1
|
Wicaksono A, Buaboocha T. Genome-wide identification of CAMTA genes and their expression dependence on light and calcium signaling during seedling growth and development in mung bean. BMC Genomics 2024; 25:992. [PMID: 39443876 PMCID: PMC11515718 DOI: 10.1186/s12864-024-10893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Calmodulin-binding transcription activator (CAMTA) is comprised of a group of transcription factors and plays an important role in the Ca2+ signaling pathway, mediating various molecular responses via interactions with other transcription factors and binding to the promoter region of specific genes. Mung beans (Vigna radiata) are one of the most commonly consumed commodities in Asia. To date, CAMTA proteins have not been characterized in this important crop plant. RESULTS Eight paralogous VrCAMTA genes were identified and found to be distributed on five of the 11 chromosomes. The proteins possessed CG-1 DNA-binding domains with bipartite NLS signals, ankyrin domains, CaM-binding IQ motifs, and CaM-binding domain (CaMBD). The 2 kb upstream regions of VrCAMTA genes contained sequence motifs of abscisic acid-responsive elements (ABRE) and ethylene-responsive elements (ERE), and binding sites for transcription factors of the bZIP and bHLH domains. Analysis of RNA-seq data from a public repository revealed ubiquitous expression of the VrCAMTA genes, as VrCAMTA1 was expressed at the highest level in seedling leaves, whereas VrCAMTA8 was expressed at the lowest level, which agreed with the RT-qPCR analysis performed on the first true leaves. On day four after leaf emergence, all VrCAMTA genes were upregulated, with VrCAMTA1 exhibiting the highest degree of upregulation. In darkness on day 4, upregulation was not observed in most VrCAMTA genes, except VrCAMTA7, for which a low degree of upregulation was found, whereas no difference was found in VrCAMTA8 expression between light and dark conditions. Treatment with calcium ionophores enhanced VrCAMTA expression under light and/or dark conditions at different times after leaf emergence, suggesting that calcium signaling is involved in the light-induced upregulation of VrCAMTA gene expression. CONCLUSIONS The expression dependence of nearly all VrCAMTA genes on light and calcium signaling suggests their possible differential but likely complementary roles during the early stages of mung bean growth and development.
Collapse
Affiliation(s)
- Adhityo Wicaksono
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Mascher M, Jayakodi M, Shim H, Stein N. Promises and challenges of crop translational genomics. Nature 2024:10.1038/s41586-024-07713-5. [PMID: 39313530 PMCID: PMC7616746 DOI: 10.1038/s41586-024-07713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2024] [Indexed: 09/25/2024]
Abstract
Crop translational genomics applies breeding techniques based on genomic datasets to improve crops. Technological breakthroughs in the past ten years have made it possible to sequence the genomes of increasing numbers of crop varieties and have assisted in the genetic dissection of crop performance. However, translating research findings to breeding applications remains challenging. Here we review recent progress and future prospects for crop translational genomics in bringing results from the laboratory to the field. Genetic mapping, genomic selection and sequence-assisted characterization and deployment of plant genetic resources utilize rapid genotyping of large populations. These approaches have all had an impact on breeding for qualitative traits, where single genes with large phenotypic effects exert their influence. Characterization of the complex genetic architectures that underlie quantitative traits such as yield and flowering time, especially in newly domesticated crops, will require further basic research, including research into regulation and interactions of genes and the integration of genomic approaches and high-throughput phenotyping, before targeted interventions can be designed. Future priorities for translation include supporting genomics-assisted breeding in low-income countries and adaptation of crops to changing environments.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
3
|
Patra GK, Acharya GK, Panigrahi J, Mukherjee AK, Rout GR. The soil-borne fungal pathogen Athelia rolfsii: past, present, and future concern in legumes. Folia Microbiol (Praha) 2023; 68:677-690. [PMID: 37615849 DOI: 10.1007/s12223-023-01086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Legumes are ubiquitous, low-cost meals that are abundant in protein, vitamins, minerals, and calories. Several biotic constraints are to blame for the global output of legumes not meeting expectations. Fungi, in particular, are substantial restrictions that not only hinder production but also pose a serious health risk to both human and livestock consumption. Athelia rolfsii (Syn. Sclerotium rolfsii) is a dangerous pathogenic fungus that attacks most crops, causing massive yield losses. Legumes are no longer immune to this dreadful fungus, which can potentially result in a 100% yield loss. The initial disease symptoms based on the formation of brown color lesions at the point of infection and further development of mycelia, followed by yellowing and wilting of the whole plant. To tackle such situation, various strategies, i.e., management in cultural practices, disease-free plant growth, genetic changes, crop hybridization and in vitro culture techniques have been undertaken. This present review encapsulates the entire situation, from sclerotial dissemination through infection development and control in legume crops, with the goal of developing a tangible understanding of sustainable legume production improvements. Further study in this area might be led in an integrated manner as a result of this information, which could contribute to a better understanding of the processes of disease incidence, resistance mechanism, and its control, and fostering greater inventiveness in the production of legumes.
Collapse
Affiliation(s)
- Gyanendra K Patra
- Department of Agril. Biotechnology, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, India
| | - Gobinda K Acharya
- Central Horticultural Experiment Station, ICAR-IIHR, Bhubaneswar, India
| | - J Panigrahi
- Department of Biotechnology, Berhampur University, Berhampur, India
| | | | - Gyana R Rout
- Department of Molecular Biology & Biotechnology, Institute of Agricultural Sciences, S'O'A Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. Genome-wide identification, characterization, and expression profile ofNBS-LRRgene family in sweet orange (Citrussinensis). Gene 2023; 854:147117. [PMID: 36526123 DOI: 10.1016/j.gene.2022.147117] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.
Collapse
Affiliation(s)
- Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Peichen Han
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Dengxian Xi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Wencai Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Ling Zhu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Chaojin Du
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Na Yang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
5
|
A New Method for Extracting Individual Plant Bio-Characteristics from High-Resolution Digital Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13061212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extraction of automated plant phenomics from digital images has advanced in recent years. However, the accuracy of extracted phenomics, especially for individual plants in a field environment, requires improvement. In this paper, a new and efficient method of extracting individual plant areas and their mean normalized difference vegetation index from high-resolution digital images is proposed. The algorithm was applied on perennial ryegrass row field data multispectral images taken from the top view. First, the center points of individual plants from digital images were located to exclude plant positions without plants. Second, the accurate area of each plant was extracted using its center point and radius. Third, the accurate mean normalized difference vegetation index of each plant was extracted and adjusted for overlapping plants. The correlation between the extracted individual plant phenomics and fresh weight ranged between 0.63 and 0.75 across four time points. The methods proposed are applicable to other crops where individual plant phenotypes are of interest.
Collapse
|
6
|
Dhaliwal SK, Talukdar A, Gautam A, Sharma P, Sharma V, Kaushik P. Developments and Prospects in Imperative Underexploited Vegetable Legumes Breeding: A Review. Int J Mol Sci 2020; 21:E9615. [PMID: 33348635 PMCID: PMC7766301 DOI: 10.3390/ijms21249615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Vegetable legumes are an essential source of carbohydrates, vitamins, and minerals, along with health-promoting bioactive chemicals. The demand for the use of either fresh or processed vegetable legumes is continually expanding on account of the growing consumer awareness about their well-balanced diet. Therefore, sustaining optimum yields of vegetable legumes is extremely important. Here we seek to present d etails of prospects of underexploited vegetable legumes for food availability, accessibility, and improved livelihood utilization. So far research attention was mainly focused on pulse legumes' performance as compared to vegetable legumes. Wild and cultivated vegetable legumes vary morphologically across diverse habitats. This could make them less known, underutilized, and underexploited, and make them a promising potential nutritional source in developing nations where malnutrition still exists. Research efforts are required to promote underexploited vegetable legumes, for improving their use to feed the ever-increasing population in the future. In view of all the above points, here we have discussed underexploited vegetable legumes with tremendous potential; namely, vegetable pigeon pea (Cajanus cajan), cluster bean (Cyamopsis tetragonoloba), winged bean (Psophocarpus tetragonolobus), dolichos bean (Lablab purpureus), and cowpea (Vigna unguiculata), thereby covering the progress related to various aspects such as pre-breeding, molecular markers, quantitative trait locus (QTLs), genomics, and genetic engineering. Overall, this review has summarized the information related to advancements in the breeding of vegetable legumes which will ultimately help in ensuring food and nutritional security in developing nations.
Collapse
Affiliation(s)
- Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India; (S.K.D.); (P.S.)
| | - Akshay Talukdar
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Ashish Gautam
- Department of Genetics and Plant Breeding, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145, India;
| | - Pankaj Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India; (S.K.D.); (P.S.)
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
- Nagano University, Ueda 386-0031, Japan
| |
Collapse
|
7
|
First approach to pod dehiscence in faba bean: genetic and histological analyses. Sci Rep 2020; 10:17678. [PMID: 33077797 PMCID: PMC7572390 DOI: 10.1038/s41598-020-74750-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Pod dehiscence causes important yield losses in cultivated crops and therefore has been a key trait strongly selected against in crop domestication. In spite of the growing knowledge on the genetic basis of dehiscence in different crops, no information is available so far for faba bean. Here we conduct the first comprehensive study for faba bean pod dehiscence by combining, linkage mapping, comparative genomics, QTL analysis and histological examination of mature pods. Mapping of dehiscence-related genes revealed conservation of syntenic blocks among different legumes. Three QTLs were identified in faba bean chromosomes II, IV and VI, although none of them was stable across years. Histological analysis supports the convergent phenotypic evolution previously reported in cereals and related legume species but revealed a more complex pattern in faba bean. Contrary to common bean and soybean, the faba bean dehiscence zone appears to show functional equivalence to that described in crucifers. The lignified wall fiber layer, which is absent in the paucijuga primitive line Vf27, or less lignified and vacuolated in other dehiscent lines, appears to act as the major force triggering pod dehiscence in this species. While our findings, provide new insight into the mechanisms underlying faba bean dehiscence, full understanding of the molecular bases will require further studies combining precise phenotyping with genomic analysis.
