1
|
Asha S, Kattupalli D, Vijayanathan M, Soniya EV. Identification of nitric oxide mediated defense signaling and its microRNA mediated regulation during Phytophthora capsici infection in black pepper. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:33-47. [PMID: 38435849 PMCID: PMC10901764 DOI: 10.1007/s12298-024-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
Nitric oxide plays a significant role in the defense signaling during pathogen interaction in plants. Quick wilt disease is a devastating disease of black pepper, and leads to sudden mortality of pepper vines in plantations. In this study, the role of nitric oxide was studied during Phytophthora capsici infection in black pepper variety Panniyur-1. Nitric oxide was detected from the different histological sections of P. capsici infected leaves. Furthermore, the genome-wide transcriptome analysis characterized typical domain architect and structural features of nitrate reductase (NR) and nitric oxide associated 1 (NOA1) gene that are involved in nitric oxide biosynthesis in black pepper. Despite the upregulation of nitrate reductase (Pn1_NR), a reduced expression of Pn1_NOA1 was detected in the P. capsici infected black pepper leaf. Subsequent sRNAome-assisted in silico analysis revealed possible microRNA mediated regulation of Pn1_NOA mRNAs. Furthermore, sRNA/miRNA mediated cleavage on Pn1_NOA1 mRNA was validated through modified 5' RLM RACE experiments. Several hormone-responsive cis-regulatory elements involved in stress response was detected from the promoter regions of Pn_NOA1, Pn_NR1 and Pn_NR2 genes. Our results revealed the role of nitric oxide during stress response of P. capsici infection in black pepper, and key genes involved in nitric oxide biosynthesis and their post-transcriptional regulatory mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01414-z.
Collapse
Affiliation(s)
- Srinivasan Asha
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
- Present Address: Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, India
| | - Divya Kattupalli
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, Capital Region, Denmark
| | - E. V. Soniya
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
| |
Collapse
|
2
|
Wu Z, Zhang G, Zhao R, Gao Q, Zhao J, Zhu X, Wang F, Kang Z, Wang X. Transcriptomic analysis of wheat reveals possible resistance mechanism mediated by Yr10 to stripe rust. STRESS BIOLOGY 2023; 3:44. [PMID: 37870601 PMCID: PMC10593697 DOI: 10.1007/s44154-023-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/09/2023] [Indexed: 10/24/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a catastrophic disease that threatens global wheat yield. Yr10 is a race-specific all-stage disease resistance gene in wheat. However, the resistance mechanism of Yr10 is poorly characterized. Therefore, to elucidate the potential molecular mechanism mediated by Yr10, transcriptomic sequencing was performed at 0, 18, and 48 h post-inoculation (hpi) of compatible wheat Avocet S (AvS) and incompatible near-isogenic line (NIL) AvS + Yr10 inoculated with Pst race CYR32. Respectively, 227, 208, and 4050 differentially expressed genes (DEGs) were identified at 0, 18, and 48 hpi between incompatible and compatible interaction. The response of Yr10 to stripe rust involved various processes and activities, as indicated by the results of Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Specifically, the response included photosynthesis, defense response to fungus, metabolic processes related to salicylic acid (SA) and jasmonic acid (JA), and activities related to reactive oxygen species (ROS). Ten candidate genes were selected for qRT-PCR verification and the results showed that the transcriptomic data was reliable. Through the functional analysis of candidate genes by the virus-induced gene silencing (VIGS) system, it was found that the gene TaHPPD (4-hydroxyphenylpyruvate dioxygenase) negatively regulated the resistance of wheat to stripe rust by affecting SA signaling, pathogenesis-related (PR) gene expression, and ROS clearance. Our study provides insight into Yr10-mediated resistance in wheat.
Collapse
Affiliation(s)
- Zhongyi Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gaohua Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ran Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinchen Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoxu Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fangyan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaojing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Montejano-Ramírez V, Valencia-Cantero E. Cross-Talk between Iron Deficiency Response and Defense Establishment in Plants. Int J Mol Sci 2023; 24:ijms24076236. [PMID: 37047208 PMCID: PMC10094134 DOI: 10.3390/ijms24076236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Plants are at risk of attack by various pathogenic organisms. During pathogenesis, microorganisms produce molecules with conserved structures that are recognized by plants that then initiate a defense response. Plants also experience iron deficiency. To address problems caused by iron deficiency, plants use two strategies focused on iron absorption from the rhizosphere. Strategy I is based on rhizosphere acidification and iron reduction, whereas Strategy II is based on iron chelation. Pathogenic defense and iron uptake are not isolated phenomena: the antimicrobial phenols are produced by the plant during defense, chelate and solubilize iron; therefore, the production and secretion of these molecules also increase in response to iron deficiency. In contrast, phytohormone jasmonic acid and salicylic acid that induce pathogen-resistant genes also modulate the expression of genes related to iron uptake. Iron deficiency also induces the expression of defense-related genes. Therefore, in the present review, we address the cross-talk that exists between the defense mechanisms of both Systemic Resistance and Systemic Acquired Resistance pathways and the response to iron deficiency in plants, with particular emphasis on the regulation genetic expression.
Collapse
|
4
|
Maywald NJ, Mang M, Pahls N, Neumann G, Ludewig U, Francioli D. Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:946584. [PMID: 36160997 PMCID: PMC9500508 DOI: 10.3389/fpls.2022.946584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) fertilization is indispensable for high yields in agriculture due to its central role in plant growth and fitness. Different N forms affect plant defense against foliar pathogens and may alter soil-plant-microbe interactions. To date, however, the complex relationships between N forms and host defense are poorly understood. For this purpose, nitrate, ammonium, and cyanamide were compared in greenhouse pot trials with the aim to suppress two important fungal wheat pathogens Blumeria graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis f. sp. tritici (Ggt). Wheat inoculated with the foliar pathogen Bgt was comparatively up to 80% less infested when fertilized with nitrate or cyanamide than with ammonium. Likewise, soil inoculation with the fungal pathogen Ggt revealed a 38% higher percentage of take-all infected roots in ammonium-fertilized plants. The bacterial rhizosphere microbiome was little affected by the N form, whereas the fungal community composition and structure were shaped by the different N fertilization, as revealed from metabarcoding data. Importantly, we observed a higher abundance of fungal pathogenic taxa in the ammonium-fertilized treatment compared to the other N treatments. Taken together, our findings demonstrated the critical role of fertilized N forms for host-pathogen interactions and wheat rhizosphere microbiome assemblage, which are relevant for plant fitness and performance.
Collapse
|
5
|
Tryptophan Levels as a Marker of Auxins and Nitric Oxide Signaling. PLANTS 2022; 11:plants11101304. [PMID: 35631729 PMCID: PMC9144324 DOI: 10.3390/plants11101304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
The aromatic amino acid tryptophan is the main precursor for indole-3-acetic acid (IAA), which involves various parallel routes in plants, with indole-3-acetaldoxime (IAOx) being one of the most common intermediates. Auxin signaling is well known to interact with free radical nitric oxide (NO) to perform a more complex effect, including the regulation of root organogenesis and nitrogen nutrition. To fathom the link between IAA and NO, we use a metabolomic approach to analyze the contents of low-molecular-mass molecules in cultured cells of Arabidopsis thaliana after the application of S-nitrosoglutathione (GSNO), an NO donor or IAOx. We separated the crude extracts of the plant cells through ion-exchange columns, and subsequent fractions were analyzed by gas chromatography-mass spectrometry (GC-MS), thus identifying 26 compounds. A principal component analysis (PCA) was performed on N-metabolism-related compounds, as classified by the Kyoto Encyclopedia of Genes and Genomes (KEGG). The differences observed between controls and treatments are mainly explained by the differences in Trp contents, which are much higher in controls. Thus, the Trp is a shared response in both auxin- and NO-mediated signaling, evidencing some common signaling mechanism to both GSNO and IAOx. The differences in the low-molecular-mass-identified compounds between GSNO- and IAOx-treated cells are mainly explained by their concentrations in benzenepropanoic acid, which is highly associated with IAA levels, and salicylic acid, which is related to glutathione. These results show that the contents in Trp can be a marker for the study of auxin and NO signaling.
