplast.
Collapse
Affiliation(s)
- Jonathan Ho
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Warren Kwan
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Vivian Li
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Steven M Theg
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Sun Y, Li J, Zhang L, Lin R. Regulation of chloroplast protein degradation. J Genet Genomics 2023:S1673-8527(23)00049-8. [PMID: 36863685 DOI: 10.1016/j.jgg.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Chloroplasts are unique organelles that not only provide sites for photosynthesis and many metabolic processes, but also are sensitive to various environmental stresses. Chloroplast proteins are encoded by genes from both nuclear and chloroplast genomes. During chloroplast development and responses to stresses, the robust protein quality control systems are essential for regulation of protein homeostasis and the integrity of chloroplast proteome. In this review, we summarize the regulatory mechanisms of chloroplast protein degradation refer to protease system, ubiquitin-proteasome system, and the chloroplast autophagy. These mechanisms symbiotically play a vital role in chloroplast development and photosynthesis under both normal or stress conditions.
Collapse
Affiliation(s)
- Yang Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China
| | - Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan 475001, China.
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
11
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
12
|
Su H, Jin L, Li M, Paré PW. Low temperature modifies seedling leaf anatomy and gene expression in Hypericum perforatum. FRONTIERS IN PLANT SCIENCE 2022; 13:1020857. [PMID: 36237502 PMCID: PMC9552896 DOI: 10.3389/fpls.2022.1020857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Hypericum perforatum, commonly known as St John's wort, is a perennial herb that produces the anti-depression compounds hypericin (Hyp) and hyperforin. While cool temperatures increase plant growth, Hyp accumulation as well as changes transcript profiles, alterations in leaf structure and genes expression specifically related to Hyp biosynthesis are still unresolved. Here, leaf micro- and ultra-structure is examined, and candidate genes encoding for photosynthesis, energy metabolism and Hyp biosynthesis are reported based on transcriptomic data collected from H. perforatum seedlings grown at 15 and 22°C. Plants grown at a cooler temperature exhibited changes in macro- and micro-leaf anatomy including thicker leaves, an increased number of secretory cell, chloroplasts, mitochondria, starch grains, thylakoid grana, osmiophilic granules and hemispherical droplets. Moreover, genes encoding for photosynthesis (64-genes) and energy (35-genes) as well as Hyp biosynthesis (29-genes) were differentially regulated with an altered growing temperature. The anatomical changes and genes expression are consistent with the plant's ability to accumulate enhanced Hyp levels at low temperatures.
Collapse
Affiliation(s)
- Hongyan Su
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbuck, TX, United States
| |
Collapse
|
13
|
Zhang M, Shen J, Wu Y, Zhang X, Zhao Z, Wang J, Cheng T, Zhang Q, Pan H. Comparative transcriptome analysis identified ChlH and POLGAMMA2 in regulating yellow-leaf coloration in Forsythia. FRONTIERS IN PLANT SCIENCE 2022; 13:1009575. [PMID: 36160960 PMCID: PMC9501713 DOI: 10.3389/fpls.2022.1009575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 05/24/2023]
Abstract
Leaf color is one of the most important features for plants used for landscape and ornamental purposes. However, the regulatory mechanism of yellow leaf coloration still remains elusive in many plant species. To understand the complex genetic mechanism of yellow-leaf Forsythia, we first compared the pigment content and leaf anatomical structure of yellow-leaf and green-leaf accessions derived from a hybrid population. The physiological and cytological analyses demonstrated that yellow-leaf progenies were chlorophyll deficient with defected chloroplast structure. With comparative transcriptome analysis, we identified a number of candidate genes differentially expressed between yellow-leaf and green-leaf Forsythia plants. Among these genes, we further screened out two candidates, ChlH (magnesium chelatase Subunit H) and POLGAMMA2 (POLYMERASE GAMMA 2), with consistent relative-expression pattern between different colored plants. To verify the gene function, we performed virus-induced gene silencing assays and observed yellow-leaf phenotype with total chlorophyll content reduced by approximately 66 and 83% in ChlH-silenced and POLGAMMA2-silenced plants, respectively. We also observed defected chloroplast structure in both ChlH-silenced and POLGAMMA2-silenced Forsythia. Transient over-expression of ChlH and POLGAMMA2 led to increased chlorophyll content and restored thylakoid architecture in yellow-leaf Forsythia. With transcriptome sequencing, we detected a number of genes related to chlorophyll biosynthesis and chloroplast development that were responsive to the silencing of ChlH and POLGAMMA2. To summarize, ChlH and POLGAMMA2 are two key genes that possibly related to yellow-leaf coloration in Forsythia through modulating chlorophyll synthesis and chloroplast ultrastructure. Our study provided insights into the molecular aspects of yellow-leaf Forsythia and expanded the knowledge of foliage color regulation in woody ornamental plants.
Collapse
Affiliation(s)
- Man Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jianshuang Shen
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Yutong Wu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaolu Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Zhengtian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
14
|
Zhang Y, Li Y, Zhang Y, Zhang Z, Zhang D, Wang X, Lai B, Huang D, Gu L, Xie Y, Miao Y. Genome-wide H3K9 acetylation level increases with age-dependent senescence of flag leaf in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4696-4715. [PMID: 35429161 DOI: 10.1093/jxb/erac155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and histone modification, but the precise mechanism is as yet unclear. Here, we analysed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac with gene expression and transcript elongation. During flag leaf aging, we observed 1249 up-regulated differentially expressed genes (DEGs) and 996 down-regulated DEGs, showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac. We produced a landscape of H3K9 acetylation-modified gene expression targets that include known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis-related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac, and elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaonan Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binfan Lai
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dandan Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakun Xie
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Qi X, Chen S, Wang H, Feng J, Chen H, Qin Z, Deng Y. Comparative physiology and transcriptome analysis reveals that chloroplast development influences silver-white leaf color formation in Hydrangea macrophylla var. maculata. BMC PLANT BIOLOGY 2022; 22:345. [PMID: 35842592 PMCID: PMC9287875 DOI: 10.1186/s12870-022-03727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hydrangea macrophylla var. Maculata 'Yinbianxiuqiu' (YB) is an excellent plant species with beautiful flowers and leaves with silvery white edges. However, there are few reports on its leaf color characteristics and color formation mechanism. RESULTS The present study compared the phenotypic, physiological and transcriptomic differences between YB and a full-green leaf mutant (YM) obtained from YB. The results showed that YB and YM had similar genetic backgrounds, but photosynthesis was reduced in YB. The contents of pigments were significantly decreased at the edges of YB leaves compared to YM leaves. The ultrastructure of chloroplasts in the YB leaves was irregular. Transcriptome profiling identified 7,023 differentially expressed genes between YB and YM. The expression levels of genes involved in photosynthesis, chloroplast development and division were different between YB and YM. Quantitative real-time PCR showed that the expression trends were generally consistent with the transcriptome data. CONCLUSIONS Taken together, the formation of the silvery white leaf color of H. macrophylla var. maculata was primarily due to the abnormal development of chloroplasts. This study facilitates the molecular function analysis of key genes involved in chloroplast development and provides new insights into the molecular mechanisms involved in leaf coloration in H. macrophylla.
Collapse
Affiliation(s)
- Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Huadi Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Ziyi Qin
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
16
|
Sahrawy M, Fernández-Trijueque J, Vargas P, Serrato AJ. Comprehensive Expression Analyses of Plastidial Thioredoxins of Arabidopsis thaliana Indicate a Main Role of Thioredoxin m2 in Roots. Antioxidants (Basel) 2022; 11:antiox11071365. [PMID: 35883856 PMCID: PMC9311637 DOI: 10.3390/antiox11071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Thioredoxins (TRXs) f and m are redox proteins that regulate key chloroplast processes. The existence of several isoforms of TRXs f and m indicates that these redox players have followed a specialization process throughout evolution. Current research efforts are focused on discerning the signalling role of the different TRX types and their isoforms in chloroplasts. Nonetheless, little is known about their function in non-photosynthetic plastids. For this purpose, we have carried out comprehensive expression analyses by using Arabidopsis thaliana TRXf (f1 and f2) and TRXm (m1, m2, m3 and m4) genes translationally fused to the green fluorescence protein (GFP). These analyses showed that TRX m has different localisation patterns inside chloroplasts, together with a putative dual subcellular localisation of TRX f1. Apart from mesophyll cells, these TRXs were also observed in reproductive organs, stomatal guard cells and roots. We also investigated whether photosynthesis, stomatal density and aperture or root structure were affected in the TRXs f and m loss-of-function Arabidopsis mutants. Remarkably, we immunodetected TRX m2 and the Calvin−Benson cycle fructose-1,6-bisphosphatase (cFBP1) in roots. After carrying out in vitro redox activation assays of cFBP1 by plastid TRXs, we propose that cFBP1 might be activated by TRX m2 in root plastids.
