1
|
Xing X, Du H, Yang Z, Zhang H, Li N, Shao Z, Li W, Kong Y, Li X, Zhang C. GmEXPA11 facilitates nodule enlargement and nitrogen fixation via interaction with GmNOD20 under regulation of GmPTF1 in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112469. [PMID: 40074204 DOI: 10.1016/j.plantsci.2025.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/22/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Biological nitrogen fixation (BNF) provides 50-60 % of the nitrogen for plant growth and development, while its application is restricted for the deficiency of functional gene in biological breeding. Expansin can enlarge the plant cells through loosening the cell wall, which has a great breeding potential for legumes BNF improvement. In the present study, a cell wall α-subfamily expansin, GmEXPA11, was isolated and analyzed in soybean nodule growth and nitrogen fixation process. GmEXPA11 was highly induced by rhizobial infection and appeared high expressions in the whole process of soybean nodulation and nitrogen fixation. The overexpression of GmEXPA11 facilitated nodule cell enlargement and generated much more big nodules, with an increase of 37.6 % on nodule cell length, 14.7 % on cell width, 25.8 % on big nodule number, 25.6 % on nodule weight, while the RNAi nodules were opposite. Moreover, GmEXPA11 overexpression enhanced nodule nitrogen fixation ability, with the increases of 22.9 %, 6.7 % and 11.7 % on nitrogenase activity, nitrogen content and hairy root nitrogen content, while the RNAi decreased by 11.9 %, 10.7 % and 7.8 %, respectively. Further analysis demonstrated that GmEXPA11 affected nodules enlargement and nitrogen fixation via interacting with nodulin GmNOD20 under the regulation of transcription factor GmPTF1. The expression of GmEXPA11 was significantly increased in the transgenic nodules with GmPTF1 over-expressed. In addition, by analyzing soybean resequencing accessions, four upstream SNPs were found in the promoter of GmEXPA11 and formed two haplotypes with significantly different soybean nodulation and nitrogen fixation characters, which demonstrated the close relationship between GmEXPA11-SNPs and BNF.
Collapse
Affiliation(s)
- Xinzhu Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Hui Du
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhanwu Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Wenlong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
2
|
Das S, Palaka BK, Kuiry R, Roy Choudhury S. Insights into the interactions of RWP-RK and their targets: Role of serine and its conservation across species. Biochem Biophys Res Commun 2025; 763:151750. [PMID: 40228386 DOI: 10.1016/j.bbrc.2025.151750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025]
Abstract
The RWP-RK domain is a key DNA-binding domain found in all NIN (Nodule Inception)/NLP (NIN-like proteins) and RKD (RWP-RK Domain Containing) transcription factors (TFs). The RWP-RK domain in NINs/NLPs contains a highly evolutionarily conserved sequence, RWPSRK, while in RKDs, the fourth serine (S) amino acid is substituted with either tyrosine (Y) or histidine (H). To regulate autoregulation of nodulation, the RWP-RK domain of NIN TF binds to the promoter region of CLE peptides but not RKDs. Therefore, investigating the protein-DNA interaction from a structural perspective is essential to understand the evolutionary significance of the serine (S) residue of the RWP-RK domain. Herein, we have modelled both the wild type (WT) and the variant RWP-RK domains containing substitutions like glutamic acid (E), tyrosine (Y), and histidine (H) and docked them with the modelled pCLE13 cis-element. Our docking results revealed that a helix-turn-helix (HTH) motif of the RWP-RK domain interacts with pCLE13. The WT HTH-DNA complex exhibited the most negative binding free energy, indicating a strong interaction, particularly hydrogen bonds acting between them. Simulation analysis of WT and variant models provided deeper insights into protein-DNA binding dynamics. The hydrogen bond occupancy percentage indicated that the fourth serine (S) residue is vital for maintaining a significant percentage of hydrogen bonds with DNA. The variants substituting this conserved serine (S) residue displayed energetic frustration upon binding to DNA and lost correlation among their residues. Overall, it suggested that serine (S) residue of the RWP-RK domain of all NINs/NLPs is crucial for appropriate protein-DNA interaction, which might be required for their biological relevance.
Collapse
Affiliation(s)
- Souvik Das
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| | - Bhagath Kumar Palaka
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| | - Raju Kuiry
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517619, India.
| |
Collapse
|
3
|
Su B, Li H, Zhang K, Li H, Fan C, Zhong M, Zou H, Li R, Chen L, Jin JB, Huang M, Liu B, Kong F, Sun Z. Evening complex component ELF3 interacts with LUX proteins to repress soybean root nodulation. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40097205 DOI: 10.1111/pbi.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Formation of root nodules is a unique hallmark of the symbiotic interaction between legume host plants and rhizobia and is governed by a complex regulatory framework that balances the appropriate orchestration of rhizobial infection and subsequent nodule organogenesis. In contrast to prominent model species such as Medicago truncatula and Lotus japonicus, research on symbiotic signal transduction in the staple-crop soybean Glycine max remains relatively insufficient. Here, we identified a soybean mutant with ~25% additional root nodules over wild-type, designated as increased number of nodules 1 (inn1). Through map-based cloning, INN1 encodes the EARLY FLOWERING 3a (ELF3a) protein component of the soybean Evening Complex, together with LUX1 and LUX2. INN1 is co-expressed with LUX1 and LUX2 in roots, and knockout of INN1 or knockdown of LUX1 and LUX2 enhances root nodulation. The function of INN1 in negatively regulating nodulation is genetically and biochemically dependent upon LUXs, as the INN1-LUX complex binds to the promoter of the downstream pro-nodulation target ENOD40, repressing its expression. ELF3a/INN1's repression of root-nodule formation extends beyond its established roles in diverse above-ground developmental and physiological processes and offers a theoretical basis for enhancing the biological-nitrogen fixation capacity of soybean.
Collapse
Affiliation(s)
- Bohong Su
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Hong Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Ke Zhang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Caiyun Fan
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Meiling Zhong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Hui Zou
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Rujie Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mingkun Huang
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| | - Zhihui Sun
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetic and Evolution, School of Life Science, Guangzhou University, Guangzhou, China
| |
Collapse
|
4
|
Upadhyaya G, Sethi V, Modak A, Gangappa SN. ALOG/LSHs: a novel class of transcription factors that regulate plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:836-850. [PMID: 39361138 DOI: 10.1093/jxb/erae409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/01/2024] [Indexed: 02/09/2025]
Abstract
The ARABIDOPSIS LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and rice G1/LIGHT-DEPENDENT SHORT HYPOCOTYLS (ALOG/LSH) group proteins are highly conserved across plant lineages from moss to higher flowering plants, suggesting their crucial role in the evolution and adaptation of land plants. The role of ALOG/LSH proteins is highly conserved in various developmental responses, such as vegetative and reproductive developmental programs. Their role in meristem identity, cotyledon development, seedling photomorphogenesis, and leaf and shoot development has been relatively well established. Moreover, several key pieces of evidence suggest their role in inflorescence architecture and flower development, including male and female reproductive organs and flower colouration. Recent research has started to explore their role in stress response. Functionally, ALOG/LSH proteins have been demonstrated to act as transcriptional regulators and are considered a newly emerging class of transcription factors in plants that regulate diverse developmental and physiological processes. This review aims to stimulate discussion about their role in plant development and as transcription factors. It also seeks to further unravel the underlying molecular mechanism by which they regulate growth and development throughout the plant lineage.
Collapse
Affiliation(s)
- Gouranga Upadhyaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Vishmita Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Annayasa Modak
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Sreeramaiah N Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
5
|
Zhang H, He L, Li H, Tao N, Chang T, Wang D, Lu Y, Li Z, Mai C, Zhao X, Niu B, Ma J, Wang L. Role of GmFRI-1 in Regulating Soybean Nodule Formation Under Cold Stress. Int J Mol Sci 2025; 26:879. [PMID: 39940650 PMCID: PMC11816883 DOI: 10.3390/ijms26030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Symbiotic nitrogen fixation, recognized as the most efficient nitrogen assimilation system in ecosystems, is essential for soybean growth, as nodulation provides critical nitrogen to host cells. Soybeans thrive in warm and moist environments. However, they are highly susceptible to low temperatures, which impede the formation and development of root nodules. The genetic basis and molecular mechanism underlying the inhibition of nodulation induced by low temperatures remain unclear. In this study, we conducted a comparative transcriptomic analysis of soybean roots inoculated with rhizobium at 1 DPI (Day Post Inoculation) under normal or cold treatments. We identified 39 up-regulated and 35 down-regulated genes associated with nodulation and nitrogen fixation. Notably, cold-responsive genes including three FRI (Frigida) family genes were identified among differentially expressed genes (DEGs). Further expression pattern analysis of GmFRI-1 demonstrated it being significantly responsive to rhizobium inoculation and its highest expression in nodules. Further investigation revealed that overexpression of GmFRI-1 led to an increase in the nodule number, while RNA interference (RNAi)-mediated gene editing of GmFRI-1 suppressed nodule formation. Additionally, GmFRI-1 overexpression may regulate soybean nodulation by modulating the expression of GmNIN (NODULE INCEPTION), GmNSP1 (nodulation signaling pathway 1), and GmHAP2-2 (histone- or haem-associated protein domain) in the nod factor signaling pathway. This study offers new insights into the genetic basis of nodulation regulation under cold stress in legumes and indicates that GmFRI-1 may serve as a key regulator of nodule formation under cold stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Junkui Ma
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (H.Z.); (L.H.); (H.L.); (N.T.); (T.C.); (D.W.); (Y.L.); (Z.L.); (C.M.); (X.Z.); (B.N.)
| | - Lixiang Wang
- Shanxi Houji Laboratory, College of Agriculture, Shanxi Agricultural University, Taigu 030801, China; (H.Z.); (L.H.); (H.L.); (N.T.); (T.C.); (D.W.); (Y.L.); (Z.L.); (C.M.); (X.Z.); (B.N.)
| |
Collapse
|
6
|
Isidra-Arellano MC, Valdés-López O. Understanding the Crucial Role of Phosphate and Iron Availability in Regulating Root Nodule Symbiosis. PLANT & CELL PHYSIOLOGY 2024; 65:1925-1936. [PMID: 39460549 DOI: 10.1093/pcp/pcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
The symbiosis between legumes and nitrogen-fixing bacteria (rhizobia) is instrumental in sustaining the nitrogen cycle and providing fixed nitrogen to the food chain. Both partners must maintain an efficient nutrient exchange to ensure a successful symbiosis. This mini-review highlights the intricate phosphate and iron uptake and homeostasis processes taking place in legumes during their interactions with rhizobia. The coordination of transport and homeostasis of these nutrients in host plants and rhizobia ensures an efficient nitrogen fixation process and nutrient use. We discuss the genetic machinery controlling the uptake and homeostasis of these nutrients in the absence of rhizobia and under symbiotic conditions with this soil bacterium. We also highlight the genetic impact of the availability of phosphate and iron to coordinate the activation of the genetic programs that allow legumes to engage in symbiosis with rhizobia. Finally, we discuss how the transcription factor phosphate starvation response might be a crucial genetic element to integrate the plant's needs of nitrogen, iron and phosphate while interacting with rhizobia. Understanding the coordination of the iron and phosphate uptake and homeostasis can lead us to better harness the ecological benefits of the legume-rhizobia symbiosis, even under adverse environmental conditions.
