1
|
Sun Y, Yang H, Ren T, Zhao J, Lang X, Nie L, Zhao W. CmERF1 acts as a positive regulator of fruits and leaves growth in melon (Cucumis melo L.). PLANT MOLECULAR BIOLOGY 2024; 114:70. [PMID: 38842600 DOI: 10.1007/s11103-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.
Collapse
Affiliation(s)
- Yufan Sun
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Haiming Yang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xinmei Lang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| |
Collapse
|
2
|
Knaack SA, Conde D, Chakraborty S, Balmant KM, Irving TB, Maia LGS, Triozzi PM, Dervinis C, Pereira WJ, Maeda J, Schmidt HW, Ané JM, Kirst M, Roy S. Temporal change in chromatin accessibility predicts regulators of nodulation in Medicago truncatula. BMC Biol 2022; 20:252. [DOI: 10.1186/s12915-022-01450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional networks that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, analyses of early temporal events driving this symbiosis have only captured correlative relationships between regulators and targets at mRNA level. Here, we characterize changes in transcriptome and chromatin accessibility in the model legume Medicago truncatula, in response to rhizobial signals that trigger the formation of root nodules.
Results
We profiled the temporal chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) dynamics of M. truncatula roots treated with bacterial small molecules called lipo-chitooligosaccharides that trigger host symbiotic pathways of nodule development. Using a novel approach, dynamic regulatory module networks, we integrated ATAC-seq and RNA-seq time courses to predict cis-regulatory elements and transcription factors that most significantly contribute to transcriptomic changes associated with symbiosis. Regulators involved in auxin (IAA4-5, SHY2), ethylene (EIN3, ERF1), and abscisic acid (ABI5) hormone response, as well as histone and DNA methylation (IBM1), emerged among those most predictive of transcriptome dynamics. RNAi-based knockdown of EIN3 and ERF1 reduced nodule number in M. truncatula validating the role of these predicted regulators in symbiosis between legumes and rhizobia.
Conclusions
Our transcriptomic and chromatin accessibility datasets provide a valuable resource to understand the gene regulatory programs controlling the early stages of the dynamic process of symbiosis. The regulators identified provide potential targets for future experimental validation, and the engineering of nodulation in species is unable to establish that symbiosis naturally.
Collapse
|
3
|
Chakraborty S, Valdés-López O, Stonoha-Arther C, Ané JM. Transcription Factors Controlling the Rhizobium-Legume Symbiosis: Integrating Infection, Organogenesis and the Abiotic Environment. PLANT & CELL PHYSIOLOGY 2022; 63:1326-1343. [PMID: 35552446 DOI: 10.1093/pcp/pcac063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Legume roots engage in a symbiotic relationship with rhizobia, leading to the development of nitrogen-fixing nodules. Nodule development is a sophisticated process and is under the tight regulation of the plant. The symbiosis initiates with a signal exchange between the two partners, followed by the development of a new organ colonized by rhizobia. Over two decades of study have shed light on the transcriptional regulation of rhizobium-legume symbiosis. A large number of transcription factors (TFs) have been implicated in one or more stages of this symbiosis. Legumes must monitor nodule development amidst a dynamic physical environment. Some environmental factors are conducive to nodulation, whereas others are stressful. The modulation of rhizobium-legume symbiosis by the abiotic environment adds another layer of complexity and is also transcriptionally regulated. Several symbiotic TFs act as integrators between symbiosis and the response to the abiotic environment. In this review, we trace the role of various TFs involved in rhizobium-legume symbiosis along its developmental route and highlight the ones that also act as communicators between this symbiosis and the response to the abiotic environment. Finally, we discuss contemporary approaches to study TF-target interactions in plants and probe their potential utility in the field of rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México 54090, México
| | - Christina Stonoha-Arther
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Microbial Sciences Building, 1550 Linden Dr, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr, Madison, WI 53706, USA
| |
Collapse
|
4
|
Su L, Xu C, Zeng S, Su L, Joshi T, Stacey G, Xu D. Large-Scale Integrative Analysis of Soybean Transcriptome Using an Unsupervised Autoencoder Model. FRONTIERS IN PLANT SCIENCE 2022; 13:831204. [PMID: 35310659 PMCID: PMC8927983 DOI: 10.3389/fpls.2022.831204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Plant tissues are distinguished by their gene expression patterns, which can help identify tissue-specific highly expressed genes and their differential functional modules. For this purpose, large-scale soybean transcriptome samples were collected and processed starting from raw sequencing reads in a uniform analysis pipeline. To address the gene expression heterogeneity in different tissues, we utilized an adversarial deconfounding autoencoder (AD-AE) model to map gene expressions into a latent space and adapted a standard unsupervised autoencoder (AE) model to help effectively extract meaningful biological signals from the noisy data. As a result, four groups of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors (TFs), hub genes and their functional modules in each tissue, we constructed tissue-specific gene regulatory networks (GRNs), and differential correlation networks by using corrected and compressed gene expression data. We validated our results from the literature and gene enrichment analysis, which confirmed many identified tissue-specific genes. Our study represents the largest gene expression analysis in soybean tissues to date. It provides valuable targets for tissue-specific research and helps uncover broader biological patterns. Code is publicly available with open source at https://github.com/LingtaoSu/SoyMeta.
Collapse
Affiliation(s)
- Lingtao Su
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Chunhui Xu
- Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Li Su
- Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Health Management and Informatics and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Gary Stacey
- Division of Plant Sciences and Technology and Biochemistry Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Dong Xu
- Department of Electrical Engineering and Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Institute for Data Science and Informatics, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Muñoz VL, Figueredo MS, Reinoso H, Fabra A. Role of ethylene in effective establishment of the peanut-bradyrhizobia symbiotic interaction. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1141-1148. [PMID: 34490719 DOI: 10.1111/plb.13333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ethylene has been implicated in nitrogen fixing symbioses in legumes, where rhizobial invasion occurs via infection threads (IT). In the symbiosis between peanut (Arachis hypogaea L.) and bradyrhizobia, the bacteria penetrate the root cortex intercellularly and IT are not formed. Little attention has been paid to the function of ethylene in the establishment of this symbiosis. The aim of this article is to evaluate whether ethylene plays a role in the development of this symbiotic interaction and the participation of Nod Factors (NF) in the regulation of ethylene signalling. Manipulation of ethylene in peanut was accomplished by application of 1-aminocyclopropane-1-carboxylic acid (ACC), which mimics applied ethylene, or AgNO3, which blocks ethylene responses. To elucidate the participation of NF in the regulation of ethylene signalling, we inoculated plants with a mutant isogenic rhizobial strain unable to produce NF and evaluated the effect of AgNO3 on gene expression of NF and ethylene responsive signalling pathways. Data revealed that ethylene perception is required for the formation of nitrogen-fixing nodules, while addition of ACC does not affect peanut symbiotic performance. This phenotypic evidence is in agreement with transcriptomic data from genes involved in symbiotic and ethylene signalling pathways. NF seem to modulate the expression of ethylene signalling genes. Unlike legumes infected through IT formation, ACC addition to peanut does not adversely affect nodulation, but ethylene perception is required for establishment of this symbiosis. Evidence for the contribution of NF to the modulation of ethylene-inducible defence gene expression is provided.