Collapse
|
17
|
Havaux M, Ksas B. Imaging of Lipid Peroxidation-Associated Chemiluminescence in Plants: Spectral Features, Regulation and Origin of the Signal in Leaves and Roots. Antioxidants (Basel) 2022; 11:antiox11071333. [PMID: 35883824 PMCID: PMC9312247 DOI: 10.3390/antiox11071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plants, like most living organisms, spontaneously emit photons of visible light. This ultraweak endogenous chemiluminescence is linked to the oxidative metabolism, with lipid peroxidation constituting a major source of photons in plants. We imaged this signal using a very sensitive cooled CCD camera and analysed its spectral characteristics using bandpass interference filters. In vitro oxidation of lipids induced luminescence throughout the visible spectrum (450−850 nm). However, luminescence in the red spectral domain (>640 nm) occurred first, then declined in parallel with the appearance of the emission in the blue-green (<600 nm). This temporal separation suggests that the chemical species emitting in the blue-green are secondary products, possibly deriving from the red light-emitting species. This conversion did not seem to occur in planta because spontaneous chemiluminescence from plant tissues (leaves, roots) occurred only in the red/far-red light domain (>640 nm), peaking at 700−750 nm. The spectrum of plant chemiluminescence was independent of chlorophyll. The in vivo signal was modulated by cellular detoxification mechanisms and by changes in the concentration of singlet oxygen in the tissues, although the singlet oxygen luminescence bands did not appear as major bands in the spectra. Our results indicate that the intensity of endogenous chemiluminescence from plant tissues is determined by the balance between the formation of luminescent species through secondary reactions involving lipid peroxide-derived intermediates, including singlet oxygen, and their elimination by metabolizing processes. The kinetic aspects of plant chemiluminescence must be taken into account when using the signal as an oxidative stress marker.
Collapse
|
18
|
Li X, Xue C, Chen H, Zhang H, Wang Q. Small antisense RNA ThfR positively regulates Thf1 in Synechocystis sp. PCC 6803. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153642. [PMID: 35193088 DOI: 10.1016/j.jplph.2022.153642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Thylakoid formation1 (Thf1), encoded by sll1414 (thf1), is a multifunctional protein conserved in all photosynthetic organisms. thf1 expression is highly induced by high light in Synechocystis during photosynthesis-related stress. In this study, differential RNA sequencing analysis of the Synechocystis sp. PCC 6803 revealed a small antisense RNA (asRNA) gene located on the reverse-complementary strand of the thf1 gene. The full length of this asRNA (designated ThfR) was determined by 5' and 3' RACE analysis. The accumulation of thf1 mRNA was up-regulated synchronously with the ThfR level during survival after high-light stress or nitrogen starvation. Under nitrogen starvation or high-light stress, compared with the wild type, a ThfR overexpression mutant demonstrated relatively more Thf1 protein content, while a ThfR reduced-expression mutant accumulated less Thf1 protein. Furthermore, the overexpression of ThfR enhanced the electron transport rate and the proliferation of cyanobacteria under high-light stress. These results, which we confirmed further using an Escherichia coli sRNA expression platform, suggest that the thf1 gene is positively regulated by ThfR, possibly through protection of the RAUUW element at the RNase E cleavage site. This study represents the first report, to our knowledge, of a cis-transcript antisense RNA that targets thf1 in Synechocystis sp. PCC 6803 and provides evidence that ThfR regulates photosynthesis by positively modulating thf1 under high-light conditions.
Collapse
Affiliation(s)
- Xiang Li
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Chunling Xue
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| | - Huafeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
19
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
20
|
Low Light/Darkness as Stressors of Multifactor-Induced Senescence in Rice Plants. Int J Mol Sci 2021; 22:ijms22083936. [PMID: 33920407 PMCID: PMC8069932 DOI: 10.3390/ijms22083936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Leaf senescence, as an integral part of the final development stage for plants, primarily remobilizes nutrients from the sources to the sinks in response to different stressors. The premature senescence of leaves is a critical challenge that causes significant economic losses in terms of crop yields. Although low light causes losses of up to 50% and affects rice yield and quality, its regulatory mechanisms remain poorly elucidated. Darkness-mediated premature leaf senescence is a well-studied stressor. It initiates the expression of senescence-associated genes (SAGs), which have been implicated in chlorophyll breakdown and degradation. The molecular and biochemical regulatory mechanisms of premature leaf senescence show significant levels of redundant biomass in complex pathways. Thus, clarifying the regulatory mechanisms of low-light/dark-induced senescence may be conducive to developing strategies for rice crop improvement. This review describes the recent molecular regulatory mechanisms associated with low-light response and dark-induced senescence (DIS), and their effects on plastid signaling and photosynthesis-mediated processes, chloroplast and protein degradation, as well as hormonal and transcriptional regulation in rice.
Collapse
|
21
|
A Mutation in CsYL2.1 Encoding a Plastid Isoform of Triose Phosphate Isomerase Leads to Yellow Leaf 2.1 ( yl2.1) in Cucumber ( Cucumis Sativus L.). Int J Mol Sci 2020; 22:ijms22010322. [PMID: 33396869 PMCID: PMC7795558 DOI: 10.3390/ijms22010322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
The leaf is an important photosynthetic organ and plays an essential role in the growth and development of plants. Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis. In this study, we identified an EMS-induced mutant, yl2.1, which exhibited yellow cotyledons and true leaves that did not turn green with leaf growth. The yl2.1 locus was controlled by a recessive nuclear gene. The CsYL2.1 was mapped to a 166.7-kb genomic region on chromosome 2, which contains 24 predicted genes. Only one non-synonymous single nucleotide polymorphism (SNP) was found between yl2.1 and wt-WD1 that was located in Exon 7 of Csa2G263900, resulting in an amino acid substitution. CsYL2.1 encodes a plastid isoform of triose phosphate isomerase (pdTPI), which catalyzes the reversible conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (GAP) in chloroplasts. CsYL2.1 was highly expressed in the cotyledons and leaves. The mesophyll cells of the yl2.1 leaves contained reduced chlorophyll and abnormal chloroplasts. Correspondingly, the photosynthetic efficiency of the yl2.1 leaves was impaired. Identification of CsYL2.1 is helpful in elucidating the function of ptTPI in the chlorophyll metabolism and chloroplast development and understanding the molecular mechanism of this leaf color variant in cucumber.