Collapse
|
6
|
Tan Y, Li Q, Zhao Y, Wei H, Wang J, Baker CJ, Liu Q, Wei W. Integration of metabolomics and existing omics data reveals new insights into phytoplasma-induced metabolic reprogramming in host plants. PLoS One 2021; 16:e0246203. [PMID: 33539421 PMCID: PMC7861385 DOI: 10.1371/journal.pone.0246203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/03/2022] Open
Abstract
Phytoplasmas are cell wall-less bacteria that induce abnormal plant growth and various diseases, causing severe economic loss. Phytoplasmas are highly dependent on nutrients imported from host cells because they have lost many genes involved in essential metabolic pathways during reductive evolution. However, metabolic crosstalk between phytoplasmas and host plants and the mechanisms of phytoplasma nutrient acquisition remain poorly understood. In this study, using metabolomics approach, sweet cherry virescence (SCV) phytoplasma-induced metabolite alterations in sweet cherry trees were investigated. A total of 676 metabolites were identified in SCV phytoplasma-infected and mock inoculated leaves, of which 187 metabolites were differentially expressed, with an overwhelming majority belonging to carbohydrates, fatty acids/lipids, amino acids, and flavonoids. Available omics data of interactions between plant and phytoplasma were also deciphered and integrated into the present study. The results demonstrated that phytoplasma infection promoted glycolysis and pentose phosphate pathway activities, which provide energy and nutrients, and facilitate biosynthesis of necessary low-molecular metabolites. Our findings indicated that phytoplasma can induce reprograming of plant metabolism to obtain nutrients for its own replication and infection. The findings from this study provide new insight into interactions of host plants and phytoplasmas from a nutrient acquisition perspective.
Collapse
Affiliation(s)
- Yue Tan
- Shandong Institute of Pomology, Taian, China
| | - Qingliang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yan Zhao
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | - Hairong Wei
- Shandong Institute of Pomology, Taian, China
| | - Jiawei Wang
- Shandong Institute of Pomology, Taian, China
| | - Con Jacyn Baker
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| | | | - Wei Wei
- United States Department of Agriculture, Molecular Plant Pathology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, Beltsville, MD, United States of America
| |
Collapse
|
7
|
Lu R, Liu Z, Shao Y, Su J, Li X, Sun F, Zhang Y, Li S, Zhang Y, Cui J, Zhou Y, Shen W, Zhou T. Nitric Oxide Enhances Rice Resistance to Rice Black-Streaked Dwarf Virus Infection. RICE (NEW YORK, N.Y.) 2020; 13:24. [PMID: 32291541 PMCID: PMC7156532 DOI: 10.1186/s12284-020-00382-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rice black-streaked dwarf virus (RBSDV) causes one of the most important rice virus diseases of plants in East Asia. However, molecular mechanism(s)controlling rice resistance to infection is largely unknown. RESULTS In this paper, we showed that RBSDV infection in rice significantly induced nitric oxide (NO) production. This finding was further validated through a genetic approach using a RBSDV susceptible (Nipponbare) and a RBSDV resistant (15HPO187) cultivar. The production of endogenous NO was muchhigher in the 15HPO187 plants, leading to a much lower RBSDV disease incidence. Pharmacological studies showed that the applications of NO-releasingcompounds (i.e., sodium nitroprusside [SNP] and nitrosoglutathione [GSNO]) to rice plants reduced RBSDV disease incidence. After RBSDV infection, the levels of OsICS1, OsPR1b and OsWRKY 45 transcripts were significantly up-regulated by NO in Nipponbare. The increased salicylic acid contents were also observed. After the SNP treatment, protein S-nitrosylation in rice plants was also increased, suggesting that the NO-triggered resistance to RBSDV infection was partially mediated at the post-translational level. Although Osnia2 mutant rice produced less endogenous NO after RBSDV inoculation and showed a higher RBSDV disease incidence, its RBSDV susceptibility could be reduced by SNP treatment. CONCLUSIONS Collectively, our genetic and molecular evidence revealed that endogenous NO was a vital signal responsible for rice resistance to RBSDV infection.
Collapse
Affiliation(s)
- Rongfei Lu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyang Liu
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yudong Shao
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejuan Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Feng Sun
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yihua Zhang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuo Li
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Yali Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu Province, China
| | - Jin Cui
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yijun Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tong Zhou
- Key Laboratory of Food Quality and Safety, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
9
|
León J, Costa-Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. PLANT, CELL & ENVIRONMENT 2020; 43. [PMID: 31323702 DOI: 10.1111/pce.13617] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 05/17/2023]
Abstract
After 30 years of intensive work, nitric oxide (NO) has just started to be characterized as a relevant regulatory molecule on plant development and responses to stress. Its reactivity as a free radical determines its mode of action as an inducer of posttranslational modifications of key target proteins through cysteine S-nitrosylation and tyrosine nitration. Many of the NO-triggered regulatory actions are exerted in tight coordination with phytohormone signaling. This review not only summarizes and updates the information accumulated on how NO is synthesized, sensed, and transduced in plants but also makes emphasis on controversies, deficiencies, and misconceptions that are hampering our present knowledge on the biology of NO in plants. The development of noninvasive accurate tools for the endogenous NO quantitation as well as the implementation of genetic approaches that overcome misleading pharmacological experiments will be critical for getting significant advances in better knowledge of NO homeostasis and regulatory actions in plants.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, 46022, Valencia, Spain
| |
Collapse
|
10
|
Hancock JT. Considerations of the importance of redox state for reactive nitrogen species action. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4323-4331. [PMID: 30793204 DOI: 10.1093/jxb/erz067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/08/2019] [Indexed: 05/13/2023]
Abstract
Nitric oxide (NO) and other reactive nitrogen species (RNS) are immensely important signalling molecules in plants, being involved in a range of physiological responses. However, the exact way in which NO fits into signal transduction pathways is not always easy to understand. Here, some of the issues that should be considered are discussed. This includes how NO may interact directly with other reactive signals, such as reactive oxygen and sulfur species, how NO metabolism is almost certainly compartmentalized, that threshold levels of RNS may need to be reached to have effects, and how the intracellular redox environment may impact on NO signalling. Until better tools are available to understand how NO is generated in cells, where it accumulates, and to what levels it reaches, it will be hard to get a full understanding of NO signalling. The interaction of RNS metabolism with the intracellular redox environment needs further investigation. A changing redox poise will impact on whether RNS species can thrive in or around cells. Such mechanisms will determine whether specific RNS can indeed control the responses needed by a cell.
Collapse
Affiliation(s)
- John T Hancock
- Department of Applied Sciences, University of the West of England, Bristol, UK
| |
Collapse
|
11
|
Kępczyński J, Cembrowska-Lech D. Application of flow cytometry with a fluorescent dye to measurement of intracellular nitric oxide in plant cells. PLANTA 2018; 248:279-291. [PMID: 29704056 PMCID: PMC6061057 DOI: 10.1007/s00425-018-2901-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/22/2018] [Indexed: 05/07/2023]
Abstract
A simple and rapid method involving flow cytometry and NO-specific probe (DAF-FM DA) proved useful for detection and determination of intracellular NO production in Medicago truncatula suspension cells and leaves as well as in cells of Avena fatua, Amaranthus retroflexus embryos and leaves. The measurement of nitric oxide (NO) in plant material is important for examining the regulatory roles of endogenous NO in various physiological processes. The possibility of detecting and determining intracellular NO production by flow cytometry (FCM) with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA), an NO-specific probe in Medicago truncatula cells in suspension and leaves as well as in cells of embryos and leaves of Avena fatua L. or Amaranthus retroflexus L. was explored. To detect and measure NO production by cell suspension or embryos and leaves, the recommended DAF-FM DA concentration is 5 or 10 µM, respectively, applied for 30 min. Exogenous NO increased the intensity of the fluorescent signal in embryos and leaves of both plants, while carboxy-PTIO (cPTIO), an NO scavenger, decreased it. Thus, these results demonstrate that NO can be detected and an increase and a decrease of its intracellular level can be estimated. Wounding was observed to increase the fluorescence signal, indicating an increase in the intracellular NO level. In addition, the levels of exogenous and endogenous ascorbic acid were demonstrated to have no effect on the NO-related fluorescence signal, indicating the signal's specificity only in relation with NO. The applicability of the proposed method for detection and determination of NO was confirmed (1) by in situ NO imaging in cell suspensions and (2) by determining the NO concentration in embryos and leaves using the Griess reagent. In view of the data obtained, FCM is recommended as a rapid and simple method with which to detect and determine intracellular NO production in plant cells.
