1
|
Lu J, Yang N, Zhu Y, Chai Z, Zhang T, Li W. Genome-wide survey of Calcium-Dependent Protein Kinases (CPKs) in five Brassica species and identification of CPKs induced by Plasmodiophora brassicae in B. rapa, B. oleracea, and B. napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1067723. [PMID: 36479517 PMCID: PMC9720142 DOI: 10.3389/fpls.2022.1067723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Calcium-dependent protein kinase (CPK) is a class of Ser/Thr protein kinase that exists in plants and some protozoa, possessing Ca2+ sensing functions and kinase activity. To better reveal the roles that Brassica CPKs played during plant response to stresses, five Brassica species, namely Brassica rapa (B. rapa), Brassica nigra (B. nigra), Brassica oleracea (B. oleracea), Brassica juncea (B. juncea), and Brassica napus (B. napus) were selected and analyzed. In total, 51 BraCPK, 56 BniCPK, 56 BolCPK, 88 BjuCPK, and 107 BnaCPK genes were identified genome wide and phylogenetics, chromosomal mapping, collinearity, promoter analysis, and biological stress analysis were conducted. The results showed that a typical CPK gene was constituted by a long exon and tandem short exons. They were unevenly distributed on most chromosomes except chromosome A08 in B. napus and B. rapa, and almost all CPK genes were located on regions of high gene density as non-tandem form. The promoter regions of BraCPKs, BolCPKs, and BnaCPKs possessed at least three types of cis-elements, among which the abscisic acid responsive-related accounted for the largest proportion. In the phylogenetic tree, CPKs were clustered into four primary groups, among which group I contained the most CPK genes while group IV contained the fewest. Some clades, like AT5G23580.1(CPK12) and AT2G31500.1 (CPK24) contained much more gene members than others, indicating a possibility that gene expansion occurred during evolution. Furthermore, 4 BraCPKs, 14 BolCPKs, and 31 BnaCPKs involved in the Plasmodiophora brassicae (P. brassicae) defense response in resistant (R) or susceptible (S) materials were derived from online databases, leading to the discovery that some R-specific induced CPKs, such as BnaC02g08720D, BnaA03g03800D, and BolC04g018270.2J.m1 might be ideal candidate genes for P. brassicae resistant research. Overall, these results provide valuable information for research on the function and evolution of CDK genes.
Collapse
Affiliation(s)
- Junxing Lu
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Nan Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Jiangsu, China
| | - Yangyi Zhu
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Zhongxin Chai
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Tao Zhang
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| | - Wei Li
- Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
2
|
Li Y, Liu Y, Jin L, Peng R. Crosstalk between Ca 2+ and Other Regulators Assists Plants in Responding to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101351. [PMID: 35631776 PMCID: PMC9148064 DOI: 10.3390/plants11101351] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 05/08/2023]
Abstract
Plants have evolved many strategies for adaptation to extreme environments. Ca2+, acting as an important secondary messenger in plant cells, is a signaling molecule involved in plants' response and adaptation to external stress. In plant cells, almost all kinds of abiotic stresses are able to raise cytosolic Ca2+ levels, and the spatiotemporal distribution of this molecule in distant cells suggests that Ca2+ may be a universal signal regulating different kinds of abiotic stress. Ca2+ is used to sense and transduce various stress signals through its downstream calcium-binding proteins, thereby inducing a series of biochemical reactions to adapt to or resist various stresses. This review summarizes the roles and molecular mechanisms of cytosolic Ca2+ in response to abiotic stresses such as drought, high salinity, ultraviolet light, heavy metals, waterlogging, extreme temperature and wounding. Furthermore, we focused on the crosstalk between Ca2+ and other signaling molecules in plants suffering from extreme environmental stress.
Collapse
|
3
|
Zhang B, Song Y, Zhang X, Wang Q, Li X, He C, Luo H. Identification and expression assay of calcium-dependent protein kinase family genes in Hevea brasiliensis and determination of HbCDPK5 functions in disease resistance. TREE PHYSIOLOGY 2022; 42:1070-1083. [PMID: 35022787 DOI: 10.1093/treephys/tpab156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Calcium (Ca2+) signaling is one of the earliest factors to coordinate plant adaptive responses. As direct sensors and activators of Ca2+ signals, calcium-dependent protein kinases (CDPKs) were reported to be widely involved in regulating different biotic and abiotic stress stimuli. In this study, 32 Hevea brasiliensis CDPK (HbCDPK) genes were predicted and classified into four subgroups. Among them, the full-length coding sequences of 28 HbCDPK genes were confirmed by RT-PCR and verified by sequencing. Putative cis-elements assay in the promoters of HbCDPKs showed that most of the HbCDPK genes contained gibberellic acid-responsive element (GARE), abscisic acid-responsive element (ABRE), salicylic acid-responsive element (SARE), defense and stress responsive element (TC-rich repeats) and low-temperature response element (LTR), which could be activated by different biotic and abiotic stresses. Real-time PCR analysis indicated that 28 HbCDPK genes respond to infection of pathogenic fungi and a variety of phytohormones. Subcellular localization was observed with most HbCDPKs located in cell membrane, cytoplasm or organelles. Some HbCDPKs were confirmed to cause reactive oxygen species (ROS) production and accumulation in rubber tree mesophyll protoplast directly. HbCDPK5 was strongly induced by the inoculation with Colletotrichum gloeosporioides and was chosen for further analysis. HbCDPK5 localized to the cell membrane and cytoplasm, and obviously regulated the accumulation of ROS in rubber tree mesophyll protoplast. Overexpression of HbCDPK5 in Arabidopsis enhanced the resistance to Botrytis cinerea. These results indicate that rubber tree CDPK genes play important roles in plant disease resistance.
Collapse
Affiliation(s)
- Bei Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Yufeng Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Xiaodong Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Xiuqiong Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Corps, Hainan University, 58# Renmin Road, Haikou 570228, China
- Natural Rubber Cooperative Innovation Center of Hainan Province & Ministry of Education of PRC, Hainan University, 58# Renmin Road, Haikou 570228, China
| |
Collapse
|
4
|
Wen F, Ye F, Xiao Z, Liao L, Li T, Jia M, Liu X, Wu X. Genome-wide survey and expression analysis of calcium-dependent protein kinase (CDPK) in grass Brachypodium distachyon. BMC Genomics 2020; 21:53. [PMID: 31948407 PMCID: PMC6966850 DOI: 10.1186/s12864-020-6475-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/09/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Ca2+ played as a ubiquitous secondary messenger involved in plant growth, development, and responses to various environmental stimuli. Calcium-dependent protein kinases (CDPK) were important Ca2+ sensors, which could directly translate Ca2+ signals into downstream phosphorylation signals. Considering the importance of CDPKs as Ca2+ effectors for regulation of plant stress tolerance and few studies on Brachypodium distachyon were available, it was of interest for us to isolate CDPKs from B. distachyon. RESULTS A systemic analysis of 30 CDPK family genes in B. distachyon was performed. Results showed that all BdCDPK family members contained conserved catalytic Ser/Thr protein kinase domain, autoinhibitory domain, and EF-hand domain, and a variable N-terminal domain, could be divided into four subgroup (I-IV), based upon sequence homology. Most BdCDPKs had four EF-hands, in which EF2 and EF4 revealed high variability and strong divergence from EF-hand in AtCDPKs. Synteny results indicated that large number of syntenic relationship events existed between rice and B. distachyon, implying their high conservation. Expression profiles indicated that most of BdCDPK genes were involved in phytohormones signal transduction pathways and regulated physiological process in responding to multiple environmental stresses. Moreover, the co-expression network implied that BdCDPKs might be both the activator and the repressor involved in WRKY transcription factors or MAPK cascade genes mediated stress response processes, base on their complex regulatory network. CONCLUSIONS BdCDPKs might play multiple function in WRKY or MAPK mediated abiotic stresses response and phytohormone signaling transduction in B. distachyon. Our genomics analysis of BdCDPKs could provide fundamental information for further investigation the functions of CDPKs in integrating Ca2+ signalling pathways in response to environments stresses in B. distachyon.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Feng Ye
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zhulong Xiao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinsheng Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
5
|
Marimuthu K, Subbaraya U, Suthanthiram B, Marimuthu SS. Molecular analysis of somatic embryogenesis through proteomic approach and optimization of protocol in recalcitrant Musa spp. PHYSIOLOGIA PLANTARUM 2019; 167:282-301. [PMID: 30883793 DOI: 10.1111/ppl.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 05/12/2023]
Abstract
Somatic embryogenesis (SE) is a complex stress related process regulated by numerous biological factors. SE is mainly applicable to mass propagation and genetic improvement of plants through gene transfer technology and induced mutations. In banana, SE is highly genome dependent as the efficiency varies with cultivars. To understand the molecular mechanism of SE, a proteomics approach was carried out to identify proteins expressed during embryogenic calli (EC) induction, regeneration and germination of somatic embryos in the banana cultivar cv. Rasthali (AAB). In total, 70 spots were differentially expressed in various developmental stages of SE, of which 16 were uniquely expressed and 17 were highly abundant in EC compared to non-embryogenic calli and explants. Also, four spots were uniquely expressed in germinating somatic embryos. The functional annotation of identified proteins revealed that calcium signaling along with stress and endogenous hormones related proteins played a vital role in EC induction and germination of somatic embryos. Thus, based on this outcome, the callus induction media was modified and tested in five cultivars. Among them, cultivars Grand Naine (AAA), Monthan (ABB) and Ney Poovan (AB) showed a better response in tryptophan added media, whereas Red Banana (AAA) and Karpuravalli (ABB) showed maximum EC induction in kinetin and CaCl2 supplemented media respectively. Simultaneously, germination media were modified to induce proteins responsible for germination. In cv. Rasthali, media supplemented with 10 mM CaCl2 showed a maximum increase in germination (51.79%) over control plants. Thus, the present study revealed that media modification based on proteomic analysis can induce SE in recalcitrant cultivars and also enhance germination in cultivars amenable for SE.