Collapse
|
22
|
Azarin K, Usatov A, Makarenko M, Kozel N, Kovalevich A, Dremuk I, Yemelyanova A, Logacheva M, Fedorenko A, Averina N. A point mutation in the photosystem I P700 chlorophyll a apoprotein A1 gene confers variegation in Helianthus annuus L. PLANT MOLECULAR BIOLOGY 2020; 103:373-389. [PMID: 32166486 DOI: 10.1007/s11103-020-00997-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/09/2020] [Indexed: 05/24/2023]
Abstract
Even a point mutation in the psaA gene mediates chlorophyll deficiency. The role of the plastid signal may perform the redox state of the compounds on the acceptor-side of PSI. Two extranuclear variegated mutants of sunflower, Var1 and Var33, were investigated. The yellow sectors of both mutants were characterized by an extremely low chlorophyll and carotenoid content, as well as poorly developed, unstacked thylakoid membranes. A full-genome sequencing of the cpDNA revealed mutations in the psaA gene in both Var1 and Var33. The cpDNA from the yellow sectors of Var1 differs from those in the wild type by only a single, non-synonymous substitution (Gly734Glu) in the psaA gene, which encodes a subunit of photosystem (PS) I. In the cpDNA from the yellow sectors of Var33, the single-nucleotide insertion in the psaA gene was revealed, leading to frameshift at the 580 amino acid position. Analysis of the photosynthetic electron transport demonstrated an inhibition of the PSI and PSII activities in the yellow tissues of the mutant plants. It has been suggested that mutations in the psaA gene of both Var1 and Var33 led to the disruption of PSI. Due to the non-functional PSI, photosynthetic electron transport is blocked, which, in turn, leads to photodamage of PSII. These data are confirmed by immunoblotting analysis, which showed a significant reduction in PsbA in the yellow leaf sectors, but not PsaA. The expression of chloroplast and nuclear genes encoding the PSI subunits (psaA, psaB, and PSAN), the PSII subunits (psbA, psbB, and PSBW), the antenna proteins (LHCA1, LHCB1, and LHCB4), the ribulose 1.5-bisphosphate carboxylase subunits (rbcL and RbcS), and enzymes of chlorophyll biosynthesis were down-regulated in the yellow leaf tissue. The extremely reduced transcriptional activity of the two protochlorophyllide oxidoreductase (POR) genes involved in chlorophyll biosynthesis is noteworthy. The disruption of NADPH synthesis, due to the non-functional PSI, probably led to a significant reduction in NADPH-protochlorophyllide oxidoreductase in the yellow sectors of Var1 and Var33. A dramatic decrease in chlorophyllide was shown in the yellow sectors. A reduction in NADPH-protochlorophyllide oxidoreductase, along with photodegradation, has been suggested as a result of chlorophyll deficiency.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, Rostov-on-Don, Russian Federation.
| | | | - Maksim Makarenko
- Southern Federal University, Rostov-on-Don, Russian Federation
- Institute for Information Transmission Problems, Moscow, Russian Federation
| | - Nikolay Kozel
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | | | - Irina Dremuk
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Anna Yemelyanova
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Mariya Logacheva
- Institute for Information Transmission Problems, Moscow, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | | | - Nataliya Averina
- Institute of Biophysics and Cell Engineering, National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
23
|
Hertle AP, García-Cerdán JG, Armbruster U, Shih R, Lee JJ, Wong W, Niyogi KK. A Sec14 domain protein is required for photoautotrophic growth and chloroplast vesicle formation in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2020; 117:9101-9111. [PMID: 32245810 PMCID: PMC7183190 DOI: 10.1073/pnas.1916946117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In eukaryotic photosynthetic organisms, the conversion of solar into chemical energy occurs in thylakoid membranes in the chloroplast. How thylakoid membranes are formed and maintained is poorly understood. However, previous observations of vesicles adjacent to the stromal side of the inner envelope membrane of the chloroplast suggest a possible role of membrane transport via vesicle trafficking from the inner envelope to the thylakoids. Here we show that the model plant Arabidopsis thaliana has a chloroplast-localized Sec14-like protein (CPSFL1) that is necessary for photoautotrophic growth and vesicle formation at the inner envelope membrane of the chloroplast. The cpsfl1 mutants are seedling lethal, show a defect in thylakoid structure, and lack chloroplast vesicles. Sec14 domain proteins are found only in eukaryotes and have been well characterized in yeast, where they regulate vesicle budding at the trans-Golgi network. Like the yeast Sec14p, CPSFL1 binds phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA) and acts as a phosphatidylinositol transfer protein in vitro, and expression of Arabidopsis CPSFL1 can complement the yeast sec14 mutation. CPSFL1 can transfer PIP into PA-rich membrane bilayers in vitro, suggesting that CPSFL1 potentially facilitates vesicle formation by trafficking PA and/or PIP, known regulators of membrane trafficking between organellar subcompartments. These results underscore the role of vesicles in thylakoid biogenesis and/or maintenance. CPSFL1 appears to be an example of a eukaryotic cytosolic protein that has been coopted for a function in the chloroplast, an organelle derived from endosymbiosis of a cyanobacterium.
Collapse
Affiliation(s)
- Alexander P Hertle
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
| | - José G García-Cerdán
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Ute Armbruster
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Robert Shih
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jimmy J Lee
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Winnie Wong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
24
|
Zhao X, Hu K, Yan M, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J. Disruption of carotene biosynthesis leads to abnormal plastids and variegated leaves in Brassica napus. Mol Genet Genomics 2020; 295:981-999. [PMID: 32306107 PMCID: PMC7297816 DOI: 10.1007/s00438-020-01674-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Leaf color is an important characteristic of normal chloroplast development. Variegated plants have green- and white-sectored leaves, which can be used to identify important pathways and molecular mechanisms of chloroplast development. We studied two Brassica napus variegation mutants from same one variegated ancestor, designated ZY-4 and ZY-8, which have different degrees of variegation. When grown in identical conditions, the ratio of white sectors in ZY-4 leaves is higher than in ZY-8. In both mutants, the cells in green sectors contain normal chloroplasts; while, the cells in white sectors contain abnormal plastids. Seedling chloroplasts ultrastructure of both mutants showed that the biogenesis of chloroplasts was blocked in early stages; delayed development and structual damage in ZY-4 were more serious than in ZY-8. Employing bulked segregant analysis(BSA), two bulks (BY142 and BY137) from BC2F1 lines derived from ZY-4 and ZS11, and one bulk (BY56) from BC2F1 lines derived from ZY-8 and ZS11, and screening by Brassica 60K SNP BeadChip Array, showed the candidate regions localized in chromosome A08 (BY142), C04 (BY137), and A08 (BY56), respectively. Transcriptome analysis of five seedling development stages of ZY-4, ZY-8, and ZS11 showed that photosynthesis, energy metabolism-related pathways and translation-related pathways were important for chloroplast biogenesis. The number of down- or up-regulated genes related to immune system process in ZY-4 was more than in ZY-8. The retrograde signaling pathway was mis-regulated in both mutants. DEG analysis indicated that both mutants showed photooxidative damages. By coupling transcriptome and BSA CHIP analyses, some candidate genes were identified. The gene expression pattern of carotene biosynthesis pathway was disrupted in both mutants. However, histochemical analysis of ROS revealed that there was no excessive accumulation of ROS in ZY-4 and ZY-8. Taken together, our data indicate that the disruption of carotene biosynthetic pathways leads to the variegation phenotypes of ZY-4 and ZY-8 and there are some functions that can compensate for the disruption of carotene biosynthesis in ZY-4 and ZY-8 to reduce ROS and prevent seedling mortality.
Collapse
Affiliation(s)
- Xiaobin Zhao
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Kaining Hu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Mengjiao Yan
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Sub-Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
25
|
Deo TG, Ferreira RCU, Lara LAC, Moraes ACL, Alves-Pereira A, de Oliveira FA, Garcia AAF, Santos MF, Jank L, de Souza AP. High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass ( Megathyrsus maximus). FRONTIERS IN PLANT SCIENCE 2020; 11:15. [PMID: 32161603 PMCID: PMC7054243 DOI: 10.3389/fpls.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 05/11/2023]
Abstract
Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea grass (Megathyrsus maximus) is considered one of the most productive of the tropical forage crops that reproduce by seeds. Due to the recent process of domestication, this species has several genomic complexities, such as autotetraploidy and aposporous apomixis. Consequently, approaches that relate phenotypic and genotypic data are incipient. In this context, we built a linkage map with allele dosage and generated novel information of the genetic architecture of traits that are important for the breeding of M. maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide polymorphism (SNP) markers with allele dosage information expected for an autotetraploid was obtained. The high genetic variability of the progeny allowed us to map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity and total dry matter, and 36 QTLs related to nutritional quality, which were distributed among all homology groups (HGs). Various overlapping regions associated with the quantitative traits suggested QTL hotspots. In addition, we were able to map one locus that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in cellular metabolism and plant growth were identified from markers adjacent to the QTLs and APOSPORY locus using the Panicum virgatum genome as a reference in comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results provide a better understanding of the genetic basis of reproduction by apomixis and traits important for breeding programs that considerably influence animal productivity as well as the quality of meat and milk.