Collapse
Affiliation(s)
- Jan Kępczyński
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| | - Danuta Cembrowska-Lech
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| |
Collapse
|
12
|
Abstract
Nitric oxide (NO) is gaining increasing attention as a central molecule with diverse signaling functions. It has been shown that NO acts as a negative regulator of leaf senescence. In this chapter, we describe a highly selective method, electron paramagnetic resonance ([EPR], also known as electron spin resonance [ESR]), for NO determination in leaf senescence. An iron complex of ferrous and mononitrosyl dithiocarbamate (Fe2+(DETC)2) is used as a chelating agent for NO. Using ethyl acetate as extracting solvent, the NOFe2+(DETC)2 complex is extracted and determined by EPR spectrometer.
Collapse
Affiliation(s)
- Aizhen Sun
- The National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Mur LAJ, Simpson C, Kumari A, Gupta AK, Gupta KJ. Moving nitrogen to the centre of plant defence against pathogens. ANNALS OF BOTANY 2017; 119:703-709. [PMID: 27594647 PMCID: PMC5378193 DOI: 10.1093/aob/mcw179] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/08/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plants require nitrogen (N) for growth, development and defence against abiotic and biotic stresses. The extensive use of artificial N fertilizers has played an important role in the Green Revolution. N assimilation can involve a reductase series ( NO3- → NO2- → NH4+ ) followed by transamination to form amino acids. Given its widespread use, the agricultural impact of N nutrition on disease development has been extensively examined. SCOPE When a pathogen first comes into contact with a host, it is usually nutrient starved such that rapid assimilation of host nutrients is essential for successful pathogenesis. Equally, the host may reallocate its nutrients to defence responses or away from the site of attempted infection. Exogenous application of N fertilizer can, therefore, shift the balance in favour of the host or pathogen. In line with this, increasing N has been reported either to increase or to decrease plant resistance to pathogens, which reflects differences in the infection strategies of discrete pathogens. Beyond considering only N content, the use of NO3- or NH4+ fertilizers affects the outcome of plant-pathogen interactions. NO3- feeding augments hypersensitive response- (HR) mediated resistance, while ammonium nutrition can compromise defence. Metabolically, NO3- enhances production of polyamines such as spermine and spermidine, which are established defence signals, with NH4+ nutrition leading to increased γ-aminobutyric acid (GABA) levels which may be a nutrient source for the pathogen. Within the defensive N economy, the roles of nitric oxide must also be considered. This is mostly generated from NO2- by nitrate reductase and is elicited by both pathogen-associated microbial patterns and gene-for-gene-mediated defences. Nitric oxide (NO) production and associated defences are therefore NO3- dependent and are compromised by NH4+ . CONCLUSION This review demonstrates how N content and form plays an essential role in defensive primary and secondary metabolism and NO-mediated events.
Collapse
Affiliation(s)
- Luis A. J. Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK
- For correspondence. E-mail or
| | - Catherine Simpson
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi
| | - Alok Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi
- For correspondence. E-mail or
| |
Collapse
|
14
|
Fukudome M, Calvo-Begueria L, Kado T, Osuki KI, Rubio MC, Murakami EI, Nagata M, Kucho KI, Sandal N, Stougaard J, Becana M, Uchiumi T. Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus-Mesorhizobium loti symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5275-83. [PMID: 27443280 PMCID: PMC5014168 DOI: 10.1093/jxb/erw290] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia-legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5'-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels.
Collapse
Affiliation(s)
- Mitsutaka Fukudome
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Tomohiro Kado
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Ken-Ichi Osuki
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Maria Carmen Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Ei-Ichi Murakami
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Maki Nagata
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Ken-Ichi Kucho
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Niels Sandal
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Toshiki Uchiumi
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
15
|
Sivakumaran A, Akinyemi A, Mandon J, Cristescu SM, Hall MA, Harren FJM, Mur LAJ. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility. FRONTIERS IN PLANT SCIENCE 2016; 7:709. [PMID: 27252724 PMCID: PMC4879331 DOI: 10.3389/fpls.2016.00709] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/09/2016] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production - an established mediator of defense against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME) suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS) generation but this was reduced in both L-NAME and ABA-treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.
Collapse
Affiliation(s)
- Anushen Sivakumaran
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Aderemi Akinyemi
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Julian Mandon
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud UniversityNijmegen, Netherlands
| | - Simona M. Cristescu
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud UniversityNijmegen, Netherlands
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Frans J. M. Harren
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud UniversityNijmegen, Netherlands
| | - Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
16
|
Yamasaki H, Watanabe NS, Sakihama Y, Cohen MF. An Overview of Methods in Plant Nitric Oxide (NO) Research: Why Do We Always Need to Use Multiple Methods? Methods Mol Biol 2016; 1424:1-14. [PMID: 27094406 DOI: 10.1007/978-1-4939-3600-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The free radical nitric oxide (NO) is a universal signaling molecule among living organisms. To investigate versatile functions of NO in plants it is essential to analyze biologically produced NO with an appropriate method. Owing to the uniqueness of NO, plant researchers may encounter difficulties in applying methods that have been developed for mammalian study. Based on our experience, we present here a practical guide to NO measurement fitted to plant biology.
Collapse
Affiliation(s)
- Hideo Yamasaki
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Naoko S Watanabe
- Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Yasuko Sakihama
- Research Faculty of Agriculture, Hokkaido University, Kita Ku, Kita 9, Nishi 9, Sapporo, Hokkaido, 060-8589, Japan
| | - Michael F Cohen
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA.,Biological Systems Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| |
Collapse
|
17
|
Mandon J, Mur LAJ, Harren FJM, Cristescu SM. Laser-Based Methods for Detection of Nitric Oxide in Plants. Methods Mol Biol 2016; 1424:113-126. [PMID: 27094415 DOI: 10.1007/978-1-4939-3600-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nitric oxide (NO) plays an important role in plant signaling and in response to various stress conditions. Therefore, real-time measurements of NO production provide better insights into understanding plant processes and can help developing strategies to improve food production and postharvest quality. Using laser-based spectroscopic methods, sensitive, online, in planta measurements of plant-pathogen interactions are possible. This chapter introduces the basic principle of the optical detectors using different laser sources for accurate monitoring of fast dynamic changes of NO production. Several applications are also presented to demonstrate the suitability of these detectors for detection of NO in plants.