Collapse
|
8
|
Identification and Analysis of NBS-LRR Genes in Actinidia chinensis Genome. PLANTS 2020; 9:plants9101350. [PMID: 33065969 PMCID: PMC7601643 DOI: 10.3390/plants9101350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the most important disease resistance genes in plants. The genome sequence of kiwifruit (Actinidia chinensis) provides resources for the characterization of NBS-LRR genes and identification of new R-genes in kiwifruit. In the present study, we identified 100 NBS-LRR genes in the kiwifruit genome and they were grouped into six distinct classes based on their domain architecture. Of the 100 genes, 79 are truncated non-regular NBS-LRR genes. Except for 37 NBS-LRR genes with no location information, the remaining 63 genes are distributed unevenly across 18 kiwifruit chromosomes and 38.01% of them are present in clusters. Seventeen families of cis-acting elements were identified in the promoters of the NBS-LRR genes, including AP2, NAC, ERF and MYB. Pseudomonas syringae pv. actinidiae (pathogen of the kiwifruit bacterial canker) infection induced differential expressions of 16 detected NBS-LRR genes and three of them are involved in plant immunity responses. Our study provides insight of the NBS-LRR genes in kiwifruit and a resource for the identification of new R-genes in the fruit.
Collapse
|
9
|
Liu C, Wu Y, Liu Y, Yang L, Dong R, Jiang L, Liu P, Liu G, Wang Z, Luo L. Genome-wide analysis of tandem duplicated genes and their contribution to stress resistance in pigeonpea (Cajanus cajan). Genomics 2020; 113:728-735. [PMID: 33053410 DOI: 10.1016/j.ygeno.2020.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 10/08/2020] [Indexed: 01/23/2023]
Abstract
Pigeonpea is the main protein source for more than one billion people, and it shows a strong adaptation to biotic stress and abiotic stress. Gene duplication is a fundamental process in genome evolution. Although the draft sequence of the pigeonpea genome has been available since 2011, further analysis of tandem duplicated genes (TDGs) and their contribution to the evolution of pigeonpea has not been reported. In this study, we identify 3211 TDGs in the pigeonpea genome and KEGG enrichment analysis of these genes shows that the TDGs are significantly enriched in resistance-related pathways. In addition, we find that TDGs are more abundant in retrotransposon-related genes in pigeonpea than in the other species included in our study. These results indicate that stress resistance in pigeonpea may be ascribed to resistance-related pathways and retrotransposons originating from tandem duplications. Our study will provide an important basis for further research in pigeonpea breeding.
Collapse
Affiliation(s)
- Chun Liu
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China; Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yuanhang Wu
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yunxi Liu
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China; Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Liyun Yang
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Rongshu Dong
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Lingyan Jiang
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Pandao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Guodao Liu
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Zhiyong Wang
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Lijuan Luo
- College of Forestry & College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Gupta M, Sharma G, Saxena D, Budhwar R, Vasudevan M, Gupta V, Gupta A, Gupta R, Chandran D. Dual RNA-Seq analysis of Medicago truncatula and the pea powdery mildew Erysiphe pisi uncovers distinct host transcriptional signatures during incompatible and compatible interactions and pathogen effector candidates. Genomics 2019; 112:2130-2145. [PMID: 31837401 DOI: 10.1016/j.ygeno.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Abstract
Powdery mildew (PM) is a serious fungal disease of legumes. To gain novel insights into PM pathogenesis and host resistance/susceptibility, we used dual RNA-Seq to simultaneously capture host and pathogen transcriptomes at 1 d post-inoculation of resistant and susceptible Medicago truncatula genotypes with the PM Erysiphe pisi (Ep). Differential expression analysis indicates that R-gene mediated resistance against Ep involves extensive transcriptional reprogramming. Functional enrichment of differentially expressed host genes and in silico analysis of co-regulated promoters suggests that amplification of PTI, activation of the JA/ET signaling network, and regulation of growth-defense balance correlate with resistance. In contrast, processes that favor biotrophy, including suppression of defense signaling and programmed cell death, and weaker cell wall defenses are important susceptibility factors. Lastly, Ep effector candidates and genes with known/putative virulence functions were identified, representing a valuable resource that can be leveraged to improve our understanding of legume-PM interactions.
Collapse
Affiliation(s)
- Megha Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Gunjan Sharma
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Divya Saxena
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd., Kasturi Nagar, Bangalore, India
| | | | - Varsha Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Arunima Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rashi Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
11
|
Rychel S, Książkiewicz M. Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L.). J Appl Genet 2019; 60:269-281. [PMID: 31410824 PMCID: PMC6803572 DOI: 10.1007/s13353-019-00508-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
White lupin (Lupinus albus L.) is a legume grain crop cultivated since ancient Greece and Egypt. Modern white lupin cultivars are appreciated as a source of protein with positive nutraceutical impact. However, white lupins produce anti-nutritional compounds, quinolizidine alkaloids, which provide bitter taste and have a negative influence on human health. During domestication of this species, several recessive alleles at unlinked loci controlling low alkaloid content were selected. One of these loci, pauper, was exploited worldwide providing numerous low-alkaloid cultivars. However, molecular tracking of pauper has been hampered due to the lack of diagnostic markers. In the present study, the synteny-based approach was harnessed to target pauper locus. Single-nucleotide polymorphisms flanking pauper locus on white lupin linkage map as well as candidate gene sequences elucidated from the narrow-leafed lupin (L. angustifolius L.) chromosome segment syntenic to the pauper linkage group region were transformed to PCR-based molecular markers. These markers were analyzed both in the mapping population and world germplasm collection. From fourteen markers screened, eleven were localized at a distance below 1.5 cM from this locus, including five co-segregating with pauper. The linkage of these markers was confirmed by high LOD values (up to 58.4). Validation performed in the set of 127 bitter and 23 sweet accessions evidenced high applicability of one marker, LAGI01_35805_F1_R1, for pauper locus selection, highlighted by the low ratio of false-positive scores (2.5%). LAGI01_35805 represents a homolog of L. angustifolius acyltransferase-like (LaAT) gene which might hypothetically participate in the alkaloid biosynthesis process in lupins.
Collapse
Affiliation(s)
- Sandra Rychel
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Michał Książkiewicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| |
Collapse
|
12
|
ÇAKIR Ö, UÇARLI C, TARHAN Ç, PEKMEZ M, TURGUT-KARA N. Nutritional and health benefits of legumes and their distinctive genomic properties. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.42117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Sweetman C, Soole KL, Jenkins CLD, Day DA. Genomic structure and expression of alternative oxidase genes in legumes. PLANT, CELL & ENVIRONMENT 2019; 42:71-84. [PMID: 29424926 DOI: 10.1111/pce.13161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 05/26/2023]
Abstract
Mitochondria isolated from chickpea (Cicer arietinum) possess substantial alternative oxidase (AOX) activity, even in non-stressed plants, and one or two AOX protein bands were detected immunologically, depending on the organ. Four different AOX isoforms were identified in the chickpea genome: CaAOX1 and CaAOX2A, B and D. CaAOX2A was the most highly expressed form and was strongly expressed in photosynthetic tissues, whereas CaAOX2D was found in all organs examined. These results are very similar to those of previous studies with soybean and siratro. Searches of available databases showed that this pattern of AOX genes and their expression was common to at least 16 different legume species. The evolution of the legume AOX gene family is discussed, as is the in vivo impact of an inherently high AOX capacity in legumes on growth and responses to environmental stresses.
Collapse
Affiliation(s)
- Crystal Sweetman
- Australian Research Council Industrial Transformation Research Hub, Legumes for Sustainable Agriculture, College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia, GPO Box 2001, Australia
| | - Kathleen L Soole
- Australian Research Council Industrial Transformation Research Hub, Legumes for Sustainable Agriculture, College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia, GPO Box 2001, Australia
| | - Colin L D Jenkins
- Australian Research Council Industrial Transformation Research Hub, Legumes for Sustainable Agriculture, College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia, GPO Box 2001, Australia
| | - David A Day
- Australian Research Council Industrial Transformation Research Hub, Legumes for Sustainable Agriculture, College of Science and Engineering, Flinders University of South Australia, Adelaide, South Australia, GPO Box 2001, Australia
| |
Collapse
|
14
|
Abstract
Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.