Collapse
Affiliation(s)
- Thamiris G. Deo
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Rebecca C. U. Ferreira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Letícia A. C. Lara
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Aline C. L. Moraes
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| | | | - Fernanda A. de Oliveira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A. F. Garcia
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Mateus F. Santos
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Liana Jank
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| |
Collapse
|
26
|
Mechela A, Schwenkert S, Soll J. A brief history of thylakoid biogenesis. Open Biol 2019; 9:180237. [PMID: 30958119 PMCID: PMC6367138 DOI: 10.1098/rsob.180237] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The thylakoid membrane network inside chloroplasts harbours the protein complexes that are necessary for the light-dependent reactions of photosynthesis. Cellular processes for building and altering this membrane network are therefore essential for life on Earth. Nevertheless, detailed molecular processes concerning the origin and synthesis of the thylakoids remain elusive. Thylakoid biogenesis is strongly coupled to the processes of chloroplast differentiation. Chloroplasts develop from special progenitors called proplastids. As many of the needed building blocks such as lipids and pigments derive from the inner envelope, the question arises how these components are recruited to their target membrane. This review travels back in time to the beginnings of thylakoid membrane research to summarize findings, facts and fictions on thylakoid biogenesis and structure up to the present state, including new insights and future developments in this field.
Collapse
Affiliation(s)
- Annabel Mechela
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
27
|
Liu J, Chang X, Ding B, Zhong S, Peng L, Wei Q, Meng J, Yu Y. PhDHS Is Involved in Chloroplast Development in Petunia. FRONTIERS IN PLANT SCIENCE 2019; 10:284. [PMID: 30930919 PMCID: PMC6424912 DOI: 10.3389/fpls.2019.00284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 05/06/2023]
Abstract
Deoxyhypusine synthase (DHS) is encoded by a nuclear gene and is the key enzyme involved in the post-translational activation of the eukaryotic translation initiation factor eIF5A. DHS plays important roles in plant growth and development. To gain a better understanding of DHS, the petunia (Petunia hybrida) PhDHS gene was isolated, and the role of PhDHS in plant growth was analyzed. PhDHS protein was localized to the nucleus and cytoplasm. Virus-mediated PhDHS silencing caused a sectored chlorotic leaf phenotype. Chlorophyll levels and photosystem II activity were reduced, and chloroplast development was abnormal in PhDHS-silenced leaves. In addition, PhDHS silencing resulted in extended leaf longevity and thick leaves. A proteome assay revealed that 308 proteins are upregulated and 266 proteins are downregulated in PhDHS-silenced plants compared with control, among the latter, 21 proteins of photosystem I and photosystem II and 12 thylakoid (thylakoid lumen and thylakoid membrane) proteins. In addition, the mRNA level of PheIF5A-1 significantly decreased in PhDHS-silenced plants, while that of another three PheIF5As were not significantly affected in PhDHS-silenced plants. Thus, silencing of PhDHS affects photosynthesis presumably as an indirect effect due to reduced expression of PheIF5A-1 in petunia. Significance: PhDHS-silenced plants develop yellow leaves and exhibit a reduced level of photosynthetic pigment in mesophyll cells. In addition, arrested development of chloroplasts is observed in the yellow leaves.
Collapse
|
28
|
Lindquist E, Aronsson H. Chloroplast vesicle transport. PHOTOSYNTHESIS RESEARCH 2018; 138:361-371. [PMID: 30117121 PMCID: PMC6244799 DOI: 10.1007/s11120-018-0566-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Photosynthesis is a well-known process that has been intensively investigated, but less is known about the biogenesis of the thylakoid membrane that harbors the photosynthetic machinery. Thylakoid membranes are constituted by several components, the major ones being proteins and lipids. However, neither of these two are produced in the thylakoid membranes themselves but are targeted there by different mechanisms. The interior of the chloroplast, the stroma, is an aqueous compartment that prevents spontaneous transport of single lipids and/or membrane proteins due to their hydrophobicities. Thylakoid targeted proteins are encoded either in the nucleus or plastid, and thus some cross the envelope membrane before entering one of the identified thylakoid targeting pathways. However, the pathway for all thylakoid proteins is not known. Lipids are produced at the envelope membrane and have been proposed to reach the thylakoid membrane by different means: invaginations of the envelope membrane, direct contact sites between these membranes, or through vesicles. Vesicles have been observed in chloroplasts but not much is yet known about the mechanism or regulation of their formation. The question of whether proteins can also make use of vesicles as one mechanism of transport remains to be answered. Here we discuss the presence of vesicles in chloroplasts and their potential role in transporting lipids and proteins. We additionally discuss what is known about the proteins involved in the vesicle transport and the gaps in knowledge that remain to be filled.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden.
| |
Collapse
|
29
|
Wang P, Chen X, Xu X, Lu C, Zhang W, Zhao FJ. ARSENATE INDUCED CHLOROSIS 1/ TRANSLOCON AT THE OUTER ENVOLOPE MEMBRANE OF CHLOROPLASTS 132 Protects Chloroplasts from Arsenic Toxicity. PLANT PHYSIOLOGY 2018; 178:1568-1583. [PMID: 30309965 PMCID: PMC6288752 DOI: 10.1104/pp.18.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/03/2018] [Indexed: 05/14/2023]
Abstract
Arsenic (As) is highly toxic to plants and detoxified primarily through complexation with phytochelatins (PCs) and other thiol compounds. To understand the mechanisms of As toxicity and detoxification beyond PCs, we isolated an arsenate-sensitive mutant of Arabidopsis (Arabidopsis thaliana), arsenate induced chlorosis1 (aic1), in the background of the PC synthase-defective mutant cadmium-sensitive1-3 (cad1-3). Under arsenate stress, aic1 cad1-3 showed larger decreases in chlorophyll content and the number and size of chloroplasts than cad1-3 and a severely distorted chloroplast structure. The aic1 single mutant also was more sensitive to arsenate than the wild type (Columbia-0). As concentrations in the roots, shoots, and chloroplasts were similar between aic1 cad1-3 and cad1-3 Using genome resequencing and complementation, TRANSLOCON AT THE OUTER ENVOLOPE MEMBRANE OF CHLOROPLAST132 (TOC132) was identified as the mutant gene, which encodes a translocon protein involved in the import of preproteins from the cytoplasm into the chloroplasts. Proteomic analysis showed that the proteome of aic1 cad1-3 chloroplasts was more affected by arsenate stress than that of cad1-3 A number of proteins related to chloroplast ribosomes, photosynthesis, compound synthesis, and thioredoxin systems were less abundant in aic1 cad1-3 than in cad1-3 under arsenate stress. Our results indicate that chloroplasts are a sensitive target of As toxicity and that AIC1/Toc132 plays an important role in protecting chloroplasts from As toxicity.
Collapse
Affiliation(s)
- Peitong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenni Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
30
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
31
|
Albanese P, Manfredi M, Re A, Marengo E, Saracco G, Pagliano C. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non-model organism aided by transcriptomic data integration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:786-800. [PMID: 30118564 DOI: 10.1111/tpj.14068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 05/02/2023]
Abstract
Plant thylakoid membranes contain hundreds of proteins that closely interact to cope with ever-changing environmental conditions. We investigated how Pisum sativum L. (pea) grown at different irradiances optimizes light-use efficiency through the differential accumulation of thylakoid proteins. Thylakoid membranes from plants grown under low (LL), moderate (ML) and high (HL) light intensity were characterized by combining chlorophyll fluorescence measurements with quantitative label-free proteomic analysis. Protein sequences retrieved from available transcriptomic data considerably improved thylakoid proteome profiling, increasing the quantifiable proteins from 63 to 194. The experimental approach used also demonstrates that this integrative omics strategy is powerful for unravelling protein isoforms and functions that are still unknown in non-model organisms. We found that the different growth irradiances affect the electron transport kinetics but not the relative abundance of photosystems (PS) I and II. Two acclimation strategies were evident. The behaviour of plants acclimated to LL was compared at higher irradiances: (i) in ML, plants turn on photoprotective responses mostly modulating the PSII light-harvesting capacity, either accumulating Lhcb4.3 or favouring the xanthophyll cycle; (ii) in HL, plants reduce the pool of light-harvesting complex II and enhance the PSII repair cycle. When growing at ML and HL, plants accumulate ATP synthase, boosting both cyclic and linear electron transport by finely tuning the ΔpH across the membrane and optimizing protein trafficking by adjusting the thylakoid architecture. Our results provide a quantitative snapshot of how plants coordinate light harvesting, electron transport and protein synthesis by adjusting the thylakoid membrane proteome in a light-dependent manner.