Collapse
Affiliation(s)
- V L Muñoz
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - M S Figueredo
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - H Reinoso
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - A Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Instituto de Investigaciones Agrobiotecnológicas, CONICET, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
6
|
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, Li MY, Zhuang J, Xiong AS. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 2020; 40:750-776. [PMID: 32522044 DOI: 10.1080/07388551.2020.1768509] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the whole life process, many factors including external and internal factors affect plant growth and development. The morphogenesis, growth, and development of plants are controlled by genetic elements and are influenced by environmental stress. Transcription factors contain one or more specific DNA-binding domains, which are essential in the whole life cycle of higher plants. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) transcription factors are a large group of factors that are mainly found in plants. The transcription factors of this family serve as important regulators in many biological and physiological processes, such as plant morphogenesis, responsive mechanisms to various stresses, hormone signal transduction, and metabolite regulation. In this review, we summarized the advances in identification, classification, function, regulatory mechanisms, and the evolution of AP2/ERF transcription factors in plants. AP2/ERF family factors are mainly classified into four major subfamilies: DREB (Dehydration Responsive Element-Binding), ERF (Ethylene-Responsive-Element-Binding protein), AP2 (APETALA2) and RAV (Related to ABI3/VP), and Soloists (few unclassified factors). The review summarized the reports about multiple regulatory functions of AP2/ERF transcription factors in plants. In addition to growth regulation and stress responses, the regulatory functions of AP2/ERF in plant metabolite biosynthesis have been described. We also discussed the roles of AP2/ERF transcription factors in different phytohormone-mediated signaling pathways in plants. Genomic-wide analysis indicated that AP2/ERF transcription factors were highly conserved during plant evolution. Some public databases containing the information of AP2/ERF have been introduced. The studies of AP2/ERF factors will provide important bases for plant regulatory mechanisms and molecular breeding.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increased Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Sharma V, Bhattacharyya S, Kumar R, Kumar A, Ibañez F, Wang J, Guo B, Sudini HK, Gopalakrishnan S, DasGupta M, Varshney RK, Pandey MK. Molecular Basis of Root Nodule Symbiosis between Bradyrhizobium and 'Crack-Entry' Legume Groundnut ( Arachis hypogaea L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E276. [PMID: 32093403 PMCID: PMC7076665 DOI: 10.3390/plants9020276] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Nitrogen is one of the essential plant nutrients and a major factor limiting crop productivity. To meet the requirements of sustainable agriculture, there is a need to maximize biological nitrogen fixation in different crop species. Legumes are able to establish root nodule symbiosis (RNS) with nitrogen-fixing soil bacteria which are collectively called rhizobia. This mutualistic association is highly specific, and each rhizobia species/strain interacts with only a specific group of legumes, and vice versa. Nodulation involves multiple phases of interactions ranging from initial bacterial attachment and infection establishment to late nodule development, characterized by a complex molecular signalling between plants and rhizobia. Characteristically, legumes like groundnut display a bacterial invasion strategy popularly known as "crack-entry'' mechanism, which is reported approximately in 25% of all legumes. This article accommodates critical discussions on the bacterial infection mode, dynamics of nodulation, components of symbiotic signalling pathway, and also the effects of abiotic stresses and phytohormone homeostasis related to the root nodule symbiosis of groundnut and Bradyrhizobium. These parameters can help to understand how groundnut RNS is programmed to recognize and establish symbiotic relationships with rhizobia, adjusting gene expression in response to various regulations. This review further attempts to emphasize the current understanding of advancements regarding RNS research in the groundnut and speculates on prospective improvement possibilities in addition to ways for expanding it to other crops towards achieving sustainable agriculture and overcoming environmental challenges.
Collapse
Affiliation(s)
- Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Samrat Bhattacharyya
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (M.D.)
- Department of Botany, Sister Nibedita Government General Degree College for Girls, Kolkata 700027, India
| | - Rakesh Kumar
- Department of Life Sciences, Central University of Karnataka, Kadaganchi-585367, India
| | - Ashish Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
- DBT-National Agri-food Biotechnology Institute (NABI), Punjab 140308, India
| | - Fernando Ibañez
- Instituto de Investigaciones Agrobiotecnológicas (CONICET-UNRC), Río Cuarto-5800, Córdoba, Argentina
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 103610, USA;
| | - Baozhu Guo
- Crop Protection and Management Research Unit, United State Department of Agriculture- Agriculture Research Service (USDA-ARS), Tifton, GA 31793, USA;
| | - Hari K. Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India (M.D.)
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India; (V.S.); (H.K.S.); (S.G.); (R.K.V.)
| |
Collapse
|
8
|
Mergaert P, Kereszt A, Kondorosi E. Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in Medicago truncatula and Other Nodulating Plants. THE PLANT CELL 2020; 32:42-68. [PMID: 31712407 PMCID: PMC6961632 DOI: 10.1105/tpc.19.00494] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Root nodules formed by plants of the nitrogen-fixing clade (NFC) are symbiotic organs that function in the maintenance and metabolic integration of large populations of nitrogen-fixing bacteria. These organs feature unique characteristics and processes, including their tissue organization, the presence of specific infection structures called infection threads, endocytotic uptake of bacteria, symbiotic cells carrying thousands of intracellular bacteria without signs of immune responses, and the integration of symbiont and host metabolism. The early stages of nodulation are governed by a few well-defined functions, which together constitute the common symbiosis-signaling pathway (CSSP). The CSSP activates a set of transcription factors (TFs) that orchestrate nodule organogenesis and infection. The later stages of nodule development require the activation of hundreds to thousands of genes, mostly expressed in symbiotic cells. Many of these genes are only active in symbiotic cells, reflecting the unique nature of nodules as plant structures. Although how the nodule-specific transcriptome is activated and connected to early CSSP-signaling is poorly understood, candidate TFs have been identified using transcriptomic approaches, and the importance of epigenetic and chromatin-based regulation has been demonstrated. We discuss how gene regulation analyses have advanced our understanding of nodule organogenesis, the functioning of symbiotic cells, and the evolution of symbiosis in the NFC.
Collapse
Affiliation(s)
- Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Eva Kondorosi
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| |
Collapse
|
9
|
Karmakar K, Kundu A, Rizvi AZ, Dubois E, Severac D, Czernic P, Cartieaux F, DasGupta M. Transcriptomic Analysis With the Progress of Symbiosis in 'Crack-Entry' Legume Arachis hypogaea Highlights Its Contrast With 'Infection Thread' Adapted Legumes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:271-285. [PMID: 30109978 DOI: 10.1094/mpmi-06-18-0174-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In root-nodule symbiosis, rhizobial invasion and nodule organogenesis is host controlled. In most legumes, rhizobia enter through infection threads and nodule primordium in the cortex is induced from a distance. But in dalbergoid legumes like Arachis hypogaea, rhizobia directly invade cortical cells through epidermal cracks to generate the primordia. Herein, we report the transcriptional dynamics with the progress of symbiosis in A. hypogaea at 1 day postinfection (dpi) (invasion), 4 dpi (nodule primordia), 8 dpi (spread of infection in nodule-like structure), 12 dpi (immature nodules containing rod-shaped rhizobia), and 21 dpi (mature nodules with spherical symbiosomes). Expression of putative ortholog of symbiotic genes in 'crack entry' legume A. hypogaea was compared with infection thread-adapted model legumes. The contrasting features were i) higher expression of receptors like LYR3 and EPR3 as compared with canonical Nod factor receptors, ii) late induction of transcription factors like NIN and NSP2 and constitutive high expression of ERF1, EIN2, bHLH476, and iii) induction of divergent pathogenesis-responsive PR-1 genes. Additionally, symbiotic orthologs of SymCRK, ROP6, RR9, SEN1, and DNF2 were not detectable and microsynteny analysis indicated the absence of a RPG homolog in diploid parental genomes of A. hypogaea. The implications are discussed and a molecular framework that guides crack-entry symbiosis in A. hypogaea is proposed.
Collapse
Affiliation(s)
- Kanchan Karmakar
- 1 Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Anindya Kundu
- 1 Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Ahsan Z Rizvi
- 2 LSTM, Univ. Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France; and
| | - Emeric Dubois
- 3 Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094 Montpellier Cedex 05, France
| | - Dany Severac
- 3 Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094 Montpellier Cedex 05, France
| | - Pierre Czernic
- 2 LSTM, Univ. Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France; and
| | - Fabienne Cartieaux
- 2 LSTM, Univ. Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France; and
| | - Maitrayee DasGupta
- 1 Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
10
|
Gully D, Czernic P, Cruveiller S, Mahé F, Longin C, Vallenet D, François P, Nidelet S, Rialle S, Giraud E, Arrighi JF, DasGupta M, Cartieaux F. Transcriptome Profiles of Nod Factor-independent Symbiosis in the Tropical Legume Aeschynomene evenia. Sci Rep 2018; 8:10934. [PMID: 30026595 PMCID: PMC6053390 DOI: 10.1038/s41598-018-29301-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/10/2018] [Indexed: 11/09/2022] Open
Abstract
Nod factors (NF) were assumed to be indispensable for the establishment of a rhizobium-legume symbiosis until the discovery that certain Bradyrhizobium strains interacting with certain Aeschynomene species lack the canonical nodABC genes required for their synthesis. So far, the molecular dialogue between Aeschynomene and its symbionts remains an open question. Here we report a time course transcriptional analysis of Aeschynomene evenia in response to inoculation with Bradyrhizobium ORS278. The NF-independent symbiotic process was monitored at five time points between bacterial infection and nodule maturity. The five time points correspond to three specific events, root infection by crack entry, nodule organogenesis, and the establishment of the nitrogen fixing process. During the third stage, about 80 NCR-like genes and eight symbiotic genes known to be involved in signaling, bacterial infection or nodulation regulation were highly expressed. Comparative gene expression analyses at the five time points also enabled the selection of genes with an expression profile that makes them promising markers to monitor early plant responses to bacteria. Such markers could be used in bioassays to identify the nature of the bacterial signal(s). Our data represent valuable resources for investigation of this Nod factor-independent symbiosis.