Collapse
Affiliation(s)
- Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany.
| |
Collapse
|
15
|
Shunmugam ASK, Kannan U, Jiang Y, Daba KA, Gorim LY. Physiology Based Approaches for Breeding of Next-Generation Food Legumes. PLANTS (BASEL, SWITZERLAND) 2018; 7:E72. [PMID: 30205575 PMCID: PMC6161296 DOI: 10.3390/plants7030072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 01/05/2023]
Abstract
Plant breeders and agricultural scientists of the 21st century are challenged to increase the yield potentials of crops to feed the growing world population. Climate change, the resultant stresses and increasing nutrient deficiencies are factors that are to be considered in designing modern plant breeding pipelines. Underutilized food legumes have the potential to address these issues and ensure food security in developing nations of the world. Food legumes in the past have drawn limited research funding and technological attention when compared to cereal crops. Physiological breeding strategies that were proven to be successful in cereals are to be adapted to legume crop improvement to realize their potential. The gap between breeders and physiologists should be narrowed by collaborative approaches to understand complex traits in legumes. This review discusses the potential of physiology based approaches in food legume breeding and how they impact yield gains and abiotic stress tolerance in these crops. The influence of roots and root system architectures in food legumes' breeding is also discussed. Molecular breeding to map the relevant physiological traits and the potentials of gene editing those traits are detailed. It is imperative to unlock the potentials of these underutilized crops to attain sustainable environmental and nutritional food security.
Collapse
Affiliation(s)
- Arun S K Shunmugam
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| | - Udhaya Kannan
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Center, 107 Science Place, Saskatoon, SK S7N0X2, Canada.
| | - Yunfei Jiang
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, ON N1G2W1, Canada.
| | - Ketema A Daba
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| | - Linda Y Gorim
- Department of Plant Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N5A8, Canada.
| |
Collapse
|
16
|
Liu Q, Chang S, Hartman GL, Domier LL. Assembly and annotation of a draft genome sequence for Glycine latifolia, a perennial wild relative of soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:71-85. [PMID: 29671916 DOI: 10.1111/tpj.13931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 03/22/2018] [Indexed: 05/14/2023]
Abstract
Glycine latifolia (Benth.) Newell & Hymowitz (2n = 40), one of the 27 wild perennial relatives of soybean, possesses genetic diversity and agronomically favorable traits that are lacking in soybean. Here, we report the 939-Mb draft genome assembly of G. latifolia (PI 559298) using exclusively linked-reads sequenced from a single Chromium library. We organized scaffolds into 20 chromosome-scale pseudomolecules utilizing two genetic maps and the Glycine max (L.) Merr. genome sequence. High copy numbers of putative 91-bp centromere-specific tandem repeats were observed in consecutive blocks within predicted pericentromeric regions on several pseudomolecules. No 92-bp putative centromeric repeats, which are abundant in G. max, were detected in G. latifolia or Glycine tomentella. Annotation of the assembled genome and subsequent filtering yielded a high confidence gene set of 54 475 protein-coding loci. In comparative analysis with five legume species, genes related to defense responses were significantly overrepresented in Glycine-specific orthologous gene families. A total of 304 putative nucleotide-binding site (NBS)-leucine-rich-repeat (LRR) genes were identified in this genome assembly. Different from other legume species, we observed a scarcity of TIR-NBS-LRR genes in G. latifolia. The G. latifolia genome was also predicted to contain genes encoding 367 LRR-receptor-like kinases, a family of proteins involved in basal defense responses and responses to abiotic stress. The genome sequence and annotation of G. latifolia provides a valuable source of alternative alleles and novel genes to facilitate soybean improvement. This study also highlights the efficacy and cost-effectiveness of the application of Chromium linked-reads in diploid plant genome de novo assembly.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Sungyul Chang
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
- USDA ARS, Urbana, IL, 61801, USA
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
- USDA ARS, Urbana, IL, 61801, USA
| |
Collapse
|
17
|
Jacob P, Avni A, Bendahmane A. Translational Research: Exploring and Creating Genetic Diversity. TRENDS IN PLANT SCIENCE 2018; 23:42-52. [PMID: 29126790 DOI: 10.1016/j.tplants.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/10/2017] [Accepted: 10/18/2017] [Indexed: 05/21/2023]
Abstract
The crop selection process has created a genetic bottleneck ultimately restricting breeding output. Wild relatives of major crops as well as the so-called 'neglected plant' species represent a reservoir of genetic diversity that remains underutilized. These species could be used as a tool to discover new alleles of agronomic interest or could be the target of breeding programs. Targeted induced local lesions in the genome (TILLING) can be used to translate in neglected crops what has been discovered in major crops and reciprocally. However, random mutagenesis, used in TILLING approaches, provides only a limited density of mutational events at a defined target locus. Alternatively, clustered regularly interspaced short palindromic repeats (CRISPR) associated 9 (Cas9) fused to a cytidine deaminase could serve as a localized mutagenic agent to produce high-density mutant populations. Artificial evolution is at hand.
Collapse
Affiliation(s)
- Pierre Jacob
- Institute of Plant Science - Paris-Saclay, INRA, 91190 Gif-sur-Yvette, France
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
18
|
Mabhaudhi T, Chimonyo VGP, Chibarabada TP, Modi AT. Developing a Roadmap for Improving Neglected and Underutilized Crops: A Case Study of South Africa. FRONTIERS IN PLANT SCIENCE 2017; 8:2143. [PMID: 29312397 PMCID: PMC5735103 DOI: 10.3389/fpls.2017.02143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/04/2017] [Indexed: 05/24/2023]
Abstract
Reports of neglected and underutilized crops' (NUS) potential remain mostly anecdotal with limited and often incoherent research available to support them. This has been attributed to lack of clear research goals, limited funding directed at NUS and journal apathy toward publishing work on NUS. The latter points also explain the lack of interest from emerging and established researchers. Additionally, the NUS community's inability to articulate a roadmap for NUS' promotion may have unintentionally contributed to this. The current study is a sequel to an initial study that assessed the status of NUS in South Africa. The objective of this follow-up study was then to (i) identify priority NUS, and (ii) articulate a strategy and actionable recommendations for promoting NUS in South Africa. The study identified 13 priority NUS, categorized into cereals, legumes, root, and tuber crops and leafy vegetables based on drought and heat stress tolerance and nutritional value. It is recommended that the available limited resources should be targeted on improving these priority NUS as they offer the best prospects for success. Focus should be on developing value chains for the priority NUS. This should be underpinned by science to provide evidence-based outcomes. This would assist to attract more funding for NUS research, development and innovation in South Africa. It is envisaged that through this roadmap, NUS could be transformed from the peripheries into mainstream agriculture. This study provides a template for developing a roadmap for promoting NUS that could be transposed and replicated among the 14 other southern African states.
Collapse
|
19
|
Narożna D, Książkiewicz M, Przysiecka Ł, Króliczak J, Wolko B, Naganowska B, Mądrzak CJ. Legume isoflavone synthase genes have evolved by whole-genome and local duplications yielding transcriptionally active paralogs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:149-167. [PMID: 28969795 DOI: 10.1016/j.plantsci.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/05/2017] [Accepted: 09/11/2017] [Indexed: 05/04/2023]
Abstract
Isoflavone synthase (IFS) is the key enzyme of isoflavonoid biosynthesis. IFS genes were identified in numerous species, although their evolutionary patterns have not yet been reconstructed. To address this issue, we performed structural and functional genomic analysis. Narrow leafed lupin, Lupinus angustifolius L., was used as a reference species for the genus, because it has the most developed molecular tools available. Nuclear genome BAC library clones carrying IFS homologs were localized by linkage mapping and fluorescence in situ hybridization in three chromosome pairs. Annotation of BAC, scaffold and transcriptome sequences confirmed the presence of three full-length IFS genes in the genome. Microsynteny analysis and Bayesian inference provided clear evidence that IFS genes in legumes have evolved by lineage-specific whole-genome and tandem duplications. Gene expression profiling and RNA-seq data mining showed that the vast majority of legume IFS copies have maintained their transcriptional activity. L. angustifolius IFS homologs exhibited organ-specific expression patterns similar to those observed in other Papilionoideae. Duplicated lupin IFS homologs retained non-negligible levels of substitutions in conserved motifs, putatively due to positive selection acting during early evolution of the genus, before the whole-genome duplication. Strong purifying selection preserved newly arisen IFS duplicates from further nonsynonymous changes.
Collapse
Affiliation(s)
- Dorota Narożna
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| | - Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Łucja Przysiecka
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland.
| | - Joanna Króliczak
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | - Cezary J Mądrzak
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland.
| |
Collapse
|
20
|
Wu J, Zhu J, Wang L, Wang S. Genome-Wide Association Study Identifies NBS-LRR-Encoding Genes Related with Anthracnose and Common Bacterial Blight in the Common Bean. FRONTIERS IN PLANT SCIENCE 2017; 8:1398. [PMID: 28848595 PMCID: PMC5552710 DOI: 10.3389/fpls.2017.01398] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/26/2017] [Indexed: 05/03/2023]
Abstract
Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the largest and most important disease resistance genes in plants. The genome sequence of the common bean (Phaseolus vulgaris L.) provides valuable data for determining the genomic organization of NBS-LRR genes. However, data on the NBS-LRR genes in the common bean are limited. In total, 178 NBS-LRR-type genes and 145 partial genes (with or without a NBS) located on 11 common bean chromosomes were identified from genome sequences database. Furthermore, 30 NBS-LRR genes were classified into Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) types, and 148 NBS-LRR genes were classified into coiled-coil (CC)-NBS-LRR (CNL) types. Moreover, the phylogenetic tree supported the division of these PvNBS genes into two obvious groups, TNL types and CNL types. We also built expression profiles of NBS genes in response to anthracnose and common bacterial blight using qRT-PCR. Finally, we detected nine disease resistance loci for anthracnose (ANT) and seven for common bacterial blight (CBB) using the developed NBS-SSR markers. Among these loci, NSSR24, NSSR73, and NSSR265 may be located at new regions for ANT resistance, while NSSR65 and NSSR260 may be located at new regions for CBB resistance. Furthermore, we validated NSSR24, NSSR65, NSSR73, NSSR260, and NSSR265 using a new natural population. Our results provide useful information regarding the function of the NBS-LRR proteins and will accelerate the functional genomics and evolutionary studies of NBS-LRR genes in food legumes. NBS-SSR markers represent a wide-reaching resource for molecular breeding in the common bean and other food legumes. Collectively, our results should be of broad interest to bean scientists and breeders.
