1
|
Qi Y, Gao P, Yang S, Li L, Ke Y, Wei H, Huang F, Yu L. Comparative metabolomics analysis reveals dynamic changes in carbohydrate profiles of corms during the "relay growth" of konjac ( Amorphophallus muelleri). FRONTIERS IN PLANT SCIENCE 2023; 14:1259561. [PMID: 37920719 PMCID: PMC10619727 DOI: 10.3389/fpls.2023.1259561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023]
Abstract
The type and content of carbohydrates in konjac corms are an essential factors in determining the quality of konjac; however, the pattern of carbohydrate changes and the mechanism regulating the development of mother and daughter corms in the "relay growth" process of Amorphophallus muelleri remain unclear. This study aimed to investigate changes in corm carbohydrates during the growth cycle of A. muelleri and to compare the carbohydrate composition and the expression of related genes between mother and daughter corms. Integrated metabolome and RNA-seq analyses identified 37 differential metabolites as well as 8074 genes that were differentially expressed between mother and daughter corms, the majority of which were involved in starch and sucrose metabolism. More than 80% of the differential metabolites, including sucrose and starch, tended to accumulate in the mother corms; however, konjac glucomannan (KGM), as one of the most important carbohydrates and its major component of the corm, accumulated in higher amounts in the daughter corms. In addition, the expression of invertase and alpha-amylase that promote the breakdown of sucrose and starch was 351.78- and 15.63-fold higher, respectively, in the daughter corm, whereas that of the starch synthesis gene AkWAXY was only 0.096 times as high as in the mother corms. Furthermore, the level of cellulose synthase-like protein G, which promotes KGM synthesis, was 3.85 times higher in daughter corms compared to mother corms. Thus, we inferred that the daughter and mother corms had two distinct carbohydrate utilization strategies. This study provides insights into temporal changes in carbohydrates during the growth cycle of A. muelleri.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feiyan Huang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| |
Collapse
|
2
|
Flores-Castellanos J, Fettke J. The Plastidial Glucan Phosphorylase Affects the Maltooligosaccharide Metabolism in Parenchyma Cells of Potato (Solanum tuberosum L.) Tuber Discs. PLANT & CELL PHYSIOLOGY 2023; 64:422-432. [PMID: 36542813 PMCID: PMC10109208 DOI: 10.1093/pcp/pcac174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Maltodextrin metabolism is thought to be involved in both starch initiation and degradation. In this study, potato tuber discs from transgenic lines containing antisense constructs against the plastidial and cytosolic isoforms of α-glucan phosphorylase and phosphoglucomutase were used to evaluate their influences on the conversion of externally supplied glucose-1-phosphate into soluble maltodextrins, as compared to wild-type potato tubers (Solanum tuberosum L. cv. Desiree). Relative maltodextrin amounts analyzed by capillary electrophoresis with laser-induced fluorescence revealed that tuber discs could immediately uptake glucose-1-phosphate and use it to produce maltooligosaccharides with a degree of polymerization of up to 30, as opposed to tubers repressing the plastidial glucan phosphorylase. The results presented here support previous indications that a specific transporter for glucose-1-phosphate may exist in both the plant cells and the plastidial membranes, thereby allowing a glucose-6-phosphate-independent transport. Furthermore, it confirms that the plastidial glucan phosphorylase is responsible for producing longer maltooligosaccharides in the plastids by catalyzing a glucosyl polymerization reaction when glucose-1-phosphate is available. All these findings contribute to a better understanding of the role of the plastidial phosphorylase as a key enzyme directly involved in the synthesis and degradation of glucans and their implication on starch metabolism.
Collapse
Affiliation(s)
- Junio Flores-Castellanos
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam-Golm 14476, Germany
| | | |
Collapse
|
3
|
Hilgers EJA, Schöttler MA, Mettler-Altmann T, Krueger S, Dörmann P, Eicks M, Flügge UI, Häusler RE. The Combined Loss of Triose Phosphate and Xylulose 5-Phosphate/Phosphate Translocators Leads to Severe Growth Retardation and Impaired Photosynthesis in Arabidopsis thaliana tpt/xpt Double Mutants. FRONTIERS IN PLANT SCIENCE 2018; 9:1331. [PMID: 30333839 PMCID: PMC6175978 DOI: 10.3389/fpls.2018.01331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/24/2018] [Indexed: 05/18/2023]
Abstract
The xylulose 5-phosphate/phosphate translocator (XPT) represents the fourth functional member of the phosphate translocator (PT) family residing in the plastid inner envelope membrane. In contrast to the other three members, little is known on the physiological role of the XPT. Based on its major transport substrates (i.e., pentose phosphates) the XPT has been proposed to act as a link between the plastidial and extraplastidial branches of the oxidative pentose phosphate pathway (OPPP). As the XPT is also capable of transporting triose phosphates, it might as well support the triose phosphate PT (TPT) in exporting photoassimilates from the chloroplast in the light ('day path of carbon') and hence in supplying the whole plant with carbohydrates. Two independent knockout mutant alleles of the XPT (xpt-1 and xpt-2) lacked any specific phenotype, suggesting that the XPT function is redundant. However, double mutants generated from crossings of xpt-1 to different mutant alleles of the TPT (tpt-1 and tpt-2) were severely retarded in size, exhibited a high chlorophyll fluorescence phenotype, and impaired photosynthetic electron transport rates. In the double mutant the export of triose phosphates from the chloroplasts is completely blocked. Hence, precursors for sucrose biosynthesis derive entirely from starch turnover ('night path of carbon'), which was accompanied by a marked accumulation of maltose as a starch breakdown product. Moreover, pentose phosphates produced by the extraplastidial branch of the OPPP also accumulated in the double mutants. Thus, an active XPT indeed retrieves excessive pentose phosphates from the extra-plastidial space and makes them available to the plastids. Further metabolic profiling revealed that phosphorylated intermediates remained largely unaffected, whereas fumarate and glycine contents were diminished in the double mutants. The assessment of C/N-ratios suggested co-limitations of C- and N-metabolism as possible cause for growth retardation of the double mutants. Feeding of sucrose partially rescued the growth and photosynthesis phenotypes of the double mutants. Immunoblots of thylakoid proteins, spectroscopic determinations of photosynthesis complexes, and chlorophyll a fluorescence emission spectra at 77 Kelvin could only partially explain constrains in photosynthesis observed in the double mutants. The data are discussed together with aspects of the OPPP and central carbon metabolism.