Collapse
Affiliation(s)
- Pascal Albanese
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Marcello Manfredi
- ISALIT-Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Angela Re
- Center for Sustainable Future Technologies-CSFT@POLITO, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino, Italy
| | - Emilio Marengo
- Department of Science and Technological Innovation, University of Eastern Piedmont, Viale T. Michel 11, 15121, Alessandria, Italy
| | - Guido Saracco
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| | - Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Environment Park, Via Livorno 60, 10144, Torino, Italy
| |
Collapse
|
32
|
Tominaga J, Nakahara Y, Horikawa D, Tanaka A, Kondo M, Kamei Y, Takami T, Sakamoto W, Unno K, Sakamoto A, Shimada H. Overexpression of the protein disulfide isomerase AtCYO1 in chloroplasts slows dark-induced senescence in Arabidopsis. BMC PLANT BIOLOGY 2018; 18:80. [PMID: 29728061 PMCID: PMC5935949 DOI: 10.1186/s12870-018-1294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 04/25/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Chlorophyll breakdown is the most obvious sign of leaf senescence. The chlorophyll catabolism pathway and the associated proteins/genes have been identified in considerable detail by genetic approaches combined with stay-green phenotyping. Arabidopsis CYO1 (AtCYO1), a protein disulfide reductase/isomerase localized in the thylakoid membrane, is hypothesized to assemble the photosystem by interacting with cysteine residues of the subunits. RESULTS In this study, we report that ectopic overexpression of AtCYO1 in leaves induces a stay-green phenotype during darkness, where oxidative conditions favor catabolism. In AtCYO1ox leaves, Fv/Fm and both chlorophyll a and chlorophyll b content remained high during dark-induced senescence. The thylakoid ultrastructure was preserved for a longer time in AtCYO1ox leaves than in wild type leaves. AtCYO1ox leaves maintained thylakoid chlorophyll-binding proteins associated with both PSII (D1, D2, CP43, CP47, LHCB2, and Cyt f) and PSI (PSA-A/B), as well as stromal proteins (Rubisco and ferredoxin-NADP+ reductase). AtCYO1ox did not affect senescence-inducible gene expression for chlorophyll catabolism or accumulation of chlorophyll catabolites. CONCLUSIONS Our results suggest that ectopic overexpression of AtCYO1 had a negative impact on the initiation of chlorophyll degradation and proteolysis within chloroplasts. Our findings cast new light on the redox regulation of protein disulfide bonds for the maintenance of functional chloroplasts.
Collapse
Affiliation(s)
- Jun Tominaga
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| | - Yasutoshi Nakahara
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| | - Daisuke Horikawa
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Kita-ku, Sapporo, 060-0819 Japan
| | - Maki Kondo
- National Institute for Basic Biology, Okazaki, Aichi 444-8585 Japan
| | - Yasuhiro Kamei
- National Institute for Basic Biology, Okazaki, Aichi 444-8585 Japan
| | - Tsuneaki Takami
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Kazutoshi Unno
- Laboratory of Electron Microscopy, University Hospital, Mizonokuchi, Teikyo University School of Medicine, 5-1-1, Futako, Takatsu-ku, Kawasaki, Kanagawa 213-8507 Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| | - Hiroshi Shimada
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 Japan
| |
Collapse
|
33
|
Faus I, Niñoles R, Kesari V, Llabata P, Tam E, Nebauer SG, Santiago J, Hauser MT, Gadea J. Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2α phosphorylation. JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:173-182. [PMID: 29680783 DOI: 10.1016/j.jplph.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 05/20/2023]
Abstract
One of the main mechanisms blocking translation after stress situations is mediated by phosphorylation of the α-subunit of the eukaryotic initiation factor 2 (eIF2), performed in Arabidopsis by the protein kinase GCN2 which interacts and is activated by ILITHYIA(ILA). ILA is involved in plant immunity and its mutant lines present phenotypes not shared by the gcn2 mutants. The functional link between these two genes remains elusive in plants. In this study, we show that, although both ILA and GCN2 genes are necessary to mediate eIF2α phosphorylation upon treatments with the aromatic amino acid biosynthesis inhibitor glyphosate, their mutants develop distinct root and chloroplast phenotypes. Electron microscopy experiments reveal that ila mutants, but not gcn2, are affected in chloroplast biogenesis, explaining the macroscopic phenotype previously observed for these mutants. ila3 mutants present a complex transcriptional reprogramming affecting defense responses, photosynthesis and protein folding, among others. Double mutant analyses suggest that ILA has a distinct function which is independent of GCN2 and eIF2α phosphorylation. These results suggest that these two genes may have common but also distinct functions in Arabidopsis.
Collapse
Affiliation(s)
- I Faus
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - R Niñoles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - V Kesari
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - P Llabata
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - E Tam
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - S G Nebauer
- Departamento de Producción Vegetal, Universitat Politècnica de València (UPV), Camino de Vera s/n 46022, Valencia, Spain.
| | - J Santiago
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - M T Hauser
- Institute of Applied Genetics and Cell Biology (IAGZ), University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - J Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| |
Collapse
|
34
|
Bec Ková M, Yu J, Krynická V, Kozlo A, Shao S, Koník P, Komenda J, Murray JW, Nixon PJ. Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0394. [PMID: 28808107 PMCID: PMC5566888 DOI: 10.1098/rstb.2016.0394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
One strategy for enhancing photosynthesis in crop plants is to improve their ability to repair photosystem II (PSII) in response to irreversible damage by light. Despite the pivotal role of thylakoid-embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH expression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His-tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero-oligomeric complex involved in PSII repair. We show using X-ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C-terminal helix and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in FtsH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen infection. Downregulating FtsH function and the PSII repair cycle via THF1 would contribute to the production of reactive oxygen species, the loss of chloroplast function and cell death. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’.
Collapse
Affiliation(s)
- Martina Bec Ková
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Jianfeng Yu
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vendula Krynická
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic
| | - Amanda Kozlo
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Shengxi Shao
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter Koník
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Josef Komenda
- Institute of Microbiology, Center Algatech, Opatovický mlýn, 37981 Třeboň, Czech Republic .,Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - James W Murray
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Peter J Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
35
|
Jilly R, Khan NZ, Aronsson H, Schneider D. Dynamin-Like Proteins Are Potentially Involved in Membrane Dynamics within Chloroplasts and Cyanobacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:206. [PMID: 29520287 PMCID: PMC5827413 DOI: 10.3389/fpls.2018.00206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/02/2018] [Indexed: 05/24/2023]
Abstract
Dynamin-like proteins (DLPs) are a family of membrane-active proteins with low sequence identity. The proteins operate in different organelles in eukaryotic cells, where they trigger vesicle formation, membrane fusion, or organelle division. As discussed here, representatives of this protein family have also been identified in chloroplasts and DLPs are very common in cyanobacteria. Since cyanobacteria and chloroplasts, an organelle of bacterial origin, have similar internal membrane systems, we suggest that DLPs are involved in membrane dynamics in cyanobacteria and chloroplasts. Here, we discuss the features and activities of DLPs with a focus on their potential presence and activity in chloroplasts and cyanobacteria.