Collapse
Affiliation(s)
- Julien Mandon
- Department of Molecular and Laser Physics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais Campus, Edward Llywd Building, Aberystwyth, Wales, SY23 3DA, UK
| | - Frans J M Harren
- Department of Molecular and Laser Physics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Simona M Cristescu
- Department of Molecular and Laser Physics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Wany A, Gupta AK, Kumari A, Gupta S, Mishra S, Jaintu R, Pathak PK, Gupta KJ. Chemiluminescence Detection of Nitric Oxide from Roots, Leaves, and Root Mitochondria. Methods Mol Biol 2016; 1424:15-29. [PMID: 27094407 DOI: 10.1007/978-1-4939-3600-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
NO is a free radical with short half-life and high reactivity; due to its physiochemical properties it is very difficult to detect the concentrations precisely. Chemiluminescence is one of the robust methods to quantify NO. Detection of NO by this method is based on reaction of nitric oxide with ozone which leads to emission of light and amount of light is proportional to NO. By this method NO can be measured in the range of pico moles to nano moles range. Using direct chemiluminescence method, NO emitted into the gas stream can be detected whereas using indirect chemiluminescence oxidized forms of NO can also be detected. We detected NO using purified nitrate reductase, mitochondria, cell suspensions, and roots; detail measurement method is described here.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Alok Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Shika Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Sonal Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Ritika Jaintu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Pradeep K Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India.
| |
Collapse
|
19
|
Kovacs I, Durner J, Lindermayr C. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 208:860-72. [PMID: 26096525 DOI: 10.1111/nph.13502] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/04/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide range of physiological and pathophysiological processes in animals and plants. Although its significant influence on plant immunity is well known, information about the exact regulatory mechanisms and signaling pathways involved in the defense response to pathogens is still limited. We used genetic, biochemical, pharmacological approaches in combination with infection experiments to investigate the NO-triggered salicylic acid (SA)-dependent defense response in Arabidopsis thaliana. The NO donor S-nitrosoglutathione (GSNO) promoted the nuclear accumulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) protein accompanied by an elevated SA concentration and the activation of pathogenesis-related (PR) genes, leading to induced resistance of A. thaliana against Pseudomonas infection. Moreover, NO induced a rapid change in the glutathione status, resulting in increased concentrations of glutathione, which is required for SA accumulation and activation of the NPR1-dependent defense response. Our data imply crosstalk between NO and glutathione, which is integral to the NPR1-dependent defense signaling pathway, and further demonstrate that glutathione is not only an important cellular redox buffer but also a signaling molecule in the plant defense response.
Collapse
Affiliation(s)
- Izabella Kovacs
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764, Munich/Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764, Munich/Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764, Munich/Neuherberg, Germany
| |
Collapse
|
20
|
Nitric oxide prevents wound-induced browning and delays senescence through inhibition of hydrogen peroxide accumulation in fresh-cut lettuce. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2015.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: Where there’s a will there’s a way. Nitric Oxide 2014; 43:81-8. [DOI: 10.1016/j.niox.2014.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/20/2014] [Accepted: 06/26/2014] [Indexed: 12/19/2022]
|
22
|
Gupta KJ, Mur LAJ, Brotman Y. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:307-314. [PMID: 24283937 DOI: 10.1094/mpmi-06-13-0160-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inoculations with saprophytic fungus Trichoderma spp. are now extensively used both to promote plant growth and to suppress disease development. The underlying mechanisms for both roles have yet to be fully described so that the use of Trichoderma spp. could be optimized. Here, we show that Trichoderma asperelloides effects include the manipulation of host nitric oxide (NO) production. NO was rapidly formed in Arabidopsis roots in response to the soil-borne necrotrophic pathogen Fusarium oxysporum and persisted for about 1 h but is only transiently produced (approximately 10 min) when roots interact with T. asperelloides (T203). However, inoculation of F. oxysporum-infected roots with T. asperelloides suppressed F. oxysporum-initiated NO production. A transcriptional study of 78 NO-modulated genes indicated most genes were suppressed by single and combinational challenge with F. oxysporum or T. asperelloides. Only two F. oxysporum-induced genes were suppressed by T. asperelloides inoculation undertaken either 10 min prior to or after pathogen infection: a concanavlin A-like lectin protein kinase (At4g28350) and the receptor-like protein RLP30. Thus, T. asperelloides can actively suppress NO production elicited by F. oxysporum and impacts on the expression of some genes reported to be NO-responsive. Of particular interest was the reduced expression of receptor-like genes that may be required for F. oxysporum-dependent necrotrophic disease development.
Collapse
|
23
|
Gupta KJ, Igamberdiev AU. Recommendations of using at least two different methods for measuring NO. FRONTIERS IN PLANT SCIENCE 2013; 4:58. [PMID: 23520440 PMCID: PMC3603275 DOI: 10.3389/fpls.2013.00058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/04/2013] [Indexed: 05/04/2023]
Affiliation(s)
- Kapuganti J. Gupta
- Department of Plant Sciences, University of OxfordOxford, UK
- *Correspondence: ;
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John'sNL, Canada
- *Correspondence: ;
| |
Collapse
|
24
|
Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways. FRONTIERS IN PLANT SCIENCE 2013; 4:215. [PMID: 23818890 PMCID: PMC3694216 DOI: 10.3389/fpls.2013.00215] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/05/2013] [Indexed: 05/03/2023]
Abstract
Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.
Collapse
Affiliation(s)
- Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
- *Correspondence: Luis A. J. Mur, Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK e-mail:
| | - Elena Prats
- Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| | - Sandra Pierre
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
| | - Kim H. Hebelstrup
- Section of Crop Genetics and Biotechnology, Department of Molecular Biology and Genetics Aarhus UniversitySlagelse, Denmark
| |
Collapse
|
25
|
Harren FJM, Cristescu SM. Online, real-time detection of volatile emissions from plant tissue. AOB PLANTS 2013; 5:plt003. [PMID: 23429357 PMCID: PMC3578185 DOI: 10.1093/aobpla/plt003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/04/2013] [Indexed: 05/18/2023]
Abstract
Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants.
Collapse
|
26
|
Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ. Nitric oxide in plants: an assessment of the current state of knowledge. AOB PLANTS 2013; 5:pls052. [PMID: 23372921 PMCID: PMC3560241 DOI: 10.1093/aobpla/pls052] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/12/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. SCOPE AND CONCLUSIONS The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP-as in animal systems-require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant NO community.
Collapse
Affiliation(s)
- Luis A. J. Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK
- Corresponding author's e-mail address:
| | - Julien Mandon
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Stefan Persijn
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Simona M. Cristescu
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Igor E. Moshkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow 127276, Russia
| | - Galina V. Novikova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, Moscow 127276, Russia
| | - Michael A. Hall
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK
| | - Frans J. M. Harren
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Kapuganti J. Gupta
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
27
|
Beard RA, Anderson DJ, Bufford JL, Tallman G. Heat reduces nitric oxide production required for auxin-mediated gene expression and fate determination in tree tobacco guard cell protoplasts. PLANT PHYSIOLOGY 2012; 159:1608-23. [PMID: 22730424 PMCID: PMC3425200 DOI: 10.1104/pp.112.200089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/20/2012] [Indexed: 05/20/2023]
Abstract
Tree tobacco (Nicotiana glauca) is an equatorial perennial with a high basal thermotolerance. Cultured tree tobacco guard cell protoplasts (GCPs) are useful for studying the effects of heat stress on fate-determining hormonal signaling. At lower temperatures (32°C or less), exogenous auxin (1-naphthalene acetic acid) and cytokinin (6-benzylaminopurine) cause GCPs to expand 20- to 30-fold, regenerate cell walls, dedifferentiate, reenter the cell cycle, and divide. At higher temperatures (34°C or greater), GCPs expand only 5- to 6-fold; they do not regenerate walls, dedifferentiate, reenter the cell cycle, or divide. Heat (38°C) suppresses activation of the BA auxin-responsive transgene promoter in tree tobacco GCPs, suggesting that inhibition of cell expansion and cell cycle reentry at high temperatures is due to suppressed auxin signaling. Nitric oxide (NO) has been implicated in auxin signaling in other plant systems. Here, we show that heat inhibits NO accumulation by GCPs and that L-N(G)-monomethyl arginine, an inhibitor of NO production in animals and plants, mimics the effects of heat by limiting cell expansion and preventing cell wall regeneration; inhibiting cell cycle reentry, dedifferentiation, and cell division; and suppressing activation of the BA auxin-responsive promoter. We also show that heat and L-N(G)-monomethyl arginine reduce the mitotic indices of primary root meristems and inhibit lateral root elongation similarly. These data link reduced NO levels to suppressed auxin signaling in heat-stressed cells and seedlings of thermotolerant plants and suggest that even plants that have evolved to withstand sustained high temperatures may still be negatively impacted by heat stress.