Collapse
Affiliation(s)
- Djamel Gully
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | - Pierre Czernic
- Université de Montpellier, Place Eugène Bataillon, F-34095, Montpellier Cedex 5, France
| | - Stéphane Cruveiller
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
| | - Frédéric Mahé
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | - Cyrille Longin
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
| | - David Vallenet
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, F-91057, Evry, France
| | - Philippe François
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | - Sabine Nidelet
- MGX, Univ. Montpellier, CNRS, INSERM, BioCampus, Montpellier, France
| | - Stéphanie Rialle
- MGX, Univ. Montpellier, CNRS, INSERM, BioCampus, Montpellier, France
| | - Eric Giraud
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France
| | | | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, Kolkata, 700019, India
| | - Fabienne Cartieaux
- LSTM, Univ. Montpellier, CIRAD, INRA, IRD, SupAgro, Montpellier, France.
| |
Collapse
|
11
|
Diédhiou I, Diouf D. Transcription factors network in root endosymbiosis establishment and development. World J Microbiol Biotechnol 2018; 34:37. [PMID: 29450655 DOI: 10.1007/s11274-018-2418-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022]
Abstract
Root endosymbioses are mutualistic interactions between plants and the soil microorganisms (Fungus, Frankia or Rhizobium) that lead to the formation of nitrogen-fixing root nodules and/or arbuscular mycorrhiza. These interactions enable many species to survive in different marginal lands to overcome the nitrogen-and/or phosphorus deficient environment and can potentially reduce the chemical fertilizers used in agriculture which gives them an economic, social and environmental importance. The formation and the development of these structures require the mediation of specific gene products among which the transcription factors play a key role. Three of these transcription factors, viz., CYCLOPS, NSP1 and NSP2 are well conserved between actinorhizal, legume, non-legume and mycorrhizal symbioses. They interact with DELLA proteins to induce the expression of NIN in nitrogen fixing symbiosis or RAM1 in mycorrhizal symbiosis. Recently, the small non coding RNA including micro RNAs (miRNAs) have emerged as major regulators of root endosymbioses. Among them, miRNA171 targets NSP2, a TF conserved in actinorhizal, legume, non-legume and mycorrhizal symbioses. This review will also focus on the recent advances carried out on the biological function of others transcription factors during the root pre-infection/pre-contact, infection or colonization. Their role in nodule formation and AM development will also be described.
Collapse
Affiliation(s)
- Issa Diédhiou
- Laboratoire Campus de Biotecnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Senegal.
| | - Diaga Diouf
- Laboratoire Campus de Biotecnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar-Fann, Senegal
| |
Collapse
|
12
|
Nanjareddy K, Arthikala MK, Gómez BM, Blanco L, Lara M. Differentially expressed genes in mycorrhized and nodulated roots of common bean are associated with defense, cell wall architecture, N metabolism, and P metabolism. PLoS One 2017; 12:e0182328. [PMID: 28771548 PMCID: PMC5542541 DOI: 10.1371/journal.pone.0182328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
Legumes participate in two important endosymbiotic associations, with phosphorus-acquiring arbuscular mycorrhiza (AM, soil fungi) and with nitrogen-fixing bacterial rhizobia. These divergent symbionts share a common symbiotic signal transduction pathway that facilitates the establishment of mycorrhization and nodulation in legumes. However, the unique and shared downstream genes essential for AM and nodule development have not been identified in crop legumes. Here, we used ion torrent next-generation sequencing to perform comparative transcriptomics of common bean (Phaseolus vulgaris) roots colonized by AM or rhizobia. We analyzed global gene expression profiles to identify unique and shared differentially expressed genes (DEGs) that regulate these two symbiotic interactions, and quantitatively compared DEG profiles. We identified 3,219 (1,959 upregulated and 1,260 downregulated) and 2,645 (1,247 upregulated and 1,398 downregulated) unigenes that were differentially expressed in response to mycorrhizal or rhizobial colonization, respectively, compared with uninoculated roots. We obtained quantitative expression profiles of unique and shared genes involved in processes related to defense, cell wall structure, N metabolism, and P metabolism in mycorrhized and nodulated roots. KEGG pathway analysis indicated that most genes involved in jasmonic acid and salicylic acid signaling, N metabolism, and inositol phosphate metabolism are variably expressed during symbiotic interactions. These combined data provide valuable information on symbiotic gene signaling networks that respond to mycorrhizal and rhizobial colonization, and serve as a guide for future genetic strategies to enhance P uptake and N-fixing capacity to increase the net yield of this valuable grain legume.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
| | - Manoj-Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
| | - Brenda-Mariana Gómez
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
| | - Lourdes Blanco
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Ciudad de México, México
| | - Miguel Lara
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León- Universidad Nacional Autónoma de México (UNAM), León, Guanajuato, México
- Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Ciudad de México, México
| |
Collapse
|
13
|
Kawaharada Y, James EK, Kelly S, Sandal N, Stougaard J. The Ethylene Responsive Factor Required for Nodulation 1 (ERN1) Transcription Factor Is Required for Infection-Thread Formation in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:194-204. [PMID: 28068194 DOI: 10.1094/mpmi-11-16-0237-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Several hundred genes are transcriptionally regulated during infection-thread formation and development of nitrogen-fixing root nodules. We have characterized a set of Lotus japonicus mutants impaired in root-nodule formation and found that the causative gene, Ern1, encodes a protein with a characteristic APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription-factor domain. Phenotypic characterization of four ern1 alleles shows that infection pockets are formed but root-hair infection threads are absent. Formation of root-nodule primordia is delayed and no normal transcellular infection threads are found in the infected nodules. Corroborating the role of ERN1 (ERF Required for Nodulation1) in nodule organogenesis, spontaneous nodulation induced by an autoactive CCaMK and cytokinin-induced nodule primordia were not observed in ern1 mutants. Expression of Ern1 is induced in the susceptible zone by Nod factor treatment or rhizobial inoculation. At the cellular level, the pErn1:GUS reporter is highly expressed in root epidermal cells of the susceptible zone and in the cortical cells that form nodule primordia. The genetic regulation of this cellular expression pattern was further investigated in symbiotic mutants. Nod factor induction of Ern1 in epidermal cells was found to depend on Nfr1, Cyclops, and Nsp2 but was independent of Nin and Nf-ya1. These results suggest that ERN1 functions as a transcriptional regulator involved in the formation of infection threads and development of nodule primordia and may coordinate these two processes.
Collapse
Affiliation(s)
- Yasuyuki Kawaharada
- 1 Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark; and
| | - Euan K James
- 2 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, U.K
| | - Simon Kelly
- 1 Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark; and
| | - Niels Sandal
- 1 Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark; and
| | - Jens Stougaard
- 1 Centre for Carbohydrate Recognition and Signalling, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark; and
| |
Collapse
|
14
|
Peng Z, Liu F, Wang L, Zhou H, Paudel D, Tan L, Maku J, Gallo M, Wang J. Transcriptome profiles reveal gene regulation of peanut (Arachis hypogaea L.) nodulation. Sci Rep 2017; 7:40066. [PMID: 28059169 PMCID: PMC5216375 DOI: 10.1038/srep40066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms of symbiosis in cultivated peanut with a ‘crack entry’ infection process are largely understudied. In this study, we investigated the root transcriptional profiles of two pairs of non-nodulating (nod−) and nodulating (nod+) sister inbred peanut lines, E4/E5 and E7/E6, and their nod+ parents, F487A and PI262090 during rhizobial infection and nodule initiation by using RNA-seq technology. A total of 143, 101, 123, 215, 182, and 289 differentially expressed genes (DEGs) were identified in nod− E4, E7 and nod+ E5, E6, F487A, and PI262090 after inoculation with Bradyrhizobium sp. Different deficiencies at upstream of symbiotic signaling pathway were revealed in the two nod− genotypes. DEGs specific in nod+ genotypes included orthologs to some known symbiotic signaling pathway genes, such as NFR5, NSP2, NIN, ERN1, and many other novel and/or functionally unknown genes. Gene ontology (GO) enrichment analysis of nod+ specific DEGs revealed 54 significantly enriched GO terms, including oxidation-reduction process, metabolic process, and catalytic activity. Genes related with plant defense systems, hormone biosynthesis and response were particularly enriched. To our knowledge, this is the first report revealing symbiosis-related genes in a genome-wide manner in peanut representative of the ‘crack entry’ species.