Collapse
Affiliation(s)
| | | | | | - Shumin Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
21
|
Arora S, Mahato AK, Singh S, Mandal P, Bhutani S, Dutta S, Kumawat G, Singh BP, Chaudhary AK, Yadav R, Gaikwad K, Sevanthi AM, Datta S, Raje RS, Sharma TR, Singh NK. A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.). PLoS One 2017; 12:e0179747. [PMID: 28654689 PMCID: PMC5487049 DOI: 10.1371/journal.pone.0179747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
Pigeonpea (Cajanus cajan (L.) Millsp.) is a major food legume cultivated in semi-arid tropical regions including the Indian subcontinent, Africa, and Southeast Asia. It is an important source of protein, minerals, and vitamins for nearly 20% of the world population. Due to high carbon sequestration and drought tolerance, pigeonpea is an important crop for the development of climate resilient agriculture and nutritional security. However, pigeonpea productivity has remained low for decades because of limited genetic and genomic resources, and sparse utilization of landraces and wild pigeonpea germplasm. Here, we present a dense intraspecific linkage map of pigeonpea comprising 932 markers that span a total adjusted map length of 1,411.83 cM. The consensus map is based on three different linkage maps that incorporate a large number of single nucleotide polymorphism (SNP) markers derived from next generation sequencing data, using Illumina GoldenGate bead arrays, and genotyping with restriction site associated DNA (RAD) sequencing. The genotyping-by-sequencing enhanced the marker density but was met with limited success due to lack of common markers across the genotypes of mapping population. The integrated map has 547 bead-array SNP, 319 RAD-SNP, and 65 simple sequence repeat (SSR) marker loci. We also show here correspondence between our linkage map and published genome pseudomolecules of pigeonpea. The availability of a high-density linkage map will help improve the anchoring of the pigeonpea genome to its chromosomes and the mapping of genes and quantitative trait loci associated with useful agronomic traits.
Collapse
Affiliation(s)
- Sheetal Arora
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Ajay Kumar Mahato
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Sangeeta Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Paritra Mandal
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Shefali Bhutani
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Sutapa Dutta
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Giriraj Kumawat
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Bikram Pratap Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | - Rekha Yadav
- Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - K. Gaikwad
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | | | | - Ranjeet S. Raje
- Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Tilak R. Sharma
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
22
|
Chai HH, Ho WK, Graham N, May S, Massawe F, Mayes S. A Cross-Species Gene Expression Marker-Based Genetic Map and QTL Analysis in Bambara Groundnut. Genes (Basel) 2017; 8:genes8020084. [PMID: 28241413 PMCID: PMC5333073 DOI: 10.3390/genes8020084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 12/04/2022] Open
Abstract
Bambara groundnut (Vigna subterranea (L.) Verdc.) is an underutilised legume crop, which has long been recognised as a protein-rich and drought-tolerant crop, used extensively in Sub-Saharan Africa. The aim of the study was to identify quantitative trait loci (QTL) involved in agronomic and drought-related traits using an expression marker-based genetic map based on major crop resources developed in soybean. The gene expression markers (GEMs) were generated at the (unmasked) probe-pair level after cross-hybridisation of bambara groundnut leaf RNA to the Affymetrix Soybean Genome GeneChip. A total of 753 markers grouped at an LOD (Logarithm of odds) of three, with 527 markers mapped into linkage groups. From this initial map, a spaced expression marker-based genetic map consisting of 13 linkage groups containing 218 GEMs, spanning 982.7 cM (centimorgan) of the bambara groundnut genome, was developed. Of the QTL detected, 46% were detected in both control and drought treatment populations, suggesting that they are the result of intrinsic trait differences between the parental lines used to construct the cross, with 31% detected in only one of the conditions. The present GEM map in bambara groundnut provides one technically feasible route for the translation of information and resources from major and model plant species to underutilised and resource-poor crops.
Collapse
Affiliation(s)
- Hui Hui Chai
- Biotechnology Research Centre, School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| | - Wai Kuan Ho
- Biotechnology Research Centre, School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
- Crops For the Future, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| | - Neil Graham
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leics, Loughborough LE12 5RD, UK.
| | - Sean May
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leics, Loughborough LE12 5RD, UK.
| | - Festo Massawe
- Biotechnology Research Centre, School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
- Crops For the Future, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| | - Sean Mayes
- Biotechnology Research Centre, School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
- Crops For the Future, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leics, Loughborough LE12 5RD, UK.
| |
Collapse
|
23
|
Mochida K, Sakurai T, Seki H, Yoshida T, Takahagi K, Sawai S, Uchiyama H, Muranaka T, Saito K. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:181-194. [PMID: 27775193 DOI: 10.1111/tpj.13385] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/08/2016] [Accepted: 09/26/2016] [Indexed: 05/21/2023]
Abstract
Chinese liquorice/licorice (Glycyrrhiza uralensis) is a leguminous plant species whose roots and rhizomes have been widely used as a herbal medicine and natural sweetener. Whole-genome sequencing is essential for gene discovery studies and molecular breeding in liquorice. Here, we report a draft assembly of the approximately 379-Mb whole-genome sequence of strain 308-19 of G. uralensis; this assembly contains 34 445 predicted protein-coding genes. Comparative analyses suggested well-conserved genomic components and collinearity of gene loci (synteny) between the genome of liquorice and those of other legumes such as Medicago and chickpea. We observed that three genes involved in isoflavonoid biosynthesis, namely, 2-hydroxyisoflavanone synthase (CYP93C), 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase/isoflavone 4'-O-methyltransferase (HI4OMT) and isoflavone-7-O-methyltransferase (7-IOMT) formed a cluster on the scaffold of the liquorice genome and showed conserved microsynteny with Medicago and chickpea. Based on the liquorice genome annotation, we predicted genes in the P450 and UDP-dependent glycosyltransferase (UGT) superfamilies, some of which are involved in triterpenoid saponin biosynthesis, and characterised their gene expression with the reference genome sequence. The genome sequencing and its annotations provide an essential resource for liquorice improvement through molecular breeding and the discovery of useful genes for engineering bioactive components through synthetic biology approaches.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Hikaru Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takuhiro Yoshida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kotaro Takahagi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Satoru Sawai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Uchiyama
- Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Toshiya Muranaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
24
|
Blair MW, Wu J, Wang S. Editorial: Food Legume Diversity and Legume Research Policies. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Rispail N, Rubiales D. Genome-wide identification and comparison of legume MLO gene family. Sci Rep 2016; 6:32673. [PMID: 27596925 PMCID: PMC5011691 DOI: 10.1038/srep32673] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/09/2016] [Indexed: 12/15/2022] Open
Abstract
MLO proteins are highly conserved proteins with seven trans-membrane domains. Specific MLO genes have been linked to plant disease susceptibility. Others are involved in plant reproduction and in root thigmomorphogenesis. Functions of the remaining MLOs are still unknown. Here we performed a genome-wide survey of the MLO family in eight legume species from different clades of the Papillionoideae sub-family. A total of 118 MLO sequences were identified and characterized. Their deduced protein sequences shared the characteristics of MLO proteins. The total number of MLO genes per legume species varied from 13 to 20 depending on the species. Legume MLOs were evenly distributed over their genomes and tended to localize within syntenic blocks conserved across legume genomes. Phylogenetic analysis indicated that these sequences clustered in seven well-defined clades. Comparison of MLO protein sequences revealed 34 clade-specific motifs in the variable regions of the proteins. Comparative analyses of the MLO family between legume species also uncovered several evolutionary differences between the tropical legume species from the Phaseoloid clades and the other legume species. Altogether, this study provides interesting new features on the evolution of the MLO family. It also provides valuable clues to identify additional MLO genes from non-sequenced species.
