1
|
Inès D, Courty PE, Wendehenne D, Rosnoblet C. CDC48 in plants and its emerging function in plant immunity. TRENDS IN PLANT SCIENCE 2024; 29:786-798. [PMID: 38218650 DOI: 10.1016/j.tplants.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Protein homeostasis, namely the balance between protein synthesis and degradation, must be finely controlled to ensure cell survival, notably through the ubiquitin-proteasome system (UPS). In all species, including plants, homeostasis is disrupted by biotic and abiotic stresses. A key player in the maintenance of protein balance, the protein CDC48, shows emerging functions in plants, particularly in response to biotic stress. In this review on CDC48 in plants, we detail its highly conserved structure, describe a gene expansion that is only present in Viridiplantae, discuss its various functions and regulations, and finally highlight its recruitment, still not clear, during the plant immune response.
Collapse
Affiliation(s)
- Damien Inès
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Institut Agro, Université de Bourgogne, Université Bourgogne-Franche-Comté, Dijon, France.
| |
Collapse
|
2
|
Gong W, Bak DT, Wendrich JR, Weijers D, Laux T. CDC48A, an interactor of WOX2, is required for embryonic patterning in Arabidopsis thaliana. PLANT CELL REPORTS 2024; 43:174. [PMID: 38878164 PMCID: PMC11180018 DOI: 10.1007/s00299-024-03158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 06/19/2024]
Abstract
KEY MESSAGE Interactor of WOX2, CDC48A, is crucial for early embryo patterning and shoot meristem stem cell initiation, but is not required for WOX2 protein turnover or subcellular localization. During Arabidopsis embryo patterning, the WUSCHEL HOMEOBOX 2 (WOX2) transcription factor is a major regulator of protoderm and shoot stem cell initiation. Loss of WOX2 function results in aberrant protodermal cell divisions and, redundantly with its paralogs WOX1, WOX3, and WOX5, compromised shoot meristem formation. To elucidate the molecular basis for WOX2 function, we searched for protein interactors by IP-MS/MS from WOX2-overexpression roots displaying reprogramming toward shoot-like cell fates. Here, we report that WOX2 directly interacts with the type II AAA ATPase molecular chaperone CELL DIVISION CYCLE 48A (CDC48A). We confirmed this interaction with bimolecular fluorescence complementation and co-immunoprecipitation and found that both proteins co-localize in the nucleus. We show that CDC48A loss of function results in protoderm and shoot meristem stem cell initiation defects similar to WOX2 loss of function. We also provide evidence that CDC48A promotes WOX2 activity independently of proteolysis or the regulation of nuclear localization, common mechanisms of CDC48A function in other processes. Our results point to a new role of CDC48A in potentiating WOX2 function during early embryo patterning.
Collapse
Affiliation(s)
- Wen Gong
- Institute of Plant Sciences, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Deniz Tiambeng Bak
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jos R Wendrich
- Wageningen University, 6703, Wageningen, The Netherlands
| | - Dolf Weijers
- Wageningen University, 6703, Wageningen, The Netherlands
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Sun Y, Yang H, Ren T, Zhao J, Lang X, Nie L, Zhao W. CmERF1 acts as a positive regulator of fruits and leaves growth in melon (Cucumis melo L.). PLANT MOLECULAR BIOLOGY 2024; 114:70. [PMID: 38842600 DOI: 10.1007/s11103-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.
Collapse
Affiliation(s)
- Yufan Sun
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Haiming Yang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Tiantian Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jiateng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xinmei Lang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lanchun Nie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| | - Wensheng Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Baoding, Hebei, 071000, China.
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, Hebei, 071000, China.
| |
Collapse
|
4
|
Nicolas-Francès V, Besson-Bard A, Meschini S, Klinguer A, Bonnotte A, Héloir MC, Citerne S, Inès D, Hichami S, Wendehenne D, Rosnoblet C. CDC48 regulates immunity pathway in tobacco plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108714. [PMID: 38749374 DOI: 10.1016/j.plaphy.2024.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The CDC48 protein, highly conserved in the living kingdom, is a player of the ubiquitin proteasome system and contributes to various cellular processes. In plants, CDC48 is involved in cell division, plant growth and, as recently highlighted in several reports, in plant immunity. In the present study, to further extend our knowledge about CDC48 functions in plants, we analysed the incidence of its overexpression on tobacco development and immune responses. CDC48 overexpression disrupted plant development and morphology, induced changes in plastoglobule appearance and exacerbated ROS production. In addition, levels of salicylic acid (SA) and glycosylated SA were higher in transgenic plants, both in the basal state and in response to cryptogein, a protein produced by the oomycete Phytophthora cryptogea triggering defence responses. The expression of defence genes, notably those coding for some pathogenesis-related (PR) proteins, was also exacerbated in the basal state in transgenic plant lines. Finally, tobacco plants overexpressing CDC48 did not develop necrosis in response to tobacco mosaic virus (TMV) infection, suggesting a role for CDC48 in virus resistance.
Collapse
Affiliation(s)
- Valérie Nicolas-Francès
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Stefano Meschini
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Agnès Klinguer
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Aline Bonnotte
- Plateforme DImaCell, Agroécologie, INRAE, Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Marie-Claire Héloir
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Sylvie Citerne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Damien Inès
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Siham Hichami
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
| | - Claire Rosnoblet
- Agroécologie, CNRS, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
5
|
Shi X, Xie X, Guo Y, Zhang J, Gong Z, Zhang K, Mei J, Xia X, Xia H, Ning N, Xiao Y, Yang Q, Wang GL, Liu W. A fungal core effector exploits the OsPUX8B.2-OsCDC48-6 module to suppress plant immunity. Nat Commun 2024; 15:2559. [PMID: 38519521 PMCID: PMC10959940 DOI: 10.1038/s41467-024-46903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Proteins containing a ubiquitin regulatory X (UBX) domain are cofactors of Cell Division Cycle 48 (CDC48) and function in protein quality control. However, whether and how UBX-containing proteins participate in host-microbe interactions remain unclear. Here we show that MoNLE1, an effector from the fungal pathogen Magnaporthe oryzae, is a core virulence factor that suppresses rice immunity by specifically interfering with OsPUX8B.2. The UBX domain of OsPUX8B.2 is required for its binding to OsATG8 and OsCDC48-6 and controls its 26 S proteasome-dependent stability. OsPUX8B.2 and OsCDC48-6 positively regulate plant immunity against blast fungus, while the high-temperature tolerance heat-shock protein OsBHT, a putative cytoplasmic substrate of OsPUX8B.2-OsCDC48-6, negatively regulates defense against blast infection. MoNLE1 promotes the nuclear migration and degradation of OsPUX8B.2 and disturbs its association with OsBHT. Given the high conservation of MoNLE1 among fungal isolates, plants with broad and durable blast resistance might be generated by engineering intracellular proteins resistant to MoNLE1.
Collapse
Affiliation(s)
- Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xin Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuanwen Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Junqi Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ziwen Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Na Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
7
|
Hauvermale AL, Cárdenas JJ, Bednarek SY, Steber CM. GA signaling expands: The plant UBX domain-containing protein 1 is a binding partner for the GA receptor. PLANT PHYSIOLOGY 2022; 190:2651-2670. [PMID: 36149293 PMCID: PMC9706445 DOI: 10.1093/plphys/kiac406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 06/07/2023]
Abstract
The plant Ubiquitin Regulatory X (UBX) domain-containing protein 1 (PUX1) functions as a negative regulator of gibberellin (GA) signaling. GAs are plant hormones that stimulate seed germination, the transition to flowering, and cell elongation and division. Loss of Arabidopsis (Arabidopsis thaliana) PUX1 resulted in a "GA-overdose" phenotype including early flowering, increased stem and root elongation, and partial resistance to the GA-biosynthesis inhibitor paclobutrazol during seed germination and root elongation. Furthermore, GA application failed to stimulate further stem elongation or flowering onset suggesting that elongation and flowering response to GA had reached its maximum. GA hormone partially repressed PUX1 protein accumulation, and PUX1 showed a GA-independent interaction with the GA receptor GA-INSENSITIVE DWARF-1 (GID1). This suggests that PUX1 is GA regulated and/or regulates elements of the GA signaling pathway. Consistent with PUX1 function as a negative regulator of GA signaling, the pux1 mutant caused increased GID1 expression and decreased accumulation of the DELLA REPRESSOR OF GA1-3, RGA. PUX1 is a negative regulator of the hexameric AAA+ ATPase CDC48, a protein that functions in diverse cellular processes including unfolding proteins in preparation for proteasomal degradation, cell division, and expansion. PUX1 binding to GID1 required the UBX domain, a binding motif necessary for CDC48 interaction. Moreover, PUX1 overexpression in cell culture not only stimulated the disassembly of CDC48 hexamer but also resulted in co-fractionation of GID1, PUX1, and CDC48 subunits in velocity sedimentation assays. Based on our results, we propose that PUX1 and CDC48 are additional factors that need to be incorporated into our understanding of GA signaling.