Collapse
Affiliation(s)
- Robert A. Beard
- Department of Biology, Willamette University, Salem, Oregon 97301
| | | | | | - Gary Tallman
- Department of Biology, Willamette University, Salem, Oregon 97301
| |
Collapse
|
28
|
Grimmer MK, John Foulkes M, Paveley ND. Foliar pathogenesis and plant water relations: a review. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4321-31. [PMID: 22664583 DOI: 10.1093/jxb/ers143] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As the world population grows, there is a pressing need to improve productivity from water use in irrigated and rain-fed agriculture. Foliar diseases have been reported to decrease crop water-use efficiency (WUE) substantially, yet the effects of plant pathogens are seldom considered when methods to improve WUE are debated. We review the effects of foliar pathogens on plant water relations and the consequences for WUE. The effects reported vary between host and pathogen species and between host genotypes. Some general patterns emerge however. Higher fungi and oomycetes cause physical disruption to the cuticle and stomata, and also cause impairment of stomatal closing in the dark. Higher fungi and viruses are associated with impairment of stomatal opening in the light. A number of toxins produced by bacteria and higher fungi have been identified that impair stomatal function. Deleterious effects are not limited to compatible plant-pathogen interactions. Resistant and non-host interactions have been shown to result in stomatal impairment in light and dark conditions. Mitigation of these effects through selection of favourable resistance responses could be an important breeding target in the future. The challenges for researchers are to understand how the effects reported from work under controlled conditions translate to crops in the field, and to elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Michael K Grimmer
- ADAS UK Ltd, Battlegate Rd, Boxworth, Cambridge, Cambridgeshire CB23 4NN, UK.
| | | | | |
Collapse
|
29
|
Mur LAJ, Sivakumaran A, Mandon J, Cristescu SM, Harren FJM, Hebelstrup KH. Haemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4375-87. [PMID: 22641422 PMCID: PMC3421983 DOI: 10.1093/jxb/ers116] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 05/19/2023]
Abstract
Nitric oxide (NO) plays a role in defence against hemibiotrophic pathogens mediated by salicylate (SA) and also necrotrophic pathogens influenced by jasmonate/ethylene (JA/Et). This study examined how NO-oxidizing haemoglobins (Hb) encoded by GLB1, GLB2, and GLB3 in Arabidopsis could influence both defence pathways. The impact of Hb on responses to the hemibiotrophic Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 and the necrotrophic Botrytis cinerea were investigated using glb1, glb2, and glb3 mutant lines and also CaMV 35S GLB1 and GLB2 overexpression lines. In glb1, but not glb2 and glb3, increased resistance was observed to both pathogens but was compromised in the 35S-GLB1. A quantum cascade laser-based sensor measured elevated NO production in glb1 infected with Pst AvrRpm1 and B. cinerea, which was reduced in 35S-GLB1 compared to Col-0. SA accumulation was increased in glb1 and reduced in 35S-GLB1 compared to controls following attack by Pst AvrRpm1. Similarly, JA and Et levels were increased in glb1 but decreased in 35S-GLB1 in response to attack by B. cinerea. Quantitative PCR assays indicated reduced GLB1 expression during challenge with either pathogen, thus this may elevate NO concentration and promote a wide-ranging defence against pathogens.
Collapse
Affiliation(s)
- Luis A J Mur
- Aberystwyth University, Institute of Biological, Environmental and Rural Sciences, Aberystwyth, Wales, SY23 3DA, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Mur LAJ, Mandon J, Cristescu SM, Harren FJM, Prats E. Methods of nitric oxide detection in plants: a commentary. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:509-19. [PMID: 21893246 DOI: 10.1016/j.plantsci.2011.04.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 05/20/2023]
Abstract
Over the last decade nitric oxide (NO) has been shown to influence a range of processes in plants. However, when, where and even if NO production occurs is controversial in several physiological scenarios in plants. This arises from a series of causes: (a) doubts have arisen over the specificity of widely used 4,5-diaminofluorescein diacetate (DAF-2DA)/4-amino-5-methylamino-2,7-difluorofluorescein (DAF-FM) dyes for NO, (b) no plant nitric oxide synthase (NOS) has been cloned, so that the validity of using mammalian NOS inhibitors to demonstrate that NO is being measured is debatable, (c) the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (cPTIO) needs to be used with caution, and (d) some discrepancies between assays for in planta measurements and another based on sampling NO from the gas phase have been reported. This review will outline some commonly used methods to determine NO, attempt to reconcile differing results obtained by different laboratories and suggest appropriate approaches to unequivocally demonstrate the production of NO.
Collapse
Affiliation(s)
- Luis A J Mur
- University of Wales, Aberystwyth, Institute of Biological Sciences, Aberystwyth, Wales, UK.
| | | | | | | | | |
Collapse
|
31
|
Gupta KJ, Igamberdiev AU, Manjunatha G, Segu S, Moran JF, Neelawarne B, Bauwe H, Kaiser WM. The emerging roles of nitric oxide (NO) in plant mitochondria. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:520-6. [PMID: 21893247 DOI: 10.1016/j.plantsci.2011.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/09/2011] [Accepted: 03/24/2011] [Indexed: 05/23/2023]
Abstract
In recent years nitric oxide (NO) has been recognized as an important signal molecule in plants. Both, reductive and oxidative pathways and different subcellular compartments appear involved in NO production. The reductive pathway uses nitrite as substrate, which is exclusively generated by cytosolic nitrate reductase (NR) and can be converted to NO by the same enzyme. The mitochondrial electron transport chain is another site for nitrite to NO reduction, operating specifically when the normal electron acceptor, O(2), is low or absent. Under these conditions, the mitochondrial NO production contributes to hypoxic survival by maintaining a minimal ATP formation. In contrast, excessive NO production and concomitant nitrosative stress may be prevented by the operation of NO-scavenging mechanisms in mitochondria and cytosol. During pathogen attacks, mitochondrial NO serves as a nitrosylating agent promoting cell death; whereas in symbiotic interactions as in root nodules, the turnover of mitochondrial NO helps in improving the energy status similarly as under hypoxia/anoxia. The contribution of NO turnover during pathogen defense, symbiosis and hypoxic stress is discussed in detail.
Collapse
Affiliation(s)
- Kapuganti J Gupta
- Department of Plant Physiology, University of Rostock, Albert Einstein Str 3, D-10859 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kosmala A. Are nitric oxide donors a valuable tool to study the functional role of nitric oxide in plant metabolism? PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:747-56. [PMID: 21815979 DOI: 10.1111/j.1438-8677.2010.00430.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the present work, we tested known nitric oxide (NO) modulators generating the NO+ (sodium nitroprusside, SNP) and NO˙ forms (S-nitroso-N-acetyl-D-penicillamine, SNAP and nitrosoglutathione, GSNO). This allowed us to compare downstream NO-related physiological effects on proteins found in leaves of pelargonium (Pelargonium peltatum L.). Protein modification via NO donors generally affects plant metabolism in a distinct manner, manifested by a lower thiobarbituric acid reactive substance (TBARS) content and lipoxygenase (LOX) activity in response to SNAP and GSNO. This is in contrast to the response observed for SNP treatment. Most changes in enzyme activity (GR, glutathione reductase; GST, glutathione-S-transferase; GPX, glutathione peroxidase) are most spectacular and repeatable during the first 8 h of incubation, which is explained by the half-life of the applied donors. In particular, a close dependence was found between the time-course of NO emission from the applied donors and the temporary inhibition of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX). The observed changes were accompanied by time-dependent alterations in protein accumulation as analysed by two-dimensional gel electrophoresis (2-DE) in pelargonium leaves treated with NO donors (SNP, SNAP and GSNO). Using proteomics, different proteins were found to be down- and up-regulated. However, no new protein spots characteristic of all three donors were found. These results indicate that the form of NO emitted from the donor structure plays a key role in switching on appropriate metabolic modifications. It has been noted that several NO-affected metabolomic changes induced by the used donors were not comparable, which confirms the need to maintain caution when interpreting results obtained using the pharmacological approach with different NO modulator compounds.