Collapse
Affiliation(s)
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Department of Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México
| |
Collapse
|
7
|
Nazaret F, Farajzadeh D, Mejias J, Pacoud M, Cosi A, Frendo P, Alloing G, Mandon K. SydR, a redox-sensing MarR-type regulator of Sinorhizobium meliloti, is crucial for symbiotic infection of Medicago truncatula roots. mBio 2024; 15:e0227524. [PMID: 39480079 PMCID: PMC11633110 DOI: 10.1128/mbio.02275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Rhizobia associate with legumes and induce the formation of nitrogen-fixing nodules. The regulation of bacterial redox state plays a major role in symbiosis, and reactive oxygen species produced by the plant are known to activate signaling pathways. However, only a few redox-sensing transcriptional regulators (TRs) have been characterized in the microsymbiont. Here, we describe SydR, a novel redox-sensing TR of Sinorhizobium meliloti that is essential for the establishment of symbiosis with Medicago truncatula. SydR, a MarR-type TR, represses the expression of the adjacent gene SMa2023 in growing cultures, and this repression is alleviated by NaOCl, tert-butyl hydroperoxide, or H2O2 treatment. Transcriptional psydR-gfp and pSMa2023-gfp fusions, as well as gel shift assays, showed that SydR binds two independent sites of the sydR-SMa2023 intergenic region. This binding is redox-dependent, and site-directed mutagenesis demonstrated that the conserved C16 is essential for SydR redox sensing. The inactivation of sydR did not alter the sensitivity of S. meliloti to NaOCl, tert-butyl hydroperoxide, or H2O2, nor did it affect the response to oxidants of the roGFP2-Orp1 redox biosensor expressed within bacteria. However, in planta, ΔsydR mutation impaired the formation of root nodules. Microscopic observations and analyses of plant marker gene expression showed that the ΔsydR mutant is defective at an early stage of the bacterial infection process. Altogether, these results demonstrated that SydR is a redox-sensing MarR-type TR that plays a key role in the regulation of nitrogen-fixing symbiosis with M. truncatula.IMPORTANCEThe nitrogen-fixing symbiosis between rhizobia and legumes has an important ecological role in the nitrogen cycle, contributes to nitrogen enrichment of soils, and can improve plant growth in agriculture. This interaction is initiated in the rhizosphere by a molecular dialog between the two partners, resulting in plant root infection and the formation of root nodules, where bacteria reduce the atmospheric nitrogen into ammonium. This symbiosis involves modifications of the bacterial redox state in response to reactive oxygen species produced by the plant partner. Here, we show that SydR, a transcriptional regulator of the Medicago symbiont Sinorhizobium meliloti, acts as a redox-responsive repressor that is crucial for the development of root nodules and contributes to the regulation of bacterial infection in S. meliloti/Medicago truncatula symbiotic interaction.
Collapse
Affiliation(s)
- Fanny Nazaret
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | | - Joffrey Mejias
- IRD, CIRAD, Université Montpellier, Plant Health Institute, Montpellier, France
| | - Marie Pacoud
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Anthony Cosi
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Pierre Frendo
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | | - Karine Mandon
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| |
Collapse
|
8
|
Guillory A, Fournier J, Kelner A, Hobecker K, Auriac MC, Frances L, Delers A, Pedinotti L, Le Ru A, Keller J, Delaux PM, Gutjahr C, Frei Dit Frey N, de Carvalho-Niebel F. Annexin- and calcium-regulated priming of legume root cells for endosymbiotic infection. Nat Commun 2024; 15:10639. [PMID: 39638784 PMCID: PMC11621553 DOI: 10.1038/s41467-024-55067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Legumes establish endosymbioses with arbuscular mycorrhizal (AM) fungi or rhizobia bacteria to improve mineral nutrition. Symbionts are hosted in privileged habitats, root cortex (for AM fungi) or nodules (for rhizobia) for efficient nutrient exchange. To reach these habitats, plants form cytoplasmic cell bridges, key to predicting and guiding fungal hyphae or rhizobia-filled infection thread (IT) root entry. However, the underlying mechanisms are poorly studied. Here we show that unique ultrastructural changes and calcium (Ca2+) spiking signatures, closely associated with Medicago truncatula Annexin 1 (MtAnn1) accumulation, accompany rhizobia-related bridge formation. Loss of MtAnn1 function in M. truncatula affects Ca2+ spike amplitude, cytoplasmic configuration and rhizobia infection efficiency, consistent with a role of MtAnn1 in regulating infection priming. MtAnn1, which evolved in species establishing intracellular symbioses, is also AM-symbiosis-induced and required for proper arbuscule formation. Together, we propose that MtAnn1 is part of an ancient Ca2+-regulatory module for transcellular endosymbiotic infection.
Collapse
Affiliation(s)
- Ambre Guillory
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Joëlle Fournier
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Audrey Kelner
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Karen Hobecker
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Lisa Frances
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Anaïs Delers
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Léa Pedinotti
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Aurélie Le Ru
- FRAIB-TRI imaging platform, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Gutjahr
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | | |
Collapse
|
9
|
Zhang Y, Hou R, Yao X, Wang X, Li W, Fang X, Ma X, Li S. VrNIN1 interacts with VrNNC1 to regulate root nodulation in mungbean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109131. [PMID: 39305558 DOI: 10.1016/j.plaphy.2024.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
Node Inception (NIN) plays a crucial role in legume symbiosis by participating in both infection and nodule formation processes. However, its specific function in mungbean (Vigna radiata) remains poorly understood. This study aimed to functionally characterize the VrNIN1 gene in mungbean through an enhanced hairy root transformation approach. Examination of proVrNIN1: GUS hairy roots via GUS staining indicated the expression of VrNIN1 in later root promodia, nodule primordia, and nodules. Phenotypic evaluation revealed that overexpression or silencing of VrNIN1 led to a significant reduction in nodule numbers in hairy roots compared to controls. Additionally, interaction between VrNIN1 and VrNNC1 was confirmed through yeast two-hybrid, luciferase complementation and Co-immunoprecipitation assays. VrNNC1 expression was observed in the vascular bundle and cortex of roots and root nodules, where it notably suppressed nodule formation in transgenic hairy roots. Furthermore, gene expression analysis demonstrated the involvement of VrNIN1 and VrNNC1 in regulating root nodulation by modulating the expression of VrRIC1 and VrEDOD40. This study not only optimized the genetic transformation system for hairy roots in mungbean, but also provided mechanistic insights into the regulatory role of VrNIN1 in root nodule symbiosis in mungbean.
Collapse
Affiliation(s)
- Yanzheng Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Rui Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaolin Yao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaotong Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenyang Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaotong Fang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaofei Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
10
|
Drapek C, Rizza A, Mohd-Radzman NA, Schiessl K, Dos Santos Barbosa F, Wen J, Oldroyd GED, Jones AM. Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs. THE PLANT CELL 2024; 36:4442-4456. [PMID: 39012965 PMCID: PMC11449112 DOI: 10.1093/plcell/koae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 04/24/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
During nutrient scarcity, plants can adapt their developmental strategy to maximize their chance of survival. Such plasticity in development is underpinned by hormonal regulation, which mediates the relationship between environmental cues and developmental outputs. In legumes, endosymbiosis with nitrogen-fixing bacteria (rhizobia) is a key adaptation for supplying the plant with nitrogen in the form of ammonium. Rhizobia are housed in lateral root-derived organs termed nodules that maintain an environment conducive to Nitrogenase in these bacteria. Several phytohormones are important for regulating the formation of nodules, with both positive and negative roles proposed for gibberellin (GA). In this study, we determine the cellular location and function of bioactive GA during nodule organogenesis using a genetically encoded second-generation GA biosensor, GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula. We find endogenous bioactive GA accumulates locally at the site of nodule primordia, increasing dramatically in the cortical cell layers, persisting through cell divisions, and maintaining accumulation in the mature nodule meristem. We show, through misexpression of GA-catabolic enzymes that suppress GA accumulation, that GA acts as a positive regulator of nodule growth and development. Furthermore, increasing or decreasing GA through perturbation of biosynthesis gene expression can increase or decrease the size of nodules, respectively. This is unique from lateral root formation, a developmental program that shares common organogenesis regulators. We link GA to a wider gene regulatory program by showing that nodule-identity genes induce and sustain GA accumulation necessary for proper nodule formation.