Collapse
Affiliation(s)
- Kumaravel Marimuthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| | - Uma Subbaraya
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| | | | - Saraswathi S Marimuthu
- Crop Improvement Division, ICAR-National Research Centre for Banana, Tiruchirappalli, India
| |
Collapse
|
6
|
Ding C, Lei L, Yao L, Wang L, Hao X, Li N, Wang Y, Yin P, Guo G, Yang Y, Wang X. The involvements of calcium-dependent protein kinases and catechins in tea plant [Camellia sinensis (L.) O. Kuntze] cold responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:190-202. [PMID: 31518850 DOI: 10.1016/j.plaphy.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 05/23/2023]
Abstract
Temperature is one of the most important environmental factors limiting tea plant growth and tea production. Previously we reported that both Ca2+ and ROS signals play important roles in tea plant cold acclimation. Here, we identified 26 CsCPK transcripts, analyzed their phylogenetic and sequence characters, and detected their transcriptions to monitor Ca2+ signaling status. Tissue-specific expression profiles indicated that most CsCPK genes were constitutively expressed in tested tissues, suggesting their possible roles in development. Cold along with calcium inhibitor assays suggested that CsCPKs are important cold regulators and CsCPK30/5/4/9 maybe the key members. Moreover, LaCl3 or EGTA pre-treatment could result in impaired Ca2+ signaling and compromised cold-responding network, but higher catechins accumulation revealed their potential positive roles in cold responses. Those findings indicated that catechins and other secondary metabolites in tea plant may form an alternative cold-responding network that closely correlated with Ca2+ signaling status.
Collapse
Affiliation(s)
- Changqing Ding
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China
| | - Lei Lei
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China
| | - Lina Yao
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China
| | - Lu Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China
| | - Xinyuan Hao
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China
| | - Nana Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China
| | - Yuchun Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China
| | - Peng Yin
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, People's Republic of China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, 464000, Henan, People's Republic of China.
| | - Yajun Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China.
| | - Xinchao Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences/National Center for Tea Improvement/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, People's Republic of China.
| |
Collapse
|
7
|
Xing Y, Guo S, Chen X, Du D, Liu M, Xiao Y, Zhang T, Zhu M, Zhang Y, Sang X, He G, Wang N. Nitrogen Metabolism is Affected in the Nitrogen-Deficient Rice Mutant esl4 with a Calcium-Dependent Protein Kinase Gene Mutation. PLANT & CELL PHYSIOLOGY 2018; 59:2512-2525. [PMID: 30165687 DOI: 10.1093/pcp/pcy169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/23/2018] [Indexed: 05/05/2023]
Abstract
Calcium-dependent protein kinases are involved in various biological processes, including hormone response, growth and development, abiotic stress response, disease resistance, and nitrogen metabolism. We identified a novel mutant of a calcium-dependent protein-kinase-encoding gene, esl4, by performing map cloning. The esl4 mutant was nitrogen deficient, and expression and enzyme activities of genes related to nitrogen metabolism were down-regulated. ESL4 was mainly expressed in the vascular bundles of roots, stems, leaves, and sheaths. The ESL4 protein was localized in the cell membranes. Enzyme activity and physiological index analyzes and analysis of the expression of nitrogen metabolism and senescence-related genes indicated that ESL4 was involved in nitrogen metabolism. ESL4 overexpression in transgenic homozygous T2 plants increased nitrogen-use efficiency, improving yields when little nitrogen was available. The seed-set rates, yields per plant, numbers of grains per plant, grain nitrogen content ratios, and total nitrogen content per plant were significantly or very significantly higher for two ESL4 overexpression lines than for the control plants. These results suggest that ESL4 may function upstream of nitrogen-metabolism genes. The results will allow ESL4 to be used to breed novel cultivars for growing in low-nitrogen conditions.
Collapse
Affiliation(s)
- Yadi Xing
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shuang Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Rice Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Xinlong Chen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dan Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Mingming Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yanhua Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tianquan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Maodi Zhu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yingying Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xianchun Sang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guanghua He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Nan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Shi S, Li S, Asim M, Mao J, Xu D, Ullah Z, Liu G, Wang Q, Liu H. The Arabidopsis Calcium-Dependent Protein Kinases (CDPKs) and Their Roles in Plant Growth Regulation and Abiotic Stress Responses. Int J Mol Sci 2018; 19:E1900. [PMID: 29958430 PMCID: PMC6073581 DOI: 10.3390/ijms19071900] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
As a ubiquitous secondary messenger in plant signaling systems, calcium ions (Ca2+) play essential roles in plant growth and development. Within the cellular signaling network, the accurate decoding of diverse Ca2+ signal is a fundamental molecular event. Calcium-dependent protein kinases (CDPKs), identified commonly in plants, are a kind of vital regulatory protein deciphering calcium signals triggered by various developmental and environmental stimuli. This review chiefly introduces Ca2+ distribution in plant cells, the classification of Arabidopsis thaliana CDPKs (AtCDPKs), the identification of the Ca2+-AtCDPK signal transduction mechanism and AtCDPKs’ functions involved in plant growth regulation and abiotic stress responses. The review presents a comprehensive overview of AtCDPKs and may contribute to the research of CDPKs in other plants.
Collapse
Affiliation(s)
- Sujuan Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Shugui Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- College of Agriculture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jingjing Mao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Dizhi Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zia Ullah
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Qian Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Haobao Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
9
|
Xu W, Huang W. Calcium-Dependent Protein Kinases in Phytohormone Signaling Pathways. Int J Mol Sci 2017; 18:ijms18112436. [PMID: 29156607 PMCID: PMC5713403 DOI: 10.3390/ijms18112436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/07/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023] Open
Abstract
Calcium-dependent protein kinases (CPKs/CDPKs) are Ca2+-sensors that decode Ca2+ signals into specific physiological responses. Research has reported that CDPKs constitute a large multigene family in various plant species, and play diverse roles in plant growth, development, and stress responses. Although numerous CDPKs have been exhaustively studied, and many of them have been found to be involved in plant hormone biosynthesis and response mechanisms, a comprehensive overview of the manner in which CDPKs participate in phytohormone signaling pathways, regulating nearly all aspects of plant growth, has not yet been undertaken. In this article, we reviewed the structure of CDPKs and the mechanism of their subcellular localization. Some CDPKs were elucidated to influence the intracellular localization of their substrates. Since little work has been done on the interaction between CDPKs and cytokinin signaling pathways, or on newly defined phytohormones such as brassinosteroids, strigolactones and salicylic acid, this paper mainly focused on discussing the integral associations between CDPKs and five plant hormones: auxins, gibberellins, ethylene, jasmonates, and abscisic acid. A perspective on future work is provided at the end.
Collapse
Affiliation(s)
- Wuwu Xu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, the Ministry of Agriculture, The Yangtze River Valley Hybrid Rice Collaboration & Innovation Center, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Wu P, Wang W, Duan W, Li Y, Hou X. Comprehensive Analysis of the CDPK-SnRK Superfamily Genes in Chinese Cabbage and Its Evolutionary Implications in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:162. [PMID: 28239387 PMCID: PMC5301275 DOI: 10.3389/fpls.2017.00162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/25/2017] [Indexed: 05/30/2023]
Abstract
The CDPK-SnRK (calcium-dependent protein kinase/Snf1-related protein kinase) gene superfamily plays important roles in signaling pathways for disease resistance and various stress responses, as indicated by emerging evidence. In this study, we constructed comparative analyses of gene structure, retention, expansion, whole-genome duplication (WGD) and expression patterns of CDPK-SnRK genes in Brassica rapa and their evolution in plants. A total of 49 BrCPKs, 14 BrCRKs, 3 BrPPCKs, 5 BrPEPRKs, and 56 BrSnRKs were identified in B. rapa. All BrCDPK-SnRK proteins had highly conserved kinase domains. By statistical analysis of the number of CDPK-SnRK genes in each species, we found that the expansion of the CDPK-SnRK gene family started from angiosperms. Segmental duplication played a predominant role in CDPK-SnRK gene expansion. The analysis showed that PEPRK was more preferentially retained than other subfamilies and that CPK was retained similarly to SnRK. Among the CPKs and SnRKs, CPKIII and SnRK1 genes were more preferentially retained than other groups. CRK was closest to CPK, which may share a common evolutionary origin. In addition, we identified 196 CPK genes and 252 SnRK genes in 6 species, and their different expansion and evolution types were discovered. Furthermore, the expression of BrCDPK-SnRK genes is dynamic in different tissues as well as in response to abiotic stresses, demonstrating their important roles in development in B. rapa. In summary, this study provides genome-wide insight into the evolutionary history and mechanisms of CDPK-SnRK genes following whole-genome triplication in B. rapa.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Wenli Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuaian, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
11
|
Ribaudo CM, Curá JA, Cantore ML. Activation of a calcium-dependent protein kinase involved in the Azospirillum growth promotion in rice. World J Microbiol Biotechnol 2017; 33:22. [DOI: 10.1007/s11274-016-2186-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/01/2016] [Indexed: 01/16/2023]
|
12
|
Simeunovic A, Mair A, Wurzinger B, Teige M. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3855-72. [PMID: 27117335 DOI: 10.1093/jxb/erw157] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are at the forefront of decoding transient Ca(2+) signals into physiological responses. They play a pivotal role in many aspects of plant life starting from pollen tube growth, during plant development, and in stress response to senescence and cell death. At the cellular level, Ca(2+) signals have a distinct, narrow distribution, thus requiring a conjoined localization of the decoders. Accordingly, most CDPKs have a distinct subcellular distribution which enables them to 'sense' the local Ca(2+) concentration and to interact specifically with their targets. Here we present a comprehensive overview of identified CDPK targets and discuss them in the context of kinase-substrate specificity and subcellular distribution of the CDPKs. This is particularly relevant for calcium-mediated phosphorylation where different CDPKs, as well as other kinases, were frequently reported to be involved in the regulation of the same target. However, often these studies were not performed in an in situ context. Thus, considering the specific expression patterns, distinct subcellular distribution, and different Ca(2+) affinities of CDPKs will narrow down the number of potential CDPKs for one given target. A number of aspects still remain unresolved, giving rise to pending questions for future research.