Collapse
Affiliation(s)
- Amber L Hauvermale
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, USA
- Molecular Plant Sciences, Washington State University, Pullman, Washington, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
8
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. The Shared Proteome of the Apomictic Fern Dryopteris affinis ssp. affinis and Its Sexual Relative Dryopteris oreades. Int J Mol Sci 2022; 23:ijms232214027. [PMID: 36430514 PMCID: PMC9693225 DOI: 10.3390/ijms232214027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Ferns are a diverse evolutionary lineage, sister to the seed plants, which is of great ecological importance and has a high biotechnological potential. Fern gametophytes represent one of the simplest autotrophic, multicellular plant forms and show several experimental advantages, including a simple and space-efficient in vitro culture system. However, the molecular basis of fern growth and development has hardly been studied. Here, we report on a proteomic study that identified 417 proteins shared by gametophytes of the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. Most proteins are predicted to localize to the cytoplasm, the chloroplast, or the nucleus, and are linked to enzymatic, binding, and structural activities. A subset of 145 proteins are involved in growth, reproduction, phytohormone signaling and biosynthesis, and gene expression, including homologs of SHEPHERD (SHD), HEAT SHOCK PROTEIN 90-5 (CR88), TRP4, BOBBER 1 (BOB1), FLAVONE 3'-O-METHYLTRANSFERASE 1 (OMT1), ZEAXANTHIN EPOXIDASE (ABA1), GLUTAMATE DESCARBOXYLASE 1 (GAD), and dsRNA-BINDING DOMAIN-LIKE SUPERFAMILY PROTEIN (HLY1). Nearly 25% of the annotated proteins are associated with responses to biotic and abiotic stimuli. As for biotic stress, the proteins PROTEIN SGT1 HOMOLOG B (SGT1B), SUPPRESSOR OF SA INSENSITIVE2 (SSI2), PHOSPHOLIPASE D ALPHA 1 (PLDALPHA1), SERINE/THREONINE-PROTEIN KINASE SRK2E (OST1), ACYL CARRIER PROTEIN 4 (ACP4), and NONHOST RESISTANCE TO P. S. PHASEOLICOLA1 (GLPK) are worth mentioning. Regarding abiotic stimuli, we found proteins associated with oxidative stress: SUPEROXIDE DISMUTASE[CU-ZN] 1 (CSD1), and GLUTATHIONE S-TRANSFERASE U19 (GSTU19), light intensity SERINE HYDROXYMETHYLTRANSFERASE 1 (SHM1) and UBIQUITIN-CONJUGATING ENZYME E2 35 (UBC35), salt and heavy metal stress included MITOCHONDRIAL PHOSPHATE CARRIER PROTEIN 3 (PHT3;1), as well as drought and thermotolerance: LEA7, DEAD-BOX ATP-DEPENDENT RNA HELICASE 38 (LOS4), and abundant heat-shock proteins and other chaperones. In addition, we identified interactomes using the STRING platform, revealing protein-protein associations obtained from co-expression, co-occurrence, text mining, homology, databases, and experimental datasets. By focusing on ferns, this proteomic study increases our knowledge on plant development and evolution, and may inspire future applications in crop species.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8006 Zurich, Switzerland
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8006 Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
- Correspondence: ; Tel.: +34-985-104-811
| |
Collapse
|
9
|
Viñegra de la Torre N, Vayssières A, Obeng-Hinneh E, Neumann U, Zhou Y, Lázaro A, Roggen A, Sun H, Stolze SC, Nakagami H, Schneeberger K, Timmers T, Albani MC. FLOWERING REPRESSOR AAA + ATPase 1 is a novel regulator of perennial flowering in Arabis alpina. THE NEW PHYTOLOGIST 2022; 236:729-744. [PMID: 35832005 DOI: 10.1111/nph.18374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Arabis alpina is a polycarpic perennial, in which PERPETUAL FLOWERING1 (PEP1) regulates flowering and perennial traits in a vernalization-dependent manner. Mutagenesis screens of the pep1 mutant established the role of other flowering time regulators in PEP1-parallel pathways. Here we characterized three allelic enhancers of pep1 (eop002, 085 and 091) which flower early. We mapped the causal mutations and complemented mutants with the identified gene. Using quantitative reverse transcriptase PCR and reporter lines, we determined the protein spatiotemporal expression patterns and localization within the cell. We also characterized its role in Arabidopsis thaliana using CRISPR and in A. alpina by introgressing mutant alleles into a wild-type background. These mutants carried lesions in an AAA+ ATPase of unknown function, FLOWERING REPRESSOR AAA+ ATPase 1 (AaFRAT1). AaFRAT1 was detected in the vasculature of young leaf primordia and the rib zone of flowering shoot apical meristems. At the subcellular level, AaFRAT1 was localized at the interphase between the endoplasmic reticulum and peroxisomes. Introgression lines carrying Aafrat1 alleles required less vernalization to flower and reduced number of vegetative axillary branches. By contrast, A. thaliana CRISPR lines showed weak flowering phenotypes. AaFRAT1 contributes to flowering time regulation and the perennial growth habit of A. alpina.
Collapse
Affiliation(s)
- Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Alice Vayssières
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Evelyn Obeng-Hinneh
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Ulla Neumann
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Yanhao Zhou
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Ana Lázaro
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| | - Adrian Roggen
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hequan Sun
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Sara C Stolze
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Korbinian Schneeberger
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Ton Timmers
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Maria C Albani
- Institute for Plant Sciences, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences "From Complex Traits towards Synthetic Modules", 40225, Düsseldorf, Germany
| |
Collapse
|
10
|
Chen L, Tian N, Hu M, Sandhu D, Jin Q, Gu M, Zhang X, Peng Y, Zhang J, Chen Z, Liu G, Huang M, Huang J, Liu Z, Liu S. Comparative transcriptome analysis reveals key pathways and genes involved in trichome development in tea plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:997778. [PMID: 36212317 PMCID: PMC9546587 DOI: 10.3389/fpls.2022.997778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Trichomes, which develop from epidermal cells, are considered one of the important characteristics of the tea plant [Camellia sinensis (L.) O. Kuntze]. Many nutritional and metabolomic studies have indicated the important contributions of trichomes to tea products quality. However, understanding the regulation of trichome formation at the molecular level remains elusive in tea plants. Herein, we present a genome-wide comparative transcriptome analysis between the hairless Chuyeqi (CYQ) with fewer trichomes and the hairy Budiaomao (BDM) with more trichomes tea plant genotypes, toward the identification of biological processes and functional gene activities that occur during trichome development. In the present study, trichomes in both cultivars CYQ and BDM were unicellular, unbranched, straight, and soft-structured. The density of trichomes was the highest in the bud and tender leaf periods. Further, using the high-throughput sequencing method, we identified 48,856 unigenes, of which 31,574 were differentially expressed. In an analysis of 208 differentially expressed genes (DEGs) encoding transcription factors (TFs), five may involve in trichome development. In addition, on the basis of the Gene Ontology (GO) annotation and the weighted gene co-expression network analysis (WGCNA) results, we screened several DEGs that may contribute to trichome growth, including 66 DEGs related to plant resistance genes (PRGs), 172 DEGs related to cell wall biosynthesis pathway, 29 DEGs related to cell cycle pathway, and 45 DEGs related to cytoskeleton biosynthesis. Collectively, this study provided high-quality RNA-seq information to improve our understanding of the molecular regulatory mechanism of trichome development and lay a foundation for additional trichome studies in tea plants.
Collapse
Affiliation(s)
- Lan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mengqing Hu
- Xiangxi Academy of Agricultural Sciences, Jishou, China
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA, United States
| | - Qifang Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Xiangqin Zhang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Ying Peng
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jiali Zhang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhenyan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Guizhi Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mengdi Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
11
|
Lan W, Ma W, Zheng S, Qiu Y, Zhang H, Lu H, Zhang Y, Miao Y. Ubiquitome profiling reveals a regulatory pattern of UPL3 with UBP12 on metabolic-leaf senescence. Life Sci Alliance 2022; 5:e202201492. [PMID: 35926874 PMCID: PMC9354775 DOI: 10.26508/lsa.202201492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The HECT-type UPL3 ligase plays critical roles in plant development and stress protection, but understanding of its regulation remains limited. Here, the multi-omics analyses of ubiquitinated proteins in <i>upl3</i> mutants were performed. A landscape of UPL3-dependent ubiquitinated proteins is constructed: Preferential ubiquitination of proteins related to carbon fixation represented the largest set of proteins with increased ubiquitination in the <i>upl3</i> plant, including most of carbohydrate metabolic enzymes, BRM, and variant histone, whereas a small set of proteins with reduced ubiquitination caused by the <i>upl3</i> mutation were linked to cysteine/methionine synthesis, as well as hexokinase 1 (HXK1) and phosphoenolpyruvate carboxylase 2 (PPC2). Notably, ubiquitin hydrolase 12 (UBP12), BRM, HXK1, and PPC2 were identified as the UPL3-interacting partners in vivo and in vitro. Characterization of <i>brm</i>, <i>upl3</i>, <i>ppc2</i>, <i>gin2</i>, and <i>ubp12</i> mutant plants and proteomic and transcriptomic analysis suggested that UPL3 fine-tunes carbohydrate metabolism, mediating cellular senescence by interacting with UBP12, BRM, HXK1, and PPC2. Our results highlight a regulatory pattern of UPL3 with UBP12 as a hub of regulator on proteolysis-independent regulation and proteolysis-dependent degradation.
Collapse
Affiliation(s)
- Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhao Qiu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haisen Lu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Calvanese E, Gu Y. Towards understanding inner nuclear membrane protein degradation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2266-2274. [PMID: 35139191 DOI: 10.1093/jxb/erac037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The inner nuclear membrane (INM) hosts a unique set of membrane proteins that play essential roles in various aspects of the nuclear function. However, overaccumulation or malfunction of INM protein has been associated with a range of rare genetic diseases; therefore, maintaining the homeostasis and integrity of INM proteins by active removal of aberrantly accumulated proteins and replacing defective molecules through proteolysis is of critical importance. Within the last decade, it has been shown that INM proteins are degraded in yeasts by a process very similar to endoplasmic reticulum-associated degradation (ERAD), which is accomplished by retrotranslocation of membrane substrates followed by proteasome-dependent proteolysis, and this process was named inner nuclear membrane-associated degradation (INMAD). INMAD is distinguished from ERAD by specific INM-localized E3 ubiquitin ligases and proteolysis regulators. While much is yet to be determined about the INMAD pathway in yeasts, virtually no knowledge of it exists for higher eukaryotes, and only very recently have several critical regulators that participate in INM protein degradation been discovered in plants. Here, we review key molecular components of the INMAD pathway and draw parallels between the yeast and plant system to discuss promising directions in the future study of the plant INMAD process.