Collapse
Affiliation(s)
- M Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | | | | |
Collapse
|
33
|
Zhang H, Zhao X, Yang J, Yin H, Wang W, Lu H, Du Y. Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. PLANT CELL REPORTS 2011; 30:1153-62. [PMID: 21336582 DOI: 10.1007/s00299-011-1024-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 01/11/2011] [Accepted: 01/21/2011] [Indexed: 05/16/2023]
Abstract
Chitooligosaccharide (COS) or oligochitosan has been shown to induce tobacco defense responses which are connected with nitric oxide (NO) and OIPK (oligochitosan-induced Ser/Thr protein kinase). The aim of this study was to reveal the relationship between NO production and OIPK pathway in the defense response of tobacco elicited by COS. NO generation was investigated by epidermal strip bioassay and fluorophore microscope using fluorophore diaminofluorescein diacetate (DAF-2DA). Tobacco epidermal cells treated with COS resulted in production of NO, which was first present in chloroplast, then in nucleus, finally in the whole cell; this NO production was sensitive to NO scavenger cPTIO and the mammalian NO synthase (NOS) inhibitor L: -NAME, suggesting that NOS-like enzyme maybe involved in NO generation in tobacco epidermal cells. However, NOS and nitrate reductase (NR, EC 1.6.6.1) inhibitors reduced NO content in tobacco leaves by using NO Assay Kit, suggesting both NOS and NR were involved in NO production in tobacco leaves. Using a pharmacological approach and western blotting, we provide evidence that NO acts upstream of OIPK expression. NO scavenger, NOS inhibitor partly blocked the activation of OIPK and the activities of several defense-related enzymes induced by COS; treatment with NO donor sodium nitroprusside (SNP) induced the activation of OIPK and enhanced the defense systems. The results suggest that COS is able to induce NO generation, which results in up-regulation the activities of some defense-related enzymes through an OIPK-dependent or independent pathway.
Collapse
Affiliation(s)
- Hongyan Zhang
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Sarkar TS, Majumdar U, Roy A, Maiti D, Goswamy AM, Bhattacharjee A, Ghosh SK, Ghosh S. Production of nitric oxide in host-virus interaction: a case study with a compatible Begomovirus-Kenaf host-pathosystem. PLANT SIGNALING & BEHAVIOR 2010; 5:668-676. [PMID: 20215875 PMCID: PMC3001556 DOI: 10.4161/psb.5.6.11282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 05/28/2023]
Abstract
Nitric oxide (NO) plays a key role in plant diseases resistance. Here we have first time demonstrated that begomovirus infection in susceptible H. cannabinus plants, results in elevated NO and reactive nitrogen species production during early infection stage not only in infected leaf but also in root and shoot. Production of NO was further confirmed by oxyhemoglobin assay. Furthermore, we used Phenyl alanine ammonia lyase as marker of pathogenesis related enzyme. In addition evidence for protein tyrosine nitration during the early stage of viral infection clearly showed the involvement of nitrosative stress.
Collapse
Affiliation(s)
| | - Uddalak Majumdar
- Department of Biochemistry; University of Calcutta; Kolkata, India
| | - Anirban Roy
- Division of Crop Protection; Central Research Institute for Jute and Allied Fibres (CRIJAF); Barrackpore; Kolkata, West Bengal India
| | - Debasis Maiti
- Department of Biochemistry; University of Calcutta; Kolkata, India
| | | | | | - Subrata Kumar Ghosh
- Division of Crop Protection; Central Research Institute for Jute and Allied Fibres (CRIJAF); Barrackpore; Kolkata, West Bengal India
| | - Sanjay Ghosh
- Department of Biochemistry; University of Calcutta; Kolkata, India
| |
Collapse
|
35
|
Involvement of ethylene and nitric oxide in cell death in mastoparan-treated unicellular algaChlamydomonas reinhardtii. Cell Biol Int 2010; 34:301-8. [DOI: 10.1042/cbi20090138] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Mur LAJ, Lloyd AJ, Cristescu SM, Harren FJM, Hall MA, Smith AR. Biphasic ethylene production during the hypersensitive response in Arabidopsis: a window into defense priming mechanisms? PLANT SIGNALING & BEHAVIOR 2009; 4:610-613. [PMID: 19820330 PMCID: PMC2710552 DOI: 10.4161/psb.4.7.8904] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 05/20/2023]
Abstract
The hypersensitive response (HR) is a cell death phenomenon associated with localized resistance to pathogens. Biphasic patterns in the generation of H(2)O(2), salicylic acid and ethylene have been observed in tobacco during the early stages of the HR. These biphasic models reflect an initial elicitation by pathogen-associated molecular patterns followed by a second phase, induced by pathogen-encoded avirulence gene products. The first phase has been proposed to potentiate the second, to increase the efficacy of plant resistance to disease. This potentiation is comparable to the "priming" of plant defenses which is seen when plants display systemic resistance to disease. The events regulating the generation of the biphasic wave, or priming, remains obscure, however recently we demonstrated a key role for nitric oxide in this process in a HR occurring in tobacco. Here we use laser photoacoustic detection to demonstrate that biphasic ethylene production also occurs during a HR occurring in Arabidopsis. We suggest that ethylene emanation during the HR represents a ready means of visualising biphasic events during the HR and that exploiting the genomic resources offered by this model species will facilitate the development of a mechanistic understanding of potentiating/priming processes.
Collapse
Affiliation(s)
- Luis A J Mur
- Univerisity of Wales, Aberystwyth, Institute of Biological Sciences, Aberystwyth, Wales, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Mur LAJ, Lloyd AJ, Cristescu SM, Harren FJM, Hall MA, Smith AR. Biphasic ethylene production during the hypersensitive response in Arabidopsis: a window into defense priming mechanisms? PLANT SIGNALING & BEHAVIOR 2009; 4:610-3. [PMID: 19820330 PMCID: PMC2710552 DOI: 10.1104/pp.108.124404] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 05/19/2023]
Abstract
The hypersensitive response (HR) is a cell death phenomenon associated with localized resistance to pathogens. Biphasic patterns in the generation of H(2)O(2), salicylic acid and ethylene have been observed in tobacco during the early stages of the HR. These biphasic models reflect an initial elicitation by pathogen-associated molecular patterns followed by a second phase, induced by pathogen-encoded avirulence gene products. The first phase has been proposed to potentiate the second, to increase the efficacy of plant resistance to disease. This potentiation is comparable to the "priming" of plant defenses which is seen when plants display systemic resistance to disease. The events regulating the generation of the biphasic wave, or priming, remains obscure, however recently we demonstrated a key role for nitric oxide in this process in a HR occurring in tobacco. Here we use laser photoacoustic detection to demonstrate that biphasic ethylene production also occurs during a HR occurring in Arabidopsis. We suggest that ethylene emanation during the HR represents a ready means of visualising biphasic events during the HR and that exploiting the genomic resources offered by this model species will facilitate the development of a mechanistic understanding of potentiating/priming processes.