Collapse
Affiliation(s)
- Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Fengxia Liu
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), China Agricultural University, Beijing 100193, China
| | - Liping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Hai Zhou
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dev Paudel
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | - Lubin Tan
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA.,State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), China Agricultural University, Beijing 100193, China
| | - James Maku
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA
| | | | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL 32610, USA.,Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Guinel FC. Ethylene, a Hormone at the Center-Stage of Nodulation. FRONTIERS IN PLANT SCIENCE 2015; 6:1121. [PMID: 26834752 PMCID: PMC4714629 DOI: 10.3389/fpls.2015.01121] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/26/2015] [Indexed: 05/19/2023]
Abstract
Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal signaling pathways. I have completed the review by citing three studies which makes one wonder whether knowledge gained on nodulation in the last decades is ready to be transferred to agricultural fields.
Collapse
|
16
|
Holt DB, Gupta V, Meyer D, Abel NB, Andersen SU, Stougaard J, Markmann K. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules. THE NEW PHYTOLOGIST 2015; 208:241-56. [PMID: 25967282 DOI: 10.1111/nph.13445] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 05/13/2023]
Abstract
Legumes interact with rhizobial bacteria to form nitrogen-fixing root nodules. Host signalling following mutual recognition ensures a specific response, but is only partially understood. Focusing on the stage of epidermal infection with Mesorhizobium loti, we analysed endogenous small RNAs (sRNAs) of the model legume Lotus japonicus to investigate their involvement in host response regulation. We used Illumina sequencing to annotate the L. japonicus sRNA-ome and isolate infection-responsive sRNAs, followed by candidate-based functional characterization. Sequences from four libraries revealed 219 novel L. japonicus micro RNAs (miRNAs) from 114 newly assigned families, and 76 infection-responsive sRNAs. Unlike infection-associated coding genes such as NODULE INCEPTION (NIN), a micro RNA 172 (miR172) isoform showed strong accumulation in dependency of both Nodulation (Nod) factor and compatible rhizobia. The genetics of miR172 induction support the existence of distinct epidermal and cortical signalling events. MIR172a promoter activity followed a previously unseen pattern preceding infection thread progression in epidermal and cortical cells. Nodule-associated miR172a expression was infection-independent, representing the second of two genetically separable activity waves. The combined data provide a valuable resource for further study, and identify miR172 as an sRNA marking successful epidermal infection. We show that miR172 acts upstream of several APETALA2-type (AP2) transcription factors, and suggest that it has a role in fine-tuning AP2 levels during bacterial symbiosis.
Collapse
Affiliation(s)
- Dennis B Holt
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Dörte Meyer
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Nikolaj B Abel
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Katharina Markmann
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| |
Collapse
|
17
|
Diédhiou I, Tromas A, Cissoko M, Gray K, Parizot B, Crabos A, Alloisio N, Fournier P, Carro L, Svistoonoff S, Gherbi H, Hocher V, Diouf D, Laplaze L, Champion A. Identification of potential transcriptional regulators of actinorhizal symbioses in Casuarina glauca and Alnus glutinosa. BMC PLANT BIOLOGY 2014; 14:342. [PMID: 25492470 PMCID: PMC4264327 DOI: 10.1186/s12870-014-0342-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/19/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Trees belonging to the Casuarinaceae and Betulaceae families play an important ecological role and are useful tools in forestry for degraded land rehabilitation and reforestation. These functions are linked to their capacity to establish symbiotic relationships with a nitrogen-fixing soil bacterium of the genus Frankia. However, the molecular mechanisms controlling the establishment of these symbioses are poorly understood. The aim of this work was to identify potential transcription factors involved in the establishment and functioning of actinorhizal symbioses. RESULTS We identified 202 putative transcription factors by in silico analysis in 40 families in Casuarina glauca (Casuarinaceae) and 195 in 35 families in Alnus glutinosa (Betulaceae) EST databases. Based on published transcriptome datasets and quantitative PCR analysis, we found that 39% and 26% of these transcription factors were regulated during C. glauca and A. glutinosa-Frankia interactions, respectively. Phylogenetic studies confirmed the presence of common key transcription factors such as NSP, NF-YA and ERN-related proteins involved in nodule formation in legumes, which confirm the existence of a common symbiosis signaling pathway in nitrogen-fixing root nodule symbioses. We also identified an actinorhizal-specific transcription factor belonging to the zinc finger C1-2i subfamily we named CgZF1 in C. glauca and AgZF1 in A. glutinosa. CONCLUSIONS We identified putative nodulation-associated transcription factors with particular emphasis on members of the GRAS, NF-YA, ERF and C2H2 families. Interestingly, comparison of the non-legume and legume TF with signaling elements from actinorhizal species revealed a new subgroup of nodule-specific C2H2 TF that could be specifically involved in actinorhizal symbioses. In silico identification, transcript analysis, and phylogeny reconstruction of transcription factor families paves the way for the study of specific molecular regulation of symbiosis in response to Frankia infection.
Collapse
Affiliation(s)
- Issa Diédhiou
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, BP 1386 CP 18524 Dakar, Sénégal
- />Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
- />Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, BP 5005 Dakar-Fann Sénégal
- />Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe Rhizogenèse, Montpellier, France
| | - Alexandre Tromas
- />Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Maïmouna Cissoko
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, BP 1386 CP 18524 Dakar, Sénégal
- />Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Krystelle Gray
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, BP 1386 CP 18524 Dakar, Sénégal
- />Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Boris Parizot
- />Department of Plant Systems Biology, VIB, Ghent, Belgium
- />Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Amandine Crabos
- />Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Nicole Alloisio
- />Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex France
| | - Pascale Fournier
- />Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex France
| | - Lorena Carro
- />Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, 69622 Cedex France
| | - Sergio Svistoonoff
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, BP 1386 CP 18524 Dakar, Sénégal
- />Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
- />Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe Rhizogenèse, Montpellier, France
| | - Hassen Gherbi
- />Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe Rhizogenèse, Montpellier, France
| | - Valérie Hocher
- />Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe Rhizogenèse, Montpellier, France
| | - Diaga Diouf
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, BP 1386 CP 18524 Dakar, Sénégal
- />Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, BP 5005 Dakar-Fann Sénégal
| | - Laurent Laplaze
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, BP 1386 CP 18524 Dakar, Sénégal
- />Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
- />Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe Rhizogenèse, Montpellier, France
| | - Antony Champion
- />Laboratoire Mixte International Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Centre de Recherche de Bel Air, BP 1386 CP 18524 Dakar, Sénégal
- />Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, Centre de Recherche de Bel Air, Dakar, Sénégal
- />Institut de Recherche pour le Développement (IRD), UMR DIADE, Equipe Rhizogenèse, Montpellier, France
| |
Collapse
|
18
|
Soyano T, Hayashi M. Transcriptional networks leading to symbiotic nodule organogenesis. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:146-54. [PMID: 25113465 DOI: 10.1016/j.pbi.2014.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 05/08/2023]
Abstract
The symbiosis with nitrogen-fixing bacteria leading to root nodules is a relatively recent evolutionary innovation and limited to a distinct order of land plants. It has long been a mystery how plants have invented this complex trait. However, recent advances in molecular genetics of model legumes has elucidated genes involved in the development of root nodules, providing insights into this process. Here we discuss how the de novo assembly of transcriptional networks may account for the predisposition to nodulate. Transcriptional networks and modes of gene regulation from the arbuscular mycorrhizal symbiosis, nitrate responses and aspects of lateral root development have likely all contributed to the emergence and development of root nodules.