Collapse
Affiliation(s)
- Enrico Calvanese
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Li J, Yuan J, Li Y, Sun H, Ma T, Huai J, Yang W, Zhang W, Lin R. The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Cell Rep 2022; 39:110664. [PMID: 35417702 DOI: 10.1016/j.celrep.2022.110664] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022] Open
Abstract
Chloroplasts are the site of numerous biochemical reactions including photosynthesis, but they also produce reactive oxygen species (ROS) that negatively affect chloroplast integrity. The chaperone-like CDC48 complex plays critical roles in ubiquitin-dependent protein degradation in yeast and mammals, but its function in plants is largely unknown. Here, we show that defects in CDC48A and its cofactors UFD1 and NPL4 lead to the accumulation of ubiquitinated chloroplast proteins in Arabidopsis thaliana. We reveal that two plastid genome-encoded proteins, RbcL and AtpB, associate with the CDC48 complex. Strikingly, RbcL and AtpB are ubiquitinated and degraded by the 26S proteasome pathway upon ROS stress, and these processes are impaired by defects of the CDC48 complex. Functional analysis demonstrates that the CDC48 complex is required for plant tolerance to ROS. This study reveals a role for the plant CDC48 complex in modulating ubiquitin-dependent degradation of intra-chloroplast proteins in response to oxidative stress.
Collapse
Affiliation(s)
- Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jiarui Yuan
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilun Sun
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhao Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Yang L, Zhu M, Yang Y, Wang K, Che Y, Yang S, Wang J, Yu X, Li L, Wu S, Palme K, Li X. CDC48B facilitates the intercellular trafficking of SHORT-ROOT during radial patterning in roots. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:843-858. [PMID: 35088574 DOI: 10.1111/jipb.13231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
CELL DIVISION CONTROL PROTEIN48 (CDC48) is essential for membrane fusion, protein degradation, and other cellular processes. Here, we revealed the crucial role of CDC48B in regulating periclinal cell division in roots by analyzing the recessive gen1 mutant. We identified the GEN1 gene through map-based cloning and verified that GEN1 encodes CDC48B. gen1 showed severely inhibited root growth, increased periclinal cell division in the endodermis, defective middle cortex (MC) formation, and altered ground tissue patterning in roots. Consistent with these phenotypes, CYCLIND 6;1(CYCD6;1), a periclinal cell division marker, was upregulated in gen1 compared to Col-0. The ratio of SHRpro :SHR-GFP fluorescence in pre-dividing nuclei versus the adjacent stele decreased by 33% in gen1, indicating that the trafficking of SHORT-ROOT (SHR) decreased in gen1 when endodermal cells started to divide. These findings suggest that the loss of function of CDC48B inhibits the intercellular trafficking of SHR from the stele to the endodermis, thereby decreasing SHR accumulation in the endodermis. These findings shed light on the crucial role of CDC48B in regulating periclinal cell division in roots.
Collapse
Affiliation(s)
- Lihui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
- Department of Genetics, Northwest Women's and Children's Hospital, Xi'an, 710061, China
| | - Mingyue Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yi Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Ke Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Yulei Che
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Shurui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Jinxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources & College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510640, China
| | - Xin Yu
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Wu
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Klaus Palme
- Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104, Germany
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Xugang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-alkali Land, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
- Sino German Joint Research Center for Agricultural Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| |
Collapse
|
15
|
Xin Y, Pan W, Chen X, Liu Y, Zhang M, Chen X, Yang F, Li J, Wu J, Du Y, Zhang X. Transcriptome profiling reveals key genes in regulation of the tepal trichome development in Lilium pumilum D.C. PLANT CELL REPORTS 2021; 40:1889-1906. [PMID: 34259890 DOI: 10.1007/s00299-021-02753-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A number of potential genes and pathways involved in tepal trichome development were identified in a natural lily mutant by transcriptome analysis and were confirmed with trichome and trichomeless species. Trichome is a specialized structure found on the surface of the plant with an important function in survival against abiotic and biotic stress. It is also an important economic trait in crop breeding. Extensive research has investigated the foliar trichome in model plants (Arabidopsis and tomato). However, the developmental mechanism of tepal trichome remains elusive. Lilium pumilum is an edible ornamental bulb and a good breeding parent possessing cold and salt-alkali resistance. Here, we found a natural mutant of Lilium pumilum grown on a highland whose tepals are covered by trichomes. Our data indicate that trichomes of the mutant are multicellular and branchless. Notably, stomata are also developed on the tepal of the mutant as well, suggesting there may be a correlation between trichome and stomata regulation. Furthermore, we isolated 27 differentially expressed genes (DEGs) by comparing the transcriptome profiling between the natural mutant and the wild type. These 27 genes belong to 4 groups: epidermal cell cycle and division, trichome morphogenesis, stress response, and transcription factors. Quantitative real-time PCR in Lilium pumilum (natural mutant and the wild type) and other lily species (Lilium leichtlinii var. maximowiczii/trichome; Lilium davidii var. willmottiae/, trichomeless) confirmed the validation of RNA-seq data and identified several trichome-related genes.
Collapse
Affiliation(s)
- Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xi Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yixin Liu
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mingfang Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuqing Chen
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Fengping Yang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, 100193, China.
| | - Yunpeng Du
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Xiuhai Zhang
- Key Laboratory of Urban Agriculture (North), Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-Biotechnology Research Center, Ministry of Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
16
|
Zhang J, Vancea AI, Shahul Hameed UF, Arold ST. Versatile control of the CDC48 segregase by the plant UBX-containing (PUX) proteins. Comput Struct Biotechnol J 2021; 19:3125-3132. [PMID: 34141135 PMCID: PMC8181520 DOI: 10.1016/j.csbj.2021.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/26/2022] Open
Abstract
In plants, AAA-adenosine triphosphatase (ATPase) Cell Division Control Protein 48 (CDC48) uses the force generated through ATP hydrolysis to pull, extract, and unfold ubiquitylated or sumoylated proteins from the membrane, chromatin, or protein complexes. The resulting changes in protein or RNA content are an important means for plants to control protein homeostasis and thereby adapt to shifting environmental conditions. The activity and targeting of CDC48 are controlled by adaptor proteins, of which the plant ubiquitin regulatory X (UBX) domain-containing (PUX) proteins constitute the largest family. Emerging knowledge on the structure and function of PUX proteins highlights that these proteins are versatile factors for plant homeostasis and adaptation that might inspire biotechnological applications.
Collapse
Affiliation(s)
- Junrui Zhang
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Alexandra I Vancea
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Umar F Shahul Hameed
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.,Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
17
|
Ao K, Tong M, Li L, Lüdke D, Lipka V, Chen S, Wiermer M, Li X. SCF SNIPER7 controls protein turnover of unfoldase CDC48A to promote plant immunity. THE NEW PHYTOLOGIST 2021; 229:2795-2811. [PMID: 33156518 DOI: 10.1111/nph.17071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
The unfoldase CDC48 (Cell Division Cycle 48) is highly conserved in eukaryotes, serving as an AAA + ATPase to extract ubiquitinated proteins from large protein complexes and membranes. Although its biochemical properties have been studied extensively in yeast and animal systems, the biological roles and regulations of the plant CDC48s have been explored only recently. Here we describe the identification of a novel E3 ligase from the SNIPER (snc1-influencing plant E3 ligase reverse genetic) screen, which contributes to plant defense regulation by targeting CDC48A for degradation. SNIPER7 encodes an F-box protein and its overexpression leads to autoimmunity. We identified CDC48s as interactors of SNIPER7 through immunoprecipitation followed by mass spectrometry proteomic analysis. SNIPER7 overexpression lines phenocopy the autoimmune mutant Atcdc48a-4. Furthermore, CDC48A protein levels are reduced or stabilized when SNIPER7 is overexpressed or inhibited, respectively, suggesting that CDC48A is the ubiquitination substrate of SCFSNIPER7 . Taken together, this study reveals a new mechanism where a SCFSNIPER7 complex regulates CDC48 unfoldase levels and modulates immune output.
Collapse
Affiliation(s)
- Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Daniel Lüdke
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
- Central Microscopy Facility of the Faculty of Biology and Psychology, University of Goettingen, Goettingen, D-37077, Germany
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, D-37077, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
18
|
Huang A, Tang Y, Shi X, Jia M, Zhu J, Yan X, Chen H, Gu Y. Proximity labeling proteomics reveals critical regulators for inner nuclear membrane protein degradation in plants. Nat Commun 2020; 11:3284. [PMID: 32601292 PMCID: PMC7324386 DOI: 10.1038/s41467-020-16744-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/20/2020] [Indexed: 11/08/2022] Open
Abstract
The inner nuclear membrane (INM) selectively accumulates proteins that are essential for nuclear functions; however, overaccumulation of INM proteins results in a range of rare genetic disorders. So far, little is known about how defective, mislocalized, or abnormally accumulated membrane proteins are actively removed from the INM, especially in plants and animals. Here, via analysis of a proximity-labeling proteomic profile of INM-associated proteins in Arabidopsis, we identify critical components for an INM protein degradation pathway. We show that this pathway relies on the CDC48 complex for INM protein extraction and 26S proteasome for subsequent protein degradation. Moreover, we show that CDC48 at the INM may be regulated by a subgroup of PUX proteins, which determine the substrate specificity or affect the ATPase activity of CDC48. These PUX proteins specifically associate with the nucleoskeleton underneath the INM and physically interact with CDC48 proteins to negatively regulate INM protein degradation in plants.