Collapse
Affiliation(s)
- Ruven Jilly
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Malakand, Pakistan
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
36
|
Wang R, Zhao J, Jia M, Xu N, Liang S, Shao J, Qi Y, Liu X, An L, Yu F. Balance between Cytosolic and Chloroplast Translation Affects Leaf Variegation. PLANT PHYSIOLOGY 2018; 176:804-818. [PMID: 29142022 PMCID: PMC5761769 DOI: 10.1104/pp.17.00673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/13/2017] [Indexed: 05/08/2023]
Abstract
The development of functional chloroplasts relies on the fine coordination of expressions of both nuclear and chloroplast genomes. We have been using the Arabidopsis (Arabidopsis thaliana) yellow variegated (var2) leaf variegation mutant as a tool to dissect the regulation of chloroplast development. In this work, we screened for var2 genetic enhancer modifiers termed enhancer of variegation (evr) mutants and report the characterization of the first EVR locus, EVR1 We showed that EVR1 encodes the cytosolic 80S ribosome 40S small subunit protein RPS21B and the loss of EVR1 causes the enhancement of var2 leaf variegation. We further demonstrated that combined S21 activities from EVR1 and its close homolog, EVR1L1, are essential for Arabidopsis, and they act redundantly in regulating leaf development and var2 leaf variegation. Moreover, using additional cytosolic ribosomal protein mutants, we showed that although mutations in cytosolic ribosomal proteins all enhance var2 leaf variegation to varying degrees, the 40S subunit appears to have a more profound role over the 60S subunit in regulating VAR2-mediated chloroplast development. Comprehensive genetic analyses with var2 suppressors that are defective in chloroplast translation established that the enhancement of var2 leaf variegation by cytosolic ribosomal protein mutants is dependent on chloroplast translation. Based on our data, we propose a model that incorporates the suppression and enhancement of var2 leaf variegation, and hypothesize that VAR2/AtFtsH2 may be intimately involved in the balancing of cytosolic and chloroplast translation programs during chloroplast biogenesis.
Collapse
Affiliation(s)
- Ruijuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Min Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ni Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
37
|
Delfosse K, Wozny MR, Barton KA, Mathur N, Griffiths N, Mathur J. Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. FRONTIERS IN PLANT SCIENCE 2018; 9:754. [PMID: 29915611 PMCID: PMC5995270 DOI: 10.3389/fpls.2018.00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/16/2018] [Indexed: 05/13/2023]
Abstract
UNLABELLED Plastids in the viridiplantae sporadically form thin tubules called stromules that increase the interactive surface between the plastid and the surrounding cytoplasm. Several recent publications that report observations of certain proteins localizing to the extensions have then used the observations to suggest stromule-specific functions. The mechanisms by which specific localizations on these transient and sporadically formed extensions might occur remain unclear. Previous studies have yet to address the spatiotemporal relationship between a particular protein localization pattern and its distribution on an extended stromules and/or the plastid body. Here, we have used discrete protein patches found in several transgenic plants as fiducial markers to investigate this relationship. While we consider the inner plastid envelope-membrane localized protein patches of the GLUCOSE 6-PHOSPHATE/PHOSPHATE TRANSLOCATOR1 and the TRIOSE-PHOSPHATE/ PHOSPHATE TRANSLOCATOR 1 as artifacts of fluorescent fusion protein over-expression, stromule formation is not compromised in the respective stable transgenic lines that maintain normal growth and development. Our analysis of chloroplasts in the transgenic lines in the Arabidopsis Columbia background, and in the arc6 mutant, under stromule-inducing conditions shows that the possibility of finding a particular protein-enriched domain on an extended stromule or on a region of the main plastid body is stochastic. Our observations provide insights on the behavior of chloroplasts, the relationship between stromules and the plastid-body and strongly challenge claims of stromule-specific functions based solely upon protein localization to plastid extensions. ONE SENTENCE SUMMARY Observations of the spatiotemporal relationship between plastid envelope localized fluorescent protein fusions of two sugar-phosphate transporters and stromules suggest a stochastic rather than specific localization pattern that questions the idea of independent functions for stromules.
Collapse
|
38
|
Qu Y, Legen J, Arndt J, Henkel S, Hoppe G, Thieme C, Ranzini G, Muino JM, Weihe A, Ohler U, Weber G, Ostersetzer O, Schmitz-Linneweber C. Ectopic Transplastomic Expression of a Synthetic MatK Gene Leads to Cotyledon-Specific Leaf Variegation. FRONTIERS IN PLANT SCIENCE 2018; 9:1453. [PMID: 30337934 PMCID: PMC6180158 DOI: 10.3389/fpls.2018.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/12/2018] [Indexed: 05/20/2023]
Abstract
Chloroplasts (and other plastids) harbor their own genetic material, with a bacterial-like gene-expression systems. Chloroplast RNA metabolism is complex and is predominantly mediated by nuclear-encoded RNA-binding proteins. In addition to these nuclear factors, the chloroplast-encoded intron maturase MatK has been suggested to perform as a splicing factor for a subset of chloroplast introns. MatK is essential for plant cell survival in tobacco, and thus null mutants have not yet been isolated. We therefore attempted to over-express MatK from a neutral site in the chloroplast, placing it under the control of a theophylline-inducible riboswitch. This ectopic insertion of MatK lead to a variegated cotyledons phenotype. The addition of the inducer theophylline exacerbated the phenotype in a concentration-dependent manner. The extent of variegation was further modulated by light, sucrose and spectinomycin, suggesting that the function of MatK is intertwined with photosynthesis and plastid translation. Inhibiting translation in the transplastomic lines has a profound effect on the accumulation of several chloroplast mRNAs, including the accumulation of an RNA antisense to rpl33, a gene coding for an essential chloroplast ribosomal protein. Our study further supports the idea that MatK expression needs to be tightly regulated to prevent detrimental effects and establishes another link between leaf variegation and chloroplast translation.
Collapse
Affiliation(s)
- Yujiao Qu
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Legen
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Arndt
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephanie Henkel
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Galina Hoppe
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Giovanna Ranzini
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose M. Muino
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Weihe
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gert Weber
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, Joint Research Group Macromolecular Crystallography, Berlin, Germany
| | - Oren Ostersetzer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christian Schmitz-Linneweber
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Christian Schmitz-Linneweber,
| |
Collapse
|
39
|
Abstract
Photosynthesis is central to all life on earth, providing not only oxygen but also organic compounds that are synthesized from atmospheric CO 2 and water using light energy as the driving force. The still-increasing world population poses a serious challenge to further enhance biomass production of crop plants. Crop yield is determined by various parameters, inter alia by the light energy conversion efficiency of the photosynthetic machinery. Photosynthesis can be looked at from different perspectives: (i) light reactions and carbon assimilation, (ii) leaves and canopy structure, and (ii) source-sink relationships. In this review, we discuss opportunities and prospects to increase photosynthetic performance at the different layers, taking into account the recent progress made in the respective fields.
Collapse
Affiliation(s)
- Ulf-Ingo Flügge
- Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Peter Westhoff
- Department of Biology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| | - Dario Leister
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
40
|
Wang Z, Wang F, Hong Y, Huang J, Shi H, Zhu JK. Two Chloroplast Proteins Suppress Drought Resistance by Affecting ROS Production in Guard Cells. PLANT PHYSIOLOGY 2016; 172:2491-2503. [PMID: 27744298 PMCID: PMC5129706 DOI: 10.1104/pp.16.00889] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/13/2016] [Indexed: 05/06/2023]
Abstract
Chloroplast as the site for photosynthesis is an essential organelle in plants, but little is known about its role in stomatal regulation and drought resistance. In this study, we show that two chloroplastic proteins essential for thylakoid formation negatively regulate drought resistance in Arabidopsis (Arabidopsis thaliana). By screening a mutant pool with T-DNA insertions in nuclear genes encoding chloroplastic proteins, we identified an HCF106 knockdown mutant exhibiting increased resistance to drought stress. The hcf106 mutant displayed elevated levels of reactive oxygen species (ROS) in guard cells, improved stomatal closure, and reduced water loss under drought conditions. The HCF106 protein was found to physically interact with THF1, a previously identified chloroplastic protein crucial for thylakoid formation. The thf1 mutant phenotypically resembled the hcf106 mutant and displayed more ROS accumulation in guard cells, increased stomatal closure, reduced water loss, and drought resistant phenotypes compared to the wild type. The hcf106thf1 double mutant behaved similarly as the thf1 single mutant. These results suggest that HCF106 and THF1 form a complex to modulate chloroplast function and that the complex is important for ROS production in guard cells and stomatal control in response to environmental stresses. Our results also suggest that modulating chloroplastic proteins could be a way for improving drought resistance in crops.