Collapse
Affiliation(s)
- Andrea Simeunovic
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Andrea Mair
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| |
Collapse
|
13
|
The Emerging Roles of Phospholipase C in Plant Growth and Development. LIPID SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03873-0_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Ye S, Wang L, Xie W, Wan B, Li X, Lin Y. Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica). PLANT MOLECULAR BIOLOGY 2009; 70:311-25. [PMID: 19263224 DOI: 10.1007/s11103-009-9475-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Accepted: 02/18/2009] [Indexed: 05/05/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) control plant development and response to various stress environments through the important roles in the regulation of Ca(2+) signaling. Thirty-one CDPK genes have been identified in the rice genome by a complete search of the genome based upon HMM profiles. In this study, the expression of this gene family was analyzed using the Affymetrix rice genome array in three rice cultivars: Minghui 63, Zhenshan 97, and their hybrid Shanyou 63 independently. Twenty-seven tissues sampled throughout the entire rice life-span were studied, along with three hormone treatments (GA3, NAA and KT), applied to the seedling at the trefoil stage. All 31 genes were found to be expressed in at least one of the experimental stages studied and revealed diverse expression patterns. We identified differential expression of the OsCPK genes in the stamen (1 day before flowering), the panicle (at the heading stage), the endosperm (days after pollination) and also in callus, in all three cultivars. Eight genes, OsCPK2, OsCPK11, OsCPK14, OsCPK22, OsCPK25, OsCPK26, OsCPK27 and OsCPK29 were found dominantly expressed in the panicle and the stamen, and five genes, OsCPK6, OsCPK7, OsCPK12, OsCPK23 and OsCPK31 were up-regulated in the endosperm stage. The OsCPK genes were also found to be regulated in rice seedlings subjected to different hormone treatment conditions, however their expression were not the same for all varieties. These diverse expression profiles trigger the functional analysis of the CDPK family in rice.
Collapse
Affiliation(s)
- Shuifeng Ye
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Gargantini PR, Giammaria V, Grandellis C, Feingold SE, Maldonado S, Ulloa RM. Genomic and functional characterization of StCDPK1. PLANT MOLECULAR BIOLOGY 2009; 70:153-172. [PMID: 19221880 DOI: 10.1007/s11103-009-9462-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 01/21/2009] [Indexed: 05/27/2023]
Abstract
StCDPK1 is a calcium dependent protein kinase expressed in tuberizing potato stolons and in sprouting tubers. StCDPK1 genomic sequence contains eight exons and seven introns, the gene structure is similar to Arabidopsis, rice and wheat CDPKs belonging to subgroup IIa. There is one copy of the gene per genome and it is located in the distal portion of chromosome 12. Western blot and immunolocalization assays (using confocal and transmission electron microscopy) performed with a specific antibody against StCDPK1 indicate that this kinase is mainly located in the plasma membrane of swelling stolons and sprouting tubers. Sucrose (4-8%) increased StCDPK1 protein content in non-induced stolons, however the amount detected in swelling stolons was higher. Transgenic lines with reduced expression of StCDPK1 (beta 7) did not differ from controls when cultured under multiplication conditions, but when grown under tuber inducing conditions some significant differences were observed: the beta 7 line tuberized earlier than controls without the addition of CCC (GA inhibitor), developed more tubers than wild type plants in the presence of hormones that promote tuberization in potato (ABA and BAP) and was more insensitive to GA action (stolons were significantly shorter than those of control plants). StCDPK1 expression was induced by GA, ABA and BAP. Our results suggest that StCDPK1 plays a role in GA-signalling and that this kinase could be a converging point for the inhibitory and promoting signals that influence the onset of potato tuberization.
Collapse
Affiliation(s)
- Pablo Rubén Gargantini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490, piso 2, 1428, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Pandey GK, Grant JJ, Cheong YH, Kim BG, Li LG, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. MOLECULAR PLANT 2008; 1:238-48. [PMID: 19825536 DOI: 10.1093/mp/ssn003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Calcium plays a vital role as a second messenger in many signaling pathways in plants. The calcineurin B-like proteins (CBLs) represent a family of plant calcium-binding proteins that function in calcium signaling by interacting with their interacting protein kinases (CIPKs). In our previous study, we have reported a role for one of the CBLs (CBL9) and one of the CIPKs (CIPK3) in ABA signaling. Here, we have shown that CBL9 and CIPK3 physically and functionally interact with each other in regulating the ABA responses. The CBL9 and CIPK3 proteins interacted with each other in the yeast two-hybrid system and when expressed in plant cells. The double mutant cbl9cipk3 showed the similar hypersensitive response to ABA as observed in single mutants (cbl9 or cipk3). The constitutively active form of CIPK3 genetically complemented the cbl9 mutant, indicating that CIPK3 function downstream of CBL9. Based on these findings, we conclude that CBL9 and CIPK3 act together in the same pathway for regulating ABA responses.
Collapse
Affiliation(s)
- Girdhar K Pandey
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
17
|
Böhmer M, Romeis T. A chemical-genetic approach to elucidate protein kinase function in planta. PLANT MOLECULAR BIOLOGY 2007; 65:817-27. [PMID: 17924062 DOI: 10.1007/s11103-007-9245-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/19/2007] [Indexed: 05/21/2023]
Abstract
The major objective in protein kinase research is the identification of the biological process, in which an individual enzyme is integrated. Protein kinase-mediated signalling is thereby often addressed by single knock-out mutation- or co-suppression-based reverse genetics approaches. If a protein kinase of interest is a member of a multi gene family, however, no obvious phenotypic alteration in the morphology or in biochemical parameters may become evident because mutant phenotypes may be compensated by functional redundancy or homeostasis. Here we establish a chemical-genetic screen combining ATP-analogue sensitive (as) kinase variants and molecular fingerprinting techniques to study members of the plant calcium-dependent protein kinase (CDPK) family in vivo. CDPKs have been implicated in fast signalling responses upon external abiotic and biotic stress stimuli. CDPKs carrying the as-mutation did not show altered phosphorylation kinetics with ATP as substrate, but were able to use ATP analogues as phosphate donors or as kinase inhibitors. For functional characterization in planta, we have substituted an Arabidopsis thaliana mutant line of AtCPK1 with the respective as-variant under the native CPK1 promoter. Seedlings of Arabidopsis wild type and AtCPK1 as-lines were treated with the ATP analogue inhibitor 1-NA-PP1 and exposed to cold stress conditions. Rapid cold-induced changes in the phosphoproteome were analysed by 2D-gel-electrophoresis and phosphoprotein staining. The comparison between wild type and AtCPK1 as-plants before and after inhibitor treatment revealed differential CPK1-dependent and cold-stress-induced phosphoprotein signals. In this study, we established the chemical-genetic approach as a tool, which allows the investigation of plant-specific classes of protein kinases in planta and which facilitates the identification of rapid changes of molecular biomarkers in kinase-mediated signalling networks.
Collapse
Affiliation(s)
- Maik Böhmer
- Department of Plant Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Köln, Germany
| | | |
Collapse
|
18
|
Chen PY, Huang TL, Huang HJ. Early events in the signalling pathway for the activation of MAPKs in rice roots exposed to nickel. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:995-1001. [PMID: 32689427 DOI: 10.1071/fp07163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/19/2007] [Indexed: 06/11/2023]
Abstract
It is well known that small quantities of nickel (Ni) are essential for plant species, and higher concentrations of Ni retard plant growth. However, the molecular mechanisms responsible for the regulation of plant growth by Ni are not well understood. The aim of this study is to investigate the early signalling pathways activated by Ni on rice (Oryza sativa L.) root. We showed that Ni elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analyses, it is suggested that Ni-activated 40- and 42-kDa MBP kinases are mitogen-activated protein kinases (MAPKs). Pretreatment of rice roots with the antioxidant, glutathione (GSH), the phospholipase D (PLD) inhibitor, n-butanol, and the calmodulin and CDPK antagonist and W7 inhibited Ni-induced MAPK activation. These results suggest that various signalling components are involved in transduction of the Ni signal in rice roots.