Collapse
Affiliation(s)
- Aobo Huang
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xuetao Shi
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Min Jia
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jinheng Zhu
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohan Yan
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huiqin Chen
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yangnan Gu
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
19
|
Lu N, Zhang M, Xiao Y, Han D, Liu Y, Zhang Y, Yi F, Zhu T, Ma W, Fan E, Qu G, Wang J. Construction of a high-density genetic map and QTL mapping of leaf traits and plant growth in an interspecific F 1 population of Catalpa bungei × Catalpa duclouxii Dode. BMC PLANT BIOLOGY 2019; 19:596. [PMID: 31888555 PMCID: PMC6937828 DOI: 10.1186/s12870-019-2207-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/17/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Catalpa bungei is an important tree species used for timber in China and widely cultivated for economic and ornamental purposes. A high-density linkage map of C. bungei would be an efficient tool not only for identifying key quantitative trait loci (QTLs) that affect important traits, such as plant growth and leaf traits, but also for other genetic studies. RESULTS Restriction site-associated DNA sequencing (RAD-seq) was used to identify molecular markers and construct a genetic map. Approximately 280.77 Gb of clean data were obtained after sequencing, and in total, 25,614,295 single nucleotide polymorphisms (SNPs) and 2,871,647 insertions-deletions (InDels) were initially identified in the genomes of 200 individuals of a C. bungei (7080) × Catalpa duclouxii (16-PJ-3) F1 population and their parents. Finally, 9072 SNP and 521 InDel markers that satisfied the requirements for constructing a genetic map were obtained. The integrated genetic map contained 9593 pleomorphic markers in 20 linkage groups and spanned 3151.63 cM, with an average distance between adjacent markers of 0.32 cM. Twenty QTLs for seven leaf traits and 13 QTLs for plant height at five successive time points were identified using our genetic map by inclusive composite interval mapping (ICIM). Q16-60 was identified as a QTL for five leaf traits, and three significant QTLs (Q9-1, Q18-66 and Q18-73) associated with plant growth were detected at least twice. Genome annotation suggested that a cyclin gene participates in leaf trait development, while the growth of C. bungei may be influenced by CDC48C and genes associated with phytohormone synthesis. CONCLUSIONS This is the first genetic map constructed in C. bungei and will be a useful tool for further genetic study, molecular marker-assisted breeding and genome assembly.
Collapse
Affiliation(s)
- Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Yao Xiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Donghua Han
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, 210037 Jiangsu People’s Republic of China
| | - Ying Liu
- College of Forestry, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Fei Yi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Erqin Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, People’s Republic of China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, People’s Republic of China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| |
Collapse
|
20
|
Castroverde CDM. Sebastian Bednarek. THE PLANT CELL 2019; 31:1931-1933. [PMID: 31311835 PMCID: PMC6751126 DOI: 10.1105/tpc.19.00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
21
|
Ling Q, Broad W, Trösch R, Töpel M, Demiral Sert T, Lymperopoulos P, Baldwin A, Jarvis RP. Ubiquitin-dependent chloroplast-associated protein degradation in plants. Science 2019; 363:363/6429/eaav4467. [PMID: 30792274 DOI: 10.1126/science.aav4467] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
Chloroplasts contain thousands of nucleus-encoded proteins that are imported from the cytosol by translocases in the chloroplast envelope membranes. Proteolytic regulation of the translocases is critically important, but little is known about the underlying mechanisms. We applied forward genetics and proteomics in Arabidopsis to identify factors required for chloroplast outer envelope membrane (OEM) protein degradation. We identified SP2, an Omp85-type β-barrel channel of the OEM, and CDC48, a cytosolic AAA+ (ATPase associated with diverse cellular activities) chaperone. Both proteins acted in the same pathway as the ubiquitin E3 ligase SP1, which regulates OEM translocase components. SP2 and CDC48 cooperated to bring about retrotranslocation of ubiquitinated substrates from the OEM (fulfilling conductance and motor functions, respectively), enabling degradation of the substrates by the 26S proteasome in the cytosol. Such chloroplast-associated protein degradation (CHLORAD) is vital for organellar functions and plant development.
Collapse
Affiliation(s)
- Qihua Ling
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - William Broad
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Raphael Trösch
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Mats Töpel
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | | | - Amy Baldwin
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| | - R Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK. .,Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
22
|
McBride Z, Chen D, Lee Y, Aryal UK, Xie J, Szymanski DB. A Label-free Mass Spectrometry Method to Predict Endogenous Protein Complex Composition. Mol Cell Proteomics 2019; 18:1588-1606. [PMID: 31186290 PMCID: PMC6683005 DOI: 10.1074/mcp.ra119.001400] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Information on the composition of protein complexes can accelerate mechanistic analyses of cellular systems. Protein complex composition identifies genes that function together and provides clues about regulation within and between cellular pathways. Cytosolic protein complexes control metabolic flux, signal transduction, protein abundance, and the activities of cytoskeletal and endomembrane systems. It has been estimated that one third of all cytosolic proteins in leaves exist in an oligomeric state, yet the composition of nearly all remain unknown. Subunits of stable protein complexes copurify, and combinations of mass-spectrometry-based protein correlation profiling and bioinformatic analyses have been used to predict protein complex subunits. Because of uncertainty regarding the power or availability of bioinformatic data to inform protein complex predictions across diverse species, it would be highly advantageous to predict composition based on elution profile data alone. Here we describe a mass spectrometry-based protein correlation profiling approach to predict the composition of hundreds of protein complexes based on biochemical data. Extracts were obtained from an intact organ and separated in parallel by size and charge under nondenaturing conditions. More than 1000 proteins with reproducible elution profiles across all replicates were subjected to clustering analyses. The resulting dendrograms were used to predict the composition of known and novel protein complexes, including many that are likely to assemble through self-interaction. An array of validation experiments demonstrated that this new method can drive protein complex discovery, guide hypothesis testing, and enable systems-level analyses of protein complex dynamics in any organism with a sequenced genome.
Collapse
Affiliation(s)
- Zachary McBride
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
| | - Donglai Chen
- §Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Youngwoo Lee
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana
| | - Uma K Aryal
- ¶Purdue Proteomics Facility, Bindley Biosciences Center, Discovery Park, Purdue University, West Lafayette, Indiana
| | - Jun Xie
- §Department of Statistics, Purdue University, West Lafayette, Indiana
| | - Daniel B Szymanski
- ‡Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana; ‖Department of Biological Sciences,Purdue University, West Lafayette, Indiana.
| |
Collapse
|
23
|
Bègue H, Besson-Bard A, Blanchard C, Winckler P, Bourque S, Nicolas V, Wendehenne D, Rosnoblet C. The chaperone-like protein CDC48 regulates ascorbate peroxidase in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2665-2681. [PMID: 30821322 PMCID: PMC6506776 DOI: 10.1093/jxb/erz097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
There is increasing evidence that the chaperone-like protein CDC48 (cell division cycle 48) plays a role in plant immunity. Cytosolic ascorbate peroxidase (cAPX), which is a major regulator of the redox status of plant cells, has previously been shown to interact with CDC48. In this study, we examined the regulation of cAPX by the ATPase NtCDC48 during the cryptogein-induced immune response in tobacco cells. Our results not only confirmed the interaction between the proteins but also showed that it occurs in the cytosol. cAPX accumulation was modified in cells overexpressing NtCDC48, a process that was shown to involve post-translational modification of cAPX. In addition, cryptogein-induced increases in cAPX activity were suppressed in cells overexpressing NtCDC48 and the abundance of the cAPX dimer was below the level of detection. Furthermore, the levels of both reduced (GSH) and oxidized glutathione (GSSG) and the GSH/GSSG ratio decreased more rapidly in response to the elicitor in these cells than in controls. A decrease in cAPX activity was also observed in response to heat shock in the cells overexpressing NtCDC48, indicating that the regulation of cAPX by NtCDC48 is not specific to the immune response.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Angélique Besson-Bard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Cécile Blanchard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Pascale Winckler
- Plateforme Dimacell/Imagerie spectroscopique UMR Procédés Alimentaires et Microbiologiques Equipe Procédés Microbiologiques et Biotechnologiques, AgroSup Dijon Nord, Dijon, France
| | - Stéphane Bourque
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Valérie Nicolas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
24
|
Marshall RS, Hua Z, Mali S, McLoughlin F, Vierstra RD. ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors. Cell 2019; 177:766-781.e24. [PMID: 30955882 DOI: 10.1016/j.cell.2019.02.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/14/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
Abstract
During autophagy, vesicle dynamics and cargo recruitment are driven by numerous adaptors and receptors that become tethered to the phagophore through interactions with lipidated ATG8/LC3 decorating the expanding membrane. Most currently described ATG8-binding proteins exploit a well-defined ATG8-interacting motif (AIM, or LC3-interacting region [LIR]) that contacts a hydrophobic patch on ATG8 known as the LIR/AIM docking site (LDS). Here we describe a new class of ATG8 interactors that exploit ubiquitin-interacting motif (UIM)-like sequences for high-affinity binding to an alternative ATG8 interaction site. Assays with candidate UIM-containing proteins together with unbiased screens identified a large collection of UIM-based ATG8 interactors in plants, yeast, and humans. Analysis of a subset also harboring ubiquitin regulatory X (UBX) domains revealed a role for UIM-directed autophagy in clearing non-functional CDC48/p97 complexes, including some impaired in human disease. With this new class of adaptors and receptors, we greatly extend the reach of selective autophagy and identify new factors regulating autophagic vesicle dynamics.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Sujina Mali
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
25
|
Bègue H, Mounier A, Rosnoblet C, Wendehenne D. Toward the understanding of the role of CDC48, a major component of the protein quality control, in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:34-44. [PMID: 30709491 DOI: 10.1016/j.plantsci.2018.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The evolutionally conserved chaperone-like protein CDC48 (cell division cycle 48) is a major component of ubiquitin-dependent protein degradation pathways in animal and yeast and, more generally, of the protein quality control machinery. In plants, CDC48 plays essential regulatory functions in development and the possibly that it contributes to protein degradation through the ubiquitin-proteasome system (UPS) and the endoplasmic reticulum-associated protein degradation (ERAD) system has been reported. In this review we described recent findings highlighting a role for CDC48 in plant immunity. First data indicated that CDC48 is S-nitrosylated in plant cells undergoing an immune response, regulates the turnover of immune receptors and mediates the degradation of viral proteins. Furthermore its overexpression was associated to an exacerbated hypersensitive-like cell death. We also designed and reported here the first CDC48 interactome. The corresponding data confirm the closed interaction of CDC48 with components of the UPS and shed light on its putative regulatory function of S-adenosyl-methionine synthesis and metabolism. More generally, these investigations further support the concept that plant cells facing pathogen attack finely regulate the protein quality control machinery.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Arnaud Mounier
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| |
Collapse
|
26
|
Gao H, Wang Y, Li W, Gu Y, Lai Y, Bi Y, He C. Transcriptomic comparison reveals genetic variation potentially underlying seed developmental evolution of soybeans. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5089-5104. [PMID: 30113693 PMCID: PMC6184420 DOI: 10.1093/jxb/ery291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/31/2018] [Indexed: 05/22/2023]
Abstract
Soybean (Glycine max) was domesticated from its wild relative Glycine soja. However, the genetic variations underlying soybean domestication are not well known. Comparative transcriptomics revealed that a small portion of the orthologous genes might have been fast evolving. In contrast, three gene expression clusters were identified as divergent by their expression patterns, which occupied 37.44% of the total genes, hinting at an essential role for gene expression alteration in soybean domestication. Moreover, the most divergent stage in gene expression between wild and cultivated soybeans occurred during seed development around the cotyledon stage (15 d after fertilization, G15). A module in which the co-expressed genes were significantly down-regulated at G15 of wild soybeans was identified. The divergent clusters and modules included substantial differentially expressed genes (DEGs) between wild and cultivated soybeans related to cell division, storage compound accumulation, hormone response, and seed maturation processes. Chromosomal-linked DEGs, quantitative trait loci controlling seed weight and oil content, and selection sweeps revealed candidate DEGs at G15 in the fruit-related divergence of G. max and G. soja. Our work establishes a transcriptomic selection mechanism for altering gene expression during soybean domestication, thus shedding light on the molecular networks underlying soybean seed development and breeding strategy.