Collapse
Affiliation(s)
- Zhen Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences (Z.W., F.W., Y.H., J.-K.Z.), University of Chinese Academy of Sciences (Z.W., F.W., Y.H.), Chinese Academy of Sciences, Shanghai 200032, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.H.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 (H.S.); and
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.)
| | - Fuxing Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences (Z.W., F.W., Y.H., J.-K.Z.), University of Chinese Academy of Sciences (Z.W., F.W., Y.H.), Chinese Academy of Sciences, Shanghai 200032, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.H.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 (H.S.); and
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.)
| | - Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences (Z.W., F.W., Y.H., J.-K.Z.), University of Chinese Academy of Sciences (Z.W., F.W., Y.H.), Chinese Academy of Sciences, Shanghai 200032, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.H.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 (H.S.); and
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.)
| | - Jirong Huang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences (Z.W., F.W., Y.H., J.-K.Z.), University of Chinese Academy of Sciences (Z.W., F.W., Y.H.), Chinese Academy of Sciences, Shanghai 200032, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.H.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 (H.S.); and
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.)
| | - Huazhong Shi
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences (Z.W., F.W., Y.H., J.-K.Z.), University of Chinese Academy of Sciences (Z.W., F.W., Y.H.), Chinese Academy of Sciences, Shanghai 200032, China;
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.H.);
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 (H.S.); and
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.)
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences (Z.W., F.W., Y.H., J.-K.Z.), University of Chinese Academy of Sciences (Z.W., F.W., Y.H.), Chinese Academy of Sciences, Shanghai 200032, China;
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (J.H.);
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 (H.S.); and
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (J.-K.Z.)
| |
Collapse
|
41
|
Heidrich J, Thurotte A, Schneider D. Specific interaction of IM30/Vipp1 with cyanobacterial and chloroplast membranes results in membrane remodeling and eventually in membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:537-549. [PMID: 27693914 DOI: 10.1016/j.bbamem.2016.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/22/2022]
Abstract
The photosynthetic light reaction takes place within the thylakoid membrane system in cyanobacteria and chloroplasts. Besides its global importance, the biogenesis, maintenance and dynamics of this membrane system are still a mystery. In the last two decades, strong evidence supported the idea that these processes involve IM30, the inner membrane-associated protein of 30kDa, a protein also known as the vesicle-inducing protein in plastids 1 (Vipp1). Even though we just only begin to understand the precise physiological function of this protein, it is clear that interaction of IM30 with membranes is crucial for biogenesis of thylakoid membranes. Here we summarize and discuss forces guiding IM30-membrane interactions, as the membrane properties as well as the oligomeric state of IM30 appear to affect proper interaction of IM30 with membrane surfaces. Interaction of IM30 with membranes results in an altered membrane structure and can finally trigger fusion of adjacent membranes, when Mg2+ is present. Based on recent results, we finally present a model summarizing individual steps involved in IM30-mediated membrane fusion. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Jennifer Heidrich
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Adrien Thurotte
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 30, 55128 Mainz, Germany.
| |
Collapse
|
42
|
Zhan J, Zhu X, Zhou W, Chen H, He C, Wang Q. Thf1 interacts with PS I and stabilizes the PS I complex in Synechococcus sp. PCC7942. Mol Microbiol 2016; 102:738-751. [PMID: 27555564 DOI: 10.1111/mmi.13488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2016] [Indexed: 11/30/2022]
Abstract
Thylakoid formation1 protein (Thf1) is a multifunctional protein that is conserved in all photosynthetic organisms. In this study, we used the model cyanobacterium Synechococcus sp. PCC7942 (hereafter Synechococcus) to show that the level of Thf1 is altered in response to various stress conditions. Although this protein has been reported to be involved in thylakoid formation, the thylakoid membrane in the thf1 deletion strain (ΔThf1) was not affected. Compared with the WT, ΔThf1 showed reduced PS II activity, with increased levels of D1 under high light (HL) conditions, which was resulted from blocked D1 degradation by the FtsH protease and thus inhibits PS II repair. PS I was found to be more seriously affected than PS II in ΔThf1, even under low light conditions, suggesting that PS I damage could be the primary effect of thf1 deletion in Synechococcus. Further analysis revealed that the ΔThf1 mutant had a lower PS I subunit content and lower PS I stability under HL conditions. Further sucrose gradient fractionation of the membrane protein complexes and crosslinking and immunoblot analysis indicated that Thf1 interacts with PS I. Together, our results reveal that Thf1 interacts with PS I and thereby stabilizes PS I in Synechococcus.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Xi Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Wei Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China.,University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| |
Collapse
|
43
|
Theis J, Schroda M. Revisiting the photosystem II repair cycle. PLANT SIGNALING & BEHAVIOR 2016; 11:e1218587. [PMID: 27494214 PMCID: PMC5058467 DOI: 10.1080/15592324.2016.1218587] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 05/18/2023]
Abstract
The ability of photosystem (PS) II to catalyze the light-driven oxidation of water comes along with its vulnerability to oxidative damage, in particular of the D1 core subunit. Photodamaged PSII undergoes repair in a multi-step process involving (i) reversible phosphorylation of PSII core subunits; (ii) monomerization and lateral migration of the PSII core from grana to stroma thylakoids; (iii) partial disassembly of PSII; (iv) proteolytic degradation of damaged D1; (v) replacement of damaged D1 protein with a new copy; (vi) reassembly of PSII monomers and migration back to grana thylakoids for dimerization and supercomplex assembly. Here we review the current knowledge on the PSII repair cycle.
Collapse
Affiliation(s)
- Jasmine Theis
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schroda
- Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Kaiserslautern, Germany
- CONTACT Michael Schroda Molekulare Biotechnologie & Systembiologie, TU Kaiserslautern, Paul-Ehrlich-Str. 70, 67663 Kaiserslautern, Germany
| |
Collapse
|
44
|
Lindquist E, Solymosi K, Aronsson H. Vesicles Are Persistent Features of Different Plastids. Traffic 2016; 17:1125-38. [PMID: 27405297 DOI: 10.1111/tra.12427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 02/06/2023]
Abstract
Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle-like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio-chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein-mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
45
|
Hamel LP, Sekine KT, Wallon T, Sugiwaka Y, Kobayashi K, Moffett P. The Chloroplastic Protein THF1 Interacts with the Coiled-Coil Domain of the Disease Resistance Protein N' and Regulates Light-Dependent Cell Death. PLANT PHYSIOLOGY 2016; 171:658-74. [PMID: 26951433 PMCID: PMC4854715 DOI: 10.1104/pp.16.00234] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/07/2016] [Indexed: 05/08/2023]
Abstract
One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N', which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N' results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N' is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada (L.-P.H., T.W., P.M.); Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan (K.-T.S.); and Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan (Y.S., K.K.)
| | - Ken-Taro Sekine
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada (L.-P.H., T.W., P.M.); Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan (K.-T.S.); and Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan (Y.S., K.K.)
| | - Thérèse Wallon
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada (L.-P.H., T.W., P.M.); Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan (K.-T.S.); and Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan (Y.S., K.K.)
| | - Yuji Sugiwaka
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada (L.-P.H., T.W., P.M.); Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan (K.-T.S.); and Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan (Y.S., K.K.)
| | - Kappei Kobayashi
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada (L.-P.H., T.W., P.M.); Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan (K.-T.S.); and Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan (Y.S., K.K.)
| | - Peter Moffett
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada (L.-P.H., T.W., P.M.); Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003 Japan (K.-T.S.); and Faculty of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan (Y.S., K.K.)