Collapse
Affiliation(s)
- Nicolas Rispail
- Institute for Sustainable Agriculture, CSIC, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
26
|
Wyrwa K, Książkiewicz M, Szczepaniak A, Susek K, Podkowiński J, Naganowska B. Integration of Lupinus angustifolius L. (narrow-leafed lupin) genome maps and comparative mapping within legumes. Chromosome Res 2016; 24:355-78. [PMID: 27168155 PMCID: PMC4969343 DOI: 10.1007/s10577-016-9526-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 11/30/2022]
Abstract
Narrow-leafed lupin (Lupinus angustifolius L.) has recently been considered a reference genome for the Lupinus genus. In the present work, genetic and cytogenetic maps of L. angustifolius were supplemented with 30 new molecular markers representing lupin genome regions, harboring genes involved in nitrogen fixation during the symbiotic interaction of legumes and soil bacteria (Rhizobiaceae). Our studies resulted in the precise localization of bacterial artificial chromosomes (BACs) carrying sequence variants for early nodulin 40, nodulin 26, nodulin 45, aspartate aminotransferase P2, asparagine synthetase, cytosolic glutamine synthetase, and phosphoenolpyruvate carboxylase. Together with previously mapped chromosomes, the integrated L. angustifolius map encompasses 73 chromosome markers, including 5S ribosomal DNA (rDNA) and 45S rDNA, and anchors 20 L. angustifolius linkage groups to corresponding chromosomes. Chromosomal identification using BAC fluorescence in situ hybridization identified two BAC clones as narrow-leafed lupin centromere-specific markers, which served as templates for preliminary studies of centromere composition within the genus. Bioinformatic analysis of these two BACs revealed that centromeric/pericentromeric regions of narrow-leafed lupin chromosomes consisted of simple sequence repeats ordered into tandem repeats containing the trinucleotide and pentanucleotide simple sequence repeats AGG and GATAC, structured into long arrays. Moreover, cross-genus microsynteny analysis revealed syntenic patterns of 31 single-locus BAC clones among several legume species. The gene and chromosome level findings provide evidence of ancient duplication events that must have occurred very early in the divergence of papilionoid lineages. This work provides a strong foundation for future comparative mapping among legumes and may facilitate understanding of mechanisms involved in shaping legume chromosomes.
Collapse
Affiliation(s)
- Katarzyna Wyrwa
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland.
| | - Michał Książkiewicz
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Anna Szczepaniak
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Karolina Susek
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| | - Jan Podkowiński
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Z. Noskowskiego 12/14, Poznań, 61-704, Poland
| | - Barbara Naganowska
- Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, Poznań, 60-479, Poland
| |
Collapse
|
27
|
Kang YJ, Lee T, Lee J, Shim S, Jeong H, Satyawan D, Kim MY, Lee SH. Translational genomics for plant breeding with the genome sequence explosion. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1057-69. [PMID: 26269219 PMCID: PMC5042036 DOI: 10.1111/pbi.12449] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/04/2015] [Accepted: 07/10/2015] [Indexed: 05/22/2023]
Abstract
The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.
Collapse
Affiliation(s)
- Yang Jae Kang
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Taeyoung Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jayern Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sangrea Shim
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Haneul Jeong
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Dani Satyawan
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Indonesian Center for Agricultural Biotechnology and Genomic resources Research and Development (ICABIOGRAD-IAARD), Bogor, Indonesia
| | - Moon Young Kim
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Suk-Ha Lee
- Department of Plant Science Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Song Q, Jenkins J, Jia G, Hyten DL, Pantalone V, Jackson SA, Schmutz J, Cregan PB. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics 2016; 17:33. [PMID: 26739042 PMCID: PMC4704267 DOI: 10.1186/s12864-015-2344-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant inbred lines (RILs), the assembled sequence, especially in some genomic regions with sparse numbers of anchoring markers, needs to be improved. Molecular markers are being used by researchers in the soybean community, however, with the updating of the Glyma1.01 build based on the high-resolution linkage maps resulting from this research, the genome positions of these markers need to be mapped. RESULTS Two high density genetic linkage maps were constructed based on 21,478 single nucleotide polymorphism loci mapped in the Williams 82 x G. soja (Sieb. & Zucc.) PI479752 population with 1083 RILs and 11,922 loci mapped in the Essex x Williams 82 population with 922 RILs. There were 37 regions or single markers where marker order in the two populations was in agreement but was not consistent with the physical position in the Glyma1.01 build. In addition, 28 previously unanchored scaffolds were positioned. Map data were used to identify false joins in the Glyma1.01 assembly and the corresponding scaffolds were broken and reassembled to the new assembly, Wm82.a2.v1. Based upon the plots of the genetic on physical distance of the loci, the euchromatic and heterochromatic regions along each chromosome in the new assembly were delimited. Genomic positions of the commonly used markers contained in BARCSOYSSR_1.0 database and the SoySNP50K BeadChip were updated based upon the Wm82.a2.v1 assembly. CONCLUSIONS The information will facilitate the study of recombination hot spots in the soybean genome, identification of genes or quantitative trait loci controlling yield, seed quality and resistance to biotic or abiotic stresses as well as other genetic or genomic research.
Collapse
Affiliation(s)
- Qijian Song
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, MD, 20705, USA.
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA.
| | - Gaofeng Jia
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, MD, 20705, USA.
| | - David L Hyten
- Department of Agronomy & Horticulture, Center for Plant Science Innovation, 322 Keim Hall, University of Nebraska, Lincoln, NE, 68583, USA.
| | - Vince Pantalone
- Department of Plant Sciences, 2431 Joe Johnson Dr., University of Tennessee, Knoxville, TN, 37996-4561, USA.
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602-6810, USA.
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, 35806, USA.
- Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California, 94598, USA.
| | - Perry B Cregan
- USDA-ARS, Soybean Genomics and Improvement Lab, Beltsville, MD, 20705, USA.
| |
Collapse
|
29
|
Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. FRONTIERS IN PLANT SCIENCE 2015; 6:619. [PMID: 26322060 PMCID: PMC4530591 DOI: 10.3389/fpls.2015.00619] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 07/27/2015] [Indexed: 05/18/2023]
Abstract
Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis.
Collapse
Affiliation(s)
- Md. Matiur Rahaman
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, HangzhouChina
| | - Dijun Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, HangzhouChina
- Leibniz Institute of Plant Genetics and Crop Plant Research, GaterslebenGermany
| | - Zeeshan Gillani
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, HangzhouChina
| | - Christian Klukas
- Leibniz Institute of Plant Genetics and Crop Plant Research, GaterslebenGermany
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, HangzhouChina
| |
Collapse
|
30
|
Dhakal R, Park E, Lee SW, Baek KH. Soybean (Glycine max L. Merr.) sprouts germinated under red light irradiation induce disease resistance against bacterial rotting disease. PLoS One 2015; 10:e0117712. [PMID: 25679808 PMCID: PMC4334547 DOI: 10.1371/journal.pone.0117712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
Specific wavelengths of light can exert various physiological changes in plants, including effects on responses to disease incidence. To determine whether specific light wavelength had effects on rotting disease caused by Pseudomonas putida 229, soybean sprouts were germinated under a narrow range of wavelengths from light emitting diodes (LEDs), including red (650-660), far red (720-730) and blue (440-450 nm) or broad range of wavelength from daylight fluorescence bulbs. The controls were composed of soybean sprouts germinated in darkness. After germination under different conditions for 5 days, the soybean sprouts were inoculated with P. putida 229 and the disease incidence was observed for 5 days. The sprouts exposed to red light showed increased resistance against P. putida 229 relative to those grown under other conditions. Soybean sprouts germinated under red light accumulated high levels of salicylic acid (SA) accompanied with up-regulation of the biosynthetic gene ICS and the pathogenesis- related (PR) gene PR-1, indicating that the resistance was induced by the action of SA via de novo synthesis of SA in the soybean sprouts by red light irradiation. Taken together, these data suggest that only the narrow range of red light can induce disease resistance in soybean sprouts, regulated by the SA-dependent pathway via the de novo synthesis of SA and up-regulation of PR genes.
Collapse
Affiliation(s)
- Radhika Dhakal
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Euiho Park
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Se-Weon Lee
- International Technology Cooperation Center, Rural Development Administration, Jeonju, Republic of Korea
| | - Kwang-Hyun Baek
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
31
|
Wang X, Li Y, Zhang H, Sun G, Zhang W, Qiu L. Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Mol Biol Rep 2015; 42:489-96. [PMID: 25324172 DOI: 10.1007/s11033-014-3792-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
Seed-size/weight traits, controlled by multiple genes in soybean, play an important role in determining seed yield. However, the molecular mechanisms controlling the seed size and weight in soybean remain unclear. In Arabidopsis, P450/CYP78A gene family has been proved extremely relevant to seed size (such as AtCYP78A5, AtCYP78A6 and AtCYP78A9). We found that a soybean GmCYP78A10 gene underwent artificial selection during soybean breeding. The GmCYP78A10a allele mainly distributed in wild soybean (Glycine soja), but has been eliminated in the cultivars during early stage of soybean breeding, while the GmCYP78A10b allele has been accumulated and become the predominant allele in cultivated soybean (G. max). ANOVA analysis showed that the mean seed weight, seed width and seed thickness of soybean varieties with GmCYP78A10b allele was significantly heavier/bigger than those with GmCYP78A10a allele (P < 0.01). The allele could explain 7.2 % variation in seed weight. The pod number of the soybeans with GmCYP78A10b allele significantly decreased compared to those with GmCYP78A10a allele (P < 0.01, R(2) = 5.8 %), while other agronomic traits including seed weight/plant were not significantly affected by these two alleles. We speculated that during the early stage of soybean breeding, breeders selected big seed carrying GmCYP78A10b allele, but lowered pod number simultaneously. Overall, the selection did not cause the significantly change in soybean seed yield. Our results suggests that the soybean GmCYP78A10 gene may have a similar function to those genes belonging to P450/CYP78A subfamily in Arabidopsis and provides new information for the genetic control of seed size in soybean.