Collapse
Affiliation(s)
- Po-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| | - Tsai-Lien Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, 701 Tainan, Taiwan, ROC
| |
Collapse
|
19
|
Tsai TM, Chen YR, Kao TW, Tsay WS, Wu CP, Huang DD, Chen WH, Chang CC, Huang HJ. PaCDPK1, a gene encoding calcium-dependent protein kinase from orchid, Phalaenopsis amabilis, is induced by cold, wounding, and pathogen challenge. PLANT CELL REPORTS 2007; 26:1899-908. [PMID: 17593367 DOI: 10.1007/s00299-007-0389-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 05/11/2007] [Accepted: 05/20/2007] [Indexed: 05/16/2023]
Abstract
Signaling pathways, specifically calcium and calcium-dependent protein kinase (CDPK), have been implicated in the regulation of stress and developmental signals in plants. Here, we reported the isolation and characterization of an orchid, Phalaenopsis amabilis, CDPK gene, PaCDPK1, by using the rapid amplification of cDNA ends (RACE)-PCR technique. The full length cDNA of 2,310 bp contained an open reading frame for PaCDPK1 consisting of 593 amino acid residues. Sequence alignment indicated that PaCDPK1 shared similarities with other plant CDPKs. PaCDPK1 transcripts were expressed strongly in labellum but not in leaves and roots. In addition, the PaCDPK1 gene was transcriptionally activated in response to low temperature, wounding, and pathogen infection. To identify the regulatory role of the PaCDPK1 promoter, a construct containing the PaCDPK1 promoter fused to a beta-glucuronidase (GUS) gene was transferred into Arabidopsis by Agrobacterium-mediated transformation. GUS staining revealed that PaCDPK1/GUS expression was induced by cold, wounding, and pathogen challenge in leaves and stems of transgenic Arabidopsis. These results suggested that this PaCDPK1 gene promoter could be used as an endogenous promoter for biotechnological purposes in orchids.
Collapse
Affiliation(s)
- Tsung-Mu Tsai
- Department of Life Sciences, National Cheng Kung University, No. 1 University Rd. 701, Tainan, 701, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Malec P, Yahalom A, Chamovitz DA. Identification of a Light-regulated Protein Kinase Activity from Seedlings of Arabidopsis thaliana¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750178ioalrp2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Vidal D, Gil MT, Alvarez-Flórez F, Moysset L, Simón E. Protein kinase activity in Cucumis sativus cotyledons: effect of calcium and light. PHYTOCHEMISTRY 2007; 68:438-45. [PMID: 17184798 DOI: 10.1016/j.phytochem.2006.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 10/16/2006] [Accepted: 10/21/2006] [Indexed: 05/13/2023]
Abstract
Light signals received by phytochromes in plants may be transduced through protein phosphorylation. Ca(2+) as second messenger was involved in phytochrome-mediated cellular events. Our experiments with Cucumis sativus cotyledons, treated with red (R) and far-red (FR) light, showed a stimulatory effect on in vitro protein phosphorylation of histone, added as exogenous substrate to the cotyledon extracts, and also modified the phosphorylation of endogenous polypeptides. The effect of light treatments was mimicked by the addition of Ca(2+) to the phosphorylation buffer, indicating phytochrome- and Ca(2+)-dependence on activity of some protein kinases (PKs). In-gel kinase assays were performed to characterize the PKs involved at the cotyledon stage of cucumber plants. Three proteins of about 75, 57 and 47kDa with PK activity were detected between M(r) markers of 94 and 45kDa. All three were able to phosphorylate histone and undergo autophosphorylation. However, only the 75 and 57kDa proteins autophosphorylated and phosphorylated the substrate in a Ca(2+)-dependent manner, and were inhibited when calmodulin (CaM) antagonists were added to the incubation buffer. Western-blot analysis with polyclonal antibodies directed against calcium-dependent protein kinase of rice (OsCDPK11) or Arabidopsis (AtCPK2) recognised 57 and 75kDa polypeptides, respectively. These results indicate the presence in cucumber cotyledons of at least two proteins (ca. 75 and 57kDa) with activity of PKs that could be calcium-dependent protein kinases (CDPKs). Both CDPKs could be modulated by phytochromes throughout FR-HIR and VLFR responses.
Collapse
Affiliation(s)
- Dolores Vidal
- Departamento de Biologia Vegetal, Facultad de Biologia, Universidad de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
22
|
Lu B, Ding R, Zhang L, Yu X, Huang B, Chen W. Molecular Cloning and Characterization of a Novel Calcium-dependent Protein Kinase Gene IiCPK2 Responsive to Polyploidy from Tetraploid Isatis indigotica. BMB Rep 2006; 39:607-17. [PMID: 17002882 DOI: 10.5483/bmbrep.2006.39.5.607] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel calcium-dependent protein kinase gene (designated as IiCPK2) was cloned from tetraploid Isatis indigotica. The full-length cDNA of IiCPK2 was 2585 bp long with an open reading frame (ORF) of 1878 bp encoding a polypeptide of 625 amino acid residues. The predicted IiCPK2 polypeptide included three domains: a kinase domain, a junction domain (or autoinhibitory region), and a C-terminal calmodulin-like domain (or calcium-binding domain), which presented a typical structure of plant CDPKs. Further analysis of IiCPK2 genomic DNA revealed that it contained 7 exons, 6 introns and the length of most exons was highly conserved. Semi-quantitative RTPCR revealed that the expression of IiCPK2 in root, stem and leaf were much higher in tetraploid sample than that in diploid progenitor. Further expression analysis revealed that gibberellin (GA3), NaCl and cold treatments could upregulate the IiCPK2 transcription. All our findings suggest that IiCPK2 might participate in the cold, high salinity and GA3 responsive pathways.
Collapse
Affiliation(s)
- Beibei Lu
- Department of pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
23
|
Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:761-75. [PMID: 16889650 PMCID: PMC4367961 DOI: 10.1111/j.1365-313x.2006.02829.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gene expression during the early stages of fiber cell development and in allopolyploid crops is poorly understood. Here we report computational and expression analyses of 32 789 high-quality ESTs derived from Gossypium hirsutum L. Texas Marker-1 (TM-1) immature ovules (GH_TMO). The ESTs were assembled into 8540 unique sequences including 4036 tentative consensus sequences (TCs) and 4504 singletons, representing approximately 15% of the unique sequences in the cotton EST collection. Compared with approximately 178 000 existing ESTs derived from elongating fibers and non-fiber tissues, GH_TMO ESTs showed a significant increase in the percentage of genes encoding putative transcription factors such as MYB and WRKY and genes encoding predicted proteins involved in auxin, brassinosteroid (BR), gibberellic acid (GA), abscisic acid (ABA) and ethylene signaling pathways. Cotton homologs related to MIXTA, MYB5, GL2 and eight genes in the auxin, BR, GA and ethylene pathways were induced during fiber cell initiation but repressed in the naked seed mutant (N1N1) that is impaired in fiber formation. The data agree with the known roles of MYB and WRKY transcription factors in Arabidopsis leaf trichome development and the well-documented phytohormonal effects on fiber cell development in immature cotton ovules cultured in vitro. Moreover, the phytohormonal pathway-related genes were induced prior to the activation of MYB-like genes, suggesting an important role of phytohormones in cell fate determination. Significantly, AA sub-genome ESTs of all functional classifications including cell-cycle control and transcription factor activity were selectively enriched in G. hirsutum L., an allotetraploid derived from polyploidization between AA and DD genome species, a result consistent with the production of long lint fibers in AA genome species. These results suggest general roles for genome-specific, phytohormonal and transcriptional gene regulation during the early stages of fiber cell development in cotton allopolyploids.
Collapse
Affiliation(s)
- S. Samuel Yang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Foo Cheung
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jinsuk J. Lee
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
| | - Misook Ha
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
| | - Ning E. Wei
- Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science, Texas A&M University, College Station, Texas 77843, USA
| | - David M. Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Peggy Thaxton
- Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi 38776, USA
| | - Barbara Triplett
- USDA-ARS Southern Regional Research Center, New Orleans, Louisiana 70179, USA
| | | | - Z. Jeffrey Chen
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, USA
- Section of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78712, USA
- Author for correspondence: Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712-0159, USA, Phone: 512-475-9327; Fax: 512-232-3432;
| |
Collapse
|
24
|
Krupa A, Srinivasan N. Genome-wide comparative analyses of domain organisation of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa. Gene 2006; 380:1-13. [PMID: 16843620 DOI: 10.1016/j.gene.2006.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/06/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
A comparative analysis on protein kinases encoded in the completely sequenced genomes of two plant species, namely Arabidopsis thaliana and Oryza sativa spp japonica cv. Nipponbare is reported in the current study. We have analysed 836 and 1386 kinases identified from A. thaliana and the O. sativa genomes respectively. Their classification into known subfamilies reveals selective expansions of the plant receptor kinase subfamily comprising of Ser/Thr receptor kinases. The presence of calcium dependent kinases, and potential absence of cyclic nucleotide-dependent protein kinase of the type found in other (non-plant) eukaryotes, are other notable features of the two plant kinomes described here. An analysis on domain organisation of each of the protein kinases encoded in the plant genome has been carried out. Uncommon composition of functional domains like nuclear translocation factor domain, redox sensor domain (PAS), ACT and lectin domains are observed in few protein kinases shared between the two plant species. Biochemical functions characteristic of the domains recruited in these protein kinase gene products suggest their mode of regulation by alternate cellular localisation, oxidation potential, amino acid flux and binding of carbohydrates. Occurrence of multi-functional kinases with diverse enzymatic modules, such as Transposases and peptidases, tethered to the kinase catalytic domain is another interesting feature of the protein kinase complement of the O. sativa genome. Co-occurrence of diverse nucleotide and carbohydrate binding domains with catalytic kinase domain containing gene products has also been observed. Putative homologues of protein kinases of A. thaliana that regulate plant-specific physiological processes like ethylene hormone response, somatic embryogenesis and pathogen defence have been identified in O. sativa genome as well.