Collapse
Affiliation(s)
- Elke J. A. Hilgers
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | | | | | - Stephan Krueger
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Peter Dörmann
- Molecular Biotechnology and Biochemistry, Universität Bonn, Bonn, Germany
| | | | - Ulf-Ingo Flügge
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Rainer E. Häusler
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Helle S, Bray F, Verbeke J, Devassine S, Courseaux A, Facon M, Tokarski C, Rolando C, Szydlowski N. Proteome Analysis of Potato Starch Reveals the Presence of New Starch Metabolic Proteins as Well as Multiple Protease Inhibitors. FRONTIERS IN PLANT SCIENCE 2018; 9:746. [PMID: 29963063 PMCID: PMC6013586 DOI: 10.3389/fpls.2018.00746] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
Starch bound proteins mainly include enzymes from the starch biosynthesis pathway. Recently, new functions in starch molecular assembly or active protein targeting were also proposed for starch associated proteins. The potato genome sequence reveals 77 loci encoding starch metabolizing enzymes with the identification of previously unknown putative isoforms. Here we show by bottom-up proteomics that most of the starch biosynthetic enzymes in potato remain associated with starch even after washing with SDS or protease treatment of the granule surface. Moreover, our study confirmed the presence of PTST1 (Protein Targeting to Starch), ESV1 (Early StarVation1) and LESV (Like ESV), that have recently been identified in Arabidopsis. In addition, we report on the presence of a new isoform of starch synthase, SS6, containing both K-X-G-G-L catalytic motifs. Furthermore, multiple protease inhibitors were also identified that are cleared away from starch by SDS and thermolysin treatments. Our results indicate that SS6 may play a yet uncharacterized function in starch biosynthesis and open new perspectives both in understanding storage starch metabolism as well as breeding improved potato lines.
Collapse
Affiliation(s)
- Stanislas Helle
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Jérémy Verbeke
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Stéphanie Devassine
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Adeline Courseaux
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maud Facon
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Caroline Tokarski
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Nicolas Szydlowski
- Univ. Lille, CNRS, UMR8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Univ. Lille, CNRS, USR 3290 – MSAP – Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| |
Collapse
|
5
|
Fettke J, Fernie AR. Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism. TRENDS IN PLANT SCIENCE 2015; 20:490-497. [PMID: 26008154 DOI: 10.1016/j.tplants.2015.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
In most plants, carbohydrates represent the major energy store as well as providing the building blocks for essential structural polymers. Although the major pathways for carbohydrate biosynthesis, degradation, and transport are well characterized, several key steps have only recently been discovered. In addition, several novel minor metabolic routes have been uncovered in the past few years. Here we review current studies of plant carbohydrate metabolism detailing the expanding compendium of functionally characterized transport proteins as well as our deeper comprehension of more minor and conditionally activated metabolic pathways. We additionally explore the pertinent questions that will allow us to enhance our understanding of the response of both major and minor carbohydrate fluxes to changing cellular circumstances.
Collapse
Affiliation(s)
- Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Schopper S, Mühlenbock P, Sörensson C, Hellborg L, Lenman M, Widell S, Fettke J, Andreasson E. Arabidopsis cytosolic alpha-glycan phosphorylase, PHS2, is important during carbohydrate imbalanced conditions. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:74-80. [PMID: 24888726 DOI: 10.1111/plb.12190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Arabidopsis thaliana has two isoforms of alpha-glycan phosphorylase (EC 2.4.1.1), one residing in the plastid and the other in the cytosol. The cytosolic phosphorylase, PHS2, acts on soluble heteroglycans that constitute a part of the carbohydrate pool in a plant. This study aimed to define a physiological role for PHS2. Under standard growth conditions phs2 knock-out mutants do not show any clear growth phenotype, and we hypothesised that during low-light conditions where carbohydrate imbalance is perturbed, this enzyme is important. Soil-grown phs2 mutant plants developed leaf lesions when placed in very low light. Analysis of soluble heteroglycan (SHG) levels showed that the amount of glucose residues in SHG was higher in the phs2 mutant compared to wild-type plants. Furthermore, a standard senescence assay from soil-grown phs2 mutant plants showed that leaves senesced significantly faster in darkness than the wild-type leaves. We also found decreased hypocotyl extension in in vitro-grown phs2 mutant seedlings when grown for long time in darkness at 6 °C. We conclude that PHS2 activity is important in the adult stage during low-light conditions and senescence, as well as during prolonged seedling development when carbohydrate levels are unbalanced.