Collapse
Affiliation(s)
- Colleen Drapek
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | | | | | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Stillwater, OK 73401, USA
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Sciences, The Crop Science Centre, University of Cambridge, Cambridge CB3 0LE, UK
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| |
Collapse
|
11
|
Yu H, Xiao A, Zou Z, Wu Q, Chen L, Zhang D, Sun Y, Wang C, Cao J, Zhu H, Zhang Z, Cao Y. Conserved cis-elements enable NODULES WITH ACTIVATED DEFENSE1 regulation by NODULE INCEPTION during nodulation. THE PLANT CELL 2024; 36:4622-4636. [PMID: 39136552 PMCID: PMC11448908 DOI: 10.1093/plcell/koae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/31/2024] [Indexed: 10/05/2024]
Abstract
Symbiotic nitrogen fixation within nitrogen-fixing clade (NFC) plants is thought to have arisen from a single gain followed by massive losses in the genomes of ancestral non-nodulating plants. However, molecular evidence supporting this model is limited. Here, we confirm through bioinformatic analysis that NODULES WITH ACTIVATED DEFENSE1 (NAD1) is present only in NFC plants and is thus an NFC-specific gene. Moreover, NAD1 was specifically expressed in nodules. We identified three conserved nodulation-associated cis-regulatory elements (NACE1-3) in the promoter of LjNAD1 from Lotus japonicus that are required for its nodule specific expression. A survey of NFC plants revealed that NACE1 and NACE2 are specific to the Fabales and Papilionoideae, respectively, while NACE3 is present in all NFC plants. Moreover, we found that nodule inception (NIN) directly binds to all three NACEs to activate NAD1 expression. Mutation of L. japonicus LjNAD1 resulted in the formation of abnormal symbiosomes with enlarged symbiosome space and frequent breakdown of bacteroids in nodules, resembling phenotypes reported for Medicago truncatula Mtnad1 and Mtnin mutants. These data point to NIN-NAD1 as an important module regulating rhizobial accommodation in nodules. The regulation of NAD1 by NIN in the NFC ancestor represent an important evolutionary adaptation for nodulation.
Collapse
Affiliation(s)
- Haixiang Yu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Yazhouwan National Laboratory, Sanya, Hainan 572024, China
| | - Aifang Xiao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, Hainan 572024, China
| | - Zhongmin Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiujin Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dandan Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuzhang Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chao Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianbo Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhongming Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yangrong Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
12
|
Soyano T, Akamatsu A, Takeda N, Watahiki MK, Goh T, Okuma N, Suganuma N, Kojima M, Takebayashi Y, Sakakibara H, Nakajima K, Kawaguchi M. Periodic cytokinin responses in Lotus japonicus rhizobium infection and nodule development. Science 2024; 385:288-294. [PMID: 39024445 DOI: 10.1126/science.adk5589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots. Here, live-imaging and transcriptome analyses revealed oscillating host gene expression with approximately 6-hour intervals upon bacterial inoculation. Cytokinin response also exhibited a similar oscillation pattern. Cytokinin signaling is crucial to maintaining the periodicity, as observed in cytokinin receptor mutants displaying altered infection foci distribution. This periodic regulation influences the size of the root region responsive to bacteria, as well as the nodulation process progression.
Collapse
Affiliation(s)
- Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Akamatsu
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Naoya Takeda
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, Gakuen Uegahara 1, Sanda, Hyogo 669-1330, Japan
| | - Masaaki K Watahiki
- Faculty of Science, Division of Biological Sciences, Hokkaido University, Kitaku Kita 10, Nishi 8, Sapporo 060-0810, Japan
| | - Tatsuaki Goh
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Nao Okuma
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi 448-8542, Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Keiji Nakajima
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Division of Biological Science, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Basic Biology Program, Graduate University for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
13
|
Sámano ML, Nanjareddy K, Arthikala MK. NIN-like proteins (NLPs) as crucial nitrate sensors: an overview of their roles in nitrogen signaling, symbiosis, abiotic stress, and beyond. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1209-1223. [PMID: 39100871 PMCID: PMC11291829 DOI: 10.1007/s12298-024-01485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/22/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Nitrogen is an essential macronutrient critical for plant growth and productivity. Plants have the capacity to uptake inorganic nitrate and ammonium, with nitrate playing a crucial role as a signaling molecule in various cellular processes. The availability of nitrate and the signaling pathways involved finely tune the processes of nitrate uptake and assimilation. NIN-like proteins (NLPs), a group of transcription factors belonging to the RWP-RK gene family, act as major nitrate sensors and are implicated in the primary nitrate response (PNR) within the nucleus of both non-leguminous and leguminous plants through their RWP-RK domains. In leguminous plants, NLPs are indispensable for the initiation and development of nitrogen-fixing nodules in symbiosis with rhizobia. Moreover, NLPs play pivotal roles in plant responses to abiotic stresses, including drought and cold. Recent studies have identified NLP homologs in oomycete pathogens, suggesting their potential involvement in pathogenesis and virulence. This review article delves into the conservation of RWP-RK genes, examining their significance and implications across different plant species. The focus lies on the role of NLPs as nitrate sensors, investigating their involvement in various processes, including rhizobial symbiosis in both leguminous and non-leguminous plants. Additionally, the multifaceted functions of NLPs in abiotic stress responses, developmental processes, and interactions with plant pathogens are explored. By comprehensively analyzing the role of NLPs in nitrate signaling and their broader implications for plant growth and development, this review sheds light on the intricate mechanisms underlying nitrogen sensing and signaling in various plant lineages.
Collapse
Affiliation(s)
- Mariana López Sámano
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| | - Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), 37689 León, Mexico
| |
Collapse
|
14
|
Artins A, Martins MCM, Meyer C, Fernie AR, Caldana C. Sensing and regulation of C and N metabolism - novel features and mechanisms of the TOR and SnRK1 signaling pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1268-1280. [PMID: 38349940 DOI: 10.1111/tpj.16684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Carbon (C) and nitrogen (N) metabolisms are tightly integrated to allow proper plant growth and development. Photosynthesis is dependent on N invested in chlorophylls, enzymes, and structural components of the photosynthetic machinery, while N uptake and assimilation rely on ATP, reducing equivalents, and C-skeletons provided by photosynthesis. The direct connection between N availability and photosynthetic efficiency allows the synthesis of precursors for all metabolites and building blocks in plants. Thus, the capacity to sense and respond to sudden changes in C and N availability is crucial for plant survival and is mediated by complex yet efficient signaling pathways such as TARGET OF RAPAMYCIN (TOR) and SUCROSE-NON-FERMENTING-1-RELATED PROTEIN KINASE 1 (SnRK1). In this review, we present recent advances in mechanisms involved in sensing C and N status as well as identifying current gaps in our understanding. We finally attempt to provide new perspectives and hypotheses on the interconnection of diverse signaling pathways that will allow us to understand the integration and orchestration of the major players governing the regulation of the CN balance.
Collapse
Affiliation(s)
- Anthony Artins
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Marina C M Martins
- in Press - Scientific Consulting and Communication Services, 05089-030, São Paulo, São Paulo, Brazil
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| |
Collapse
|
15
|
Kirolinko C, Hobecker K, Cueva M, Botto F, Christ A, Niebel A, Ariel F, Blanco FA, Crespi M, Zanetti ME. A lateral organ boundaries domain transcription factor acts downstream of the auxin response factor 2 to control nodulation and root architecture in Medicago truncatula. THE NEW PHYTOLOGIST 2024; 242:2746-2762. [PMID: 38666352 DOI: 10.1111/nph.19766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/21/2024] [Indexed: 05/24/2024]
Abstract
Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.
Collapse
Affiliation(s)
- Cristina Kirolinko
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Marianela Cueva
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Florencia Botto
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Aurélie Christ
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Martín Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| |
Collapse
|
16
|
Serrano K, Bezrutczyk M, Goudeau D, Dao T, O'Malley R, Malmstrom RR, Visel A, Scheller HV, Cole B. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. NATURE PLANTS 2024; 10:673-688. [PMID: 38589485 PMCID: PMC11035146 DOI: 10.1038/s41477-024-01666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
The symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions. Here we used single-nucleus and spatial RNA sequencing to explore both Medicago truncatula and Rhizophagus irregularis transcriptomes in AM symbiosis at cellular and spatial resolution. Integrated, spatially registered single-cell maps revealed infected and uninfected plant root cell types. We observed that cortex cells exhibit distinct transcriptome profiles during different stages of colonization by AM fungi, indicating dynamic interplay between both organisms during establishment of the cellular interface enabling successful symbiosis. Our study provides insight into a symbiotic relationship of major agricultural and environmental importance and demonstrates a paradigm combining single-cell and spatial transcriptomics for the analysis of complex organismal interactions.
Collapse
Affiliation(s)
- Karen Serrano
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Margaret Bezrutczyk
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Thai Dao
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ronan O'Malley
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Henrik V Scheller
- Joint Bioenergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Benjamin Cole
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
17
|
Lee T, Orvosova M, Batzenschlager M, Bueno Batista M, Bailey PC, Mohd-Radzman NA, Gurzadyan A, Stuer N, Mysore KS, Wen J, Ott T, Oldroyd GED, Schiessl K. Light-sensitive short hypocotyl genes confer symbiotic nodule identity in the legume Medicago truncatula. Curr Biol 2024; 34:825-840.e7. [PMID: 38301650 DOI: 10.1016/j.cub.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.
Collapse
Affiliation(s)
- Tak Lee
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Martina Orvosova
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | | | - Marcelo Bueno Batista
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul C Bailey
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | - Nadia A Mohd-Radzman
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Aram Gurzadyan
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Naomi Stuer
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Kirankumar S Mysore
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jiangqi Wen
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Thomas Ott
- University of Freiburg, Faculty of Biology, Schänzlestrasse, 79104 Freiburg, Germany; CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse, 79104 Freiburg, Germany
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK.
| | - Katharina Schiessl
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
18
|
Ferrer-Orgaz S, Tiwari M, Isidra-Arellano MC, Pozas-Rodriguez EA, Vernié T, Rich MK, Mbengue M, Formey D, Delaux PM, Ané JM, Valdés-López O. Early Phosphorylated Protein 1 is required to activate the early rhizobial infection program. THE NEW PHYTOLOGIST 2024; 241:962-968. [PMID: 38009302 DOI: 10.1111/nph.19423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Affiliation(s)
- Susana Ferrer-Orgaz
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Mexico
- Department of Plant Pathology, Russell Laboratories, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Manish Tiwari
- Department of Bacteriology, University of Wisconsin, Microbial Science Building, 1550 Linden Dr., Madison, WI, 53706, USA
| | - Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Mexico
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Eithan A Pozas-Rodriguez
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Mexico
- Department of Plant Pathology, Russell Laboratories, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 3126, Castanet Tolosan, France
| | - Mélanie K Rich
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 3126, Castanet Tolosan, France
| | - Malick Mbengue
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 3126, Castanet Tolosan, France
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, 62210, Morelos, Mexico
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 3126, Castanet Tolosan, France
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Microbial Science Building, 1550 Linden Dr., Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr., Madison, WI, 53706, USA
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, 54090, Mexico
| |
Collapse
|
19
|
Shen L, Feng J. NIN-at the heart of NItrogen-fixing Nodule symbiosis. FRONTIERS IN PLANT SCIENCE 2024; 14:1284720. [PMID: 38283980 PMCID: PMC10810997 DOI: 10.3389/fpls.2023.1284720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Legumes and actinorhizal plants establish symbiotic relationships with nitrogen-fixing bacteria, resulting in the formation of nodules. Nodules create an ideal environment for nitrogenase to convert atmospheric nitrogen into biological available ammonia. NODULE INCEPTION (NIN) is an indispensable transcription factor for all aspects of nodule symbiosis. Moreover, NIN is consistently lost in non-nodulating species over evolutions. Here we focus on recent advances in the signaling mechanisms of NIN during nodulation and discuss the role of NIN in the evolution of nitrogen-fixing nodule symbiosis.