Collapse
Affiliation(s)
- Takashi Soyano
- Plant Symbiosis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-3602, Japan
| | - Makoto Hayashi
- Plant Symbiosis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-3602, Japan.
| |
Collapse
|
19
|
Kang H, Chu X, Wang C, Xiao A, Zhu H, Yuan S, Yang Z, Ke D, Xiao S, Hong Z, Zhang Z. A MYB coiled-coil transcription factor interacts with NSP2 and is involved in nodulation in Lotus japonicus. THE NEW PHYTOLOGIST 2014; 201:837-849. [PMID: 24400899 DOI: 10.1111/nph.12593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/24/2013] [Indexed: 05/08/2023]
Abstract
Transcription factor complex formation is a central step in regulating gene expression. In this report, a novel MYB coiled-coil transcription factor referred to as IPN2, for Interacting Protein of NSP2, is described. The interaction between IPN2 and NSP2 was examined by protein pull-down assays and bimolecular fluorescence complementation (BiFC). Subcellular localization of proteins, gene expression and gene function were assessed in transgenic hairy roots expressing tagged recombinant proteins, promoter-reporter and RNA interference (RNAi) constructs, respectively. The GRAS domain of NSP2 and the coiled-coil domain of IPN2 were found to be responsible for the interaction between the two proteins. IPN2 had strong transcription activation activity, bound directly to the NIN gene promoter, and was localized to the nuclei of Lotus japonicus root cells. The expression of IPN2 was elevated during nodule development, coinciding with increased NSP2 gene expression during nodule organogenesis. RNAi-mediated knockdown expression of IPN2 did not affect arbuscular mycorrhizal development, but had deleterious effects on rhizobial infection and nodule formation in L. japonicus. These results demonstrate an important role of IPN2 in nodule organogenesis and place a new MYB transcription factor in the Nod signaling pathway.
Collapse
Affiliation(s)
- Heng Kang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaojie Chu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aifang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Songli Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhenzhen Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danxia Ke
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zonglie Hong
- Department of Plant, Soil, and Entomological Sciences, Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID, 83844, USA
| | - Zhongming Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
20
|
Miyata K, Kawaguchi M, Nakagawa T. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2013; 54:1469-77. [PMID: 23825220 DOI: 10.1093/pcp/pct095] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leguminous plants establish a mutualistic symbiosis with bacteria, collectively referred to as rhizobia. Host plants positively and negatively regulate the symbiotic processes to keep the symbiosis at an appropriate level. Although the plant hormone ethylene is known as a negative regulator of symbiotic processes, the molecular mechanisms of ethylene signaling remain unresolved, especially in the model plant Lotus japonicus. Here, we identified two genes, LjEIN2-1 and LjEIN2-2, from L. japonicus. These genes share moderate similarity in their amino acid sequences, are located on different chromosomes and are composed of different numbers of exons. Suppression of either LjEIN2-1 or LjEIN2-2 expression significantly promoted the root growth of transformed plants on plates containing 1-amino-cyclopropane-carboxylic acid (ACC), the biosynthetic precursor of ethylene. Simultaneous suppression of both LjEIN2-1 and LjEIN2-2 markedly increased the ethylene insensitivity of transgenic roots and resulted in an increased nodulation phenotype. These results indicate that LjEIN2-1 and LjEIN2-2 concertedly regulate ethylene signaling in L. japonicus. We also observed that Nod factor (NF) induced the expression of the ethylene-responsive gene LjACO2, and simultaneous treatment with NF and ACC markedly increases its transcript level compared with either NF or ACC alone. Because LjACO2 encodes ACC oxidase, which is a key enzyme in ethylene biosynthesis, this result suggests the existence of an NF-triggered negative feedback mechanism through ethylene signaling.
Collapse
Affiliation(s)
- Kana Miyata
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | | | | |
Collapse
|
21
|
Andriunas FA, Zhang HM, Xia X, Patrick JW, Offler CE. Intersection of transfer cells with phloem biology-broad evolutionary trends, function, and induction. FRONTIERS IN PLANT SCIENCE 2013; 4:221. [PMID: 23847631 PMCID: PMC3696738 DOI: 10.3389/fpls.2013.00221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/07/2013] [Indexed: 05/18/2023]
Abstract
Transfer cells (TCs) are ubiquitous throughout the plant kingdom. Their unique ingrowth wall labyrinths, supporting a plasma membrane enriched in transporter proteins, provides these cells with an enhanced membrane transport capacity for resources. In certain plant species, TCs have been shown to function to facilitate phloem loading and/or unloading at cellular sites of intense resource exchange between symplasmic/apoplasmic compartments. Within the phloem, the key cellular locations of TCs are leaf minor veins of collection phloem and stem nodes of transport phloem. In these locations, companion and phloem parenchyma cells trans-differentiate to a TC morphology consistent with facilitating loading and re-distribution of resources, respectively. At a species level, occurrence of TCs is significantly higher in transport than in collection phloem. TCs are absent from release phloem, but occur within post-sieve element unloading pathways and particularly at interfaces between generations of developing Angiosperm seeds. Experimental accessibility of seed TCs has provided opportunities to investigate their inductive signaling, regulation of ingrowth wall formation and membrane transport function. This review uses this information base to explore current knowledge of phloem transport function and inductive signaling for phloem-associated TCs. The functional role of collection phloem and seed TCs is supported by definitive evidence, but no such information is available for stem node TCs that present an almost intractable experimental challenge. There is an emerging understanding of inductive signals and signaling pathways responsible for initiating trans-differentiation to a TC morphology in developing seeds. However, scant information is available to comment on a potential role for inductive signals (auxin, ethylene and reactive oxygen species) that induce seed TCs, in regulating induction of phloem-associated TCs. Biotic phloem invaders have been used as a model to speculate on involvement of these signals.
Collapse
Affiliation(s)
| | | | | | | | - Christina E. Offler
- Department of Biological Sciences, School of Environmental and Life Sciences, The University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
22
|
Schaarschmidt S, Gresshoff PM, Hause B. Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biol 2013; 14:R62. [PMID: 23777981 PMCID: PMC3706930 DOI: 10.1186/gb-2013-14-6-r62] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/10/2013] [Accepted: 06/18/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Similarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis. RESULTS Affymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis. CONCLUSIONS Our results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Collapse
Affiliation(s)
- Sara Schaarschmidt
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
- Humboldt-Universität zu Berlin, Faculty of Agriculture and Horticulture, Division Urban Plant Ecophysiology, Lentzeallee 55-57, 14195 Berlin, Germany
| | - Peter M Gresshoff
- ARC Centre of Excellence for Integrative Legume Research (CILR), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bettina Hause
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
| |
Collapse
|
23
|
Soyano T, Kouchi H, Hirota A, Hayashi M. Nodule inception directly targets NF-Y subunit genes to regulate essential processes of root nodule development in Lotus japonicus. PLoS Genet 2013; 9:e1003352. [PMID: 23555278 PMCID: PMC3605141 DOI: 10.1371/journal.pgen.1003352] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/16/2013] [Indexed: 11/29/2022] Open
Abstract
The interactions of legumes with symbiotic nitrogen-fixing bacteria cause the formation of specialized lateral root organs called root nodules. It has been postulated that this root nodule symbiosis system has recruited factors that act in early signaling pathways (common SYM genes) partly from the ancestral mycorrhizal symbiosis. However, the origins of factors needed for root nodule organogenesis are largely unknown. NODULE INCEPTION (NIN) is a nodulation-specific gene that encodes a putative transcription factor and acts downstream of the common SYM genes. Here, we identified two Nuclear Factor-Y (NF-Y) subunit genes, LjNF-YA1 and LjNF-YB1, as transcriptional targets of NIN in Lotus japonicus. These genes are expressed in root nodule primordia and their translational products interact in plant cells, indicating that they form an NF-Y complex in root nodule primordia. The knockdown of LjNF-YA1 inhibited root nodule organogenesis, as did the loss of function of NIN. Furthermore, we found that NIN overexpression induced root nodule primordium-like structures that originated from cortical cells in the absence of bacterial symbionts. Thus, NIN is a crucial factor responsible for initiating nodulation-specific symbiotic processes. In addition, ectopic expression of either NIN or the NF-Y subunit genes caused abnormal cell division during lateral root development. This indicated that the Lotus NF-Y subunits can function to stimulate cell division. Thus, transcriptional regulation by NIN, including the activation of the NF-Y subunit genes, induces cortical cell division, which is an initial step in root nodule organogenesis. Unlike the legume-specific NIN protein, NF-Y is a major CCAAT box binding protein complex that is widespread among eukaryotes. We propose that the evolution of root nodules in legume plants was associated with changes in the function of NIN. NIN has acquired functions that allow it to divert pathways involved in the regulation of cell division to root nodule organogenesis. Legumes produce nodules in roots as the endosymbiotic organs for nitrogen-fixing bacteria, collectively called rhizobia. The symbiotic relationship enables legumes to survive on soil with poor nitrogen sources. The rhizobial infection triggers cell division in the cortex to generate root nodule primordia. The root nodule symbiosis has been thought to be recruited factors for the early signaling pathway from the ancestral mycorrhizal symbiosis, which usually does not accompany the root nodule formation. However, how the root nodule symbiosis-specific pathway inputs nodulation signals to molecular networks, by which cortical cell division is initiated, has not yet been elucidated. We found that NIN, a nodulation specific factor, induced cortical cell division without the rhizobial infection. NIN acted as a transcriptional activator and targeted two genes that encode different subunits of a NF-Y CCAAT box binding protein complex, LjNF-YA1 and LjNF-YB1. Inhibition of the LjNF-YA1 function prevented root nodule formation. Ectopic expression of the NF-Y subunit genes enhanced cell division in lateral root primordia that is not related to root nodule organogenesis. The NF-Y genes are thought to regulate cell division downstream of NIN. NF-Y is a general factor widespread in eukaryotes. We propose that NIN is a mediator between nodulation-specific signals and general regulatory mechanisms associated with cell proliferation.