Collapse
Affiliation(s)
- S Schopper
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning. PLoS One 2014; 9:e112468. [PMID: 25401493 PMCID: PMC4234415 DOI: 10.1371/journal.pone.0112468] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/06/2014] [Indexed: 01/06/2023] Open
Abstract
Phosphoglucomutase (PGM) catalyses the interconversion of glucose 1-phosphate (G1P) and glucose 6-phosphate (G6P) and exists as plastidial (pPGM) and cytosolic (cPGM) isoforms. The plastidial isoform is essential for transitory starch synthesis in chloroplasts of leaves, whereas the cytosolic counterpart is essential for glucose phosphate partitioning and, therefore, for syntheses of sucrose and cell wall components. In Arabidopsis two cytosolic isoforms (PGM2 and PGM3) exist. Both PGM2 and PGM3 are redundant in function as single mutants reveal only small or no alterations compared to wild type with respect to plant primary metabolism. So far, there are no reports of Arabidopsis plants lacking the entire cPGM or total PGM activity, respectively. Therefore, amiRNA transgenic plants were generated and used for analyses of various parameters such as growth, development, and starch metabolism. The lack of the entire cPGM activity resulted in a strongly reduced growth revealed by decreased rosette fresh weight, shorter roots, and reduced seed production compared to wild type. By contrast content of starch, sucrose, maltose and cell wall components were significantly increased. The lack of both cPGM and pPGM activities in Arabidopsis resulted in dwarf growth, prematurely die off, and inability to develop a functional inflorescence. The combined results are discussed in comparison to potato, the only described mutant with lack of total PGM activity.
Collapse
|
8
|
Häusler RE, Heinrichs L, Schmitz J, Flügge UI. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. MOLECULAR PLANT 2014; 7:1121-37. [PMID: 25006007 DOI: 10.1093/mp/ssu064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| |
Collapse
|
9
|
Malinova I, Steup M, Fettke J. Carbon transitions from either Calvin cycle or transitory starch to heteroglycans as revealed by (14) C-labeling experiments using protoplasts from Arabidopsis. PHYSIOLOGIA PLANTARUM 2013; 149:25-44. [PMID: 23413959 DOI: 10.1111/ppl.12033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/10/2013] [Indexed: 06/01/2023]
Abstract
Plants metabolize transitory starch by precisely coordinated plastidial and cytosolic processes. The latter appear to include the action of water-soluble heteroglycans (SHGin ) whose monosaccharide pattern is similar to that of apoplastic glycans (SHGex ) but, unlike SHGex , SHGin strongly interacts with glucosyl transferases. In this study, we analyzed starch metabolism using mesophyll protoplasts from wild-type plants and two knock-out mutants [deficient in the cytosolic transglucosidase, disproportionating isoenzyme 2 (DPE2) or the plastidial phosphoglucomutase (PGM1)] from Arabidopsis thaliana. Protoplasts prelabeled by photosynthetic (14) CO2 fixation were transferred to an unlabeled medium and were darkened or illuminated. Carbon transitions from the Calvin cycle or from starch to both SHGin and SHGex were analyzed. In illuminated protoplasts, starch turn-over was undetectable but darkened protoplasts continuously degraded starch. During illumination, neither the total (14) C content nor the labeling patterns of the sugar residues of SHGin were significantly altered but both the total amount and the labeling of the constituents of SHGex increased with time. In darkened protoplasts, the (14) C-content of most of the sugar residues of SHGin transiently and strongly increased and then declined. This effect was not observed in any SHGex constituent. In darkened DPE2-deficient protoplasts, none of the SHGin constituents exhibited an essential transient increase in labeling. In contrast, some residues of SHGin from the PGM1 mutant exhibited a transient increase in label but this effect significantly differed from that of the wild type. Two conclusions are reached: first, SHGin and SHGex exert different metabolic functions and second, SHGin is directly involved in starch degradation.
Collapse
Affiliation(s)
- Irina Malinova
- Institute of Biochemistry and Biology, Department of Plant Physiology, University of Potsdam, 14476, Potsdam-Golm, Germany
| | | | | |
Collapse
|
10
|
Inactivation of the phosphoglucomutase gene pgm in Corynebacterium glutamicum affects cell shape and glycogen metabolism. Biosci Rep 2013; 33:BSR20130076. [PMID: 23863124 PMCID: PMC3755335 DOI: 10.1042/bsr20130076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In Corynebacterium glutamicum formation of glc-1-P (α-glucose-1-phosphate) from glc-6-P (glucose-6-phosphate) by α-Pgm (phosphoglucomutase) is supposed to be crucial for synthesis of glycogen and the cell wall precursors trehalose and rhamnose. Furthermore, Pgm is probably necessary for glycogen degradation and maltose utilization as glucan phosphorylases of both pathways form glc-1-P. We here show that C. glutamicum possesses at least two Pgm isoenzymes, the cg2800 (pgm) encoded enzyme contributing most to total Pgm activity. By inactivation of pgm we created C. glutamicum IMpgm showing only about 12% Pgm activity when compared to the parental strain. We characterized both strains during cultivation with either glucose or maltose as substrate and observed that (i) the glc-1-P content in the WT (wild-type) and the mutant remained constant independent of the carbon source used, (ii) the glycogen levels in the pgm mutant were lower during growth on glucose and higher during growth on maltose, and (iii) the morphology of the mutant was altered with maltose as a substrate. We conclude that C. glutamicum employs glycogen as carbon capacitor to perform glc-1-P homeostasis in the exponential growth phase and is therefore able to counteract limited Pgm activity for both anabolic and catabolic metabolic pathways.