Collapse
Affiliation(s)
- Xiaobo Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China,
| | | | | | | | | | | |
Collapse
|
32
|
Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ, Kim SK, Lestari P, Laosatit K, Kim KH, Ha TJ, Chitikineni A, Kim MY, Ko JM, Gwag JG, Moon JK, Lee YH, Park BS, Varshney RK, Lee SH. Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep 2015; 5:8069. [PMID: 25626881 PMCID: PMC5389050 DOI: 10.1038/srep08069] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/02/2015] [Indexed: 01/17/2023] Open
Abstract
Adzuki bean (Vigna angularis var. angularis) is a dietary legume crop in East Asia. The presumed progenitor (Vigna angularis var. nipponensis) is widely found in East Asia, suggesting speciation and domestication in these temperate climate regions. Here, we report a draft genome sequence of adzuki bean. The genome assembly covers 75% of the estimated genome and was mapped to 11 pseudo-chromosomes. Gene prediction revealed 26,857 high confidence protein-coding genes evidenced by RNAseq of different tissues. Comparative gene expression analysis with V. radiata showed that the tissue specificity of orthologous genes was highly conserved. Additional re-sequencing of wild adzuki bean, V. angularis var. nipponensis, and V. nepalensis, was performed to analyze the variations between cultivated and wild adzuki bean. The determined divergence time of adzuki bean and the wild species predated archaeology-based domestication time. The present genome assembly will accelerate the genomics-assisted breeding of adzuki bean.
Collapse
Affiliation(s)
- Yang Jae Kang
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Dani Satyawan
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sangrea Shim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Taeyoung Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Jayern Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Won Joo Hwang
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Sue K. Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Puji Lestari
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD-IAARD), Jalan Tentara Pelajar No. 3A Bogor 16111, Indonesia
| | - Kularb Laosatit
- Program in Plant Breeding, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Kil Hyun Kim
- National Institute of Crop Science, Rural Development Administration, Suwon, 441-857, Korea
| | - Tae Joung Ha
- Research Policy Bureau, R&D Performance Evaluation & Management Division, Nongsaengmyeong-ro 300, Wansan-gu, Junju, 560-500, Korea
| | - Annapurna Chitikineni
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India
| | - Moon Young Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Jong-Min Ko
- Soybean Research Team, Legume & Oil Crop Research Division, Jeompiljae-ro 20, Miryang, Gyeongnamdo, 627-803, Korea
| | - Jae-Gyun Gwag
- National Agrobiodiversity Center of NAAS, RDA, SuwonxGyeongnamdo, Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Suwon, 441-857, Korea
| | - Yeong-Ho Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Beom-Seok Park
- Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Korea
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
33
|
Rahaman MM, Chen D, Gillani Z, Klukas C, Chen M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26322060 DOI: 10.3389/fpls.2015.00619/abstract] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Due to an increase in the consumption of food, feed, fuel and to meet global food security needs for the rapidly growing human population, there is a necessity to breed high yielding crops that can adapt to the future climate changes, particularly in developing countries. To solve these global challenges, novel approaches are required to identify quantitative phenotypes and to explain the genetic basis of agriculturally important traits. These advances will facilitate the screening of germplasm with high performance characteristics in resource-limited environments. Recently, plant phenomics has offered and integrated a suite of new technologies, and we are on a path to improve the description of complex plant phenotypes. High-throughput phenotyping platforms have also been developed that capture phenotype data from plants in a non-destructive manner. In this review, we discuss recent developments of high-throughput plant phenotyping infrastructure including imaging techniques and corresponding principles for phenotype data analysis.
Collapse
Affiliation(s)
- Md Matiur Rahaman
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou China
| | - Dijun Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou China ; Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben Germany
| | - Zeeshan Gillani
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou China
| | - Christian Klukas
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben Germany
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou China
| |
Collapse
|
34
|
Książkiewicz M, Zielezinski A, Wyrwa K, Szczepaniak A, Rychel S, Karlowski W, Wolko B, Naganowska B. Remnants of the Legume Ancestral Genome Preserved in Gene-Rich Regions: Insights from Lupinus angustifolius Physical, Genetic, and Comparative Mapping. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:84-101. [PMID: 25620837 PMCID: PMC4295026 DOI: 10.1007/s11105-014-0730-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The narrow-leafed lupin (Lupinus angustifolius) was recently considered as a legume reference species. Genetic resources have been developed, including a draft genome sequence, linkage maps, nuclear DNA libraries, and cytogenetic chromosome-specific landmarks. Here, we used a complex approach, involving DNA fingerprinting, sequencing, genetic mapping, and molecular cytogenetics, to localize and analyze L. angustifolius gene-rich regions (GRRs). A L. angustifolius genomic bacterial artificial chromosome (BAC) library was screened with short sequence repeat (SSR)-based probes. Selected BACs were fingerprinted and assembled into contigs. BAC-end sequence (BES) annotation allowed us to choose clones for sequencing, targeting GRRs. Additionally, BESs were aligned to the scaffolds of the genome sequence. The genetic map was supplemented with 35 BES-derived markers, distributed in 14 linkage groups and tagging 37 scaffolds. The identified GRRs had an average gene density of 19.6 genes/100 kb and physical-to-genetic distance ratios of 11 to 109 kb/cM. Physical and genetic mapping was supported by multi-BAC-fluorescence in situ hybridization (FISH), and five new linkage groups were assigned to the chromosomes. Syntenic links to the genome sequences of five legume species (Medicago truncatula, Glycine max, Lotus japonicus, Phaseolus vulgaris, and Cajanus cajan) were identified. The comparative mapping of the two largest lupin GRRs provides novel evidence for ancient duplications in all of the studied species. These regions are conserved among representatives of the main clades of Papilionoideae. Furthermore, despite the complex evolution of legumes, some segments of the nuclear genome were not substantially modified and retained their quasi-ancestral structures. Cytogenetic markers anchored in these regions constitute a platform for heterologous mapping of legume genomes.
Collapse
Affiliation(s)
- Michał Książkiewicz
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Andrzej Zielezinski
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Katarzyna Wyrwa
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Anna Szczepaniak
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Sandra Rychel
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Wojciech Karlowski
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Bogdan Wolko
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| | - Barbara Naganowska
- Department of Genomics, Institute of Plant Genetics of the Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznan, Poland
| |
Collapse
|
35
|
Gujaria-Verma N, Vail SL, Carrasquilla-Garcia N, Penmetsa RV, Cook DR, Farmer AD, Vandenberg A, Bett KE. Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea. FRONTIERS IN PLANT SCIENCE 2014; 5:676. [PMID: 25538716 PMCID: PMC4256995 DOI: 10.3389/fpls.2014.00676] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/13/2014] [Indexed: 05/23/2023]
Abstract
Lentil (Lens culinaris Medik.) is a global food crop with increasing importance for food security in south Asia and other regions. Lens ervoides, a wild relative of cultivated lentil, is an important source of agronomic trait variation. Lens is a member of the galegoid clade of the Papilionoideae family, which includes other important dietary legumes such as chickpea (Cicer arietinum) and pea (Pisum sativum), and the sequenced model legume Medicago truncatula. Understanding the genetic structure of Lens spp. in relation to more fully sequenced legumes would allow leveraging of genomic resources. A set of 1107 TOG-based amplicons were identified in L. ervoides and a subset thereof used to design SNP markers for mapping. A map of L. ervoides consisting of 377 SNP markers spread across seven linkage groups was developed using a GoldenGate genotyping array and single SNP marker assays. Comparison with maps of M. truncatula and L. culinaris documented considerable shared synteny and led to the identification of a few major translocations and a major inversion that distinguish Lens from M. truncatula, as well as a translocation that distinguishes L. culinaris from L. ervoides. The identification of chromosome-level differences among Lens spp. will aid in the understanding of introgression of genes from L. ervoides into cultivated L. culinaris, furthering genetic research and breeding applications in lentil.
Collapse
Affiliation(s)
- Neha Gujaria-Verma
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Sally L. Vail
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | | | - R. Varma Penmetsa
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Douglas R. Cook
- Department of Plant Pathology, University of California, DavisDavis, CA, USA
| | - Andrew D. Farmer
- Bioinformatics, National Centre for Genomic ResourcesSanta Fe, NM, USA
| | - Albert Vandenberg
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| |
Collapse
|
36
|
Müller BSDF, Sakamoto T, de Menezes IPP, Prado GS, Martins WS, Brondani C, de Barros EG, Vianello RP. Analysis of BAC-end sequences in common bean (Phaseolus vulgaris L.) towards the development and characterization of long motifs SSRs. PLANT MOLECULAR BIOLOGY 2014; 86:455-470. [PMID: 25164100 DOI: 10.1007/s11103-014-0240-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The increasing volume of genomic data on the Phaseolus vulgaris species have contributed to its importance as a model genetic species and positively affected the investigation of other legumes of scientific and economic value. To expand and gain a more in-depth knowledge of the common bean genome, the ends of a number of bacterial artificial chromosome (BAC) were sequenced, annotated and the presence of repetitive sequences was determined. In total, 52,270 BESs (BAC-end sequences), equivalent to 32 Mbp (~6 %) of the genome, were processed. In total, 3,789 BES-SSRs were identified, with a distribution of one SSR (simple sequence repeat) per 8.36 kbp and 2,000 were suitable for the development of SSRs, of which 194 were evaluated in low-resolution screening. From 40 BES-SSRs based on long motifs SSRs (≥ trinucleotides) analyzed in high-resolution genotyping, 34 showed an equally good amplification for the Andean and for the Mesoamerican genepools, exhibiting an average gene diversity (H E) of 0.490 and 5.59 alleles/locus, of which six classified as Class I showed a H E ≥ 0.7. The PCoA and structure analysis allowed to discriminate the gene pools (K = 2, FST = 0.733). From the 52,270 BESs, 2 % corresponded to transcription factors and 3 % to transposable elements. Putative functions for 24,321 BESs were identified and for 19,363 were assigned functional categories (gene ontology). This study identified highly polymorphic BES-SSRs containing tri- to hexanucleotides motifs and bringing together relevant genetic characteristics useful for breeding programs. Additionally, the BESs were incorporated into the international genome-sequencing project for the common bean.