Collapse
Affiliation(s)
- Luis A J Mur
- Univerisity of Wales, Aberystwyth, Institute of Biological Sciences, Aberystwyth, Wales, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Piterková J, Petrivalský M, Luhová L, Mieslerová B, Sedlárová M, Lebeda A. Local and systemic production of nitric oxide in tomato responses to powdery mildew infection. MOLECULAR PLANT PATHOLOGY 2009; 10:501-13. [PMID: 19523103 PMCID: PMC6640527 DOI: 10.1111/j.1364-3703.2009.00551.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Various genetic and physiological aspects of resistance of Lycopersicon spp. to Oidium neolycopersici have been reported, but limited information is available on the molecular background of the plant-pathogen interaction. This article reports the changes in nitric oxide (NO) production in three Lycopersicon spp. genotypes which show different levels of resistance to tomato powdery mildew. NO production was determined in plant leaf extracts of L. esculentum cv. Amateur (susceptible), L. chmielewskii (moderately resistant) and L. hirsutum f. glabratum (highly resistant) by the oxyhaemoglobin method during 216 h post-inoculation. A specific, two-phase increase in NO production was observed in the extracts of infected leaves of moderately and highly resistant genotypes. Moreover, transmission of a systemic response throughout the plant was observed as an increase in NO production within tissues of uninoculated leaves. The results suggest that arginine-dependent enzyme activity was probably the main source of NO in tomato tissues, which was inhibited by competitive reversible and irreversible inhibitors of animal NO synthase, but not by a plant nitrate reductase inhibitor. In resistant tomato genotypes, increased NO production was localized in infected tissues by confocal laser scanning microscopy using the fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. NO production observed in the extracts from pathogen conidia, together with elevated NO production localized in developing pathogen hyphae, demonstrates a complex role of NO in plant-pathogen interactions. Our results are discussed with regard to a possible role of increased NO production in pathogens during pathogenesis, as well as local and systemic plant defence mechanisms.
Collapse
Affiliation(s)
- Jana Piterková
- Department of Biochemistry, Palacký University in Olomouc, Czech Republic
| | | | | | | | | | | |
Collapse
|
39
|
Velikova V, Fares S, Loreto F. Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. PLANT, CELL & ENVIRONMENT 2008; 31:1882-1894. [PMID: 18811730 DOI: 10.1111/j.1365-3040.2008.01893.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Isoprene and nitric oxide (NO) are two volatile molecules that are produced in leaves. Both compounds were suggested to have an important protective role against stresses. We tested, in two isoprene-emitting species, Populus nigra and Phragmites australis, whether: (1) NO emission outside leaves is measurable and is affected by oxidative stresses; and (2) isoprene and NO protect leaves against oxidative stresses, both singularly and in combination. The emission of NO was undetectable, and the compensation point was very low in control poplar leaves. Both emission and compensation point increased dramatically in stressed leaves. NO emission was inversely associated with stomatal conductance. More NO was emitted in leaves that were isoprene-inhibited, and more isoprene was emitted when NO was reduced by NO scavenger c-PTIO. Both isoprene and NO reduced oxidative damages. Isoprene-emitting leaves which were also fumigated with NO, or treated with NO donor, showed low damage to photosynthesis, a reduced accumulation of H(2)O(2) and a reduced membrane denaturation. We conclude that measurable amounts of NO are only produced and emitted by stressed leaves, that both isoprene and NO are effective antioxidant molecules and that an additional protection is achieved when both molecules are released.
Collapse
Affiliation(s)
- Violeta Velikova
- Bulgarian Academy of Sciences - Institute of Plant Physiology, Sofia, Bulgaria
| | | | | |
Collapse
|
40
|
Mur LAJ, Laarhoven LJJ, Harren FJM, Hall MA, Smith AR. Nitric oxide interacts with salicylate to regulate biphasic ethylene production during the hypersensitive response. PLANT PHYSIOLOGY 2008; 148:1537-1546. [PMID: 18799663 DOI: 10.1104/pp.108.124404pmcid:pmc2577248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
C(2)H(4) is associated with plant defense, but its role during the hypersensitive response (HR) remains largely uncharacterized. C(2)H(4) production in tobacco (Nicotiana tabacum) following inoculation with HR-eliciting Pseudomonas syringae pathovars measured by laser photoacoustic detection was biphasic. A first transient rise (C(2)H(4)-I) occurred 1 to 4 h following inoculation with HR-eliciting, disease-forming, and nonpathogenic strains and also with flagellin (flg22). A second (avirulence-dependent) rise, at approximately 6 h (C(2)H(4)-II), was only seen with HR-eliciting strains. Tobacco leaves treated with the C(2)H(4) biosynthesis inhibitor, aminoethoxyvinylglycine, suggested that C(2)H(4) influenced the kinetics of a HR. Challenging salicylate hydroxylase-expressing tobacco lines and tissues exhibiting systemic acquired resistance suggested that C(2)H(4) production was influenced by salicylic acid (SA). Disrupted expression of a C(2)H(4) biosynthesis gene in salicylate hydroxylase tobacco plants implicated transcriptional control as a mechanism through which SA regulates C(2)H(4) production. Treating leaves to increase oxidative stress or injecting with SA initiated monophasic C(2)H(4) generation, but the nitric oxide (NO) donor sodium nitroprusside initiated biphasic rises. To test whether NO influenced biphasic C(2)H(4) production during the HR, the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester was coinoculated with the avirulent strain of P. syringae pv phaseolicola into tobacco leaves. The first transient C(2)H(4) rise appeared to be unaffected by N(G)-nitro-L-arginine methyl ester, but the second rise was reduced. These data suggest that NO and SA are required to generate the biphasic pattern of C(2)H(4) production during the HR and may influence the kinetics of HR formation.
Collapse
Affiliation(s)
- Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Wales SY23 3DA, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Cristescu S, Persijn S, te Lintel Hekkert S, Harren F. Laser-based systems for trace gas detection in life sciences. APPLIED PHYSICS B 2008; 92:343. [PMID: 0 DOI: 10.1007/s00340-008-3127-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 06/30/2008] [Indexed: 05/25/2023]
Abstract
AbstractInfrared gas phase spectroscopy is becoming very common in many life science applications. Here we present three types of trace gas detection systems based on CO2 laser and continuous wave (cw) optical parametric oscillator (OPO) in combination with photoacoustic spectroscopy and cw quantum cascade laser (QCL) in combination with wavelength modulation spectroscopy. Examples are included to illustrate the suitability of CO2 laser system to monitor in real time ethylene emission from various dynamic processes in plants and microorganisms as well as from car exhausts. The versatility of an OPO-based detector is demonstrated by simultaneous detection of 13C-methane and 12C-methane (at 3240 nm) at similar detection limits of 0.1 parts per billion by volume. Recent progress on a QCL-based spectrometer using a continuous wave QCL (output power 25 mW, tuning range of 1891–1908 cm-1) is presented and a comparison is made to a standard chemiluminescence instrument for analysis of NO in exhaled breath.
Collapse
|
42
|
Vitecek J, Reinohl V, Jones RL. Measuring NO production by plant tissues and suspension cultured cells. MOLECULAR PLANT 2008; 1:270-84. [PMID: 19825539 DOI: 10.1093/mp/ssm020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe an inexpensive and reliable detector for measuring NO emitted in the gas phase from plants. The method relies on the use of a strong oxidizer to convert NO to NO2 and subsequent capture of NO2 by a Griess reagent trap. The set-up approaches the sensitivity for NO comparable to that of instruments based on chemiluminescence and photoacoustic detectors. We demonstrate the utility of our set-up by measuring NO produced by a variety of well established plant sources. NO produced by nitrate reductase (NR) in tobacco leaves and barley aleurone was readily detected, as was the production of NO from nitrite by the incubation medium of barley aleurone. Arabidopsis mutants that overproduce NO or lack NO-synthase (AtNOS1) also displayed the expected NO synthesis phenotype when assayed by our set-up. We could also measure NO production from elicitor-treated suspension cultured cells using this set-up. Further, we have focused on the detection of NO by a widely used fluorescent probe 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM). Our work points to the pitfalls that must be avoided when using DAF-FM to detect the production of NO by plant tissues. In addition to the dramatic effects that pH can have on fluorescence from DAF-FM, the widely used NO scavengers 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) can produce anomalous and unexpected results. Perhaps the most serious drawback of DAF-FM is its ability to bind to dead cells and remain NO-sensitive.