Collapse
Affiliation(s)
- Huihui Gao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Wei Li
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yongzhe Gu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongcai Lai
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yingdong Bi
- Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Kretzschmar FK, Mengel LA, Müller AO, Schmitt K, Blersch KF, Valerius O, Braus GH, Ischebeck T. PUX10 Is a Lipid Droplet-Localized Scaffold Protein That Interacts with CELL DIVISION CYCLE48 and Is Involved in the Degradation of Lipid Droplet Proteins. THE PLANT CELL 2018; 30:2137-2160. [PMID: 30087207 PMCID: PMC6181012 DOI: 10.1105/tpc.18.00276] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Accepted: 07/31/2018] [Indexed: 05/07/2023]
Abstract
The number of known proteins associated with plant lipid droplets (LDs) is small compared with other organelles. Many aspects of LD biosynthesis and degradation are unknown, and identifying and characterizing candidate LD proteins could help elucidate these processes. Here, we analyzed the proteome of LD-enriched fractions isolated from tobacco (Nicotiana tabacum) pollen tubes. Proteins that were highly enriched in comparison with the total or cytosolic fraction were further tested for LD localization via transient expression in pollen tubes. One of these proteins, PLANT UBX DOMAIN-CONTAINING PROTEIN10 (PUX10), is a member of the plant UBX domain-containing (PUX) protein family. This protein localizes to LDs via a unique hydrophobic polypeptide sequence and can recruit the AAA-type ATPase CELL DIVISION CYCLE48 (CDC48) protein via its UBX domain. PUX10 is conserved in Arabidopsis thaliana and expressed in embryos, pollen tubes, and seedlings. In pux10 knockout mutants in Arabidopsis, LD size is significantly increased. Proteomic analysis of pux10 mutants revealed a delayed degradation of known LD proteins, some of which possessed ubiquitination sites. We propose that PUX10 is involved in a protein degradation pathway at LDs, mediating an interaction between polyubiquitinated proteins targeted for degradation and downstream effectors such as CDC48.
Collapse
Affiliation(s)
- Franziska K Kretzschmar
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37077 Göttingen, Germany
| | - Laura A Mengel
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37077 Göttingen, Germany
| | - Anna O Müller
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37077 Göttingen, Germany
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Georg-August-University, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
| | - Katharina F Blersch
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37077 Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Georg-August-University, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Georg-August-University, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, 37077 Göttingen, Germany
| |
Collapse
|
28
|
Deruyffelaere C, Purkrtova Z, Bouchez I, Collet B, Cacas JL, Chardot T, Gallois JL, D'Andrea S. PUX10 Is a CDC48A Adaptor Protein That Regulates the Extraction of Ubiquitinated Oleosins from Seed Lipid Droplets in Arabidopsis. THE PLANT CELL 2018; 30:2116-2136. [PMID: 30087208 PMCID: PMC6181022 DOI: 10.1105/tpc.18.00275] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 07/31/2018] [Indexed: 05/19/2023]
Abstract
Postgerminative mobilization of neutral lipids stored in seed lipid droplets (LDs) is preceded by the degradation of oleosins, the major structural LD proteins that stabilize LDs in dry seeds. We previously showed that Arabidopsis thaliana oleosins are marked for degradation by ubiquitination and are extracted from LDs before proteolysis. However, the mechanisms underlying the dislocation of these LD-anchored proteins from the LD monolayer are yet unknown. Here, we report that PUX10, a member of the plant UBX-domain containing (PUX) protein family, is an integral LD protein that associates with a subpopulation of LDs during seed germination. In pux10 mutant seedlings, PUX10 deficiency impaired the degradation of ubiquitinated oleosins and prevented the extraction of ubiquitinated oleosins from LDs. We also showed that PUX10 interacts with ubiquitin and CDC48A, the AAA ATPase Cell Division Cycle 48, through its UBA and UBX domains, respectively. Collectively, these results strongly suggest that PUX10 is an adaptor recruiting CDC48A to ubiquitinated oleosins, thus facilitating the dislocation of oleosins from LDs by the segregase activity of CDC48A. We propose that PUX10 and CDC48A are core components of a LD-associated degradation machinery, which we named the LD-associated degradation system. Importantly, PUX10 is also the first determinant of a LD subpopulation described in plants, suggesting functional differentiation of LDs in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Carine Deruyffelaere
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Zita Purkrtova
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Isabelle Bouchez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Boris Collet
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Thierry Chardot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Sabine D'Andrea
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
29
|
Ratke C, Terebieniec BK, Winestrand S, Derba-Maceluch M, Grahn T, Schiffthaler B, Ulvcrona T, Özparpucu M, Rüggeberg M, Lundqvist SO, Street NR, Jönsson LJ, Mellerowicz EJ. Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome. THE NEW PHYTOLOGIST 2018; 219:230-245. [PMID: 29708593 DOI: 10.1111/nph.15160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/02/2018] [Indexed: 05/23/2023]
Abstract
Xylan is one of the main compounds determining wood properties in hardwood species. The xylan backbone is thought to be synthesized by a synthase complex comprising two members of the GT43 family. We downregulated all GT43 genes in hybrid aspen (Populus tremula × tremuloides) to understand their involvement in xylan biosynthesis. All three clades of the GT43 family were targeted for downregulation using RNA interference individually or in different combinations, either constitutively or specifically in developing wood. Simultaneous downregulation in developing wood of the B (IRX9) and C (IRX14) clades resulted in reduced xylan Xyl content relative to reducing end sequence, supporting their role in xylan backbone biosynthesis. This was accompanied by a higher lignocellulose saccharification efficiency. Unexpectedly, GT43 suppression in developing wood led to an overall growth stimulation, xylem cell wall thinning and a shift in cellulose orientation. Transcriptome profiling of these transgenic lines indicated that cell cycling was stimulated and secondary wall biosynthesis was repressed. We suggest that the reduced xylan elongation is sensed by the cell wall integrity surveying mechanism in developing wood. Our results show that wood-specific suppression of xylan-biosynthetic GT43 genes activates signaling responses, leading to increased growth and improved lignocellulose saccharification.