Collapse
Affiliation(s)
- Bárbara Salomão de Faria Müller
- Laboratório de Genética Molecular de Plantas, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Smith-Hammond CL, Hoyos E, Miernyk JA. The pea seedling mitochondrial Nε-lysine acetylome. Mitochondrion 2014; 19 Pt B:154-65. [PMID: 24780491 DOI: 10.1016/j.mito.2014.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022]
Abstract
Posttranslational lysine acetylation is believed to occur in all taxa and to affect thousands of proteins. In contrast to the hundreds of mitochondrial proteins reported to be lysine-acetylated in non-plant species, only a handful have been reported from the plant taxa previously examined. To investigate whether this reflects a biologically significant difference or merely a peculiarity of the samples thus far examined, we immunoenriched and analyzed acetylated peptides from highly purified pea seedling mitochondria using mass spectrometry. Our results indicate that a multitude of mitochondrial proteins, involved in a variety of processes, are acetylated in pea seedlings.
Collapse
Affiliation(s)
- Colin L Smith-Hammond
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.
| | - Elizabeth Hoyos
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.
| | - Ján A Miernyk
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA; Plant Genetics Research Unit, USDA, Agricultural Research Service, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
38
|
Wu J, Wang L, Li L, Wang S. De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. PLoS One 2014; 9:e109262. [PMID: 25275443 PMCID: PMC4183588 DOI: 10.1371/journal.pone.0109262] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
The common bean (Phaseolus vulgaris L.) is one of the most important food legumes, far ahead of other legumes. The average grain yield of the common bean worldwide is much lower than its potential yields, primarily due to drought in the field. However, the gene network that mediates plant responses to drought stress remains largely unknown in this species. The major goals of our study are to identify a large scale of genes involved in drought stress using RNA-seq. First, we assembled 270 million high-quality trimmed reads into a non-redundant set of 62,828 unigenes, representing approximately 49 Mb of unique transcriptome sequences. Of these unigenes, 26,501 (42.2%) common bean unigenes had significant similarity with unigenes/predicted proteins from other legumes or sequenced plants. All unigenes were functionally annotated within the GO, COG and KEGG pathways. The strategy for de novo assembly of transcriptome data generated here will be useful in other legume plant transcriptome studies. Second, we identified 10,482 SSRs and 4,099 SNPs in transcripts. The large number of genetic markers provides a resource for gene discovery and development of functional molecular markers. Finally, we found differential expression genes (DEGs) between terminal drought and optimal irrigation treatments and between the two different genotypes Long 22-0579 (drought tolerant) and Naihua (drought sensitive). DEGs were confirmed by quantitative real-time PCR assays, which indicated that these genes are functionally associated with the drought-stress response. These resources will be helpful for basic and applied research for genome analysis and crop drought resistance improvement in the common bean.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lanfen Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Wang
- Key Laboratory of Crop Germplasm Resources and Utilization, Ministry of Agriculture; The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
39
|
Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J, Shunmugam ASK, Liu Y, Jha AB, Diapari M, Burstin J, Aubert G, Tar’an B, Bett KE, Warkentin TD, Sharpe AG. Gene-based SNP discovery and genetic mapping in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2225-41. [PMID: 25119872 PMCID: PMC4180032 DOI: 10.1007/s00122-014-2375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 07/29/2014] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Gene-based SNPs were identified and mapped in pea using five recombinant inbred line populations segregating for traits of agronomic importance. Pea (Pisum sativum L.) is one of the world's oldest domesticated crops and has been a model system in plant biology and genetics since the work of Gregor Mendel. Pea is the second most widely grown pulse crop in the world following common bean. The importance of pea as a food crop is growing due to its combination of moderate protein concentration, slowly digestible starch, high dietary fiber concentration, and its richness in micronutrients; however, pea has lagged behind other major crops in harnessing recent advances in molecular biology, genomics and bioinformatics, partly due to its large genome size with a large proportion of repetitive sequence, and to the relatively limited investment in research in this crop globally. The objective of this research was the development of a genome-wide transcriptome-based pea single-nucleotide polymorphism (SNP) marker platform using next-generation sequencing technology. A total of 1,536 polymorphic SNP loci selected from over 20,000 non-redundant SNPs identified using deep transcriptome sequencing of eight diverse Pisum accessions were used for genotyping in five RIL populations using an Illumina GoldenGate assay. The first high-density pea SNP map defining all seven linkage groups was generated by integrating with previously published anchor markers. Syntenic relationships of this map with the model legume Medicago truncatula and lentil (Lens culinaris Medik.) maps were established. The genic SNP map establishes a foundation for future molecular breeding efforts by enabling both the identification and tracking of introgression of genomic regions harbouring QTLs related to agronomic and seed quality traits.
Collapse
Affiliation(s)
- Anoop Sindhu
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Larissa Ramsay
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
- Present Address: Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Lacey-Anne Sanderson
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Robert Stonehouse
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Rong Li
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Janet Condie
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| | - Arun S. K. Shunmugam
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Yong Liu
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Ambuj B. Jha
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Marwan Diapari
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Judith Burstin
- UMR1347 Agroecology, INRA, 17 rue de Sully, 21065 Dijon Cedex, France
| | - Gregoire Aubert
- UMR1347 Agroecology, INRA, 17 rue de Sully, 21065 Dijon Cedex, France
| | - Bunyamin Tar’an
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Thomas D. Warkentin
- Department of Plant Sciences, Crop Development Centre, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Andrew G. Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9 Canada
| |
Collapse
|
40
|
Sherman-Broyles S, Bombarely A, Grimwood J, Schmutz J, Doyle J. Complete plastome sequences from Glycine syndetika and six additional perennial wild relatives of soybean. G3 (BETHESDA, MD.) 2014; 4:2023-33. [PMID: 25155272 PMCID: PMC4199708 DOI: 10.1534/g3.114.012690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/19/2014] [Indexed: 12/03/2022]
Abstract
Organelle sequences have a long history of utility in phylogenetic analyses. Chloroplast sequences when combined with nuclear data can help resolve relationships among flowering plant genera, and within genera incongruence can point to reticulate evolution. Plastome sequences are becoming plentiful because they are increasingly easier to obtain. Complete plastome sequences allow us to detect rare rearrangements and test the tempo of sequence evolution. Chloroplast sequences are generally considered a nuisance to be kept to a minimum in bacterial artificial chromosome libraries. Here, we sequenced two bacterial artificial chromosomes per species to generate complete plastome sequences from seven species. The plastome sequences from Glycine syndetika and six other perennial Glycine species are similar in arrangement and gene content to the previously published soybean plastome. Repetitive sequences were detected in high frequencies as in soybean, but further analysis showed that repeat sequence numbers are inflated. Previous chloroplast-based phylogenetic trees for perennial Glycine were incongruent with nuclear gene-based phylogenetic trees. We tested whether the hypothesis of introgression was supported by the complete plastomes. Alignment of complete plastome sequences and Bayesian analysis allowed us to date putative hybridization events supporting the hypothesis of introgression and chloroplast "capture."
Collapse
Affiliation(s)
| | | | - Jane Grimwood
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Jeremy Schmutz
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama 35806
| | - Jeff Doyle
- Cornell University, Department of Plant Biology, Ithaca, New York 14853
| |
Collapse
|
41
|
Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK. Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1263-91. [PMID: 24710822 PMCID: PMC4035543 DOI: 10.1007/s00122-014-2301-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Given recent advances in pulse molecular biology, genomics-driven breeding has emerged as a promising approach to address the issues of limited genetic gain and low productivity in various pulse crops. The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability.
Collapse
Affiliation(s)
- Abhishek Bohra
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
| | - Uday C. Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi, 110012 India
| | - Indra P. Singh
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Dibendu Datta
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | | | - N. Nadarajan
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024 India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324 India
- The University of Western Australia (UWA), Crawley, 6009 Australia
| |
Collapse
|
42
|
Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN. New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1237-1249. [PMID: 24633641 DOI: 10.1007/s00122-014-2294-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
This is the first clear evidence of duplication and/or triplication of large chromosomal regions in a genome of a Genistoid legume, the most basal clade of Papilionoid legumes. Lupinus angustifolius L. (narrow-leafed lupin) is the most widely cultivated species of Genistoid legume, grown for its high-protein grain. As a member of this most basal clade of Papilionoid legumes, L. angustifolius serves as a useful model for exploring legume genome evolution. Here, we report an improved reference genetic map of L. angustifolius comprising 1207 loci, including 299 newly developed Diversity Arrays Technology markers and 54 new gene-based PCR markers. A comparison between the L. angustifolius and Medicago truncatula genomes was performed using 394 sequence-tagged site markers acting as bridging points between the two genomes. The improved L. angustifolius genetic map, the updated M. truncatula genome assembly and the increased number of bridging points between the genomes together substantially enhanced the resolution of synteny and chromosomal colinearity between these genomes compared to previous reports. While a high degree of syntenic fragmentation was observed that was consistent with the large evolutionary distance between the L. angustifolius and M. truncatula genomes, there were striking examples of conserved colinearity of loci between these genomes. Compelling evidence was found of large-scale duplication and/or triplication in the L. angustifolius genome, consistent with one or more ancestral polyploidy events.