Collapse
Affiliation(s)
- Takashi Soyano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroshi Kouchi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Atsuko Hirota
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Makoto Hayashi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
24
|
Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O, Sánchez F, Quinto C. A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia. PLANT & CELL PHYSIOLOGY 2012; 53:1751-67. [PMID: 22942250 DOI: 10.1093/pcp/pcs120] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant NADPH oxidases [respiratory burst oxidase homologs (RBOHs)] have emerged as key players in the regulation of plant-pathogen interactions. Nonetheless, their role in mutualistic associations, such as the rhizobia-legume symbiosis, is poorly understood. In this work, nine members of the Phaseolus vulgaris Rboh gene family were identified. The transcript of one of these, PvRbohB, accumulated abundantly in shoots, roots and nodules. PvRbohB promoter activity was detected in meristematic regions of P. vulgaris roots, as well as during infection thread (IT) progression and nodule development. RNA interference (RNAi)-mediated PvRbohB down-regulation in transgenic roots reduced reactive oxygen species (ROS) production and lateral root density, and greatly impaired nodulation. Microscopy analysis revealed that progression of the ITs was impeded at the base of root hairs in PvRbohB-RNAi roots. Furthermore, the few nodules that formed in PvRbohB-down-regulated roots displayed abnormally wide ITs and reduced nitrogen fixation. These findings indicate that this common bean NADPH oxidase is crucial for successful rhizobial colonization and probably maintains proper IT growth and shape.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, Tang YX. Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC PLANT BIOLOGY 2012; 12:106. [PMID: 22776508 PMCID: PMC3462118 DOI: 10.1186/1471-2229-12-106] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 06/06/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The MYB superfamily constitutes one of the most abundant groups of transcription factors described in plants. Nevertheless, their functions appear to be highly diverse and remain rather unclear. To date, no genome-wide characterization of this gene family has been conducted in a legume species. Here we report the first genome-wide analysis of the whole MYB superfamily in a legume species, soybean (Glycine max), including the gene structures, phylogeny, chromosome locations, conserved motifs, and expression patterns, as well as a comparative genomic analysis with Arabidopsis. RESULTS A total of 244 R2R3-MYB genes were identified and further classified into 48 subfamilies based on a phylogenetic comparative analysis with their putative orthologs, showed both gene loss and duplication events. The phylogenetic analysis showed that most characterized MYB genes with similar functions are clustered in the same subfamily, together with the identification of orthologs by synteny analysis, functional conservation among subgroups of MYB genes was strongly indicated. The phylogenetic relationships of each subgroup of MYB genes were well supported by the highly conserved intron/exon structures and motifs outside the MYB domain. Synonymous nucleotide substitution (dN/dS) analysis showed that the soybean MYB DNA-binding domain is under strong negative selection. The chromosome distribution pattern strongly indicated that genome-wide segmental and tandem duplication contribute to the expansion of soybean MYB genes. In addition, we found that ~ 4% of soybean R2R3-MYB genes had undergone alternative splicing events, producing a variety of transcripts from a single gene, which illustrated the extremely high complexity of transcriptome regulation. Comparative expression profile analysis of R2R3-MYB genes in soybean and Arabidopsis revealed that MYB genes play conserved and various roles in plants, which is indicative of a divergence in function. CONCLUSIONS In this study we identified the largest MYB gene family in plants known to date. Our findings indicate that members of this large gene family may be involved in different plant biological processes, some of which may be potentially involved in legume-specific nodulation. Our comparative genomics analysis provides a solid foundation for future functional dissection of this family gene.
Collapse
Affiliation(s)
- Hai Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu Sichuan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Si-Si Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu Sichuan, China
| | - Zhe Liang
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003N-1432, Norway
| | - Bo-Run Feng
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu Sichuan, China
| | - Lei Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
| | - Yu-Bi Huang
- Maize Research Institute, Sichuan Agricultural University, Chengdu Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute of Sichuan Agricultural University, Ministry of Agriculture, Chengdu Sichuan, China
| | - Yi-Xiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Markmann K, Radutoiu S, Stougaard J. Infection of Lotus japonicus Roots by Mesorhizobium loti. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Desbrosses G, Stougaard J. Root Nodulation: A Paradigm for How Plant-Microbe Symbiosis Influences Host Developmental Pathways. Cell Host Microbe 2011; 10:348-58. [DOI: 10.1016/j.chom.2011.09.005] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Oldroyd GED, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 2011; 45:119-44. [PMID: 21838550 DOI: 10.1146/annurev-genet-110410-132549] [Citation(s) in RCA: 663] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rhizobial bacteria enter a symbiotic association with leguminous plants, resulting in differentiated bacteria enclosed in intracellular compartments called symbiosomes within nodules on the root. The nodules and associated symbiosomes are structured for efficient nitrogen fixation. Although the interaction is beneficial to both partners, it comes with rigid rules that are strictly enforced by the plant. Entry into root cells requires appropriate recognition of the rhizobial Nod factor signaling molecule, and this recognition activates a series of events, including polarized root-hair tip growth, invagination associated with bacterial infection, and the promotion of cell division in the cortex leading to the nodule meristem. The plant's command of the infection process has been highlighted by its enforcement of terminal differentiation upon the bacteria within nodules of some legumes, and this can result in a loss of bacterial viability while permitting effective nitrogen fixation. Here, we review the mechanisms by which the plant allows bacterial infection and promotes the formation of the nodule, as well as the details of how this intimate association plays out inside the cells of the nodule where a complex interchange of metabolites and regulatory peptides force the bacteria into a nitrogen-fixing organelle-like state.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- John Innes Center, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Kloppholz S, Kuhn H, Requena N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 2011; 21:1204-9. [PMID: 21757354 DOI: 10.1016/j.cub.2011.06.044] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/26/2011] [Accepted: 06/20/2011] [Indexed: 10/17/2022]
Abstract
Biotrophic fungi interacting with plants establish long-term relationships with their hosts to fulfill their life cycles. In contrast to necrotrophs, they need to contend with the defense mechanisms of the plant to develop within the host and feed on living cells. It is generally accepted that microbial pathogens produce and deliver a myriad of effector proteins to hijack the cellular program of their hosts. Arbuscular mycorrhizal (AM) fungi are the most widespread biotrophs of plant roots. We investigated whether AM fungi use effector proteins to short-circuit the plant defense program. Here we show that Glomus intraradices secretes a protein, SP7, that interacts with the pathogenesis-related transcription factor ERF19 in the plant nucleus. ERF19 is highly induced in roots by the fungal pathogen Colletotrichum trifolii as well as by several fungal extracts, but only transiently during mycorrhiza colonization. When constitutively expressed in roots, SP7 leads to higher mycorrhization while reducing the levels of C. trifolii-mediated defense responses. Furthermore, expression of SP7 in the rice blast fungus Magnaporthe oryzae attenuates root decay symptoms. Taken together, these results suggest that SP7 is an effector that contributes to develop the biotrophic status of AM fungi in roots by counteracting the plant immune program.
Collapse
Affiliation(s)
- Silke Kloppholz
- Plant-Microbial Interactions, Botanical Institute, Karlsruhe Institute of Technology, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | | | | |
Collapse
|
30
|
Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun 2010; 1:10. [PMID: 20975672 PMCID: PMC2892300 DOI: 10.1038/ncomms1009] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 03/05/2010] [Indexed: 12/30/2022] Open
Abstract
Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes.