Collapse
Affiliation(s)
- Christine Ratke
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | - Barbara K Terebieniec
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | | | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| | - Thomas Grahn
- Material Processes, RISE Innventia AB, SE-114-86, Stockholm, Sweden
| | | | - Thomas Ulvcrona
- Department of Forest Resource Management, SLU, S-901-83, Umeå, Sweden
| | - Merve Özparpucu
- Institute for Building Materials, Swiss Federal Institute of Technology (ETH Zürich), CH-8093, Zürich, Switzerland
| | - Markus Rüggeberg
- Institute for Building Materials, Swiss Federal Institute of Technology (ETH Zürich), CH-8093, Zürich, Switzerland
| | | | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, S-901-87, Umeå, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), S-901-83, Umeå, Sweden
| |
Collapse
|
30
|
Liang WW, Huang JH, Li CP, Yang LT, Ye X, Lin D, Chen LS. MicroRNA-mediated responses to long-term magnesium-deficiency in Citrus sinensis roots revealed by Illumina sequencing. BMC Genomics 2017; 18:657. [PMID: 28836935 PMCID: PMC5571589 DOI: 10.1186/s12864-017-3999-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/01/2017] [Indexed: 01/17/2023] Open
Abstract
Background Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in ‘Xuegan’ (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. Results We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. Conclusions We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3999-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Wei Liang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Chun-Ping Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Lin
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
31
|
Wildermuth MC, Steinwand MA, McRae AG, Jaenisch J, Chandran D. Adapted Biotroph Manipulation of Plant Cell Ploidy. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:537-564. [PMID: 28617655 DOI: 10.1146/annurev-phyto-080516-035458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diverse plant biotrophs that establish a sustained site of nutrient acquisition induce localized host endoreduplication. Endoreduplication is a process by which cells successively replicate their genomes without mitosis, resulting in an increase in nuclear DNA ploidy. Elevated ploidy is associated with enhanced cell size, metabolic capacity, and the capacity to differentiate. Localized host endoreduplication induced by adapted plant biotrophs promotes biotroph colonization, development, and/or proliferation. When induced host endoreduplication is limited, biotroph growth and/or development are compromised. Herein, we examine a diverse set of plant-biotroph interactions to identify (a) common host components manipulated to promote induced host endoreduplication and (b) biotroph effectors that facilitate this induced host process. Shared mechanisms to promote host endoreduplication and development of nutrient exchange/feeding sites include manipulation centered on endocycle entry at the G2-M transition as well as yet undefined roles for differentiation regulators (e.g., CLE peptides) and pectin/cell wall modification.
Collapse
Affiliation(s)
- Mary C Wildermuth
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Michael A Steinwand
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Amanda G McRae
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Johan Jaenisch
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720;
| | - Divya Chandran
- Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India 121001
| |
Collapse
|
32
|
Rosnoblet C, Bègue H, Blanchard C, Pichereaux C, Besson-Bard A, Aimé S, Wendehenne D. Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco. PLANT, CELL & ENVIRONMENT 2017; 40:491-508. [PMID: 26662183 DOI: 10.1111/pce.12686] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 05/06/2023]
Abstract
Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea. Here, we inv estigated the function of NtCdc48 in cryptogein signalling and induced hypersensitive-like cell death. NtCdc48 was found to accumulate in elicited cells at both the protein and transcript levels. Interestingly, only a small proportion of the overall NtCdc48 population appeared to be S-nitrosylated. Using gel filtration in native conditions, we confirmed that NtCdc48 was present in its hexameric active form. An immunoprecipitation-based strategy following my mass spectrometry analysis led to the identification of about a hundred NtCdc48 partners and underlined its contribution in cellular processes including targeting of ubiquitylated proteins for proteasome-dependent degradation, subcellular trafficking and redox regulation. Finally, the analysis of cryptogein-induced events in NtCdc48-overexpressing cells highlighted a correlation between NtCdc48 expression and hypersensitive cell death. Altogether, this study identified NtCdc48 as a component of cryptogein signalling and plant immunity.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Hervé Bègue
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Cécile Blanchard
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Carole Pichereaux
- Fédération de Recherche 3450, Agrobiosciences, Interactions et Biodiversité, CNRS, 31326, Castanet-Tolosan, France
- Institut de Pharmacologie et de Biologie Structurale - CNRS, Université de Toulouse, 205 route de Narbonne,, 31077, Toulouse, France
| | - Angélique Besson-Bard
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - Sébastien Aimé
- INRA, UMR 1347 Agroécologie, Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| | - David Wendehenne
- Pôle Mécanisme et Gestion des Interactions Plantes-Microorganismes - ERL CNRS 6300, Université de Bourgogne Franche-Comté, UMR 1347 Agroécologie, 17 rue Sully, BP 86510, 21065, Dijon cédex, France
| |
Collapse
|
33
|
Srivastava S, Singh N, Srivastava G, Sharma A. miRNA mediated gene regulatory network analysis of Cichorium intybus (chicory). ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Bègue H, Jeandroz S, Blanchard C, Wendehenne D, Rosnoblet C. Structure and functions of the chaperone-like p97/CDC48 in plants. Biochim Biophys Acta Gen Subj 2016; 1861:3053-3060. [PMID: 27717811 DOI: 10.1016/j.bbagen.2016.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The chaperone-like p97 is a member of the AAA+ ATPase enzyme family that contributes to numerous cellular activities. P97 has been broadly studied in mammals (VCP/p97) and yeasts (CDC48: Cell Division Cycle 48/p97) and numerous investigations highlighted that this protein is post-translationally regulated, is structured in homohexamer and interacts with partners and cofactors that direct it to distinct cellular signalization pathway including protein quality control and degradation, cell cycle regulation, genome stability, vesicular trafficking, autophagy and immunity. SCOPE OF REVIEW p97 is also conserved in plants (CDC48) but its functions are less understood. In the present review we intended to present the state of the art of the structure, regulation and functions of CDC48 in plants. MAJOR CONCLUSIONS Evidence accumulated underline that CDC48 plays a crucial role in development, cell cycle regulation and protein turnover in plants. Furthermore, its involvement in plant immunity has recently emerged and first interacting partners have been identified, shedding light on its putative cellular activities. GENERAL SIGNIFICANCE Identification of emerging functions of CDC48 in plants opens new roads of research in immunity and provides new insights into the mechanisms of protein quality control.
Collapse
Affiliation(s)
- Hervé Bègue
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Sylvain Jeandroz
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Cécile Blanchard
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - David Wendehenne
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Claire Rosnoblet
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
35
|
Copeland C, Woloshen V, Huang Y, Li X. AtCDC48A is involved in the turnover of an NLR immune receptor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:294-305. [PMID: 27340941 DOI: 10.1111/tpj.13251] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 05/20/2023]
Abstract
Plants rely on different immune receptors to recognize pathogens and defend against pathogen attacks. Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play a major role as intracellular immune receptors. Their homeostasis must be maintained at optimal levels in order to effectively recognize pathogens without causing autoimmunity. Previous studies have shown that the activity of the ubiquitin-proteasome system is essential to prevent excessive accumulation of NLR proteins such as Suppressor of NPR1, Constitutive 1 (SNC1). Attenuation of the ubiquitin E3 ligase SCFCPR1 (Constitutive expressor of Pathogenesis Related genes 1) or the E4 protein MUSE3 (Mutant, SNC1-Enhancing 3) leads to NLR accumulation and autoimmunity. In the current study, we report the identification of AtCDC48A as a negative regulator of NLR-mediated immunity. Plants carrying Atcdc48A-4, a partial loss-of-function allele of AtCDC48A, exhibit dwarf morphology and enhanced disease resistance to the oomycete pathogen Hyaloperonospora arabidopsidis (H.a.) Noco2. The SNC1 level is increased in Atcdc48A-4 plants and AtCDC48A interacts with MUSE3 in co-immunoprecipitation experiments, supporting a role for AtCDC48A in NLR turnover. While Arabidopsis contains four other paralogs of AtCDC48A, knockout mutants of these genes do not show obvious immunity-related phenotypes, suggesting functional divergence within this family. As an AAA-ATPase, AtCDC48A likely serves to process the poly-ubiquitinated NLR substrate for final protein degradation by the 26S proteasome.
Collapse
Affiliation(s)
- Charles Copeland
- Michael Smith Laboratories and Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Virginia Woloshen
- Michael Smith Laboratories and Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yan Huang
- Michael Smith Laboratories and Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories and Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
36
|
Nazemof N, Couroux P, Xing T, Robert LS. Proteomic analysis of the mature Brassica stigma reveals proteins with diverse roles in vegetative and reproductive development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:51-58. [PMID: 27457983 DOI: 10.1016/j.plantsci.2016.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
The stigma, the specialized apex of the Brassicaceae gynoecium, plays a role in pollen capture, discrimination, hydration, germination, and guidance. Despite this crucial role in reproduction, the global proteome underlying Brassicaceae stigma development and function remains largely unknown. As a contribution towards the characterization of the Brassicaceae dry stigma global proteome, more than 2500 Brassica napus mature stigma proteins were identified using three different gel-based proteomics approaches. Most stigma proteins participated in Metabolic Processes, Responses to Stimulus or Stress, Cellular or Developmental Processes, and Transport. The stigma was found to express a wide variety of proteins with demonstrated roles in cellular and organ development including proteins known to be involved in cellular expansion and morphogenesis, embryo development, as well as gynoecium and stigma development. Comparisons to a corresponding proteome from a very morphologically different Poaceae dry stigma showed a very similar distribution of proteins among different functional categories, but also revealed evident distinctions in protein composition especially in glucosinolate and carotenoid metabolism, photosynthesis, and self-incompatibility. To our knowledge, this study reports the largest Brassicaceae stigma protein dataset described to date.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada.