Collapse
|
11
|
Ruzanski C, Smirnova J, Rejzek M, Cockburn D, Pedersen HL, Pike M, Willats WGT, Svensson B, Steup M, Ebenhöh O, Smith AM, Field RA. A bacterial glucanotransferase can replace the complex maltose metabolism required for starch to sucrose conversion in leaves at night. J Biol Chem 2013; 288:28581-98. [PMID: 23950181 PMCID: PMC3789958 DOI: 10.1074/jbc.m113.497867] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl moieties to a complex heteroglycan prior to their conversion to hexose phosphate via a cytosolic phosphorylase. The significance of this complex pathway is unclear; conversion of maltose to hexose phosphate in bacteria proceeds via a more typical 4-glucanotransferase that does not require a heteroglycan acceptor. It has recently been suggested that DPE2 generates a heterogeneous series of terminal glucan chains on the heteroglycan that acts as a “glucosyl buffer” to ensure a constant rate of sucrose synthesis in the leaf at night. Alternatively, DPE2 and/or the heteroglycan may have specific properties important for their function in the plant. To distinguish between these ideas, we compared the properties of DPE2 with those of the Escherichia coli glucanotransferase MalQ. We found that MalQ cannot use the plant heteroglycan as an acceptor for glucosyl transfer. However, experimental and modeling approaches suggested that it can potentially generate a glucosyl buffer between maltose and hexose phosphate because, unlike DPE2, it can generate polydisperse malto-oligosaccharides from maltose. Consistent with this suggestion, MalQ is capable of restoring an essentially wild-type phenotype when expressed in mutant Arabidopsis plants lacking DPE2. In light of these findings, we discuss the possible evolutionary origins of the complex DPE2-heteroglycan pathway.
Collapse
Affiliation(s)
- Christian Ruzanski
- From the John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ral JP, Bowerman AF, Li Z, Sirault X, Furbank R, Pritchard JR, Bloemsma M, Cavanagh CR, Howitt CA, Morell MK. Down-regulation of Glucan, Water-Dikinase activity in wheat endosperm increases vegetative biomass and yield. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:871-882. [PMID: 22672098 DOI: 10.1111/j.1467-7652.2012.00711.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel mechanism for increasing vegetative biomass and grain yield has been identified in wheat (Triticum aestivum). RNAi-mediated down-regulation of Glucan, Water-Dikinase (GWD), the primary enzyme required for starch phosphorylation, under the control of an endosperm-specific promoter, resulted in a decrease in starch phosphate content and an increase in grain size. Unexpectedly, consistent increases in vegetative biomass and grain yield were observed in subsequent generations. In lines where GWD expression was decreased, germination rate was slightly reduced. However, significant increases in vegetative growth from the two leaf stage were observed. In glasshouse pot trials, down-regulation of GWD led to a 29% increase in grain yield while in glasshouse tub trials simulating field row spacing and canopy development, GWD down-regulation resulted in a grain yield increase of 26%. The enhanced yield resulted from a combination of increases in seed weight, tiller number, spikelets per head and seed number per spike. In field trials, all vegetative phenotypes were reproduced with the exception of increased tiller number. The expression of the transgene and suppression of endogenous GWD RNA levels were demonstrated to be grain specific. In addition to the direct effects of GWD down-regulation, an increased level of α-amylase activity was present in the aleurone layer during grain maturation. These findings provide a potentially important novel mechanism to increase biomass and grain yield in crop improvement programmes.
Collapse
Affiliation(s)
- Jean-Philippe Ral
- CSIRO Food Futures National Research Flagship, Canberra, ACT, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fettke J, Leifels L, Brust H, Herbst K, Steup M. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3011-29. [PMID: 22378944 PMCID: PMC3350916 DOI: 10.1093/jxb/ers014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.