Collapse
MESH Headings
- Alphaproteobacteria/growth & development
- Alphaproteobacteria/physiology
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Genotype
- Lotus/growth & development
- Lotus/metabolism
- Lotus/microbiology
- Lotus/ultrastructure
- Microscopy, Electron, Transmission
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/ultrastructure
- Root Nodules, Plant/growth & development
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Root Nodules, Plant/ultrastructure
Collapse
Affiliation(s)
- Lene H. Madsen
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Leïla Tirichine
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Anna Jurkiewicz
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - John T. Sullivan
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Anne B. Heckmann
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Anita S. Bek
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| | - Clive W. Ronson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Euan K. James
- EPI division, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jens Stougaard
- Department of Molecular Biology, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus C DK-8000, Denmark
| |
Collapse
|
31
|
Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM. Molecular analysis of legume nodule development and autoregulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:61-76. [PMID: 20074141 DOI: 10.1111/j.1744-7909.2010.00899.x] [Citation(s) in RCA: 326] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Legumes are highly important food, feed and biofuel crops. With few exceptions, they can enter into an intricate symbiotic relationship with specific soil bacteria called rhizobia. This interaction results in the formation of a new root organ called the nodule in which the rhizobia convert atmospheric nitrogen gas into forms of nitrogen that are useable by the plant. The plant tightly controls the number of nodules it forms, via a complex root-to-shoot-to-root signaling loop called autoregulation of nodulation (AON). This regulatory process involves peptide hormones, receptor kinases and small metabolites. Using modern genetic and genomic techniques, many of the components required for nodule formation and AON have now been isolated. This review addresses these recent findings, presents detailed models of the nodulation and AON processes, and identifies gaps in our understanding of these process that have yet to be fully explained.
Collapse
Affiliation(s)
- Brett J Ferguson
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Libault M, Joshi T, Benedito VA, Xu D, Udvardi MK, Stacey G. Legume transcription factor genes: what makes legumes so special? PLANT PHYSIOLOGY 2009; 151:991-1001. [PMID: 19726573 PMCID: PMC2773095 DOI: 10.1104/pp.109.144105] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/26/2009] [Indexed: 05/18/2023]
|
33
|
Libault M, Joshi T, Takahashi K, Hurley-Sommer A, Puricelli K, Blake S, Finger RE, Taylor CG, Xu D, Nguyen HT, Stacey G. Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development. PLANT PHYSIOLOGY 2009; 151:1207-20. [PMID: 19755542 PMCID: PMC2773063 DOI: 10.1104/pp.109.144030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/06/2009] [Indexed: 05/18/2023]
Abstract
Nodulation is the result of a symbiosis between legumes and rhizobial bacteria in soil. This symbiosis is mutually beneficial, with the bacteria providing a source of nitrogen to the host while the plant supplies carbon to the symbiont. Nodule development is a complex process that is tightly regulated in the host plant cell through networks of gene expression. In order to examine this regulation in detail, a library of quantitative reverse transcription-polymerase chain reaction primer sets was developed for a large number of soybean (Glycine max) putative regulatory genes available in the current expressed sequence tag collection. This library contained primers specific to soybean transcription factor genes as well as genes involved in chromatin modification and translational regulation. Using this library, we analyzed the expression of this gene set during nodule development. A large number of genes were found to be differentially expressed, especially at the later stages of nodule development when active nitrogen fixation was occurring. Expression of these putative regulatory genes was also analyzed in response to the addition of nitrate as a nitrogen source. This comparative analysis identified genes that may be specifically involved in nitrogen assimilation, metabolism, and the maintenance of active nodules. To address this possibility, the expression of one such candidate was studied in more detail by expressing in soybean roots promoter beta-glucuronidase and green fluorescent protein fusions. This gene, named Control of Nodule Development (CND), encoded a Myb transcription factor gene. When the CND gene was silenced, nodulation was reduced. These results, associated with a strong expression of the CND gene in the vascular tissues, suggest a role for CND in controlling soybean nodulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gary Stacey
- Division of Plant Sciences, National Center for Soybean Biotechnology (M.L., K.T., A.H.-S., K.P., S.B., H.T.N., G.S.), and Digital Biology Laboratory, Computer Science Department (T.J., D.X.), C.S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211; and Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (R.E.F., C.G.T.)
| |
Collapse
|
34
|
Hernández G, Valdés-López O, Ramírez M, Goffard N, Weiller G, Aparicio-Fabre R, Fuentes SI, Erban A, Kopka J, Udvardi MK, Vance CP. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants. PLANT PHYSIOLOGY 2009; 151:1221-38. [PMID: 19755543 PMCID: PMC2773089 DOI: 10.1104/pp.109.143842] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/08/2009] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated with Rhizobium tropici CIAT899 grown under P-deficient and P-sufficient conditions. P-deficient inoculated plants showed drastic reduction in nodulation and nitrogenase activity as determined by acetylene reduction assay. Nodule transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs, approximately 4,000 unigene set, from the nodule and P-deficient root library. A total of 459 genes, representing different biological processes according to updated annotation using the UniProt Knowledgebase database, showed significant differential expression in response to P: 59% of these were induced in P-deficient nodules. The expression platform for transcription factor genes based in quantitative reverse transcriptase-polymerase chain reaction revealed that 37 transcription factor genes were differentially expressed in P-deficient nodules and only one gene was repressed. Data from nontargeted metabolic profiles indicated that amino acids and other nitrogen metabolites were decreased, while organic and polyhydroxy acids were accumulated, in P-deficient nodules. Bioinformatics analyses using MapMan and PathExpress software tools, customized to common bean, were utilized for the analysis of global changes in gene expression that affected overall metabolism. Glycolysis and glycerolipid metabolism, and starch and Suc metabolism, were identified among the pathways significantly induced or repressed in P-deficient nodules, respectively.
Collapse
Affiliation(s)
- Georgina Hernández
- Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, 62209 Cuernavaca, Morelos, México.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yano K, Shibata S, Chen WL, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba M, Imaizumi-Anraku H, Kojima T, Ohtomo R, Szczyglowski K, Stougaard J, Tabata S, Hayashi M, Kouchi H, Umehara Y. CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:168-80. [PMID: 19508425 DOI: 10.1111/j.1365-313x.2009.03943.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Endosymbiotic infection of legume plants by Rhizobium bacteria is initiated through infection threads (ITs) which are initiated within and penetrate from root hairs and deliver the endosymbionts into nodule cells. Despite recent progress in understanding the mutual recognition and early symbiotic signaling cascades in host legumes, the molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis are still poorly understood. We isolated a novel symbiotic mutant of Lotus japonicus, cerberus, which shows defects in IT formation and nodule organogenesis. Map-based cloning of the causal gene allowed us to identify the CERBERUS gene, which encodes a novel protein containing a U-box domain and WD-40 repeats. CERBERUS expression was detected in the roots and nodules, and was enhanced after inoculation of Mesorhizobium loti. Strong expression was detected in developing nodule primordia and the infected zone of mature nodules. In cerberus mutants, Rhizobium colonized curled root hair tips, but hardly penetrated into root hair cells. The occasional ITs that were formed inside the root hair cells were mostly arrested within the epidermal cell layer. Nodule organogenesis was aborted prematurely, resulting in the formation of a large number of small bumps which contained no endosymbiotic bacteria. These phenotypic and genetic analyses, together with comparisons with other legume mutants with defects in IT formation, indicate that CERBERUS plays a critical role in the very early steps of IT formation as well as in growth and differentiation of nodules.
Collapse
Affiliation(s)
- Koji Yano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hause B, Schaarschmidt S. The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. PHYTOCHEMISTRY 2009; 70:1589-99. [PMID: 19700177 DOI: 10.1016/j.phytochem.2009.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/30/2009] [Accepted: 07/02/2009] [Indexed: 05/04/2023]
Abstract
Many plants are able to develop mutualistic interactions with arbuscular mycorrhizal fungi and/or nitrogen-fixing bacteria. Whereas the former is widely distributed among most of the land plants, the latter is restricted to species of ten plant families, including the legumes. The establishment of both associations is based on mutual recognition and a high degree of coordination at the morphological and physiological level. This requires the activity of a number of signals, including jasmonates. Here, recent knowledge on the putative roles of jasmonates in both mutualistic symbioses will be reviewed. Firstly, the action of jasmonates will be discussed in terms of the initial signal exchange between symbionts and in the resulting plant signaling cascade common for nodulation and mycorrhization. Secondly, the putative role of jasmonates in the autoregulation of the endosymbioses will be outlined. Finally, aspects of function of jasmonates in the fully established symbioses will be presented. Various processes will be discussed that are possibly mediated by jasmonates, including the redox status of nodules and the carbohydrate partitioning of mycorrhizal roots.