Collapse
Affiliation(s)
- A Krupa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
25
|
Yoon GM, Dowd PE, Gilroy S, McCubbin AG. Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. THE PLANT CELL 2006; 18:867-78. [PMID: 16531501 PMCID: PMC1425858 DOI: 10.1105/tpc.105.037135] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 02/07/2006] [Accepted: 02/15/2006] [Indexed: 05/07/2023]
Abstract
Calcium is a key regulator of pollen tube growth, but little is known concerning the downstream components of the signaling pathways involved. We identified two pollen-expressed calmodulin-like domain protein kinases from Petunia inflata, CALMODULIN-LIKE DOMAIN PROTEIN KINASE1 (Pi CDPK1) and Pi CDPK2. Transient overexpression or expression of catalytically modified Pi CDPK1 disrupted pollen tube growth polarity, whereas expression of Pi CDPK2 constructs inhibited tube growth but not polarity. Pi CDPK1 exhibited plasma membrane localization most likely mediated by acylation, and we present evidence that suggests this localization is critical to the biological function of this kinase. Pi CDPK2 substantially localized to as yet unidentified internal membrane compartments, and this localization was again, at least partially, mediated by acylation. In contrast with Pi CDPK1, altering the localization of Pi CDPK2 did not noticeably alter the effect of overexpressing this isoform on pollen tube growth. Ca(2+) requirements for Pi CDPK1 activation correlated closely with Ca(2+) concentrations measured in the growth zone at the pollen tube apex. Interestingly, loss of polarity associated with overexpression of Pi CDPK1 was associated with elevated cytosolic Ca(2+) throughout the bulging tube tip, suggesting that Pi CDPK1 may participate in maintaining Ca(2+) homeostasis. These results are discussed in relation to previous models for Ca(2+) regulation of pollen tube growth.
Collapse
Affiliation(s)
- Gyeong Mee Yoon
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | |
Collapse
|
26
|
Zhang T, Wang Q, Chen X, Tian C, Wang X, Xing T, Li Y, Wang Y. Cloning and biochemical properties of CDPK gene OsCDPK14 from rice. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1149-59. [PMID: 16255173 DOI: 10.1016/j.jplph.2004.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A rice CDPK gene, OsCDPK14 (AY144497), was cloned from developing caryopses of rice (Oryza sativa cv. Zhonghua 15). Its cDNA sequence (1922 bp) contains an ORF encoding a 514 amino acids protein (56.7kD, pl 5.18). OsCDPK14 shows the typical structural features of the CDPK family, including a conserved catalytic Ser/Thr kinase domain, an autoinhibitory domain and a CaM-like domain with four putative Ca2+-binding EF hands. Subcellular targeting indicated that OsCDPK14 was located in the cytoplasm, probably due to the absence of myristoylation and palmitoylation motifs. OsCDPK14 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using Syntide-2, a synthetic peptide. Kinase activity was shown to be Ca2+-dependent, and this activation was strongly enhanced by Mn2+ and inhibited by W7 in vitro. These results provide significant insights into the regulation and biochemical properties of OsCDPK14, suggesting OsCDPK14 may be a signal factor of cytoplasm in rice plant.
Collapse
Affiliation(s)
- Tiegang Zhang
- Laboratory of Plant Development Physiology and Molecular Biology, College of Life Sciences, Beijing Normal University, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Khan MMK, Jan A, Karibe H, Komatsu S. Identification of phosphoproteins regulated by gibberellin in rice leaf sheath. PLANT MOLECULAR BIOLOGY 2005; 58:27-40. [PMID: 16028114 DOI: 10.1007/s11103-005-4013-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 03/17/2005] [Indexed: 05/03/2023]
Abstract
To identify the gibberellin (GA) signaling components involved in rice leaf sheath elongation process, protein phosphorylation changed by GA3 was analyzed. The protein kinase activities in rice leaf sheath were assessed in an in-gel kinase assay using SDS-polyacrylamide gel containing histone III-S as a substrate. The activity of a putative 54-kDa calcium dependent protein kinase (CDPK) in cytosolic fraction in rice leaf sheath increased significantly by GA3. Further, phosphorylation status of the proteins changed by GA3 in rice leaf sheath were detected by in vitro protein phosphorylation followed by two-dimensional polyacrylamide gel electrophoresis and the phosphoproteins were identified by mass spectrometry. Sixty phosphoproteins was detected after in vitro protein phosphorylation and the phosphorylation of 7 proteins was enhanced by GA3 treatment. The addition of GA3 treated cytosolic fraction of leaf sheath further increased the phosphorylation of 4 proteins, glyoxalase-I, cytoplasmic malate dehydrogenase, glyceraldehydes-3-phosphate dehydrogenase and another unknown protein. The protein kinase inhibitor, staurosporine inhibited the phosphorylation of these proteins in vitro. Other hormones, particularly, indole acetic acid, 6-benzylaminopurine and abscisic acid did not change the phosphorylation status of these proteins. The identified proteins did not show any change by GA3 treatment at transcription level. The abundance of glyoxalase-I and cytoplasmic malate dehydrogenase remained unchanged by GA3 treatment as detected on 2D-gel by silver staining, unlike for glyceraldehydes-3-phosphate dehydrogenase. Results suggest that the phosphoproteins, glyoxalase-I and cytoplasmic malate dehydrogenase in rice leaf sheath could be important signaling components of GA3, downstream to 54-kDa CDPK.
Collapse
Affiliation(s)
- Md Monowar Karim Khan
- Department of Molecular Genetics, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, 305-8602, Tsukuba, Japan
| | | | | | | |
Collapse
|
28
|
Kumar KGS, Ullanat R, Jayabaskaran C. Molecular cloning, characterization, tissue-specific and phytohormone-induced expression of calcium-dependent protein kinase gene in cucumber (Cucumis sativus L.). JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1061-1071. [PMID: 15499908 DOI: 10.1016/j.jplph.2004.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cucumber cDNA designated CsCPK5 and encoding a calcium-dependent protein kinase (CsCDPK5) was isolated and characterized. An open reading frame of 1542 bp was detected that could encode a protein of 514 amino acid residues with a calculated molecular mass of 56.5kDa. Comparison of the deduced amino acid sequence of CsCDPK5 with sequences of other CDPKs revealed the highest similarity (85%) to AtCDPK6. As described for other CDPKs, CsCDPK5 has a long variable domain preceding a catalytic domain, an autoinhibitory function domain, and a C-terminal calmodulin-domain containing 4 EF-hand calcium-binding motifs. The N-terminal long variable domain of CsCDPK5 does not contain the N-myristoylation motif, which is found in many CDPKs. The relative expression level of the CsCPK genes in various organs of cucumber plants and seedlings and in etiolated, excised cotyledons and hypocotyls following treatments with light and/or benzyladenine (BA), abscisic acid (ABA), gibberellic acid (GA) or indole acetic acid (IAA) was determined by northern analysis using the CsCPK5 cDNA probe. The CsCPK transcripts are most abundant in cucumber plant Leaves with less accumulation in cucumber seedling roots and hypocotyls and lowest Levels in cucumber plant flowers and seedling hooks and cotyledons. All phytohormones tested enhanced the accumulation of the transcripts 2-3-fold in etiolated cotyledons. On the other hand, levels of the transcripts increased to a lesser extent in both light and BA- or IAA-treated cotyledons and no effect was noted in response to light treatment with GA. In hypocotyls, no major changes in the relative levels of CsCPK transcripts were observed in the phytohormone-treated etiolated and light-exposed tissues, except an up-regulatory effect with IAA treatment in the etiolated and IAA, ABA and GA treatments in light-exposed hypocotyls. These observations suggest that exogenous phytohormones can up-regulate the CsCPK transcript levels in tissue-specific, and light-dependent and independent manners.
Collapse
Affiliation(s)
- K G Suresh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
29
|
Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. PLANT MOLECULAR BIOLOGY 2004; 55:541-52. [PMID: 15604699 DOI: 10.1007/s11103-004-1178-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) play an important role in rice signal transduction, but the precise role of each individual CDPK is still largely unknown. Recently, a full-length cDNA encoding OsCDPK13 from rice seedling was isolated. To characterize the function of OsCDPK13, its responses to various stresses and hormones were analyzed in this study. OsCDPK13 accumulated in 2-week-old leaf sheath and callus, and became phosphorylated in response to cold and gibberellin (GA). OsCDPK13 gene expression and protein accumulation were up-regulated in response to GA3 treatment, but suppressed in response to abscisic acid and brassinolide. Antisense OsCDPK13 transgenic rice lines were shorter than the vector control lines, and the expression of OsCDPK13 was lower in dwarf mutants of rice than in wild type. Furthermore, OsCDPK13 gene expression and protein accumulation were enhanced in response to cold, but suppressed under salt and drought stresses. Sense OsCDPK13 transgenic rice lines had higher recovery rates after cold stress than vector control rice. The expression of OsCDPK13 was stronger in cold-tolerant rice varieties than in cold-sensitive ones. The results suggest that OsCDPK13 might be an important signaling component in the response of rice to GA and cold stress.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Adenosine Triphosphate/metabolism
- Blotting, Northern
- Blotting, Western
- Brassinosteroids
- Calcium Chloride/pharmacology
- Cholestanols/pharmacology
- Cold Temperature
- DNA, Antisense/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Plant/drug effects
- Gibberellins/pharmacology
- Oryza/genetics
- Oryza/growth & development
- Oryza/metabolism
- Phenotype
- Phosphorylation/drug effects
- Plant Structures/genetics
- Plant Structures/metabolism
- Plants, Genetically Modified
- Protein Kinases/genetics
- Protein Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Steroids, Heterocyclic/pharmacology
Collapse
Affiliation(s)
- Fida Abbasi
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | | | | | |
Collapse
|
30
|
McCubbin AG, Ritchie SM, Swanson SJ, Gilroy S. The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:206-218. [PMID: 15225286 DOI: 10.1111/j.1365-313x.2004.02121.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the aleurone cells of the cereal grain, gibberellic acid (GA) induces the secretion of hydrolases that mobilize endosperm reserves to fuel early seedling growth. GA is known to trigger a range of cellular responses, including increases in cytoplasmic calcium, vacuolar reserve mobilization, gene transcription, and the synthesis and secretion of hydrolases. To further define elements of the Ca2+-dependent GA response machinery, we have cloned a Ca2+-dependent protein kinase (HvCDPK1) from these cells. Although expression of an inactivated (D140N) version of this kinase did not affect GA-induced gene expression or changes in cytosolic Ca2+, it did inhibit secretion, cell vacuolation, and vacuolar acidification, all responses linked to the GA response. Additionally, recombinant wild-type HvCDPK1 activated the V-type H(+)-ATPase present in isolated aleurone vacuoles. These results suggest HvCDPK1 may mediate Ca2+-dependent events of the GA response, such as control of vacuolar function, that lie downstream of transcriptional regulation.