Collapse
Affiliation(s)
- Joerg Fettke
- Mass Spectrometry of Biopolymers, University of Potsdam, D-14476 Potsdam-Golm, Germany.
| | | | | | | | | |
Collapse
|
14
|
Schmitz J, Schöttler MA, Krueger S, Geimer S, Schneider A, Kleine T, Leister D, Bell K, Flügge UI, Häusler RE. Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana. BMC PLANT BIOLOGY 2012; 12:8. [PMID: 22248311 PMCID: PMC3353854 DOI: 10.1186/1471-2229-12-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/16/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND We have studied the impact of carbohydrate-starvation on the acclimation response to high light using Arabidopsis thaliana double mutants strongly impaired in the day- and night path of photoassimilate export from the chloroplast. A complete knock-out mutant of the triose phosphate/phosphate translocator (TPT; tpt-2 mutant) was crossed to mutants defective in (i) starch biosynthesis (adg1-1, pgm1 and pgi1-1; knock-outs of ADP-glucose pyrophosphorylase, plastidial phosphoglucomutase and phosphoglucose isomerase) or (ii) starch mobilization (sex1-3, knock-out of glucan water dikinase) as well as in (iii) maltose export from the chloroplast (mex1-2). RESULTS All double mutants were viable and indistinguishable from the wild type when grown under low light conditions, but--except for sex1-3/tpt-2--developed a high chlorophyll fluorescence (HCF) phenotype and growth retardation when grown in high light. Immunoblots of thylakoid proteins, Blue-Native gel electrophoresis and chlorophyll fluorescence emission analyses at 77 Kelvin with the adg1-1/tpt-2 double mutant revealed that HCF was linked to a specific decrease in plastome-encoded core proteins of both photosystems (with the exception of the PSII component cytochrome b559), whereas nuclear-encoded antennae (LHCs) accumulated normally, but were predominantly not attached to their photosystems. Uncoupled antennae are the major cause for HCF of dark-adapted plants. Feeding of sucrose or glucose to high light-grown adg1-1/tpt-2 plants rescued the HCF- and growth phenotypes. Elevated sugar levels induce the expression of the glucose-6-phosphate/phosphate translocator2 (GPT2), which in principle could compensate for the deficiency in the TPT. A triple mutant with an additional defect in GPT2 (adg1-1/tpt-2/gpt2-1) exhibited an identical rescue of the HCF- and growth phenotype in response to sugar feeding as the adg1-1/tpt-2 double mutant, indicating that this rescue is independent from the sugar-triggered induction of GPT2. CONCLUSIONS We propose that cytosolic carbohydrate availability modulates acclimation to high light in A. thaliana. It is conceivable that the strong relationship between the chloroplast and nucleus with respect to a co-ordinated expression of photosynthesis genes is modified in carbohydrate-starved plants. Hence carbohydrates may be considered as a novel component involved in chloroplast-to-nucleus retrograde signaling, an aspect that will be addressed in future studies.
Collapse
Affiliation(s)
- Jessica Schmitz
- University of Cologne, Botanical Institute, Biocenter Cologne, Zülpicher Str. 47B, D-50674 Cologne, Germany
| | - Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stephan Krueger
- University of Cologne, Botanical Institute, Biocenter Cologne, Zülpicher Str. 47B, D-50674 Cologne, Germany
| | - Stefan Geimer
- Universität Bayreuth, Zellbiologie/Elektronenmikroskopie NW I/B1, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Anja Schneider
- Biozentrum der Ludwig-Maximilians-Universität München, Department Biologie I - Botanik Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Biozentrum der Ludwig-Maximilians-Universität München, Department Biologie I - Botanik Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Biozentrum der Ludwig-Maximilians-Universität München, Department Biologie I - Botanik Großhaderner Str. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Kirsten Bell
- University of Cologne, Botanical Institute, Biocenter Cologne, Zülpicher Str. 47B, D-50674 Cologne, Germany
| | - Ulf-Ingo Flügge
- University of Cologne, Botanical Institute, Biocenter Cologne, Zülpicher Str. 47B, D-50674 Cologne, Germany
| | - Rainer E Häusler
- University of Cologne, Botanical Institute, Biocenter Cologne, Zülpicher Str. 47B, D-50674 Cologne, Germany
| |
Collapse
|
15
|
Heinrichs L, Schmitz J, Flügge UI, Häusler RE. The Mysterious Rescue of adg1-1/tpt-2 - an Arabidopsis thaliana Double Mutant Impaired in Acclimation to High Light - by Exogenously Supplied Sugars. FRONTIERS IN PLANT SCIENCE 2012; 3:265. [PMID: 23233856 PMCID: PMC3516064 DOI: 10.3389/fpls.2012.00265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/12/2012] [Indexed: 05/05/2023]
Abstract
An Arabidopsis thaliana double mutant (adg1-1/tpt-2) defective in the day- and night-path of photoassimilate export from the chloroplast due to a knockout in the triose phosphate/phosphate translocator (TPT; tpt-2) and a lack of starch [mutation in ADP glucose pyrophosphorylase (AGPase); adg1-1] exhibits severe growth retardation, a decrease in the photosynthetic capacity, and a high chlorophyll fluorescence (HCF) phenotype under high light conditions. These phenotypes could be rescued when the plants were grown on sucrose (Suc) or glucose (Glc). Here we address the question whether Glc-sensing hexokinase1 (HXK1) defective in the Glc insensitive 2 (gin2-1) mutant is involved in the sugar-dependent rescue of adg1-1/tpt-2. Triple mutants defective in the TPT, AGPase, and HXK1 (adg1-1/tpt-2/gin2-1) were established as homozygous lines and grown together with Col-0 and Landsberg erecta (Ler) wild-type plants, gin2-1, the adg1-1/tpt-2 double mutant, and the adg1-1/tpt-2/gpt2-1 triple mutant [additionally defective in the glucose 6-phosphate/phosphate translocator 2 (GPT2)] on agar in the presence or absence of 50 mM of each Glc, Suc, or fructose (Fru). The growth phenotype of the double mutant and both triple mutants could be rescued to a similar extent only by Glc and Suc, but not by Fru. All three sugars were capable of rescuing the HCF and photosynthesis phenotype, irrespectively of the presence or absence of HXK1. Quantitative RT-PCR analyses of sugar-responsive genes revealed that plastidial HXK (pHXK) was up-regulated in adg1-1/tpt-2 plants grown on sugars, but showed no response in adg1-1/tpt-2/gin2-1. It appears likely that soluble sugars are directly taken up by the chloroplasts and enter further metabolism, which consumes ATP and NADPH from the photosynthetic light reaction and thereby rescues the photosynthesis phenotype of the double mutant. The implication of sugar turnover and probably signaling inside the chloroplasts for the concept of retrograde signaling is discussed.