Collapse
Affiliation(s)
- Bettina Hause
- Leibniz Institute of Plant Biochemistry (IPB), Department of Secondary Metabolism, Weinberg 3, D-06120 Halle (Saale), Germany.
| | | |
Collapse
|
37
|
Ishida K, Niwa Y, Yamashino T, Mizuno T. A genome-wide compilation of the two-component systems in Lotus japonicus. DNA Res 2009; 16:237-47. [PMID: 19675111 PMCID: PMC2725789 DOI: 10.1093/dnares/dsp012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 06/30/2009] [Indexed: 11/14/2022] Open
Abstract
The two-component systems (TCS), or histidine-to-aspartate phosphorelays, are evolutionarily conserved common signal transduction mechanisms that are implicated in a wide variety of cellular responses to environmental stimuli in both prokaryotes and eukaryotes including plants. Among higher plants, legumes including Lotus japonicus have a unique ability to engage in beneficial symbiosis with nitrogen-fixing bacteria. We previously presented a genome-wide compiled list of TCS-associated components of Mesorhizobium loti, which is a symbiont specific to L. japonicus (Hagiwara et al. 2004, DNA Res., 11, 57-65). To gain both general and specific insights into TCS of this currently attractive model legume, here we compiled TCS-associated components as many as possible from a genome-wide viewpoint by taking advantage that the efforts of whole genome sequencing of L. japonicus are almost at final stage. In the current database (http://www.kazusa.or.jp/lotus/index.html), it was found that L. japonicus has, at least, 14 genes each encoding a histidine kinase, 7 histidine-containing phosphotransmitter-related genes, 7 type-A response regulator (RR)-related genes, 11 type-B RR-related genes, and also 5 circadian clock-associated pseudo-RR genes. These results suggested that most of the L. japonicus TCS-associated genes have already been uncovered in this genome-wide analysis, if not all. Here, characteristics of these TCS-associated components of L. japonicus were inspected, one by one, in comparison with those of Arabidopsis thaliana. In addition, some critical experiments were also done to gain further insights into the functions of L. japonicus TCS-associated genes with special reference to cytokinin-mediated signal transduction and circadian clock.
Collapse
Affiliation(s)
| | | | - Takafumi Yamashino
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601, Japan
| | | |
Collapse
|
38
|
Desbrosses G, Contesto C, Varoquaux F, Galland M, Touraine B. PGPR-Arabidopsis interactions is a useful system to study signaling pathways involved in plant developmental control. PLANT SIGNALING & BEHAVIOR 2009; 4:321-3. [PMID: 19794852 PMCID: PMC2664496 DOI: 10.4161/psb.4.4.8106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/08/2009] [Indexed: 05/18/2023]
Abstract
Using their 1-amino cyclopropane-1-carboxylic acid (ACC) deaminase activity, many rhizobacteria can divert ACC from the ethylene biosynthesis pathway in plant roots. To investigate the role of this microbial activity in plant responses to plant growth-promoting rhizobacteria (PGPR), we analyzed the effects of acdS knock-out and wild-type PGPR strains on two phenotypic responses to inoculation—root hair elongation and root system architecture—in Arabidopsis thaliana . Our work shows that rhizobacterial AcdS activity has a negative effect on root hair elongation, as expected from the reduction of ethylene production rate in root cells, while it has no impact on root system architecture. This suggests that PGPR triggered root hair elongation is independent of ethylene biosynthesis or signaling pathway. In addition, it does indicate that AcdS activity alters local regulatory processes, but not systemic regulations such as those that control root architecture. Our work also indicates that root hair elongation induced by PGPR inoculation is probably an auxin-independent mechanism. These findings were unexpected since genetic screens for abnormal root hair development mutants led to the isolation of ethylene and auxin mutants. Our work hence shows that studying the interaction between a PGPR and the model plant Arabidopsis is a useful system to uncover new pathways involved in plant plasticity.
Collapse
Affiliation(s)
- Guilhem Desbrosses
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR113, Université Montpellier, 2/IRD/CIRAD/SupAgro/INRA, Université Montpellier 2, Montpellier, France
| | | | | | | | | |
Collapse
|
39
|
Omrane S, Ferrarini A, D'Apuzzo E, Rogato A, Delledonne M, Chiurazzi M. Symbiotic competence in Lotus japonicus is affected by plant nitrogen status: transcriptomic identification of genes affected by a new signalling pathway. THE NEW PHYTOLOGIST 2009; 183:380-394. [PMID: 19500268 DOI: 10.1111/j.1469-8137.2009.02873.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In leguminous plants, symbiotic nitrogen (N) fixation performances and N environmental conditions are linked because nodule initiation, development and functioning are greatly influenced by the amount of available N sources. We demonstrate here that N supply also controls, beforehand, the competence of leguminous plants to perform the nodulation program. Lotus japonicus plants preincubated for 10 d in high-N conditions, and then transferred to low N before the Mesorhizobium loti inoculation, had reduced nodulation. This phenotype was maintained for at least 6 d and a complete reacquisition of the symbiotic competence was observed only after 9 d. The time-course analysis of the change of the symbiotic phenotype was analysed by transcriptomics. The differentially expressed genes identified are mostly involved in metabolic pathways. However, the transcriptional response also includes genes belonging to other functional categories such as signalling, stress response and transcriptional regulation. Some of these genes show a molecular identity and a regulation profile, that suggest a role as possible molecular links between the N-dependent plant response and the nodule organogenesis program.
Collapse
Affiliation(s)
- Selim Omrane
- Institute of Genetics and Biophysics A. Buzzati Traverso, Via P. Castellino 131, Napoli, Italy
| | - Alberto Ferrarini
- Università degli Studi di Verona, Strada Le Grazie 15 Cà Vignal, I-37134, Verona, Italy
| | - Enrica D'Apuzzo
- Institute of Genetics and Biophysics A. Buzzati Traverso, Via P. Castellino 131, Napoli, Italy
| | - Alessandra Rogato
- Institute of Genetics and Biophysics A. Buzzati Traverso, Via P. Castellino 131, Napoli, Italy
| | - Massimo Delledonne
- Università degli Studi di Verona, Strada Le Grazie 15 Cà Vignal, I-37134, Verona, Italy
| | - Maurizio Chiurazzi
- Institute of Genetics and Biophysics A. Buzzati Traverso, Via P. Castellino 131, Napoli, Italy
| |
Collapse
|
40
|
Crespi M, Frugier F. De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis. Sci Signal 2008; 1:re11. [DOI: 10.1126/scisignal.149re11] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Vernié T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P. EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. THE PLANT CELL 2008; 20:2696-713. [PMID: 18978033 PMCID: PMC2590733 DOI: 10.1105/tpc.108.059857] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 09/22/2008] [Accepted: 10/16/2008] [Indexed: 05/20/2023]
Abstract
Mechanisms regulating legume root nodule development are still poorly understood, and very few regulatory genes have been cloned and characterized. Here, we describe EFD (for ethylene response factor required for nodule differentiation), a gene that is upregulated during nodulation in Medicago truncatula. The EFD transcription factor belongs to the ethylene response factor (ERF) group V, which contains ERN1, 2, and 3, three ERFs involved in Nod factor signaling. The role of EFD in the regulation of nodulation was examined through the characterization of a null deletion mutant (efd-1), RNA interference, and overexpression studies. These studies revealed that EFD is a negative regulator of root nodulation and infection by Rhizobium and that EFD is required for the formation of functional nitrogen-fixing nodules. EFD appears to be involved in the plant and bacteroid differentiation processes taking place beneath the nodule meristem. We also showed that EFD activated Mt RR4, a cytokinin primary response gene that encodes a type-A response regulator. We propose that EFD induction of Mt RR4 leads to the inhibition of cytokinin signaling, with two consequences: the suppression of new nodule initiation and the activation of differentiation as cells leave the nodule meristem. Our work thus reveals a key regulator linking early and late stages of nodulation and suggests that the regulation of the cytokinin pathway is important both for nodule initiation and development.
Collapse
Affiliation(s)
- Tatiana Vernié
- Laboratoire des Interactions Plantes Micro-Organismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F- 31320 Castanet Tolosan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|