Collapse
Affiliation(s)
- Andrew G McCubbin
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, PO Box 644236, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
31
|
Reddy VS, Reddy ASN. Proteomics of calcium-signaling components in plants. PHYTOCHEMISTRY 2004; 65:1745-76. [PMID: 15276435 DOI: 10.1016/j.phytochem.2004.04.033] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/30/2004] [Indexed: 05/21/2023]
Abstract
Calcium functions as a versatile messenger in mediating responses to hormones, biotic/abiotic stress signals and a variety of developmental cues in plants. The Ca(2+)-signaling circuit consists of three major "nodes"--generation of a Ca(2+)-signature in response to a signal, recognition of the signature by Ca2+ sensors and transduction of the signature message to targets that participate in producing signal-specific responses. Molecular genetic and protein-protein interaction approaches together with bioinformatic analysis of the Arabidopsis genome have resulted in identification of a large number of proteins at each "node"--approximately 80 at Ca2+ signature, approximately 400 sensors and approximately 200 targets--that form a myriad of Ca2+ signaling networks in a "mix and match" fashion. In parallel, biochemical, cell biological, genetic and transgenic approaches have unraveled functions and regulatory mechanisms of a few of these components. The emerging paradigm from these studies is that plants have many unique Ca2+ signaling proteins. The presence of a large number of proteins, including several families, at each "node" and potential interaction of several targets by a sensor or vice versa are likely to generate highly complex networks that regulate Ca(2+)-mediated processes. Therefore, there is a great demand for high-throughput technologies for identification of signaling networks in the "Ca(2+)-signaling-grid" and their roles in cellular processes. Here we discuss the current status of Ca2+ signaling components, their known functions and potential of emerging high-throughput genomic and proteomic technologies in unraveling complex Ca2+ circuitry.
Collapse
Affiliation(s)
- Vaka S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, 200 West Lake Street, Fort Collins, CO 80523, USA
| | | |
Collapse
|
32
|
Shen YY, Duan CQ, Liang XE, Zhang DP. Membrane-associated protein kinase activities in the developing mesocarp of grape berry. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:15-23. [PMID: 15002660 DOI: 10.1078/0176-1617-01038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fruit development is a process involving various signals and gene expression. Protein phosphorylation catalyzed by protein kinases is known to play a key role in eukaryotic cell signalling and so may be involved in the regulation of fruit development. Using the method of exogenous substrate phosphorylation, we characterised the calcium-dependent and calmodulin-independent protein kinase (CDPK) activity and the myelin basic protein (MBP)-phosphoralating activity that could be due to a mitogen-activated protein kinase (MAPK)-like activity in the developing mesocarp of grape berry. The CDPK activity was shown to be predominantly localised in the plasma membrane, while the MAPK-like activity was predominantly associated with endomembranes. The assays of bivalent cation requirement showed that Mn2+ could to a certain extent replace Mg2+ in the incubation system for the protein kinase activities. Both CDPK and MAPK-like activities were resistant to heat treatment. The activities of the two enzymes were fruit developmental stage-specific with the highest activities of both enzymes in the lag growth phase before the ripening stage, suggesting strongly the important roles of the detected CDPK and MAPK-like activities in the fruit development.
Collapse
Affiliation(s)
- Yuan-Yue Shen
- China State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 100094 Beijing, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC. The Arabidopsis CDPK-SnRK superfamily of protein kinases. PLANT PHYSIOLOGY 2003; 132:666-80. [PMID: 12805596 PMCID: PMC167006 DOI: 10.1104/pp.102.011999] [Citation(s) in RCA: 657] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 10/02/2002] [Accepted: 02/17/2003] [Indexed: 05/17/2023]
Abstract
The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants.
Collapse
Affiliation(s)
- Estelle M Hrabak
- Department of Plant Biology and Program in Genetics, University of New Hampshire, 46 College Road, Durham 03824, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC. The Arabidopsis CDPK-SnRK superfamily of protein kinases. PLANT PHYSIOLOGY 2003; 132:666-680. [PMID: 12805596 DOI: 10.1104/pp.102.011999.666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants.
Collapse
Affiliation(s)
- Estelle M Hrabak
- Department of Plant Biology and Program in Genetics, University of New Hampshire, 46 College Road, Durham 03824, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Duan CQ, Shen YY, Liang XE, Zhang DP. Membrane-associated protein kinase activities in developing apple fruit. PHYSIOLOGIA PLANTARUM 2003; 118:105-113. [PMID: 12702019 DOI: 10.1034/j.1399-3054.2003.00103.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fruit development is a process involving various signals and gene expression. Protein phosphorylation catalysed by protein kinases is known to play a key role in eukaryotic cell signalling and so may be involved in the regulation of fruit development. Using the method of exogenous substrate phosphorylation, the activity of calcium-dependent and calmodulin-independent protein kinase (CDPK) that was stimulated by phosphatidylserine, and the myelin basic protein (MBP)-phosphorylating activity that could be due to a calcium-independent mitogen-activated protein kinase-like (MAPK-like) activity in the developing apple fruits were identified. The CDPK activity was shown to be predominantly localized in the plasma membrane, whereas in the presence of phosphatidylserine, the high activity of CDPK was detected in both plasma membrane and endomembranes. The MAPK-like activity was predominantly associated with endomembranes. The assays of bivalent cation requirement showed that Mn2+ could replace Mg2+ in the incubation system for the protein kinase activities and stimulate CDPK activity more than Mg2+. Heat treatment abolished CDPK but stimulated MAPK-like activity. The activities of the phosphatidylserine-stimulated CDPK and of the MAPK-like were fruit developmental stage-specific with higher activities of both enzymes in the early and middle developmental stages in comparison with the late developmental stage. These data suggest that the detected protein kinases may play an important role in the fruit development.
Collapse
Affiliation(s)
- Chang-Qing Duan
- China State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, 00094 Beijing, People's Republic of China 1These authors contributed equally to this work
| | | | | | | |
Collapse
|
36
|
Cheng SH, Willmann MR, Chen HC, Sheen J. Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. PLANT PHYSIOLOGY 2002; 129:469-85. [PMID: 12068094 PMCID: PMC1540234 DOI: 10.1104/pp.005645] [Citation(s) in RCA: 503] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In plants, numerous Ca(2+)-stimulated protein kinase activities occur through calcium-dependent protein kinases (CDPKs). These novel calcium sensors are likely to be crucial mediators of responses to diverse endogenous and environmental cues. However, the precise biological function(s) of most CDPKs remains elusive. The Arabidopsis genome is predicted to encode 34 different CDPKs. In this Update, we analyze the Arabidopsis CDPK gene family and review the expression, regulation, and possible functions of plant CDPKs. By combining emerging cellular and genomic technologies with genetic and biochemical approaches, the characterization of Arabidopsis CDPKs provides a valuable opportunity to understand the plant calcium-signaling network.
Collapse
Affiliation(s)
- Shu-Hua Cheng
- Department of Genetics, Harvard Medical School, MA 02114, USA
| | | | | | | |
Collapse
|
37
|
Lu SX, Hrabak EM. An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. PLANT PHYSIOLOGY 2002; 128:1008-21. [PMID: 11891256 PMCID: PMC152213 DOI: 10.1104/pp.010770] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2001] [Revised: 10/08/2001] [Accepted: 12/05/2001] [Indexed: 05/20/2023]
Abstract
Arabidopsis contains 34 genes that are predicted to encode calcium-dependent protein kinases (CDPKs). CDPK enzymatic activity previously has been detected in many locations in plant cells, including the cytosol, the cytoskeleton, and the membrane fraction. However, little is known about the subcellular locations of individual CDPKs or the mechanisms involved in targeting them to those locations. We investigated the subcellular location of one Arabidopsis CDPK, AtCPK2, in detail. Membrane-associated AtCPK2 did not partition with the plasma membrane in a two-phase system. Sucrose gradient fractionation of microsomes demonstrated that AtCPK2 was associated with the endoplasmic reticulum (ER). AtCPK2 does not contain transmembrane domains or known ER-targeting signals, but does have predicted amino-terminal acylation sites. AtCPK2 was myristoylated in a cell-free extract and myristoylation was prevented by converting the glycine at the proposed site of myristate attachment to alanine (G2A). In plants, the G2A mutation decreased AtCPK2 membrane association by approximately 50%. A recombinant protein, consisting of the first 10 amino acids of AtCPK2 fused to the amino-terminus of beta-glucuronidase, was also targeted to the ER, indicating that the amino terminus of AtCPK2 can specify ER localization of a soluble protein. These results indicate that AtCPK2 is localized to the ER, that myristoylation is likely to be involved in the membrane association of AtCPK2, and that the amino terminal region of AtCPK2 is sufficient for correct membrane targeting.