Collapse
Affiliation(s)
- Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- *Correspondence: Rainer E. Häusler, Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany. e-mail:
| |
Collapse
|
16
|
Malinova I, Steup M, Fettke J. Starch-related cytosolic heteroglycans in roots from Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1406-1414. [PMID: 21269731 DOI: 10.1016/j.jplph.2010.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 05/30/2023]
Abstract
Both photoautotrophic and heterotrophic plant cells are capable of accumulating starch inside the plastid. However, depending on the metabolic state of the respective cell the starch-related carbon fluxes are different. The vast majority of the transitory starch biosynthesis relies on the hexose phosphate pools derived from the reductive pentose phosphate cycle and, therefore, is restricted to ongoing photosynthesis. Transitory starch is usually degraded in the subsequent dark period and mainly results in the formation of neutral sugars, such as glucose and maltose, that both are exported into the cytosol. The cytosolic metabolism of the two carbohydrates includes reversible glucosyl transfer reactions to a heteroglycan that are mediated by two glucosyl transferases, DPE2 and PHS2 (or, in all other species, Pho2). In heterotrophic cells, accumulation of starch mostly depends on the long distance transport of reduced carbon compounds from source to sink organs and, therefore, includes as an essential step the import of carbohydrates from the cytosol into the starch forming plastids. In this communication, we focus on starch metabolism in heterotrophic tissues from Arabidopsis thaliana wild type plants (and in various starch-related mutants as well). By using hydroponically grown A. thaliana plants, we were able to analyse starch-related biochemical processes in leaves and roots from the same plants. Within the roots we determined starch levels and the morphology of native starch granules. Cytosolic and apoplastic heteroglycans were analysed in roots and compared with those from leaves of the same plants. A. thaliana mutants lacking functional enzymes either inside the plastid (such as phosphoglucomutase) or in the cytosol (disproportionating isoenzyme 2 or the phosphorylase isozyme, PHS2) were included in this study. In roots and leaves from the three mutants (and from the respective wild type organ as well), starch and heteroglycans as well as enzyme patterns were analysed.
Collapse
Affiliation(s)
- Irina Malinova
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Potsdam-Golm, Germany
| | | | | |
Collapse
|
17
|
Fettke J, Malinova I, Albrecht T, Hejazi M, Steup M. Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves of Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1723-34. [PMID: 21115809 PMCID: PMC3091119 DOI: 10.1104/pp.110.168716] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/25/2010] [Indexed: 05/18/2023]
Abstract
Almost all glucosyl transfer reactions rely on glucose-1-phosphate (Glc-1-P) that either immediately acts as glucosyl donor or as substrate for the synthesis of the more widely used Glc dinucleotides, ADPglucose or UDPglucose. In this communication, we have analyzed two Glc-1-P-related processes: the carbon flux from externally supplied Glc-1-P to starch by either mesophyll protoplasts or intact chloroplasts from Arabidopsis (Arabidopsis thaliana). When intact protoplasts or chloroplasts are incubated with [U-(14)C]Glc-1-P, starch is rapidly labeled. Incorporation into starch is unaffected by the addition of unlabeled Glc-6-P or Glc, indicating a selective flux from Glc-1-P to starch. However, illuminated protoplasts incorporate less (14)C into starch when unlabeled bicarbonate is supplied in addition to the (14)C-labeled Glc-1-P. Mesophyll protoplasts incubated with [U-(14)C]Glc-1-P incorporate (14)C into the plastidial pool of adenosine diphosphoglucose. Protoplasts prepared from leaves of mutants of Arabidopsis that lack either the plastidial phosphorylase or the phosphoglucomutase isozyme incorporate (14)C derived from external Glc-1-P into starch, but incorporation into starch is insignificant when protoplasts from a mutant possessing a highly reduced ADPglucose pyrophosphorylase activity are studied. Thus, the path of assimilatory starch biosynthesis initiated by extraplastidial Glc-1-P leads to the plastidial pool of adenosine diphosphoglucose, and at this intermediate it is fused with the Calvin cycle-driven route. Mutants lacking the plastidial phosphoglucomutase contain a small yet significant amount of transitory starch.