| |
Collapse
|
46
|
Qi Y, Zhao J, An R, Zhang J, Liang S, Shao J, Liu X, An L, Yu F. Mutations in circularly permuted GTPase family genes AtNOA1/RIF1/SVR10 and BPG2 suppress var2-mediated leaf variegation in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2016; 127:355-67. [PMID: 26435530 DOI: 10.1007/s11120-015-0195-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/24/2015] [Indexed: 05/18/2023]
Abstract
Leaf variegation mutants constitute a unique group of chloroplast development mutants and are ideal genetic materials to dissect the regulation of chloroplast development. We have utilized the Arabidopsis yellow variegated (var2) mutant and genetic suppressor analysis to probe the mechanisms of chloroplast development. Here we report the isolation of a new var2 suppressor locus SUPPRESSOR OF VARIEGATION (SVR10). Genetic mapping and molecular complementation indicated that SVR10 encodes a circularly permuted GTPase that has been reported as Arabidopsis thaliana NITRIC OXIDE ASSOCIATED 1 (AtNOA1) and RESISTANT TO INHIBITION BY FOSMIDOMYCIN 1 (RIF1). Biochemical evidence showed that SVR10/AtNOA1/RIF1 likely localizes to the chloroplast stroma. We further demonstrate that the mutant of a close homologue of SVR10/AtNOA1/RIF1, BRASSINAZOLE INSENSITIVE PALE GREEN 2 (BPG2), can also suppress var2 leaf variegation. Mutants of SVR10 and BPG2 are impaired in photosynthesis and the accumulation of chloroplast proteins. Interestingly, two-dimensional blue native gel analysis showed that mutants of SVR10 and BPG2 display defects in the assembly of thylakoid membrane complexes including reduced levels of major photosynthetic complexes and the abnormal accumulation of a chlorophyll-protein supercomplex containing photosystem I. Taken together, our findings suggest that SVR10 and BPG2 are functionally related with VAR2, likely through their potential roles in regulating chloroplast protein homeostasis, and both SVR10 and BPG2 are required for efficient thylakoid protein complex assembly and photosynthesis.
Collapse
Affiliation(s)
- Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jun Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Juan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
47
|
Wu W, Liu S, Ruwe H, Zhang D, Melonek J, Zhu Y, Hu X, Gusewski S, Yin P, Small ID, Howell KA, Huang J. SOT1, a pentatricopeptide repeat protein with a small MutS-related domain, is required for correct processing of plastid 23S-4.5S rRNA precursors in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:607-21. [PMID: 26800847 DOI: 10.1111/tpj.13126] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/12/2016] [Indexed: 05/22/2023]
Abstract
Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid-localized pentatricopeptide repeat (PPR) protein with a small MutS-related domain, is required for maturation of the 23S-4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5' end of the 23S-4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA 'footprint' associated with this site in sot1 mutants. We found that more than half of the 23S-4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5' and 3' ends, and that the endonucleolytic cleavage product normally released from the 5' end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5' extremity of the 23S-4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5' and 3' ends.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Base Sequence
- Binding Sites/genetics
- Blotting, Western
- Gene Expression Regulation, Plant
- Mutation
- Plants, Genetically Modified
- Plastids/genetics
- Plastids/metabolism
- Protein Binding
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sheng Liu
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Hannes Ruwe
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Yajuan Zhu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xupeng Hu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sandra Gusewski
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Centre of Excellence in Computational Systems Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Katharine A Howell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
48
|
Muranaka LS, Rütgers M, Bujaldon S, Heublein A, Geimer S, Wollman FA, Schroda M. TEF30 Interacts with Photosystem II Monomers and Is Involved in the Repair of Photodamaged Photosystem II in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 170:821-40. [PMID: 26644506 PMCID: PMC4734564 DOI: 10.1104/pp.15.01458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 05/03/2023]
Abstract
The remarkable capability of photosystem II (PSII) to oxidize water comes along with its vulnerability to oxidative damage. Accordingly, organisms harboring PSII have developed strategies to protect PSII from oxidative damage and to repair damaged PSII. Here, we report on the characterization of the THYLAKOID ENRICHED FRACTION30 (TEF30) protein in Chlamydomonas reinhardtii, which is conserved in the green lineage and induced by high light. Fractionation studies revealed that TEF30 is associated with the stromal side of thylakoid membranes. By using blue native/Deriphat-polyacrylamide gel electrophoresis, sucrose density gradients, and isolated PSII particles, we found TEF30 to quantitatively interact with monomeric PSII complexes. Electron microscopy images revealed significantly reduced thylakoid membrane stacking in TEF30-underexpressing cells when compared with control cells. Biophysical and immunological data point to an impaired PSII repair cycle in TEF30-underexpressing cells and a reduced ability to form PSII supercomplexes after high-light exposure. Taken together, our data suggest potential roles for TEF30 in facilitating the incorporation of a new D1 protein and/or the reintegration of CP43 into repaired PSII monomers, protecting repaired PSII monomers from undergoing repeated repair cycles or facilitating the migration of repaired PSII monomers back to stacked regions for supercomplex reassembly.
Collapse
Affiliation(s)
- Ligia Segatto Muranaka
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Mark Rütgers
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Sandrine Bujaldon
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Anja Heublein
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Stefan Geimer
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Francis-André Wollman
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany (L.S.M., M.R., M.S.);Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, Unité Mixte de Recherche Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, 7141 Paris, France (S.B., F.-A.W.); andZellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany (A.H., S.G.)
| |
Collapse
|
49
|
Lu Y. Identification and Roles of Photosystem II Assembly, Stability, and Repair Factors in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:168. [PMID: 26909098 PMCID: PMC4754418 DOI: 10.3389/fpls.2016.00168] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is a multi-component pigment-protein complex that is responsible for water splitting, oxygen evolution, and plastoquinone reduction. Components of PSII can be classified into core proteins, low-molecular-mass proteins, extrinsic oxygen-evolving complex (OEC) proteins, and light-harvesting complex II proteins. In addition to these PSII subunits, more than 60 auxiliary proteins, enzymes, or components of thylakoid protein trafficking/targeting systems have been discovered to be directly or indirectly involved in de novo assembly and/or the repair and reassembly cycle of PSII. For example, components of thylakoid-protein-targeting complexes and the chloroplast-vesicle-transport system were found to deliver PSII subunits to thylakoid membranes. Various auxiliary proteins, such as PsbP-like (Psb stands for PSII) and light-harvesting complex-like proteins, atypical short-chain dehydrogenase/reductase family proteins, and tetratricopeptide repeat proteins, were discovered to assist the de novo assembly and stability of PSII and the repair and reassembly cycle of PSII. Furthermore, a series of enzymes were discovered to catalyze important enzymatic steps, such as C-terminal processing of the D1 protein, thiol/disulfide-modulation, peptidylprolyl isomerization, phosphorylation and dephosphorylation of PSII core and antenna proteins, and degradation of photodamaged PSII proteins. This review focuses on the current knowledge of the identities and molecular functions of different types of proteins that influence the assembly, stability, and repair of PSII in the higher plant Arabidopsis thaliana.
Collapse
|
50
|
Leng X, Jia H, Sun X, Shangguan L, Mu Q, Wang B, Fang J. Comparative transcriptome analysis of grapevine in response to copper stress. Sci Rep 2015; 5:17749. [PMID: 26673527 PMCID: PMC4682189 DOI: 10.1038/srep17749] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Grapevine is one of the most economically important and widely cultivated fruit crop worldwide. With the industrialization and the popular application of cupric fungicides in grape industry, copper stress and copper pollution are also the factors affecting grape production and berry and wine quality. Here, 3,843 transcripts were significantly differently expressed genes in response to Cu stress by RNA-seq, which included 1,892 up-regulated and 1,951 down-regulated transcripts. During this study we found many known and novel Cu-induced and -repressed genes. Biological analysis of grape samples were indicated that exogenous Cu can influence chlorophylls metabolism and photosynthetic activities of grapevine. Most ROS detoxification systems, including antioxidant enzyme, stress-related proteins and secondary metabolites were strongly induced. Concomitantly, abscisic acid functioned as a negative regulator in Cu stress, in opposite action to ethylene, auxin, jasmonic acid, and brassinolide. This study also identified a set of Cu stress specifically activated genes coding copper transporter, P1B-type ATPase, multidrug transporters. Overall, this work was carried out to gain insights into the copper-regulated and stress-responsive mechanisms in grapevine at transcriptome level. This research can also provide some genetic information that can help us in better vinery management and breeding Cu-resistant grape cultivars.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Xin Sun
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Baoju Wang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing 210095, PR. China
| |
Collapse
|