Collapse
Affiliation(s)
- Lisha Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jian Feng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS−JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Luo Z, Liu H, Xie F. Cellular and molecular basis of symbiotic nodule development. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102478. [PMID: 37857037 DOI: 10.1016/j.pbi.2023.102478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/18/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
Root nodule development plays a vital role in establishing the mutualistic relationship between legumes and nitrogen-fixing rhizobia. Two primary processes are involved in nodule development: formative cell divisions in the root cortex and the subsequent differentiation of nodule cells. The first process involves the mitotic reactivation of differentiated root cortex cells to form nodule primordium after perceiving symbiotic signals. The second process enables the nascent nodule primordium cells to develop into various cell types, leading to the creation of a functional nodule capable of supporting nitrogen fixation. Thus, both division and differentiation of nodule cells are crucial for root nodule development. This review provides an overview of the most recent advancements in comprehending the cellular and molecular mechanisms underlying symbiotic nodule development in legumes.
Collapse
Affiliation(s)
- Zhenpeng Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Haiyue Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
21
|
Frank M, Fechete LI, Tedeschi F, Nadzieja M, Nørgaard MMM, Montiel J, Andersen KR, Schierup MH, Reid D, Andersen SU. Single-cell analysis identifies genes facilitating rhizobium infection in Lotus japonicus. Nat Commun 2023; 14:7171. [PMID: 37935666 PMCID: PMC10630511 DOI: 10.1038/s41467-023-42911-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Legume-rhizobium signaling during establishment of symbiotic nitrogen fixation restricts rhizobium colonization to specific cells. A limited number of root hair cells allow infection threads to form, and only a fraction of the epidermal infection threads progress to cortical layers to establish functional nodules. Here we use single-cell analysis to define the epidermal and cortical cell populations that respond to and facilitate rhizobium infection. We then identify high-confidence nodulation gene candidates based on their specific expression in these populations, pinpointing genes stably associated with infection across genotypes and time points. We show that one of these, which we name SYMRKL1, encodes a protein with an ectodomain predicted to be nearly identical to that of SYMRK and is required for normal infection thread formation. Our work disentangles cellular processes and transcriptional modules that were previously confounded due to lack of cellular resolution, providing a more detailed understanding of symbiotic interactions.
Collapse
Affiliation(s)
- Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Lavinia Ioana Fechete
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Francesca Tedeschi
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Marcin Nadzieja
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | | | - Jesus Montiel
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | - Kasper Røjkjær Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark.
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia.
| | - Stig Uggerhøj Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
22
|
Lin C, Guo X, Yu X, Li S, Li W, Yu X, An F, Zhao P, Ruan M. Genome-Wide Survey of the RWP-RK Gene Family in Cassava ( Manihot esculenta Crantz) and Functional Analysis. Int J Mol Sci 2023; 24:12925. [PMID: 37629106 PMCID: PMC10454212 DOI: 10.3390/ijms241612925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The plant-specific RWP-RK transcription factor family plays a central role in the regulation of nitrogen response and gametophyte development. However, little information is available regarding the evolutionary relationships and characteristics of the RWP-RK family genes in cassava, an important tropical crop. Herein, 13 RWP-RK proteins identified in cassava were unevenly distributed across 9 of the 18 chromosomes (Chr), and these proteins were divided into two clusters based on their phylogenetic distance. The NLP subfamily contained seven cassava proteins including GAF, RWP-RK, and PB1 domains; the RKD subfamily contained six cassava proteins including the RWP-RK domain. Genes of the NLP subfamily had a longer sequence and more introns than the RKD subfamily. A large number of hormone- and stress-related cis-acting elements were found in the analysis of RWP-RK promoters. Real-time quantitative PCR revealed that all MeNLP1-7 and MeRKD1/3/5 genes responded to different abiotic stressors (water deficit, cold temperature, mannitol, polyethylene glycol, NaCl, and H2O2), hormonal treatments (abscisic acid and methyl jasmonate), and nitrogen starvation. MeNLP3/4/5/6/7 and MeRKD3/5, which can quickly and efficiently respond to different stresses, were found to be important candidate genes for further functional assays in cassava. The MeRKD5 and MeNLP6 proteins were localized to the cell nucleus in tobacco leaf. Five and one candidate proteins interacting with MeRKD5 and MeNLP6, respectively, were screened from the cassava nitrogen starvation library, including agamous-like mads-box protein AGL14, metallothionein 2, Zine finger FYVE domain containing protein, glyceraldehyde-3-phosphate dehydrogenase, E3 Ubiquitin-protein ligase HUWE1, and PPR repeat family protein. These results provided a solid basis to understand abiotic stress responses and signal transduction mediated by RWP-RK genes in cassava.
Collapse
Affiliation(s)
- Chenyu Lin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Xin Guo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
| | - Xiaohui Yu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (C.L.); (X.G.); (X.Y.)
| | - Shuxia Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Xiaoling Yu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Feng An
- Hainan Danzhou Agro-Ecosystem National Observation and Research Station, Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China;
| | - Pingjuan Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| | - Mengbin Ruan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.L.); (W.L.); (X.Y.)
| |
Collapse
|
23
|
Gao JP, Liang W, Jiang S, Yan Z, Zhou C, Wang E, Murray JD. NODULE INCEPTION activates gibberellin biosynthesis genes during rhizobial infection. THE NEW PHYTOLOGIST 2023; 239:459-465. [PMID: 36683391 DOI: 10.1111/nph.18759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Jin-Peng Gao
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Wenjie Liang
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Suyu Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhongyuan Yan
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Hunan University of Arts and Science, Changde, 415000, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
24
|
Zhao Z, Wang Y, Peng Z, Luo Z, Zhao M, Wang J. Allelic expression of AhNSP2-B07 due to parent of origin affects peanut nodulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1193465. [PMID: 37426991 PMCID: PMC10325728 DOI: 10.3389/fpls.2023.1193465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
Legumes are well-known for establishing a symbiotic relationship with rhizobia in root nodules to fix nitrogen from the atmosphere. The nodulation signaling pathway 2 (NSP2) gene plays a critical role in the symbiotic signaling pathway. In cultivated peanut, an allotetraploid (2n = 4x = 40, AABB) legume crop, natural polymorphisms in a pair of NSP2 homoeologs (Na and Nb) located on chromosomes A08 and B07, respectively, can cause loss of nodulation. Interestingly, some heterozygous (NBnb) progeny produced nodules, while some others do not, suggesting non-Mendelian inheritance in the segregating population at the Nb locus. In this study, we investigated the non-Mendelian inheritance at the NB locus. Selfing populations were developed to validate the genotypical and phenotypical segregating ratios. Allelic expression was detected in roots, ovaries, and pollens of heterozygous plants. Bisulfite PCR and sequencing of the Nb gene in gametic tissue were performed to detect the DNA methylation variations of this gene in different gametic tissues. The results showed that only one allele at the Nb locus expressed in peanut roots during symbiosis. In the heterozygous (Nbnb) plants, if dominant allele expressed, the plants produced nodules, if recessive allele expressed, then no nodules were produced. qRT-PCR experiments revealed that the expression of Nb gene in the ovary was extremely low, about seven times lower than that in pollen, regardless of genotypes or phenotypes of the plants at this locus. The results indicated that Nb gene expression in peanut depends on the parent of origin and is imprinted in female gametes. However, no significant differences of DNA methylation level were detected between these two gametic tissues by bisulfite PCR and sequencing. The results suggested that the remarkable low expression of Nb in female gametes may not be caused by DNA methylation. This study provided a unique genetic basis of a key gene involved in peanut symbiosis, which could facilitate understanding the regulation of gene expression in symbiosis in polyploid legumes.
Collapse
Affiliation(s)
- Zifan Zhao
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Yichun Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
25
|
Li Y, Wang C, Zheng L, Ma W, Li M, Guo Z, Zhao Q, Zhang K, Liu R, Liu Y, Tian Z, Bai Y, Zhong Y, Liao H. Natural variation of GmRj2/Rfg1 determines symbiont differentiation in soybean. Curr Biol 2023; 33:2478-2490.e5. [PMID: 37301200 DOI: 10.1016/j.cub.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Symbiotic nitrogen fixation (SNF) provides much of the N utilized by leguminous plants throughout growth and development. Legumes may simultaneously establish symbiosis with different taxa of microbial symbionts. Yet, the mechanisms used to steer associations toward symbionts that are most propitious across variations in soil types remain mysterious. Here, we demonstrate that GmRj2/Rfg1 is responsible for regulating symbiosis with multiple taxa of soybean symbionts. In our experiments, the GmRj2/Rfg1SC haplotype favored association with Bradyrhizobia, which is mostly distributed in acid soils, whereas the GmRj2/Rfg1HH haplotype and knockout mutants of GmRj2/Rfg1SC associated equally with Bradyrhizobia and Sinorhizobium. Association between GmRj2/Rfg1 and NopP, furthermore, appeared to be involved in symbiont selection. Furthermore, geographic distribution analysis of 1,821 soybean accessions showed that GmRj2/Rfg1SC haplotypes were enriched in acidic soils where Bradyrhizobia were the dominant symbionts, whereas GmRj2/Rfg1HH haplotypes were most prevalent in alkaline soils dominated by Sinorhizobium, and neutral soils harbored no apparent predilections toward either haplotype. Taken together, our results suggest that GmRj2/Rfg1 regulates symbiosis with different symbionts and is a strong determinant of soybean adaptability across soil regions. As a consequence, the manipulation of the GmRj2/Rfg1 genotype or application of suitable symbionts according to the haplotype at the GmRj2/Rfg1 locus might be suitable strategies to explore for increasing soybean yield through the management of SNF.