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
37
|
Takáč T, Vadovič P, Pechan T, Luptovčiak I, Šamajová O, Šamaj J. Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6. Sci Rep 2016; 6:28306. [PMID: 27324189 PMCID: PMC4915016 DOI: 10.1038/srep28306] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/02/2016] [Indexed: 01/24/2023] Open
Abstract
Arabidopsis MPK4 and MPK6 are implicated in different signalling pathways responding to diverse external stimuli. This was recently correlated with transcriptomic profiles of Arabidopsis mpk4 and mpk6 mutants, and thus it should be reflected also on the level of constitutive proteomes. Therefore, we performed a shot gun comparative proteomic analysis of Arabidopsis mpk4 and mpk6 mutant roots. We have used bioinformatic tools and propose several new proteins as putative MPK4 and MPK6 phosphorylation targets. Among these proteins in the mpk6 mutant were important modulators of development such as CDC48A and phospholipase D alpha 1. In the case of the mpk4 mutant transcriptional reprogramming might be mediated by phosphorylation and change in the abundance of mRNA decapping complex VCS. Further comparison of mpk4 and mpk6 root differential proteomes showed differences in the composition and regulation of defense related proteins. The mpk4 mutant showed altered abundances of antioxidant proteins. The examination of catalase activity in response to oxidative stress revealed that this enzyme might be preferentially regulated by MPK4. Finally, we proposed developmentally important proteins as either directly or indirectly regulated by MPK4 and MPK6. These proteins contribute to known phenotypic defects in the mpk4 and mpk6 mutants.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavol Vadovič
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing &Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, MS 39759, USA
| | - Ivan Luptovčiak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
38
|
Kooke R, Kruijer W, Bours R, Becker F, Kuhn A, van de Geest H, Buntjer J, Doeswijk T, Guerra J, Bouwmeester H, Vreugdenhil D, Keurentjes JJB. Genome-Wide Association Mapping and Genomic Prediction Elucidate the Genetic Architecture of Morphological Traits in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:2187-203. [PMID: 26869705 PMCID: PMC4825126 DOI: 10.1104/pp.15.00997] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/11/2016] [Indexed: 05/05/2023]
Abstract
Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Willem Kruijer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Ralph Bours
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Frank Becker
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - André Kuhn
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Henri van de Geest
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Jaap Buntjer
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Timo Doeswijk
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - José Guerra
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Dick Vreugdenhil
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| | - Joost J B Keurentjes
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., R.B., A.K., H.B., D.V.); Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., F.B., J.J.B.K.); Centre for Biosystems Genomics, Wageningen Campus, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (R.K., H.v.d.G., D.V., J.J.B.K); Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (W.K.); PRI Bioinformatics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands (H.v.d.G.); and Keygene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands (J.B., T.D., J.G.)
| |
Collapse
|
39
|
Mangeon A, Pardal R, Menezes-Salgueiro AD, Duarte GL, de Seixas R, Cruz FP, Cardeal V, Magioli C, Ricachenevsky FK, Margis R, Sachetto-Martins G. AtGRP3 Is Implicated in Root Size and Aluminum Response Pathways in Arabidopsis. PLoS One 2016; 11:e0150583. [PMID: 26939065 PMCID: PMC4777284 DOI: 10.1371/journal.pone.0150583] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
AtGRP3 is a glycine-rich protein (GRP) from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination. Confocal microscopy analysis showed an abnormal cell division and elongation in grp3-1 knockout mutants. Moreover, we also show that grp3-1 exhibits an enhanced Aluminum (Al) tolerance, a feature also described in AtWAK1 overexpressing plants. Together, these results implicate AtGRP3 function root size determination during development and in Al stress.
Collapse
Affiliation(s)
- Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Renan Pardal
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Adriana Dias Menezes-Salgueiro
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Guilherme Leitão Duarte
- Programa de Pós-Graduação em Botânica (PPGBot), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501–970, Brazil
| | - Ricardo de Seixas
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Fernanda P. Cruz
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Vanessa Cardeal
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Claudia Magioli
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | | | - Rogério Margis
- Centro de Biotecnologia e Departamento de Biofísica da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501–970, Brazil
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| |
Collapse
|
40
|
Gu Y, Xing S, He C. Genome-Wide Analysis Indicates Lineage-Specific Gene Loss during Papilionoideae Evolution. Genome Biol Evol 2016; 8:635-48. [PMID: 26868598 PMCID: PMC4824202 DOI: 10.1093/gbe/evw021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Gene loss is the driving force for changes in genome and morphology; however, this particular evolutionary event has been poorly investigated in leguminous plants. Legumes (Fabaceae) have some lineage-specific and diagnostic characteristics that are distinct from other angiosperms. To understand the potential role of gene loss in the evolution of legumes, we compared six genome-sequenced legume species of Papilionoideae, the largest representative clade of Fabaceae, such as Glycine max, with 34 nonlegume plant species, such as Arabidopsis thaliana. The results showed that the putative orthologs of the 34 Arabidopsis genes belonging to 29 gene families were absent in these legume species but these were conserved in the sequenced nonlegume angiosperm lineages. Further evolutionary analyses indicated that the orthologs of these genes were almost completely lost in the Papillionoideae ancestors, thus designated as the legume lost genes (LLGs), and these underwent purifying selection in nonlegume plants. Most LLGs were functionally unknown. In Arabidopsis, two LLGs were well-known genes that played a role in plant immunity such as HARMLESS TO OZONE LAYER 1 and HOPZ-ACTIVATED RESISTANCE 1, and 16 additional LLGs were predicted to participate in plant-pathogen interactions in in silico expression and protein-protein interaction network analyses. Most of these LLGs' orthologs in various plants were also found to be associated with biotic stress response, indicating the conserved role of these genes in plant defense. The evolutionary implication of LLGs during the development of the ability of symbiotic nitrogen fixation involving plant and bacterial interactions, which is a well-known characteristic of most legumes, is also discussed. Our work sheds light on the evolutionary implication of gene loss events in Papilionoideae evolution, as well as provides new insights into crop design to improve nitrogen fixation capacity.
Collapse
Affiliation(s)
- Yongzhe Gu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China Graduate University, Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Shilai Xing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China Graduate University, Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| |
Collapse
|
41
|
Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P. Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:952-66. [PMID: 26861774 DOI: 10.1016/j.bbapap.2016.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The free radical nitric oxide (NO) and derivative reactive nitrogen species (RNS) play essential roles in cellular redox regulation mainly through protein S-nitrosylation, a redox post-translational modification in which specific cysteines are converted to nitrosothiols. SCOPE OF VIEW This review aims to discuss the current state of knowledge, as well as future perspectives, regarding protein S-nitrosylation in photosynthetic organisms. MAJOR CONCLUSIONS NO, synthesized by plants from different sources (nitrite, arginine), provides directly or indirectly the nitroso moiety of nitrosothiols. Biosynthesis, reactivity and scavenging systems of NO/RNS, determine the NO-based signaling including the rate of protein nitrosylation. Denitrosylation reactions compete with nitrosylation in setting the levels of nitrosylated proteins in vivo. GENERAL SIGNIFICANCE Based on a combination of proteomic, biochemical and genetic approaches, protein nitrosylation is emerging as a pervasive player in cell signaling networks. Specificity of protein nitrosylation and integration among different post-translational modifications are among the major challenges for future experimental studies in the redox biology field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- M Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - M De Mia
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S Morisse
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - N Di Giacinto
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - C H Marchand
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - A Maes
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S D Lemaire
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - P Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
42
|
Huang QN, Shi YF, Zhang XB, Song LX, Feng BH, Wang HM, Xu X, Li XH, Guo D, Wu JL. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:12-28. [PMID: 26040493 PMCID: PMC5049647 DOI: 10.1111/jipb.12372] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 05/20/2023]
Abstract
A premature senescence and death 128 (psd128) mutant was isolated from an ethyl methane sulfonate-induced rice IR64 mutant bank. The premature senescence phenotype appeared at the six-leaf stage and the plant died at the early heading stage. psd128 exhibited impaired chloroplast development with significantly reduced photosynthetic ability, chlorophyll and carotenoid contents, root vigor, soluble protein content and increased malonaldehyde content. Furthermore, the expression of senescence-related genes was significantly altered in psd128. The mutant trait was controlled by a single recessive nuclear gene. Using map-based strategy, the mutation Oryza sativa cell division cycle 48 (OsCDC48) was isolated and predicted to encode a putative AAA-type ATPase with 809 amino-acid residuals. A single base substitution at position C2347T in psd128 resulted in a premature stop codon. Functional complementation could rescue the mutant phenotype. In addition, RNA interference resulted in the premature senescence and death phenotype. OsCDC48 was expressed constitutively in the root, stem, leaf and panicle. Subcellular analysis indicated that OsCDC48:YFP fusion proteins were located both in the cytoplasm and nucleus. OsCDC48 was highly conserved with more than 90% identity in the protein levels among plant species. Our results indicated that the impaired function of OsCDC48 was responsible for the premature senescence and death phenotype.
Collapse
Affiliation(s)
- Qi-Na Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yong-Feng Shi
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiao-Bo Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li-Xin Song
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- School of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bao-Hua Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hui-Mei Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xia Xu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiao-Hong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dan Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jian-Li Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
43
|
Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus (Nelumbo nucifera Gaertn.spp. baijianlian). J Proteomics 2016; 131:61-70. [DOI: 10.1016/j.jprot.2015.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/29/2015] [Accepted: 10/08/2015] [Indexed: 11/23/2022]
|
44
|
Zhan H, Zhong Y, Yang Z, Xia H. Enzyme activities of Arabidopsis inositol polyphosphate kinases AtIPK2α and AtIPK2β are involved in pollen development, pollen tube guidance and embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:758-71. [PMID: 25846941 DOI: 10.1111/tpj.12846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 05/27/2023]
Abstract
Inositol polyphosphate kinase (IPK2) is a key component of inositol polyphosphate signaling. There are two highly homologous inositol polyphosphate kinases (AtIPK2α and AtIPK2β) in Arabidopsis. Previous studies that overexpressed or reduced the expression of AtIPK2α and AtIPK2β revealed their roles in auxiliary shoot branching, abiotic stress responses and root growth. Here, we report that AtIPK2α and AtIPK2β act redundantly during pollen development, pollen tube guidance and embryogenesis. Single knock-out mutants of atipk2α and atipk2β were indistinguishable from the wild type, whereas the atipk2α atipk2β double mutant could not be obtained. Detailed genetic and cytological investigations showed that the mutation of AtIPK2α and AtIPK2β resulted in severely reduced transmission of male gametophyte as a result of abnormal pollen development and defective pollen tube guidance. In addition, the early embryo development of the atipk2α atipk2β double mutant was also aborted. Expressing either catalytically inactive or substrate specificity-altered variants of AtIPK2β could not rescue the male gametophyte and embryogenesis defects of the atipk2α atipk2β double mutant, implying that the kinase activity of AtIPK2 is required for pollen development, pollen tube guidance and embryogenesis. Taken together, our results provide genetic evidence for the requirement of inositol polyphosphate signaling in plant sexual reproduction.