Collapse
Affiliation(s)
- Sheen X Lu
- Department of Plant Biology, University of New Hampshire, 46 College Road, Durham, New Hampshire 03824, USA
| | | |
Collapse
|
38
|
Malec P, Yahalom A, Chamovitz DA. Identification of a light-regulated protein kinase activity from seedlings of Arabidopsis thaliana. Photochem Photobiol 2002; 75:178-83. [PMID: 11883605 DOI: 10.1562/0031-8655(2002)075<0178:ioalrp>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase transduction pathways are thought to be involved in light signaling in plants, but other than the photoreceptors, no protein kinase activity has been shown to be light-regulated in vivo. Using an in-gel protein kinase assay technique with histone H III SS as an exogenous substrate, we identified a light-regulated protein kinase activity with an apparent molecular weight ca 50 kDa. The kinase activity increased transiently after irradiation of dark-grown seedlings with continuous far red light (FR) and blue light (B) and decreased after irradiation with red light (R). The maximal activation was achieved after 30 min to 1 h with FR or B. After irradiation times longer than 2 h, the kinase activity decreased to below the sensitivity level of the assay. In Arabidopsis mutants lacking either the photoreceptors phytochrome A, phytochrome B or the blue-light receptor cryptochrome 1, kinase activity was undetectable, whereas in the photomorphogenic mutants cop1 and det1 the kinase activity was also observed in the absence of light signals, though still stimulated by B and FR. Interestingly, the R inhibition of the kinase activity was lost in the mutant hy5. Pretreatment with cycloheximide blocked the kinase activity.
Collapse
|
39
|
Sharma A, Komatsu S. Involvement of a Ca(2+)-dependent protein kinase component downstream to the gibberellin-binding phosphoprotein, RuBisCO activase, in rice. Biochem Biophys Res Commun 2002; 290:690-5. [PMID: 11785954 DOI: 10.1006/bbrc.2001.6269] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we reported the identification of a gibberellin (GA)-binding protein in rice using ligand binding assay that was homologous to RuBisCO activase (Komatsu et al., FEBS Lett. 384, 167-171, 1996). Here, we provide an evidence for the involvement of protein kinases components downstream to the GA-binding phosphoprotein, RuBisCO activase in rice. Ca(2+)-dependent protein kinase activity was studied in subcellular fractions of leaf sheath from transgenic rice containing sense and antisense constructs of RuBisCO activase. In-gel kinase assay using histone III-S as a substrate showed constitutive induction of a 46- and 48-kDa Ca(2+)-dependent protein kinase activity in the sense transgenic plants. Kinase activities of these proteins were significantly reduced in the presence of uniconazole, a potent GA biosynthesis inhibitor, but one of them was strongly promoted by GA(3) treatment in transgenic plants carrying a smaller subunit of RuBisCO activase (OsrcaA1) compared to the larger subunit OsrcaA2. Also, in vitro phosphorylation studies using two-dimensional polyacrylamide gel showed changes in the degree of phosphorylation of several proteins in OsrcaA1- and OsrcaA2-sense transgenic rice. These studies suggest the presence of two independent cytosolic Ca(2+)-dependent protein kinase signaling components downstream to the GA-binding protein in rice suggesting their role in GA signaling.
Collapse
Affiliation(s)
- Arun Sharma
- Japan Science and Technology Corporation, Japan
| | | |
Collapse
|
40
|
Martín ML, Busconi L. A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature. PLANT PHYSIOLOGY 2001; 125:1442-9. [PMID: 11244123 PMCID: PMC65622 DOI: 10.1104/pp.125.3.1442] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are found in various subcellular localizations, which suggests that this family of serine/threonine kinases may be involved in multiple signal transduction pathways. CDPKs are believed to be involved in the response of plants to low temperatures, but the precise role in the signal transduction pathway is largely unknown. Previous reports described changes in CDPKs' mRNA levels in response to cold treatment, but whether these changes are accompanied by increases in protein level and/or kinase activities is unknown. In the present study, we identify in rice (Oryza sativa L. cv Don Juan) plants a 56-kD membrane-bound CDPK that is activated in response to cold treatment. Immunoblot analysis of the enzyme preparations from control and cold-treated plants showed that the kinase level was similar in both preparations. However, both kinase and autophosphorylating activities of the enzyme prepared from cold-treated plants were significantly higher than that obtained from control plants. The activation of the CDPK is detected after 12 to 18 h of cold treatment, which indicates that the kinase does not participate in the initial response to low temperature but in the adaptative process to adverse conditions. To our knowledge, this is the first demonstration of a CDPK that is posttranscriptionally activated in response to low temperature.
Collapse
Affiliation(s)
- M L Martín
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas, 7600 Mar del Plata, Argentina
| | | |
Collapse
|
41
|
Oswald O, Martin T, Dominy PJ, Graham IA. Plastid redox state and sugars: Interactive regulators of nuclear-encoded photosynthetic gene expression. Proc Natl Acad Sci U S A 2001; 98:2047-52. [PMID: 11172073 PMCID: PMC29379 DOI: 10.1073/pnas.98.4.2047] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feedback regulation of photosynthesis by carbon metabolites has long been recognized, but the underlying cellular mechanisms that control this process remain unclear. By using an Arabidopsis cell culture, we show that a block in photosynthetic electron flux prevents the increase in transcript levels of chlorophyll a/b-binding protein and the small subunit of Rubisco that typically occurs when intracellular sugar levels are depleted. In contrast, the expression of the nitrate reductase gene, which is induced by sugars, is not affected. These findings were confirmed in planta by using Arabidopsis carrying the firefly luciferase reporter gene fused to the plastocyanin and chlorophyll a/b-binding protein 2 gene promoters. Transcription from both promoters increases on carbohydrate depletion. Blocking photosynthetic electron transport with 3-(3', 4'-dichlorophenyl)-1,1'-dimethylurea prevents this increase in transcription. We conclude that plastid-derived redox signaling can override the sugar-regulated expression of nuclear-encoded photosynthetic genes. In the sugar-response mutant, sucrose uncoupled 6 (sun6), plastocyanin-firefly luciferase transcription actually increases in response to exogenous sucrose rather than decreasing as in the wild type. Interestingly, plastid-derived redox signals do not influence this defective pattern of sugar-regulated gene expression in the sun6 mutant. A model, which invokes a positive inducer originating from the photosynthetic electron transport chain, is proposed to explain the nature of the plastid-derived signal.
Collapse
Affiliation(s)
- O Oswald
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
42
|
Morello L, Frattini M, Gianì S, Christou P, Breviario D. Overexpression of the calcium-dependent protein kinase OsCDPK2 in transgenic rice is repressed by light in leaves and disrupts seed development. Transgenic Res 2000; 9:453-62. [PMID: 11206974 DOI: 10.1023/a:1026555021606] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Independent transgenic rice lines overexpressing the rice CDPK isoform OsCDPK2 were generated by particle bombardment. High levels of OsCDPK2 were detected in leaves removed from etiolated plants, as well as in stems and flowers. However, there was no overexpression in green leaves that had been exposed to light, confirming that OsCDPK2 protein stability was subject to light regulation. The morphological phenotype of transgenic plants producing high levels of recombinant OsCDPK2 was normal until the onset of seed development. Flowers developed normally, producing well-shaped ovaries and stigmas, and mature anthers filled with pollen grains. However, seed formation in these plants was strongly inhibited, with only 3-7% of the flowers producing seeds. Seed development was arrested at an early stage. We discuss these data with respect to the possible requirement for specific CDPK isoforms during rice seed development.
Collapse
Affiliation(s)
- L Morello
- Department of Botany, University of Milan, Milano, Italy
| | | | | | | | | |
Collapse
|
43
|
Yang G, Komatsu S. Involvement of calcium-dependent protein kinase in rice (Oryza sativa L.) lamina inclination caused by brassinolide. PLANT & CELL PHYSIOLOGY 2000; 41:1243-50. [PMID: 11092909 DOI: 10.1093/pcp/pcd050] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Promotive effect of brassinolide (BL) on green lamina inclination was concentration-dependent when excised rice (Oryza sativa L.) lamina was floated on BL solution under continuous light conditions. Protein kinase inhibitor staurosporine and Ca2+ channel blocker LaCl3 could completely, while Ca2+ chelator EGTA could partially inhibit the lamina inclination caused by BL. Two protein kinases with apparent molecular masses of 45 and 54 kDa were detected using an in-gel kinase assay with histone III-S as a substrate. In particular, the changes in 45 kDa protein kinase activity correlated with lamina inclination caused by BL. The 45 kDa kinase activity was inhibited by Ca2+ chelator EGTA, protein kinase inhibitor, staurosporine and calmodulin antagonist W-7. Therefore, this 45 kDa protein kinase was identified as a Ca2+ -dependent protein kinase (CDPK). Patterns of 2-dimensional PAGE after in vitro phosphorylation of crude extracts showed that the phosphorylation of 56 and 41 kDa proteins, which was Ca2+ -dependent, was strongly increased by BL treatment. These results suggested that CDPK and Ca2+ -dependent protein phosphorylation are involved in BL-induced rice lamina inclination.
Collapse
Affiliation(s)
- G Yang
- Department of Molecular Genetics, National Institute of Agrobiological Resources, Tsukuba, 305-8602 Japan
| | | |
Collapse
|
44
|
Frattini M, Morello L, Breviario D. Rice calcium-dependent protein kinase isoforms OsCDPK2 and OsCDPK11 show different responses to light and different expression patterns during seed development. PLANT MOLECULAR BIOLOGY 1999; 41:753-764. [PMID: 10737140 DOI: 10.1023/a:1006316422400] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We investigated the spatial and temporal expression patterns of two rice calcium-dependent protein kinases (CDPKs), OsCDPK2 and OSCDPK11, using isoform-specific antisera. Bands of the expected molecular sizes for OsCDPK2 (59 kDa) and OsCDPK11 (61 kDa) were detected on western blots. OsCDPK2 and OsCDPK11 mRNA and protein levels increased in unison during flower development. However, at the onset of seed development, the protein expression profiles diverged significantly. OsCDPK2 protein was expressed at low levels during early seed development, but increased to high levels that were maintained in later stages (20 days after fertilisation, DAF). Conversely, OsCDPK11 protein levels were high at the beginning of seed development, but fell rapidly from 10 DAF onwards. This decrease in the level of OsCDPK11 protein was associated with the abundant synthesis of a truncated mRNA species. OsCDPK2 expression was also closely associated with light perception. OsCDPK2 protein was barely detectable in green leaves exposed to light, but levels increased sharply when plants were shifted to darkness. Initially, this increase reflected a rapid elevation in the levels of OsCDPK2 mRNA, which was normally located in the mesophyll. Conversely, OsCDPK11 mRNA and protein levels were unaffected by light. These data strongly indicate that two rice CDPK isoforms have different functions in seed development and in response to light in leaves.