Collapse
Affiliation(s)
- Yanjun Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cunhu Wang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Zheng
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Ma
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjia Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zilong Guo
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingsong Zhao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kefei Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Libourel C, Keller J, Brichet L, Cazalé AC, Carrère S, Vernié T, Couzigou JM, Callot C, Dufau I, Cauet S, Marande W, Bulach T, Suin A, Masson-Boivin C, Remigi P, Delaux PM, Capela D. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. NATURE PLANTS 2023:10.1038/s41477-023-01441-w. [PMID: 37322127 PMCID: PMC10356618 DOI: 10.1038/s41477-023-01441-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.
Collapse
Affiliation(s)
- Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Lukas Brichet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Isabelle Dufau
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Tabatha Bulach
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Philippe Remigi
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| | - Delphine Capela
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
27
|
Nasrollahi V, Allam G, Kohalmi SE, Hannoufa A. MsSPL9 Modulates Nodulation under Nitrate Sufficiency Condition in Medicago sativa. Int J Mol Sci 2023; 24:ijms24119615. [PMID: 37298564 DOI: 10.3390/ijms24119615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Nodulation in Leguminous spp. is induced by common environmental cues, such as low nitrogen availability conditions, in the presence of the specific Rhizobium spp. in the rhizosphere. Medicago sativa (alfalfa) is an important nitrogen-fixing forage crop that is widely cultivated around the world and relied upon as a staple source of forage in livestock feed. Although alfalfa's relationship with these bacteria is one of the most efficient between rhizobia and legume plants, breeding for nitrogen-related traits in this crop has received little attention. In this report, we investigate the role of Squamosa-Promoter Binding Protein-Like 9 (SPL9), a target of miR156, in nodulation in alfalfa. Transgenic alfalfa plants with SPL9-silenced (SPL9-RNAi) and overexpressed (35S::SPL9) were compared to wild-type (WT) alfalfa for phenotypic changes in nodulation in the presence and absence of nitrogen. Phenotypic analyses showed that silencing of MsSPL9 in alfalfa caused an increase in the number of nodules. Moreover, the characterization of phenotypic and molecular parameters revealed that MsSPL9 regulates nodulation under a high concentration of nitrate (10 mM KNO3) by regulating the transcription levels of the nitrate-responsive genes Nitrate Reductase1 (NR1), NR2, Nitrate transporter 2.5 (NRT2.5), and a shoot-controlled autoregulation of nodulation (AON) gene, Super numeric nodules (SUNN). While MsSPL9-overexpressing transgenic plants have dramatically increased transcript levels of SUNN, NR1, NR2, and NRT2.5, reducing MsSPL9 caused downregulation of these genes and displayed a nitrogen-starved phenotype, as downregulation of the MsSPL9 transcript levels caused a nitrate-tolerant nodulation phenotype. Taken together, our results suggest that MsSPL9 regulates nodulation in alfalfa in response to nitrate.
Collapse
Affiliation(s)
- Vida Nasrollahi
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Gamalat Allam
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON N6A 3K7, Canada
| |
Collapse
|
28
|
Wang J, Sun Z, Liu H, Yue L, Wang F, Liu S, Su B, Liu B, Kong F, Fang C. Genome-Wide Identification and Characterization of the Soybean Snf2 Gene Family and Expression Response to Rhizobia. Int J Mol Sci 2023; 24:ijms24087250. [PMID: 37108411 PMCID: PMC10138738 DOI: 10.3390/ijms24087250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sucrose nonfermenting 2 (Snf2) family proteins are the core component of chromatin remodeling complexes that can alter chromatin structure and nucleosome position by utilizing the energy of ATP, playing a vital role in transcription regulation, DNA replication, and DNA damage repair. Snf2 family proteins have been characterized in various species including plants, and they have been found to regulate development and stress responses in Arabidopsis. Soybean (Glycine max) is an important food and economic crop worldwide, unlike other non-leguminous crops, soybeans can form a symbiotic relationship with rhizobia for biological nitrogen fixation. However, little is known about Snf2 family proteins in soybean. In this study, we identified 66 Snf2 family genes in soybean that could be classified into six groups like Arabidopsis, unevenly distributed on 20 soybean chromosomes. Phylogenetic analysis with Arabidopsis revealed that these 66 Snf2 family genes could be divided into 18 subfamilies. Collinear analysis showed that segmental duplication was the main mechanism for expansion of Snf2 genes rather than tandem repeats. Further evolutionary analysis indicated that the duplicated gene pairs had undergone purifying selection. All Snf2 proteins contained seven domains, and each Snf2 protein had at least one SNF2_N domain and one Helicase_C domain. Promoter analysis revealed that most Snf2 genes had cis-elements associated with jasmonic acid, abscisic acid, and nodule specificity in their promoter regions. Microarray data and real-time quantitative PCR (qPCR) analysis revealed that the expression profiles of most Snf2 family genes were detected in both root and nodule tissues, and some of them were found to be significantly downregulated after rhizobial infection. In this study, we conducted a comprehensive analysis of the soybean Snf2 family genes and demonstrated their responsiveness to Rhizobia infection. This provides insight into the potential roles of Snf2 family genes in soybean symbiotic nodulation.
Collapse
Affiliation(s)
- Jianhao Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhihui Sun
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huan Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lin Yue
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fan Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Shuangrong Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bohong Su
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fanjiang Kong
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chao Fang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
29
|
Ivanovici A, Laffont C, Larrainzar E, Patel N, Winning CS, Lee HC, Imin N, Frugier F, Djordjevic MA. The Medicago SymCEP7 hormone increases nodule number via shoots without compromising lateral root number. PLANT PHYSIOLOGY 2023; 191:2012-2026. [PMID: 36653329 PMCID: PMC10022606 DOI: 10.1093/plphys/kiad012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Legumes acquire soil nutrients through nitrogen-fixing root nodules and lateral roots. To balance the costs and benefits of nodulation, legumes negatively control root nodule number by autoregulatory and hormonal pathways. How legumes simultaneously coordinate root nodule and lateral root development to procure nutrients remains poorly understood. In Medicago (Medicago truncatula), a subset of mature C-TERMINALLY ENCODED PEPTIDE (CEP) hormones can systemically promote nodule number, but all CEP hormones tested to date negatively regulate lateral root number. Here we showed that Medicago CEP7 produces a mature peptide, SymCEP7, that promotes nodulation from the shoot without compromising lateral root number. Rhizobial inoculation induced CEP7 in the susceptible root nodulation zone in a Nod factor-dependent manner, and, in contrast to other CEP genes, its transcription level was elevated in the ethylene signaling mutant sickle. Using mass spectrometry, fluorescence microscopy and expression analysis, we demonstrated that SymCEP7 activity requires the COMPACT ROOT ARCHITECTURE 2 receptor and activates the shoot-to-root systemic effector, miR2111. Shoot-applied SymCEP7 rapidly promoted nodule number in the pM to nM range at concentrations up to five orders of magnitude lower than effects mediated by root-applied SymCEP7. Shoot-applied SymCEP7 also promoted nodule number in White Clover (Trifolium repens) and Lotus (Lotus japonicus), which suggests that this biological function may be evolutionarily conserved. We propose that SymCEP7 acts in the Medicago shoot to counter balance the autoregulation pathways induced rapidly by rhizobia to enable nodulation without compromising lateral root growth, thus promoting the acquisition of nutrients other than nitrogen to support their growth.
Collapse
Affiliation(s)
- Ariel Ivanovici
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Carole Laffont
- University of Paris-Saclay, CNRS, INRAE, University Paris-Cité, Univ. d’Evry, Gif-sur-Yvette, France
| | - Estíbaliz Larrainzar
- Sciences Department, Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona 31006, Spain
| | - Neha Patel
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Courtney S Winning
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Han-Chung Lee
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Nijat Imin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Florian Frugier
- University of Paris-Saclay, CNRS, INRAE, University Paris-Cité, Univ. d’Evry, Gif-sur-Yvette, France
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
30
|
Suzaki T. Root nodule organogenesis: a unique lateral organogenesis in legumes. BREEDING SCIENCE 2023; 73:70-75. [PMID: 37168810 PMCID: PMC10165338 DOI: 10.1270/jsbbs.22067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/04/2022] [Indexed: 05/13/2023]
Abstract
During the course of plant evolution, leguminous and a few plants species have established root nodule symbiosis (RNS), one of the nitrogen nutrient acquisition strategies based on mutual interaction between plants and nitrogen-fixing bacteria. In addition to its useful agronomic trait, RNS comprises a unique form of plant lateral organogenesis; dedifferentiation and activation of cortical cells in the root are induced upon bacterial infection during nodule development. In the past few years, the elucidations of the significance of NODULE INCEPTION transcription factor as a potentially key innovative factor of RNS, the details of its function, and the successive discoveries of its target genes have advanced our understanding underlying molecular mechanisms of nodule organogenesis. In addition, a recent elucidation of the role of legume SHORTROOT-SCARECROW module has provided the insights into the unique properties of legume cortical cells. Here, I summarize such latest findings on the neofunctionalized key players of nodule organogenesis, which may provide clue to understand an evolutionary basis of RNS.