Collapse
Affiliation(s)
- Joerg Fettke
- Mass Spectrometry of Biopolymers, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | | | | | | | | |
Collapse
|
18
|
Egli B, Kölling K, Köhler C, Zeeman SC, Streb S. Loss of cytosolic phosphoglucomutase compromises gametophyte development in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:1659-71. [PMID: 20959421 PMCID: PMC2996006 DOI: 10.1104/pp.110.165027] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/14/2010] [Indexed: 05/18/2023]
Abstract
Cytosolic phosphoglucomutase (cPGM) interconverts glucose-6-phosphate and glucose-1-phosphate and is a key enzyme of central metabolism. In this study, we show that Arabidopsis (Arabidopsis thaliana) has two cPGM genes (PGM2 and PGM3) encoding proteins with high sequence similarity and redundant functions. Whereas pgm2 and pgm3 single mutants were undistinguishable from the wild type, loss of both PGM2 and PGM3 severely impaired male and female gametophyte function. Double mutant pollen completed development but failed to germinate. Double mutant ovules also developed normally, but approximately half remained unfertilized 2 d after pollination. We attribute these phenotypes to an inability to effectively distribute carbohydrate from imported or stored substrates (e.g. sucrose) into the major biosynthetic (e.g. cell wall biosynthesis) and respiratory pathways (e.g. glycolysis and the oxidative pentose phosphate pathway). Disturbing these pathways is expected to have dramatic consequences for germinating pollen grains, which have high metabolic and biosynthetic activities. We propose that residual cPGM mRNA or protein derived from the diploid mother plant is sufficient to enable double mutant female gametophytes to attain maturity and for some to be fertilized. Mature plants possessing a single cPGM allele had a major reduction in cPGM activity. However, photosynthetic metabolism and growth were normal, suggesting that under standard laboratory conditions cPGM activity provided from one wild-type allele is sufficient to mediate the photosynthetic and respiratory fluxes in leaves.
Collapse
|
19
|
Zhang L, Tan Q, Lee R, Trethewy A, Lee YH, Tegeder M. Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis. THE PLANT CELL 2010; 22:3603-20. [PMID: 21075769 PMCID: PMC3015121 DOI: 10.1105/tpc.110.073833] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 10/20/2010] [Accepted: 10/29/2010] [Indexed: 05/17/2023]
Abstract
Seed development and nitrogen (N) storage depend on delivery of amino acids to seed sinks. For efficient translocation to seeds, amino acids are loaded into the phloem in source leaves and along the long distance transport pathway through xylem-phloem transfer. We demonstrate that Arabidopsis thaliana AMINO ACID PERMEASE2 (AAP2) localizes to the phloem throughout the plant. AAP2 T-DNA insertion lines showed changes in source-sink translocation of amino acids and a decrease in the amount of seed total N and storage proteins, supporting AAP2 function in phloem loading and amino acid distribution to the embryo. Interestingly, in aap2 seeds, total carbon (C) levels were unchanged, while fatty acid levels were elevated. Moreover, branch and silique numbers per plant and seed yield were strongly increased. This suggests changes in N and C delivery to sinks and subsequent modulations of sink development and seed metabolism. This is supported by tracer experiments, expression studies of genes of N/C transport and metabolism in source and sink, and by phenotypic and metabolite analyses of aap2 plants. Thus, AAP2 is key for xylem to phloem transfer and sink N and C supply; moreover, modifications of N allocation can positively affect C assimilation and source-sink transport and benefit sink development and oil yield.
Collapse
Affiliation(s)
| | | | | | | | | | - Mechthild Tegeder
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236
| |
Collapse
|
20
|
Kunz HH, Häusler RE, Fettke J, Herbst K, Niewiadomski P, Gierth M, Bell K, Steup M, Flügge UI, Schneider A. The role of plastidial glucose-6-phosphate/phosphate translocators in vegetative tissues of Arabidopsis thaliana mutants impaired in starch biosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:115-28. [PMID: 20712627 DOI: 10.1111/j.1438-8677.2010.00349.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana mutants impaired in starch biosynthesis due to defects in either ADP glucose pyrophosphorylase (adg1-1), plastidic phosphoglucose mutase (pgm) or a new allele of plastidic phosphoglucose isomerase (pgi1-2) exhibit substantial activity of glucose-6-phosphate (Glc6P) transport in leaves that is mediated by a Glc6P/phosphate translocator (GPT) of the inner plastid envelope membrane. In contrast to the wild type, GPT2, one of two functional GPT genes of A. thaliana, is strongly induced in these mutants during the light period. The proposed function of the GPT in plastids of non-green tissues is the provision of Glc6P for starch biosynthesis and/or the oxidative pentose phosphate pathway. The function of GPT in photosynthetic tissues, however, remains obscure. The adg1-1 and pgi1-2 mutants were crossed with the gpt2-1 mutant defective in GPT2. Whereas adg1-1/gpt2-1 was starch-free, residual starch could be detected in pgi1-2/gpt2-1 and was confined to stomatal guard cells, bundle sheath cells and root tips, which parallels the reported spatial expression profile of AtGPT1. Glucose content in the cytosolic heteroglycan increased substantially in adg1-1 but decreased in pgi1-2, suggesting that the plastidic Glc6P pool contributes to its biosynthesis. The abundance of GPT2 mRNA correlates with increased levels of soluble sugars, in particular of glucose in leaves, suggesting induction by the sugar-sensing pathway. The possible function of GPT2 in starch-free mutants is discussed in the background of carbon requirement in leaves during the light-dark cycle.