Collapse
Affiliation(s)
- Jan Vitecek
- Department of Plant Biology, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, Brno 613 00, Czech Republic.
| | | | | |
Collapse
|
43
|
Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D. Nitric oxide in plants: production and cross-talk with Ca2+ signaling. MOLECULAR PLANT 2008; 1:218-28. [PMID: 19825534 DOI: 10.1093/mp/ssm016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) is a diatomic gas that performs crucial functions in a wide array of physiological processes in animals. The past several years have revealed much about its roles in plants. It is well established that NO is synthesized from nitrite by nitrate reductase (NR) and via chemical pathways. There is increasing evidence for the occurrence of an alternative pathway in which NO production is catalysed from L-arginine by a so far non-identified enzyme. Contradictory results have been reported regarding the respective involvement of these enzymes in specific physiological conditions. Although much remains to be proved, we assume that these inconsistencies can be accounted for by the limited specificity of the pharmacological agents used to suppress NO synthesis but also by the reduced content of L-arginine as well as the inactivity of nitrate-permeable anion channels in nitrate reductase- and/or nitrate/nitrite-deficient plants. Another unresolved issue concerns the molecular mechanisms underlying NO effects in plants. Here, we provide evidence that the second messenger Ca2+, as well as protein kinases including MAPK and SnRK2, are very plausible mediators of the NO signals. These findings open new perspectives about NO-based signaling in plants.
Collapse
Affiliation(s)
- Angélique Besson-Bard
- Unité Mixte de Recherche INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, 17 rue Sully, BP 86510, 21065 Dijon cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:21-39. [PMID: 18031216 DOI: 10.1146/annurev.arplant.59.032607.092830] [Citation(s) in RCA: 471] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A decade-long investigation of nitric oxide (NO) functions in plants has led to its characterization as a biological mediator involved in key physiological processes. Despite the wealth of information gathered from the analysis of its functions, until recently little was known about the mechanisms by which NO exerts its effects. In the past few years, part of the gap has been bridged. NO modulates the activity of proteins through nitrosylation and probably tyrosine nitration. Furthermore, NO can act as a Ca(2+)-mobilizing messenger, and researchers are beginning to unravel the mechanisms underlying the cross talk between NO and Ca(2+). Nonetheless, progress in this area of research is hindered by our ignorance of the pathways for NO production in plants. This review summarizes the basic concepts of NO signaling in animals and discusses new insights into NO enzymatic sources and molecular signaling in plants.
Collapse
Affiliation(s)
- Angélique Besson-Bard
- Unité Mixte de Recherche Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon Cedex, France.
| | | | | |
Collapse
|
45
|
Vandelle E, Delledonne M. Methods for Nitric Oxide Detection during Plant–Pathogen Interactions. Methods Enzymol 2008; 437:575-94. [DOI: 10.1016/s0076-6879(07)37029-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Tischner R, Galli M, Heimer YM, Bielefeld S, Okamoto M, Mack A, Crawford NM. Interference with the citrulline-based nitric oxide synthase assay by argininosuccinate lyase activity inArabidopsisextracts. FEBS J 2007; 274:4238-45. [PMID: 17651442 DOI: 10.1111/j.1742-4658.2007.05950.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There are many reports of an arginine-dependent nitric oxide synthase activity in plants; however, the gene(s) or protein(s) responsible for this activity have yet to be convincingly identified. To measure nitric oxide synthase activity, many studies have relied on a citrulline-based assay that measures the formation of L-citrulline from L-arginine using ion exchange chromatography. In this article, we report that when such assays are used with protein extracts from Arabidopsis, an arginine-dependent activity was observed, but it produced a product other than citrulline. TLC analysis identified the product as argininosuccinate. The reaction was stimulated by fumarate (> 500 microM), implicating the urea cycle enzyme argininosuccinate lyase (EC 4.3.2.1), which reversibly converts arginine and fumarate to argininosuccinate. These results indicate that caution is needed when using standard citrulline-based assays to measure nitric oxide synthase activity in plant extracts, and highlight the importance of verifying the identity of the product as citrulline.
Collapse
Affiliation(s)
- Rudolf Tischner
- Albrecht von Haller Institut fur Pflanzenwissenschaften, University of Gottingen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Plants have evolved systems analogous to animal innate immunity that recognise pathogen-associated molecular patterns (PAMPs). PAMP detection is an important component of non-host resistance in plants and serves as an early warning system for the presence of potential pathogens. Binding of a PAMP to the appropriate pattern recognition receptor leads to downstream signalling events and, ultimately, to the induction of basal defence systems. To overcome non-host resistance, pathogens have evolved effectors that target specific regulatory components of the basal defence system. In turn, this has led to the evolution in plants of cultivar-specific resistance mediated by R proteins, which guard the targets of effectors against pathogen manipulation; the arms race continues.
Collapse
Affiliation(s)
- Robert A Ingle
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch, South Africa
| | | | | |
Collapse
|
48
|
Chaerle L, Pineda M, Romero-Aranda R, Van Der Straeten D, Barón M. Robotized thermal and chlorophyll fluorescence imaging of pepper mild mottle virus infection in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2006; 47:1323-36. [PMID: 16943218 DOI: 10.1093/pcp/pcj102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
After infecting a susceptible host, pathogens spread throughout the plant. Depending on pathogen type and strain, the severity of symptoms varies greatly. In the case of pepper mild mottle virus (PMMoV) infection in Nicotiana benthamiana, newly developing leaves display visual symptoms (symptomatic leaves). In this study, two PMMoV strains were used, the Spanish strain (PMMoV-S) being more virulent than the Italian strain (PMMoV-I). Plants infected with PMMoV-I could recover from the virus-induced symptoms. Leaves that were fully developed at the start of PMMoV infection remained symptomless. In these asymptomatic leaves, an increase in temperature, initiating from the tissue adjacent to the main veins, was observed 7 d before the Chl fluorescence pattern changed. Virus immunolocalization on tissue prints matched well with the concomitant pattern of Chl fluorescence increase. The temperature increase, associated with the veins, was shown to be related to stomatal closure. Upon PMMoV-I infection, the appearance of thermal and Chl fluorescence symptoms as well as virus accumulation were delayed by 3 d compared with PMMoV-S-induced symptoms. The temperature increase of whole symptomatic leaves was also correlated with a decrease in stomatal aperture. In contrast to the persistent increase in symptomatic leaf temperature observed during PMMoV-S infection, the temperature of symptomatic leaves of PMMoV-I-infected plants decreased gradually during recovery. We propose that the earliest temperature increase is caused by a systemic plant response to the virus infection, involving the control of water loss. In conclusion, thermography has potential as an early reporter of an ongoing compatible infection process.
Collapse
Affiliation(s)
- Laury Chaerle
- Unit of Plant Hormone Signaling and Bioimaging, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
49
|
Moeskops BWM, Cristescu SM, Harren FJM. Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser. OPTICS LETTERS 2006; 31:823-5. [PMID: 16544636 DOI: 10.1364/ol.31.000823] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We used a thermoelectrically cooled, continuous-wave, quantum cascade laser operating between 1847 and 1854 cm(-1) in combination with wavelength modulation spectroscopy for the detection of nitric oxide (NO) at the sub-part-per-billion by volume (ppbv) level. The laser emission overlaps the P7.5 doublet of NO centered around 1850.18 cm(-1). Using an astigmatic multiple-pass absorption cell with an optical path length of 76 m, we achieved a detection limit of 0.2 ppbv at 10 kPa, with a total acquisition time of 30 s. The corresponding minimal detectable absorption is 8.8 x 10(-9) cm(-1) Hz(-1/2).
Collapse
Affiliation(s)
- B W M Moeskops
- Department of Molecular and Laser Physics, Institute for Molecules and Materials, Radboud University Nijmegen, PO. Box 9010, NL-6500 GL Nijmegen, The Netherlands.
| | | | | |
Collapse
|
50
|
|