Collapse
Affiliation(s)
- Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
31
|
Liu M, Kameoka H, Oda A, Maeda T, Goto T, Yano K, Soyano T, Kawaguchi M. The effects of ERN1 on gene expression during early rhizobial infection in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2023; 13:995589. [PMID: 36733592 PMCID: PMC9888413 DOI: 10.3389/fpls.2022.995589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Legumes develop root nodules in association with compatible rhizobia to overcome nitrogen deficiency. Rhizobia enter the host legume, mainly through infection threads, and induce nodule primordium formation in the root cortex. Multiple transcription factors have been identified to be involved in the regulation of the establishment of root nodule symbiosis, including ERF Required for Nodulation1 (ERN1). ERN1 is involved in a transcription network with CYCLOPS and NODULE INCEPTION (NIN). Mutation of ERN1 often results in misshapen root hair tips, deficient infection thread formation, and immature root nodules. ERN1 directly activates the expression of ENOD11 in Medicago truncatula to assist cell wall remodeling and Epr3 in Lotus japonicus to distinguish rhizobial exopolysaccharide signals. However, aside from these two genes, it remains unclear which genes are regulated by LjERN1 or what role LjERN1 plays during root nodule symbiosis. Thus, we conducted RNA sequencing to compare the gene expression profiles of wild-type L. japonicus and Ljern1-6 mutants. In total, 234 differentially expressed genes were identified as candidate LjERN1 target genes. These genes were found to be associated with cell wall remodeling, signal transduction, phytohormone metabolism, and transcription regulation, suggesting that LjERN1 is involved in multiple processes during the early stages of the establishment of root nodule symbiosis. Many of these candidate genes including RINRK1 showed decreased expression levels in Ljnin-2 mutants based on a search of a public database, suggesting that LjERN1 and LjNIN coordinately regulate gene expression. Our data extend the current understanding of the pleiotropic role of LjERN1 in root nodule symbiosis.
Collapse
Affiliation(s)
- Meng Liu
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Akiko Oda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takashi Goto
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Koji Yano
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Takashi Soyano
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
32
|
Garcia K, Cloghessy K, Cooney DR, Shelley B, Chakraborty S, Kafle A, Busidan A, Sonawala U, Collier R, Jayaraman D, Ané JM, Pilot G. The putative transporter MtUMAMIT14 participates in nodule formation in Medicago truncatula. Sci Rep 2023; 13:804. [PMID: 36646812 PMCID: PMC9842706 DOI: 10.1038/s41598-023-28160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Transport systems are crucial in many plant processes, including plant-microbe interactions. Nodule formation and function in legumes involve the expression and regulation of multiple transport proteins, and many are still uncharacterized, particularly for nitrogen transport. Amino acids originating from the nitrogen-fixing process are an essential form of nitrogen for legumes. This work evaluates the role of MtN21 (henceforth MtUMAMIT14), a putative transport system from the MtN21/EamA-like/UMAMIT family, in nodule formation and nitrogen fixation in Medicago truncatula. To dissect this transporter's role, we assessed the expression of MtUMAMIT14 using GUS staining, localized the corresponding protein in M. truncatula root and tobacco leaf cells, and investigated two independent MtUMAMIT14 mutant lines. Our results indicate that MtUMAMIT14 is localized in endosomal structures and is expressed in both the infection zone and interzone of nodules. Comparison of mutant and wild-type M. truncatula indicates MtUMAMIT14, the expression of which is dependent on the presence of NIN, DNF1, and DNF2, plays a role in nodule formation and nitrogen-fixation. While the function of the transporter is still unclear, our results connect root nodule nitrogen fixation in legumes with the UMAMIT family.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA.
| | - Kaylee Cloghessy
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Danielle R Cooney
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA
| | - Brett Shelley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Arjun Kafle
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695-7619, USA
| | - Aymeric Busidan
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Unnati Sonawala
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Ray Collier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Molecular Technologies Department, Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Madison, WI, 53562, USA
| | | | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
33
|
Fang D, Zhang W, Ye Z, Hu F, Cheng X, Cao J. The plant specific SHORT INTERNODES/STYLISH (SHI/STY) proteins: Structure and functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:685-695. [PMID: 36565613 DOI: 10.1016/j.plaphy.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Plant specific SHORT INTERNODES/STYLISH (SHI/STY) protein is a transcription factor involved in the formation and development of early lateral organs in plants. However, research on the SHI/STY protein family is not focused enough. In this article, we review recent studies on SHI/STY genes and explore the evolution and structure of SHI/STY. The biological functions of SHI/STYs are discussed in detail in this review, and the application of each biological function to modern agriculture is discussed. All SHI/STY proteins contain typical conserved RING-like zinc finger domain and IGGH domain. SHI/STYs are involved in the formation and development of lateral root, stem extension, leaf morphogenesis, and root nodule development. They are also involved in the regulation of pistil and stamen development and flowering time. At the same time, the regulation of some GA, JA, and auxin signals also involves these family proteins. For each aspect, unanswered or poorly understood questions were identified to help define future research areas. This review will provide a basis for further functional study of this gene family.
Collapse
Affiliation(s)
- Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiuzhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
34
|
Chen J, Wang Z, Wang L, Hu Y, Yan Q, Lu J, Ren Z, Hong Y, Ji H, Wang H, Wu X, Lin Y, Su C, Ott T, Li X. The B-type response regulator GmRR11d mediates systemic inhibition of symbiotic nodulation. Nat Commun 2022; 13:7661. [PMID: 36496426 PMCID: PMC9741591 DOI: 10.1038/s41467-022-35360-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Key to the success of legumes is the ability to form and maintain optimal symbiotic nodules that enable them to balance the trade-off between symbiosis and plant growth. Cytokinin is essential for homeostatic regulation of nodulation, but the mechanism remains incompletely understood. Here, we show that a B-type response regulator GmRR11d mediates systemic inhibition of nodulation. GmRR11d is induced by rhizobia and low level cytokinin, and GmRR11d can suppress the transcriptional activity of GmNSP1 on GmNIN1a to inhibit soybean nodulation. GmRR11d positively regulates cytokinin response and its binding on the GmNIN1a promoter is enhanced by cytokinin. Intriguingly, rhizobial induction of GmRR11d and its function are dependent upon GmNARK that is a CLV1-like receptor kinase and inhibits nodule number in shoots. Thus, GmRR11d governs a transcriptional program associated with nodulation attenuation and cytokinin response activation essential for systemic regulation of nodulation.
Collapse
Affiliation(s)
- Jiahuan Chen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhijuan Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lixiang Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.412545.30000 0004 1798 1300College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Yangyang Hu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiqi Yan
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Lu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyin Ren
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yujie Hong
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongtao Ji
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinying Wu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanru Lin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chao Su
- grid.5963.9University of Freiburg, Faculty of Biology, Cell Biology, Freiburg, Germany
| | - Thomas Ott
- grid.5963.9University of Freiburg, Faculty of Biology, Cell Biology, Freiburg, Germany ,grid.5963.9CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Xia Li
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, Guangdong, PR China
| |
Collapse
|
35
|
Nasrollahi V, Yuan ZC, Lu QSM, McDowell T, Kohalmi SE, Hannoufa A. Deciphering the role of SPL12 and AGL6 from a genetic module that functions in nodulation and root regeneration in Medicago sativa. PLANT MOLECULAR BIOLOGY 2022; 110:511-529. [PMID: 35976552 PMCID: PMC9684250 DOI: 10.1007/s11103-022-01303-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/17/2022] [Indexed: 05/11/2023]
Abstract
Our results show that SPL12 plays a crucial role in regulating nodule development in Medicago sativa L. (alfalfa), and that AGL6 is targeted and downregulated by SPL12. Root architecture in plants is critical because of its role in controlling nutrient cycling, water use efficiency and response to biotic and abiotic stress factors. The small RNA, microRNA156 (miR156), is highly conserved in plants, where it functions by silencing a group of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. We previously showed that transgenic Medicago sativa (alfalfa) plants overexpressing miR156 display increased nodulation, improved nitrogen fixation and enhanced root regenerative capacity during vegetative propagation. In alfalfa, transcripts of eleven SPLs, including SPL12, are targeted for cleavage by miR156. In this study, we characterized the role of SPL12 in root architecture and nodulation by investigating the transcriptomic and phenotypic changes associated with altered transcript levels of SPL12, and by determining SPL12 regulatory targets using SPL12-silencing and -overexpressing alfalfa plants. Phenotypic analyses showed that silencing of SPL12 in alfalfa caused an increase in root regeneration, nodulation, and nitrogen fixation. In addition, AGL6 which encodes AGAMOUS-like MADS box transcription factor, was identified as being directly targeted for silencing by SPL12, based on Next Generation Sequencing-mediated transcriptome analysis and chromatin immunoprecipitation assays. Taken together, our results suggest that SPL12 and AGL6 form a genetic module that regulates root development and nodulation in alfalfa.
Collapse
Affiliation(s)
- Vida Nasrollahi
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Qing Shi Mimmie Lu
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Tim McDowell
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada.
- Department of Biology, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
| |
Collapse
|
36
|
Bhattacharjee O, Raul B, Ghosh A, Bhardwaj A, Bandyopadhyay K, Sinharoy S. Nodule INception-independent epidermal events lead to bacterial entry during nodule development in peanut (Arachis hypogaea). THE NEW PHYTOLOGIST 2022; 236:2265-2281. [PMID: 36098671 DOI: 10.1111/nph.18483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Legumes can host nitrogen-fixing rhizobia inside root nodules. In model legumes, rhizobia enter via infection threads (ITs) and develop nodules in which the infection zone contains a mixture of infected and uninfected cells. Peanut (Arachis hypogaea) diversified from model legumes c. 50-55 million years ago. Rhizobia enter through 'cracks' to form nodules in peanut roots where cells of the infection zone are uniformly infected. Phylogenomic studies have indicated symbiosis as a labile trait in peanut. These atypical features prompted us to investigate the molecular mechanism of peanut nodule development. Combining cell biology, genetics and genomic tools, we visualized the status of hormonal signaling in peanut nodule primordia. Moreover, we dissected the signaling modules of Nodule INception (NIN), a master regulator of both epidermal infection and cortical organogenesis. Cytokinin signaling operates in a broad zone, from the epidermis to the pericycle inside nodule primordia, while auxin signaling is narrower and focused. Nodule INception is involved in nodule organogenesis, but not in crack entry. Nodulation Pectate Lyase, which remodels cell walls during IT formation, is not required. By contrast, Nodule enhanced Glycosyl Hydrolases (AhNGHs) are recruited for cell wall modification during crack entry. While hormonal regulation is conserved, the function of the NIN signaling modules is diversified in peanut.