Collapse
Affiliation(s)
- M Frattini
- Istituto Biosintesi Vegetali CNR, Milano, Italy
| | | | | |
Collapse
|
45
|
Tlalka M, Fricker M. The role of calcium in blue-light-dependent chloroplast movement in lemna trisulca L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 20:461-473. [PMID: 10607298 DOI: 10.1046/j.1365-313x.1999.00621.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroplast movements are a normal physiological response to changes in light intensity and provide a good model system to analyse the signal transduction pathways following light perception. Blue-light-dependent chloroplast movements were observed in Lemna trisulca using confocal optical sectioning and 3-D reconstruction or photometric measurements of leaf transmission. Chloroplasts moved away from strong blue light (SBL) towards the anticlinal walls (profile position), and towards the periclinal walls (face position) under weak blue light (WBL) over about 20-40 min. Cytoplasmic calcium ([Ca2 + ]cyt) forms part of the signalling system in response to SBL as movements were associated with small increases in [Ca2 + ]cyt and were blocked by antagonists of calcium homeostasis, including EGTA, nifedipine, verapamil, caffeine, thapsigargin, TFP (trifluoperazine), W7 and compound 48/80. Treatments predicted to affect internal Ca2 + stores gave the most rapid and pronounced effects. In addition, artificially increasing [Ca2 + ]cyt in darkness using the Ca2 + ionophore A23187 and high external Ca2 + (or Sr2 + ), triggered partial movement of chloroplasts to profile position analogous to a SBL response. These data are all consistent with [Ca2 + ]cyt acting as a signal in SBL responses; however, the situation is more complex given that both WBL and SBL responses were inhibited to a similar extent by all the Ca2 + -signalling antagonists used. As the direction of chloroplast movement in WBL is exactly opposite to that in SBL, we conclude that, whilst proper regulation of [Ca2 + ]cyt homeostasis is critical for both SBL and WBL responses, additional factors may be required to specify the direction of chloroplast movement.
Collapse
|
46
|
Chung HJ, Ferl RJ. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. PLANT PHYSIOLOGY 1999; 121:429-36. [PMID: 10517834 PMCID: PMC59405 DOI: 10.1104/pp.121.2.429] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/1999] [Accepted: 07/04/1999] [Indexed: 05/18/2023]
Abstract
It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.
Collapse
Affiliation(s)
- H J Chung
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
47
|
Osuna L, Pierre JN, Gonzalez MC, Alvarez R, Cejudo FJ, Echevarria C, Vidal J. Evidence for a slow-turnover form of the Ca2+-independent phosphoenolpyruvate carboxylase kinase in the aleurone-endosperm tissue of germinating barley seeds. PLANT PHYSIOLOGY 1999; 119:511-20. [PMID: 9952447 PMCID: PMC32128 DOI: 10.1104/pp.119.2.511] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/1998] [Accepted: 10/29/1998] [Indexed: 05/20/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) activity was detected in aleurone-endosperm extracts of barley (Hordeum vulgare) seeds during germination, and specific anti-sorghum (Sorghum bicolor) C4 PEPC polyclonal antibodies immunodecorated constitutive 103-kD and inducible 108-kD PEPC polypeptides in western analysis. The 103- and 108-kD polypeptides were radiolabeled in situ after imbibition for up to 1.5 d in 32P-labeled inorganic phosphate. In vitro phosphorylation by a Ca2+-independent PEPC protein kinase (PK) in crude extracts enhanced the enzyme's velocity and decreased its sensitivity to L-malate at suboptimal pH and [PEP]. Isolated aleurone cell protoplasts contained both phosphorylated PEPC and a Ca2+-independent PEPC-PK that was partially purified by affinity chromatography on blue dextran-agarose. This PK activity was present in dry seeds, and PEPC phosphorylation in situ during imbibition was not affected by the cytosolic protein-synthesis inhibitor cycloheximide, by weak acids, or by various pharmacological reagents that had proven to be effective blockers of the light signal transduction chain and PEPC phosphorylation in C4 mesophyll protoplasts. These collective data support the hypothesis that this Ca2+-independent PEPC-PK was formed during maturation of barley seeds and that its presumed underlying signaling elements were no longer operative during germination.
Collapse
Affiliation(s)
- L Osuna
- Departamento de Biologia Vegetal, Facultad de Biologia, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Sevilla, Spain (L.O., R.A., C.E.)
| | | | | | | | | | | | | |
Collapse
|
48
|
Ellard-Ivey M, Hopkins RB, White TJ, Lomax TL. Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini (Cucurbita pepo L.). PLANT MOLECULAR BIOLOGY 1999; 39:199-208. [PMID: 10080688 DOI: 10.1023/a:1006125918023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have isolated a full-length cDNA clone (CpCDPK1) encoding a calcium-dependent protein kinase (CDPK) gene from zucchini (Cucurbita pepo L.). The predicted amino acid sequence of the cDNA shows a remarkably high degree of similarity to members of the CDPK gene family from Arabidopsis thaliana, especially AtCPK1 and AtCPK2. Northern analysis of steady-state mRNA levels for CpCPK1 in etiolated and light-grown zucchini seedlings shows that the transcript is most abundant in etiolated hypocotyls and overall expression is suppressed by light. As described for other members of the CDPK gene family from different species, the CpCPK1 clone has a putative N-terminal myristoylation sequence. In this study, site-directed mutagenesis and an in vitro coupled transcription/translation system were used to demonstrate that the protein encoded by this cDNA is specifically myristoylated by a plant N-myristoyl transferase. This is the first demonstration of myristoylation of a CDPK protein which may contribute to the mechanism by which this protein is localized to the plasma membrane.
Collapse
Affiliation(s)
- M Ellard-Ivey
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331-2902, USA
| | | | | | | |
Collapse
|
49
|
Moutinho A, Trewavas AJ, Malho R. Relocation of a Ca2+-dependent protein kinase activity during pollen tube reorientation. THE PLANT CELL 1998; 10:1499-510. [PMID: 9724696 PMCID: PMC144072 DOI: 10.1105/tpc.10.9.1499] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pollen tube reorientation is a dynamic cellular event that is crucial for successful fertilization. We have shown previously that pollen tube orientation is regulated by cytosolic free calcium ([Ca2+]c). In this paper, we studied the activity of a Ca2+-dependent protein kinase during reorientation. The kinase activity was assayed in living cells by using confocal ratio imaging of BODIPY FL bisindolylmaleimide. We found that growing pollen tubes exhibited higher protein kinase activity in the apical region, whereas nongrowing cells showed uniform distribution. Modification of growth direction by diffusion of inhibitors/activators from a micropipette showed the spatial redistribution of kinase activity to predict the new growth orientation. Localized increases in [Ca2+]c induced by photolysis of caged Ca2+ that led to reorientation also increased kinase activity. Molecular and immunological assays suggest that this kinase may show some functional homology with protein kinase C. We suggest that the tip-localized gradient of kinase activity promotes Ca2+-mediated exocytosis and may act to regulate Ca2+ channel activity.
Collapse
Affiliation(s)
- A Moutinho
- Departamento de Biologia Vegetal, Faculdade de Ciencias de Lisboa, R. Ernesto de Vasconcelos, Bloco C2, 1780 Lisbon, Portugal
| | | | | |
Collapse
|
50
|
Li J, Lee YR, Assmann SM. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. PLANT PHYSIOLOGY 1998; 116:785-95. [PMID: 9489023 PMCID: PMC35138 DOI: 10.1104/pp.116.2.785] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/1997] [Accepted: 11/03/1997] [Indexed: 05/18/2023]
Abstract
Increasing evidence suggests that changes in cytosolic Ca2+ levels and phosphorylation play important roles in the regulation of stomatal aperture and as ion transporters of guard cells. However, protein kinases responsible for Ca2+ signaling in guard cells remain to be identified. Using biochemical approaches, we have identified a Ca(2+)-dependent protein kinase with a calmodulin-like domain (CDPK) in guard cell protoplasts of Vicia faba. Both autophosphorylation and catalytic activity of CDPK are Ca2+ dependent. CDPK exhibits a Ca(2+)-induced electrophoretic mobility shift and its Ca(2+)-dependent catalytic activity can be inhibited by the calmodulin antagonists trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. Antibodies to soybean CDPK alpha cross-react with CDPK. Micromolar Ca2+ concentrations stimulate phosphorylation of several proteins from guard cells; cyclosporin A, a specific inhibitor of the Ca(2+)-dependent protein phosphatase calcineurin enhances the Ca(2+)-dependent phosphorylation of several soluble proteins. CDPK from guard cells phosphorylates the K+ channel KAT1 protein in a Ca(2+)-dependent manner. These results suggest that CDPK may be an important component of Ca2+ signaling in guard cells.
Collapse
Affiliation(s)
- J Li
- Department of Biology, Pennsylvania State University, University Park 16802, USA
| | | | | |
Collapse
|