Collapse
Affiliation(s)
- H H Kunz
- University of Cologne, Botanical Institute II, Biocenter, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fettke J, Albrecht T, Hejazi M, Mahlow S, Nakamura Y, Steup M. Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules. THE NEW PHYTOLOGIST 2010; 185:663-75. [PMID: 20028468 DOI: 10.1111/j.1469-8137.2009.03126.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Reserve starch is an important plant product but the actual biosynthetic process is not yet fully understood. Potato (Solanum tuberosum) tuber discs from various transgenic plants were used to analyse the conversion of external sugars or sugar derivatives to starch. By using in vitro assays, a direct glucosyl transfer from glucose 1-phosphate to native starch granules as mediated by recombinant plastidial phosphorylase was analysed. Compared with labelled glucose, glucose 6-phosphate or sucrose, tuber discs converted externally supplied [(14)C]glucose 1-phosphate into starch at a much higher rate. Likewise, tuber discs from transgenic lines with a strongly reduced expression of cytosolic phosphoglucomutase, phosphorylase or transglucosidase converted glucose 1-phosphate to starch with the same or even an increased rate compared with the wild-type. Similar results were obtained with transgenic potato lines possessing a strongly reduced activity of both the cytosolic and the plastidial phosphoglucomutase. Starch labelling was, however, significantly diminished in transgenic lines, with a reduced concentration of the plastidial phosphorylase isozymes. Two distinct paths of reserve starch biosynthesis are proposed that explain, at a biochemical level, the phenotype of several transgenic plant lines.
Collapse
Affiliation(s)
- Joerg Fettke
- Institute of Biochemistry and Biology, Mass Spectrometry of Biopolymers, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, D-14476 Potsdam-Golm, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Ahsan N, Komatsu S. Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 2009; 9:4889-907. [PMID: 19862761 DOI: 10.1002/pmic.200900308] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
The functional differentiation of protein networks in individual organs and tissues of soybean at various developmental stages was investigated by proteomic approach. Protein extraction by Mg/NP-40 buffer followed by alkaline phenol-based method was optimized for proteomic analysis. Proteome analyses of leaves at various developmental stages showed 26 differentially expressed proteins, wherein proteins in translocon at the outer/inner envelope membrane of chloroplast protein-transport machineries increased significantly at the first trifoliate. Immunoblot analysis showed chaperonin-60 expressed abundantly in young leaves, whereas HSP 70 and ATP-synthase beta were constitutively expressed in all tissues. The net photosynthesis rate and chlorophyll content showed an age-dependent correlation in leaves. These results suggest that proteins involved in carbon assimilation, folding and assembly, and energy may work synchronously and show a linear correlation to photosynthesis at developmental stages of leaves. Comparison of flower bud and flower proteome reveals 29 differentially expressed proteins, wherein proteins involved in mitochondrial protein transport and assembly, secondary metabolism, and pollen-tube growth were up-regulated during flower development. Together, these results suggest that during developmental stages, each type of tissue is associated with a specific group of proteins; wherein proteins involved in energy, sugar metabolism, and folding, assembly, and destination may play pivotal roles in the maturation process of each organ or tissue.
Collapse
Affiliation(s)
- Nagib Ahsan
- National Institute of Crop Science, Tsukuba, Japan
| | | |
Collapse
|
23
|
Fettke J, Malinova I, Eckermann N, Steup M. Cytosolic heteroglycans in photoautotrophic and in heterotrophic plant cells. PHYTOCHEMISTRY 2009; 70:696-702. [PMID: 19394057 DOI: 10.1016/j.phytochem.2009.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/18/2009] [Indexed: 05/27/2023]
Abstract
In plants several 'starch-related' enzymes exist as plastid- and cytosol-specific isoforms and in some cases the extraplastidial isoforms represent the majority of the enzyme activity. Due to the compartmentation of the plant cells, these extraplastidial isozymes have no access to the plastidial starch granules and, therefore, their in vivo function remained enigmatic. Recently, cytosolic heteroglycans have been identified that possess a complex pattern of the monomer composition and glycosidic bonds. The glycans act both as acceptors and donors for cytosolic glucosyl transferases. In autotrophic tissues the heteroglycans are essential for the nocturnal starch-sucrose conversion. In this review we summarize the current knowledge of these glycans, their interaction with glucosyl transferases and their possible cellular functions. We include data on the heteroglycans in heterotrophic plant tissues and discuss their role in intracellular carbon fluxes that originate from externally supplied carbohydrates.
Collapse
Affiliation(s)
- Joerg Fettke
- Institute of Biochemistry and Biology, Mass Spectrometry of Biopolymers, University of Potsdam, Potsdam-Golm, Germany
| | | | | | | |
Collapse
|
24
|
Fettke J, Hejazi M, Smirnova J, Höchel E, Stage M, Steup M. Eukaryotic starch degradation: integration of plastidial and cytosolic pathways. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2907-22. [PMID: 19325165 DOI: 10.1093/jxb/erp054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.
Collapse
Affiliation(s)
- Joerg Fettke
- Institute of Biochemistry and Biology, Mass Spectrometry of Biopolymers, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | | | | | | | | | | |
Collapse
|