Collapse
Affiliation(s)
- Oindrila Bhattacharjee
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Haryana, 122412, India
| | - Bikash Raul
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Amit Ghosh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akanksha Bhardwaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kaustav Bandyopadhyay
- Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Haryana, 122412, India
| | - Senjuti Sinharoy
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
37
|
Zhang Y, Cheng Q, Liao C, Li L, Gou C, Chen Z, Wang Y, Liu B, Kong F, Chen L. GmTOC1b inhibits nodulation by repressing GmNIN2a and GmENOD40-1 in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1052017. [PMID: 36438085 PMCID: PMC9691777 DOI: 10.3389/fpls.2022.1052017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Symbiotic nitrogen fixation is an important factor affecting the yield and quality of leguminous crops. Nodulation is regulated by a complex network comprising several transcription factors. Here, we functionally characterized the role of a TOC1 family member, GmTOC1b, in soybean (Glycine max) nodulation. RT-qPCR assays showed that GmTOC1b is constitutively expressed in soybean. However, GmTOC1b was also highly expressed in nodules, and GmTOC1 localized to the cell nucleus, based on transient transformation in Nicotiana benthamiana leaves. Homozygous Gmtoc1b mutant plants exhibited increased root hair curling and produced more infection threads, resulting in more nodules and greater nodule fresh weight. By contrast, GmTOC1b overexpression inhibited nodulation. Furthermore, we also showed that GmTOC1b represses the expression of nodulation-related genes including GmNIN2a and GmENOD40-1 by binding to their promoters. We conclude that GmTOC1b functions as a transcriptional repressor to inhibit nodulation by repressing the expression of key nodulation-related genes including GmNIN2a, GmNIN2b, and GmENOD40-1 in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Liyu Chen
- *Correspondence: Liyu Chen, ; Fanjiang Kong,
| |
Collapse
|
38
|
Chakraborty S, Valdés-López O, Stonoha-Arther C, Ané JM. Transcription Factors Controlling the Rhizobium-Legume Symbiosis: Integrating Infection, Organogenesis and the Abiotic Environment. PLANT & CELL PHYSIOLOGY 2022; 63:1326-1343. [PMID: 35552446 DOI: 10.1093/pcp/pcac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Legume roots engage in a symbiotic relationship with rhizobia, leading to the development of nitrogen-fixing nodules. Nodule development is a sophisticated process and is under the tight regulation of the plant. The symbiosis initiates with a signal exchange between the two partners, followed by the development of a new organ colonized by rhizobia. Over two decades of study have shed light on the transcriptional regulation of rhizobium-legume symbiosis. A large number of transcription factors (TFs) have been implicated in one or more stages of this symbiosis. Legumes must monitor nodule development amidst a dynamic physical environment. Some environmental factors are conducive to nodulation, whereas others are stressful. The modulation of rhizobium-legume symbiosis by the abiotic environment adds another layer of complexity and is also transcriptionally regulated. Several symbiotic TFs act as integrators between symbiosis and the response to the abiotic environment. In this review, we trace the role of various TFs involved in rhizobium-legume symbiosis along its developmental route and highlight the ones that also act as communicators between this symbiosis and the response to the abiotic environment. Finally, we discuss contemporary approaches to study TF-target interactions in plants and probe their potential utility in the field of rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, México
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
39
|
Dinkins RD, Hancock JA, Bickhart DM, Sullivan ML, Zhu H. Expression and Variation of the Genes Involved in Rhizobium Nodulation in Red Clover. PLANTS (BASEL, SWITZERLAND) 2022; 11:2888. [PMID: 36365339 PMCID: PMC9655500 DOI: 10.3390/plants11212888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Red clover (Trifolium pratense L.) is an important forage crop and serves as a major contributor of nitrogen input in pasture settings because of its ability to fix atmospheric nitrogen. During the legume-rhizobial symbiosis, the host plant undergoes a large number of gene expression changes, leading to development of root nodules that house the rhizobium bacteria as they are converted into nitrogen-fixing bacteroids. Many of the genes involved in symbiosis are conserved across legume species, while others are species-specific with little or no homology across species and likely regulate the specific plant genotype/symbiont strain interactions. Red clover has not been widely used for studying symbiotic nitrogen fixation, primarily due to its outcrossing nature, making genetic analysis rather complicated. With the addition of recent annotated genomic resources and use of RNA-seq tools, we annotated and characterized a number of genes that are expressed only in nodule forming roots. These genes include those encoding nodule-specific cysteine rich peptides (NCRs) and nodule-specific Polycystin-1, Lipoxygenase, Alpha toxic (PLAT) domain proteins (NPDs). Our results show that red clover encodes one of the highest number of NCRs and ATS3-like/NPDs, which are postulated to increase nitrogen fixation efficiency, in the Inverted-Repeat Lacking Clade (IRLC) of legumes. Knowledge of the variation and expression of these genes in red clover will provide more insights into the function of these genes in regulating legume-rhizobial symbiosis and aid in breeding of red clover genotypes with increased nitrogen fixation efficiency.
Collapse
Affiliation(s)
- Randy D. Dinkins
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY 40506, USA
| | - Julie A. Hancock
- College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40508, USA
| | | | | | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
40
|
Yuan P, Luo F, Gleason C, Poovaiah BW. Calcium/calmodulin-mediated microbial symbiotic interactions in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:984909. [PMID: 36330252 PMCID: PMC9623113 DOI: 10.3389/fpls.2022.984909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cytoplasmic calcium (Ca2+) transients and nuclear Ca2+ oscillations act as hubs during root nodulation and arbuscular mycorrhizal symbioses. Plants perceive bacterial Nod factors or fungal signals to induce the Ca2+ oscillation in the nucleus of root hair cells, and subsequently activate calmodulin (CaM) and Ca2+/CaM-dependent protein kinase (CCaMK). Ca2+ and CaM-bound CCaMK phosphorylate transcription factors then initiate down-stream signaling events. In addition, distinct Ca2+ signatures are activated at different symbiotic stages: microbial colonization and infection; nodule formation; and mycorrhizal development. Ca2+ acts as a key signal that regulates a complex interplay of downstream responses in many biological processes. This short review focuses on advances in Ca2+ signaling-regulated symbiotic events. It is meant to be an introduction to readers in and outside the field of bacterial and fungal symbioses. We summarize the molecular mechanisms underlying Ca2+/CaM-mediated signaling in fine-tuning both local and systemic symbiotic events.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Feixiong Luo
- Department of Pomology, Hunan Agricultural University, Changsha, China
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - B. W. Poovaiah
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
41
|
Wang X, Chen K, Zhou M, Gao Y, Huang H, Liu C, Fan Y, Fan Z, Wang Y, Li X. GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean. THE NEW PHYTOLOGIST 2022; 236:656-670. [PMID: 35751548 DOI: 10.1111/nph.18343] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Soybean (Glycine max) is one of the most important crops world-wide. Under low nitrogen (N) condition, soybean can form a symbiotic relationship with rhizobia to acquire sufficient N for their growth and production. Nodulation signaling controls soybean symbiosis with rhizobia. The soybean Nodule Inception (GmNINa) gene is a central regulator of soybean nodulation. However, the transcriptional regulation of GmNINa remains largely unknown. Nodulation is sensitive to salt stress, but the underlying mechanisms are unclear. Here, we identified an NAC transcription factor designated GmNAC181 (also known as GmNAC11) as the interacting protein of GmNSP1a. GmNAC181 overexpression or knockdown in soybean resulted in increased or decreased numbers of nodules, respectively. Accordingly, the expression of GmNINa was greatly up- and downregulated, respectively. Furthermore, we showed that GmNAC181 can directly bind to the GmNINa promoter to activate its gene expression. Intriguingly, GmNAC181 was highly induced by salt stress during nodulation and promoted symbiotic nodulation under salt stress. We identified a new transcriptional activator of GmNINa in the nodulation pathway and revealed a mechanism by which GmNAC181 acts as a network node orchestrating the expression of GmNINa and symbiotic nodulation under salt stress conditions.
Collapse
Affiliation(s)
- Xiaodi Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, Guangdong, 510642, China
| | - Kuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Miaomiao Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongkang Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huimei Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuanyuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zihui Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Youning Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
42
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
43
|
Shoot-to-root translocated GmNN1/FT2a triggers nodulation and regulates soybean nitrogen nutrition. PLoS Biol 2022; 20:e3001739. [PMID: 35969610 PMCID: PMC9410562 DOI: 10.1371/journal.pbio.3001739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/25/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022] Open
Abstract
Symbiotic nitrogen fixation (SNF) provides sufficient nitrogen (N) to meet most legume nutrition demands. In return, host plants feed symbionts carbohydrates produced in shoots. However, the molecular dialogue between shoots and symbionts remains largely mysterious. Here, we report the map-based cloning and characterization of a natural variation in GmNN1, the ortholog of Arabidopsis thaliana FLOWERING LOCUS T (FT2a) that simultaneously triggers nodulation in soybean and modulates leaf N nutrition. A 43-bp insertion in the promoter region of GmNN1/FT2a significantly decreased its transcription level and yielded N deficiency phenotypes. Manipulating GmNN1/GmFT2a significantly enhanced soybean nodulation, plant growth, and N nutrition. The near-isogenic lines (NILs) carrying low mRNA abundance alleles of GmNN1/FT2a, along with stable transgenic soybeans with CRISPR/Cas9 knockouts of GmNN1/FT2a, had yellower leaves, lower N concentrations, and fewer nodules than wild-type control plants. Grafting together with split-root experiments demonstrated that only shoot GmNN1/FT2a was responsible for regulating nodulation and thereby N nutrition through shoot-to-root translocation, and this process depends on rhizobial infection. After translocating into roots, shoot-derived GmNN1/FT2a was found to interact with GmNFYA-C (nuclear factor-Y subunit A-C) to activate symbiotic signaling through the previously reported GmNFYA-C-ENOD40 module. In short, the description of the critical soybean nodulation regulatory pathway outlined herein sheds novel insights into the shoot-to-root signaling required for communications between host plants and root nodulating symbionts. Symbiotic nitrogen fixation provides a vital nitrogen source in agroecosystems but nodulation is tightly controlled by a long-distance signaling system. This study uses map-based cloning to reveal GmNN1/FT2a as a new shoot-to-root mobile protein that significantly regulates nodule formation and thus nitrogen nutrition in soybean.