Collapse
Affiliation(s)
- Huadong Zhan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yujiao Zhong
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Huijun Xia
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
45
|
Trapet P, Kulik A, Lamotte O, Jeandroz S, Bourque S, Nicolas-Francès V, Rosnoblet C, Besson-Bard A, Wendehenne D. NO signaling in plant immunity: a tale of messengers. PHYTOCHEMISTRY 2015; 112:72-9. [PMID: 24713571 DOI: 10.1016/j.phytochem.2014.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/12/2014] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a free radical gas involved in a myriad of plant physiological processes including immune responses. How NO mediates its biological effects in plant facing microbial pathogen attack is an unresolved question. Insights into the molecular mechanisms by which it propagates signals reveal the contribution of this simple gas in complex signaling pathways shared with reactive oxygen species (ROS) and the second messenger Ca(2+). Understanding of the subtle cross-talks operating between these signals was greatly improved by the recent identification and the functional analysis of proteins regulated through S-nitrosylation, a major NO-dependent post-translational protein modification. Overall, these findings suggest that NO is probably an important component of the mechanism coordinating and regulating Ca(2+) and ROS signaling in plant immunity.
Collapse
Affiliation(s)
- Pauline Trapet
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Anna Kulik
- INRA, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Olivier Lamotte
- CNRS, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Sylvain Jeandroz
- AgroSup Dijon, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Stéphane Bourque
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Valérie Nicolas-Francès
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Claire Rosnoblet
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - Angélique Besson-Bard
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France
| | - David Wendehenne
- Université de Bourgogne, UMR 1347 Agroécologie, BP 86510, F-21000 Dijon, France; ERL CNRS 6300, BP 86510, 21000 Dijon, France.
| |
Collapse
|
46
|
Nazemof N, Couroux P, Rampitsch C, Xing T, Robert LS. Proteomic profiling reveals insights into Triticeae stigma development and function. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6069-80. [PMID: 25170101 PMCID: PMC4203142 DOI: 10.1093/jxb/eru350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function.
Collapse
Affiliation(s)
- Nazila Nazemof
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6 Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Philippe Couroux
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| | - Christof Rampitsch
- Agriculture and Agri-Food Canada, Cereal Research Centre, 101 Route 100, Morden, MB, Canada R6M 1Y5
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Laurian S Robert
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON, Canada K1A 0C6
| |
Collapse
|
47
|
The AAA-ATPase molecular chaperone Cdc48/p97 disassembles sumoylated centromeres, decondenses heterochromatin, and activates ribosomal RNA genes. Proc Natl Acad Sci U S A 2014; 111:16166-71. [PMID: 25344531 DOI: 10.1073/pnas.1418564111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Centromeres mediate chromosome segregation and are defined by the centromere-specific histone H3 variant (CenH3)/centromere protein A (CENP-A). Removal of CenH3 from centromeres is a general property of terminally differentiated cells, and the persistence of CenH3 increases the risk of diseases such as cancer. However, active mechanisms of centromere disassembly are unknown. Nondividing Arabidopsis pollen vegetative cells, which transport engulfed sperm by extended tip growth, undergo loss of CenH3; centromeric heterochromatin decondensation; and bulk activation of silent rRNA genes, accompanied by their translocation into the nucleolus. Here, we show that these processes are blocked by mutations in the evolutionarily conserved AAA-ATPase molecular chaperone, CDC48A, homologous to yeast Cdc48 and human p97 proteins, both of which are implicated in ubiquitin/small ubiquitin-like modifier (SUMO)-targeted protein degradation. We demonstrate that CDC48A physically associates with its heterodimeric cofactor UFD1-NPL4, known to bind ubiquitin and SUMO, as well as with SUMO1-modified CenH3 and mutations in NPL4 phenocopy cdc48a mutations. In WT vegetative cell nuclei, genetically unlinked ribosomal DNA (rDNA) loci are uniquely clustered together within the nucleolus and all major rRNA gene variants, including those rDNA variants silenced in leaves, are transcribed. In cdc48a mutant vegetative cell nuclei, however, these rDNA loci frequently colocalized with condensed centromeric heterochromatin at the external periphery of the nucleolus. Our results indicate that the CDC48A(NPL4) complex actively removes sumoylated CenH3 from centromeres and disrupts centromeric heterochromatin to release bulk rRNA genes into the nucleolus for ribosome production, which fuels single nucleus-driven pollen tube growth and is essential for plant reproduction.
Collapse
|
48
|
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 2014; 13:295-310. [PMID: 24078888 PMCID: PMC3879621 DOI: 10.1074/mcp.m113.028100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/24/2013] [Indexed: 01/10/2023] Open
Abstract
Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.
Collapse
Affiliation(s)
- Till Ischebeck
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Luis Valledor
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - David Lyon
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Stephanie Gingl
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Matthias Nagler
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Mónica Meijón
- ¶Gregor-Mendel-Institute for Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Volker Egelhofer
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Wolfram Weckwerth
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
49
|
Gasulla F, Jain R, Barreno E, Guéra A, Balbuena TS, Thelen JJ, Oliver MJ. The response of Asterochloris erici (Ahmadjian) Skaloud et Peksa to desiccation: a proteomic approach. PLANT, CELL & ENVIRONMENT 2013; 36:1363-78. [PMID: 23305100 DOI: 10.1111/pce.12065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 12/21/2012] [Accepted: 12/26/2012] [Indexed: 05/11/2023]
Abstract
The study of desiccation tolerance of lichens, and of their chlorobionts in particular, has frequently focused on the antioxidant system that protects the cell against photo-oxidative stress during dehydration/rehydration cycles. In this study, we used proteomic and transcript analyses to assess the changes associated with desiccation in the isolated phycobiont Asterochloris erici. Algae were dried either slowly (5-6 h) or rapidly (<60 min), and rehydrated after 24 h in the desiccated state. To identify proteins that accumulated during the drying or rehydration processes, we employed two-dimensional (2D) difference gel electrophoresis (DIGE) coupled with individual protein identification using trypsin digestion and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteomic analyses revealed that desiccation caused an increase in relative abundance of only 11-13 proteins, regardless of drying rate, involved in glycolysis, cellular protection, cytoskeleton, cell cycle, and targeting and degradation. Transcripts of five Hsp90 and two β-tubulin genes accumulated primarily at the end of the dehydration process. In addition, transmission electron microscopy (TEM) images indicate that ultrastructural cell injuries, perhaps resulting from physical or mechanical stress rather than metabolic damage, were more intense after rapid dehydration. This occurred with no major change in the proteome. These results suggest that desiccation tolerance of A. erici is achieved by constitutive mechanisms.
Collapse
Affiliation(s)
- Franscico Gasulla
- Dpt. Botànica, ICBiBE, Universitat de València, Burjassot 46100, Spain
| | - Renuka Jain
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Eva Barreno
- Dpt. Botànica, ICBiBE, Universitat de València, Burjassot, 46100, Spain
| | - Alfredo Guéra
- Dpto. Biología Vegetal, Universidad de Alcalá, Alcalá de Henares, 28871, Spain
| | - Tiago S Balbuena
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | | |
Collapse
|
50
|
Wang X, Han F, Yang M, Yang P, Shen S. Exploring the response of rice (Oryza sativa) leaf to gibberellins: a proteomic strategy. RICE (NEW YORK, N.Y.) 2013; 6:17. [PMID: 24280421 PMCID: PMC4883738 DOI: 10.1186/1939-8433-6-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/18/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Gibberellins (GAs) are plant-specific hormones that play a central role in the regulation of growth and development with respect to environmental variability. Plants respond to GAs signal through various biochemical and physiological processes. To better understand the response for GA signal, we carried out a proteomic study in rice (Oryza sativa L. spp. japonica) leaf. RESULTS Through two-dimensional gel electrophoresis (2-DE) and mass spectroscopy analysis, we identified 61 proteins as GA-responsive. These proteins were annotated in various biological functions, such as signal transduction and cell growth/division, photosynthesis and energy metabolism, protein stability and defense. Among these, photosynthetic proteins decreased while many catabolic proteins increased. In addition, GA up-regulated a variety of cell growth/division, protein stability and defense proteins such as cell division cycle protein 48, molecular chaperones, and catalases. CONCLUSION This is the first report that cell division cycle protein 48 may be responsible for leaf expansion after leaf sensing GA signal. The results presented here provide new insight into the mechanism of rice leaf in response to GA signal.
Collapse
Affiliation(s)
- Xiaoqin Wang
- />Key Laboratory of Urban Agriculture (North) Ministry of Agriculture, Beijing University of Agriculture, Beijing, 102206 China
- />Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| | - Feng Han
- />College of Life Sciences, Northwest A&F University, Yangling, 712100 China
| | - Mingfeng Yang
- />Key Laboratory of Urban Agriculture (North) Ministry of Agriculture, Beijing University of Agriculture, Beijing, 102206 China
| | - Pingfang Yang
- />Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Shihua Shen
- />Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|