Collapse
|
44
|
Akamatsu A, Nagae M, Takeda N. The CYCLOPS Response Element in the NIN Promoter Is Important but Not Essential for Infection Thread Formation During Lotus japonicus-Rhizobia Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:650-658. [PMID: 35343248 DOI: 10.1094/mpmi-10-21-0252-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The establishment of the legume-rhizobia symbiosis, termed the root-nodule symbiosis (RNS), requires elaborate interactions at the molecular level. The host plant-derived transcription factor NODULE INCEPTION (NIN) is known to be crucial for RNS, regulating associated processes such as alteration of root hair morphology, infection thread formation, and cell division during nodulation. This emphasizes the importance of the precise spatiotemporal regulation of NIN expression for the establishment of RNS; however, the detailed role of NIN promoter sequences in this process remains unclear. The daphne mutant, a nin mutant allele containing a chromosomal translocation approximately 7 kb upstream of the start codon, does not form nodules but does form infection threads, indicating that the region within 7 kb of the NIN start codon contributes to NIN expression during infection thread formation. CYCLOPS binds to a CYCLOPS response element (CYC-RE) in the NIN promoter, and cyclops mutants are defective in infection thread formation. Here, we performed complementation analysis in nin mutants, using various truncated forms of the NIN promoter, and found that the CYC-RE is important for infection thread formation. Additionally, the CYC-RE deletion mutant, generated through CRISPR/Cas9 technology, displayed a significant reduction in infection thread formation, indicating that the CYC-RE is important for the fine-tuning of NIN expression during this process. However, the fact that infection thread formation is not completely abolished in the CYC-RE deletion mutant suggests that cis and trans factors other than CYCLOPS and the CYC-RE may cooperatively regulate NIN expression for the induction of infection thread formation. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Akira Akamatsu
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Miwa Nagae
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Naoya Takeda
- Graduate School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
45
|
Chakraborty S, Harris JM. At the Crossroads of Salinity and Rhizobium-Legume Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:540-553. [PMID: 35297650 DOI: 10.1094/mpmi-09-21-0231-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legume roots interact with soil bacteria rhizobia to develop nodules, de novo symbiotic root organs that host these rhizobia and are mini factories of atmospheric nitrogen fixation. Nodulation is a sophisticated developmental process and is sensitive to several abiotic factors, salinity being one of them. While salinity influences both the free-living partners, symbiosis is more vulnerable than other aspects of plant and microbe physiology, and the symbiotic interaction is strongly impaired even under moderate salinity. In this review, we tease apart the various known components of rhizobium-legume symbiosis and how they interact with salt stress. We focus primarily on the initial stages of symbiosis since we have a greater mechanistic understanding of the interaction at these stages.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| |
Collapse
|
46
|
Jardinaud MF, Fromentin J, Auriac MC, Moreau S, Pecrix Y, Taconnat L, Cottret L, Aubert G, Balzergue S, Burstin J, Carrere S, Gamas P. MtEFD and MtEFD2: Two transcription factors with distinct neofunctionalization in symbiotic nodule development. PLANT PHYSIOLOGY 2022; 189:1587-1607. [PMID: 35471237 PMCID: PMC9237690 DOI: 10.1093/plphys/kiac177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/21/2022] [Indexed: 05/31/2023]
Abstract
Rhizobium-legume nitrogen-fixing symbiosis involves the formation of a specific organ, the root nodule, which provides bacteria with the proper cellular environment for atmospheric nitrogen fixation. Coordinated differentiation of plant and bacterial cells is an essential step of nodule development, for which few transcriptional regulators have been characterized. Medicago truncatula ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULE DIFFERENTIATION (MtEFD) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (ERF) transcription factor, the mutation of which leads to both hypernodulation and severe defects in nodule development. MtEFD positively controls a negative regulator of cytokinin signaling, the RESPONSE REGULATOR 4 (MtRR4) gene. Here we showed that that the Mtefd-1 mutation affects both plant and bacterial endoreduplication in nodules, as well as the expression of hundreds of genes in young and mature nodules, upstream of known regulators of symbiotic differentiation. MtRR4 expressed with the MtEFD promoter complemented Mtefd-1 hypernodulation but not the nodule differentiation phenotype. Unexpectedly, a nonlegume homolog of MtEFD, AtERF003 in Arabidopsis (Arabidopsis thaliana), could efficiently complement both phenotypes of Mtefd-1, in contrast to the MtEFD paralog MtEFD2 expressed in the root and nodule meristematic zone. A domain swap experiment showed that MtEFD2 differs from MtEFD by its C-terminal fraction outside the DNA binding domain. Furthermore, clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9) mutagenesis of MtEFD2 led to a reduction in the number of nodules formed in Mtefd-1, with downregulation of a set of genes, including notably NUCLEAR FACTOR-YA1 (MtNF-YA1) and MtNF-YB16, which are essential for nodule meristem establishment. We, therefore, conclude that nitrogen-fixing symbiosis recruited two proteins originally expressed in roots, MtEFD and MtEFD2, with distinct functions and neofunctionalization processes for each of them.
Collapse
Affiliation(s)
| | | | | | - Sandra Moreau
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | | | - Ludovic Cottret
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, Dijon, France
| | - Sébastien Carrere
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | |
Collapse
|
47
|
Li Y, Pei Y, Shen Y, Zhang R, Kang M, Ma Y, Li D, Chen Y. Progress in the Self-Regulation System in Legume Nodule Development-AON (Autoregulation of Nodulation). Int J Mol Sci 2022; 23:ijms23126676. [PMID: 35743118 PMCID: PMC9224500 DOI: 10.3390/ijms23126676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
The formation and development of legumes nodules requires a lot of energy. Legumes must strictly control the number and activity of nodules to ensure efficient energy distribution. The AON system can limit the number of rhizobia infections and nodule numbers through the systemic signal pathway network that the aboveground and belowground parts participate in together. It can also promote the formation of nodules when plants are deficient in nitrogen. The currently known AON pathway includes four parts: soil NO3− signal and Rhizobium signal recognition and transmission, CLE-SUNN is the negative regulation pathway, CEP-CRA2 is the positive regulation pathway and the miR2111/TML module regulates nodule formation and development. In order to ensure the biological function of this important approach, plants use a variety of plant hormones, polypeptides, receptor kinases, transcription factors and miRNAs for signal transmission and transcriptional regulation. This review summarizes and discusses the research progress of the AON pathway in Legume nodule development.
Collapse
|
48
|
Luo Z, Moreau C, Wang J, Frugier F, Xie F. NLP1 binds the CEP1 signalling peptide promoter to repress its expression in response to nitrate. THE NEW PHYTOLOGIST 2022; 234:1547-1552. [PMID: 35243632 DOI: 10.1111/nph.18062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Zhenpeng Luo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Corentin Moreau
- Institute of Plant Sciences Paris-Saclay (IPS2), University of Paris-Saclay, CNRS, INRA, Univ. Paris-Sud, Univ. Paris-Diderot, Univ. d'Evry, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette, 91190, France
| | - Jiang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), University of Paris-Saclay, CNRS, INRA, Univ. Paris-Sud, Univ. Paris-Diderot, Univ. d'Evry, Université Paris-Saclay, Bâtiment 630, Gif sur Yvette, 91190, France
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
49
|
Visualization of the Crossroads between a Nascent Infection Thread and the First Cell Division Event in Phaseolus vulgaris Nodulation. Int J Mol Sci 2022; 23:ijms23095267. [PMID: 35563659 PMCID: PMC9105610 DOI: 10.3390/ijms23095267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
The development of a symbiotic nitrogen-fixing nodule in legumes involves infection and organogenesis. Infection begins when rhizobia enter a root hair through an inward structure, the infection thread (IT), which guides the bacteria towards the cortical tissue. Concurrently, organogenesis takes place by inducing cortical cell division (CCD) at the infection site. Genetic analysis showed that both events are well-coordinated; however, the dynamics connecting them remain to be elucidated. To visualize the crossroads between IT and CCD, we benefited from the fact that, in Phaseolus vulgaris nodulation, where the first division occurs in subepidermal cortical cells located underneath the infection site, we traced a Rhizobium etli strain expressing DsRed, the plant cytokinesis marker YFP-PvKNOLLE, a nuclear stain and cell wall auto-fluorescence. We found that the IT exits the root hair to penetrate an underlying subepidermal cortical (S-E) cell when it is concluding cytokinesis.
Collapse
|
50
|
Kovács S, Kiss E, Jenei S, Fehér-Juhász E, Kereszt A, Endre G. The Medicago truncatula IEF Gene Is Crucial for the Progression of Bacterial Infection During Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:401-415. [PMID: 35171648 DOI: 10.1094/mpmi-11-21-0279-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Legumes are able to meet their nitrogen need by establishing nitrogen-fixing symbiosis with rhizobia. Nitrogen fixation is performed by rhizobia, which has been converted to bacteroids, in newly formed organs, the root nodules. In the model legume Medicago truncatula, nodule cells are invaded by rhizobia through transcellular tubular structures called infection threads (ITs) that are initiated at the root hairs. Here, we describe a novel M. truncatula early symbiotic mutant identified as infection-related epidermal factor (ief), in which the formation of ITs is blocked in the root hair cells and only nodule primordia are formed. We show that the function of MtIEF is crucial for the bacterial infection in the root epidermis but not required for the nodule organogenesis. The IEF gene that appears to have been recruited for a symbiotic function after the duplication of a flower-specific gene is activated by the ERN1-branch of the Nod factor signal transduction pathway and independent of the NIN activity. The expression of MtIEF is induced transiently in the root epidermal cells by the rhizobium partner or Nod factors. Although its expression was not detectable at later stages of symbiosis, complementation experiments indicate that MtIEF is also required for the proper invasion of the nodule cells by rhizobia. The gene encodes an intracellular protein of unknown function possessing a coiled-coil motif and a plant-specific DUF761 domain. The IEF protein interacts with RPG, another symbiotic protein essential for normal IT development, suggesting that combined action of these proteins plays a role in nodule infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Szilárd Kovács
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Ernő Kiss
- Biological Research Centre, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Sándor Jenei
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Erzsébet Fehér-Juhász
- Biological Research Centre, Institute of Genetics, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Attila Kereszt
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Gabriella Endre
- Biological Research Centre, Institute of Plant Biology, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| |
Collapse
|