Collapse
Affiliation(s)
- Magdalena Kroc
- Department of Genomics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
| | | | | | | | | |
Collapse
|
43
|
Nallu S, Silverstein KAT, Zhou P, Young ND, VandenBosch KA. Patterns of divergence of a large family of nodule cysteine-rich peptides in accessions of Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:697-705. [PMID: 24635121 PMCID: PMC4282536 DOI: 10.1111/tpj.12506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 02/20/2014] [Accepted: 03/04/2014] [Indexed: 05/07/2023]
Abstract
The nodule cysteine-rich (NCR) groups of defensin-like (DEFL) genes are one of the largest gene families expressed in the nodules of some legume plants. They have only been observed in the inverted repeat loss clade (IRLC) of legumes, which includes the model legume Medicago truncatula. NCRs are reported to play an important role in plant-microbe interactions. To understand their diversity we analyzed their expression and sequence polymorphisms among four accessions of M. truncatula. A significant expression and nucleotide variation was observed among the genes. We then used 26 accessions to estimate the selection pressures shaping evolution among the accessions by calculating the nucleotide diversity at non-synonymous and synonymous sites in the coding region. The mature peptides of the orthologous NCRs had signatures of both purifying and diversifying selection pressures, unlike the seed DEFLs, which predominantly exhibited purifying selection. The expression, sequence variation and apparent diversifying selection in NCRs within the Medicago species indicates rapid and recent evolution, and suggests that this family of genes is actively evolving to adapt to different environments and is acquiring new functions.
Collapse
Affiliation(s)
- Sumitha Nallu
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- * For correspondence (e-mail )
| | - Kevin A T Silverstein
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- ‡ Present address: Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peng Zhou
- Department of Plant Pathology, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Nevin D Young
- Department of Plant Pathology, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Kathryn A VandenBosch
- Department of Plant Biology, University of Minnesota250 Biological Sciences, 1445 Gortner Avenue, Saint Paul, MN, 55108, USA
- § Present address: College of Agricultural and Life Sciences, 1450 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
44
|
Hyung D, Lee C, Kim JH, Yoo D, Seo YS, Jeong SC, Lee JH, Chung Y, Jung KH, Cook DR, Choi HK. Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula. PLoS One 2014; 9:e91721. [PMID: 24675968 PMCID: PMC3968010 DOI: 10.1371/journal.pone.0091721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
Cross-species translation of genomic information may play a pivotal role in applying biological knowledge gained from relatively simple model system to other less studied, but related, genomes. The information of abiotic stress (ABS)-responsive genes in Arabidopsis was identified and translated into the legume model system, Medicago truncatula. Various data resources, such as TAIR/AtGI DB, expression profiles and literatures, were used to build a genome-wide list of ABS genes. tBlastX/BlastP similarity search tools and manual inspection of alignments were used to identify orthologous genes between the two genomes. A total of 1,377 genes were finally collected and classified into 18 functional criteria of gene ontology (GO). The data analysis according to the expression cues showed that there was substantial level of interaction among three major types (i.e., drought, salinity and cold stress) of abiotic stresses. In an attempt to translate the ABS genes between these two species, genomic locations for each gene were mapped using an in-house-developed comparative analysis platform. The comparative analysis revealed that fragmental colinearity, represented by only 37 synteny blocks, existed between Arabidopsis and M. truncatula. Based on the combination of E-value and alignment remarks, estimated translation rate was 60.2% for this cross-family translation. As a prelude of the functional comparative genomic approaches, in-silico gene network/interactome analyses were conducted to predict key components in the ABS responses, and one of the sub-networks was integrated with corresponding comparative map. The results demonstrated that core members of the sub-network were well aligned with previously reported ABS regulatory networks. Taken together, the results indicate that network-based integrative approaches of comparative and functional genomics are important to interpret and translate genomic information for complex traits such as abiotic stresses.
Collapse
Affiliation(s)
- Daejin Hyung
- Department of Computer Science, Dong-A University, Busan, Republic of Korea
| | - Chaeyoung Lee
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Jin-Hyun Kim
- Department of Medical Bioscience, Dong-A University, Busan, Republic of Korea
| | - Dongwoon Yoo
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Busan National University, Busan, Republic of Korea
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongwon, Republic of Korea
| | - Jai-Heon Lee
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Youngsoo Chung
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology & Graduate School of Biotechnology, Kyunghee University, Yongin, Republic of Korea
| | - Douglas R. Cook
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Hong-kyu Choi
- Department of Genetic Engineering, Dong-A University, Busan, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
Kaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M. EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:703-13. [PMID: 24370962 DOI: 10.1007/s00122-013-2252-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/13/2013] [Indexed: 05/24/2023]
Abstract
Large-scale SNP discovery and dense genetic mapping in a lentil intraspecific cross permitted identification of a single chromosomal region controlling tolerance to boron toxicity, an important breeding objective. Lentil (Lens culinaris Medik.) is a highly nutritious food legume crop that is cultivated world-wide. Until recently, lentil has been considered a genomic 'orphan' crop, limiting the feasibility of marker-assisted selection strategies in breeding programs. The present study reports on the identification of single-nucleotide polymorphisms (SNPs) from transcriptome sequencing data, utilisation of expressed sequence tag (EST)-derived simple sequence repeat (SSR) and SNP markers for construction of a gene-based genetic linkage map, and identification of markers in close linkage to major QTLs for tolerance to boron (B) toxicity. A total of 2,956 high-quality SNP markers were identified from a lentil EST database. Sub-sets of 546 SSRs and 768 SNPs were further used for genetic mapping of an intraspecific mapping population (Cassab × ILL2024) that exhibits segregation for B tolerance. Comparative analysis of the lentil linkage map with the sequenced genomes of Medicago truncatula Gaertn., soybean (Glycine max [L.] Merr.) and Lotus japonicus L. indicated blocks of conserved macrosynteny, as well as a number of rearrangements. A single genomic region was found to be associated with variation for B tolerance in lentil, based on evaluation performed over 2 years. Comparison of flanking markers to genome sequences of model species (M. truncatula, soybean and Arabidopsis thaliana) identified candidate genes that are functionally associated with B tolerance, and could potentially be used for diagnostic marker development in lentil.
Collapse
Affiliation(s)
- Sukhjiwan Kaur
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, La Trobe University Research and Development Park, Bundoora, VIC, 3083, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Kurdyukov S, Song Y, Sheahan MB, Rose RJ. Transcriptional regulation of early embryo development in the model legume Medicago truncatula. PLANT CELL REPORTS 2014; 33:349-62. [PMID: 24258241 PMCID: PMC3909251 DOI: 10.1007/s00299-013-1535-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/23/2013] [Accepted: 11/02/2013] [Indexed: 05/18/2023]
Abstract
Cultivated legumes account for more than a quarter of primary crop production worldwide. The protein- and oil-rich seed of cultivated legumes provides around one-third of the protein in the average human diet, with soybeans (Glycine max (L.) Merr) being the single largest source of vegetable oil. Despite their critical importance to human and animal nutrition, we lack an understanding of how early seed development in legumes is orchestrated at the transcriptional level. We developed a method to isolate ovules from the model legume, Medicago truncatula Gaertn, at specific stages of embryogenesis, on the basis of flower and pod morphology. Using these isolated ovules we profiled the expression of candidate homeobox, AP2 domain and B3 domain-containing transcription factors. These genes were identified by available information and sequence homology, and five distinctive patterns of transcription were found that correlated with specific stages of early seed growth and development. Co-expression of some genes could be related to common regulatory sequences in the promoter or 3'-UTR regions. These expression patterns were also related to the expression of B3-domain transcription factors important in seed filling (MtFUS3-like and MtABI3-like). Localisation of gene expression by promoter-GUS fusions or in situ hybridisation aided understanding of the role of the transcription factors. This study provides a framework to enhance the understanding of the integrated transcriptional regulation of legume embryo growth and development and seed filling.
Collapse
Affiliation(s)
- Sergey Kurdyukov
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
- Present Address: Kolling Institute of Medical Research, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065 Australia
| | - Youhong Song
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Michael B. Sheahan
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ray J. Rose
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| |
Collapse
|
47
|
Tek AL, Kashihara K, Murata M, Nagaki K. Identification of the centromere-specific histone H3 variant in Lotus japonicus. Gene 2014; 538:8-11. [PMID: 24462968 DOI: 10.1016/j.gene.2014.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/02/2013] [Accepted: 01/11/2014] [Indexed: 11/15/2022]
Abstract
The centromere is a structurally and functionally specialized region present on every eukaryotic chromosome. Lotus japonicus is a model legume species for which there is very limited information on the centromere structure. Here we cloned and characterized the L. japonicus homolog of the centromere-specific histone H3 gene (LjCenH3) encoding a 159-amino acid protein. Using an Agrobacterium-based transformation system, LjCenH3 tagged with a green fluorescent protein was transferred into L. japonicus cells. The centromeric position of LjCENH3 protein was revealed on L. japonicus metaphase chromosomes by an immunofluorescence assay. The identification of LjCenH3 as a critical centromere landmark could pave the way for a better understanding of centromere structure in this model and other agriculturally important legume species.
Collapse
Affiliation(s)
- Ahmet L Tek
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| | - Kazunari Kashihara
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Minoru Murata
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan.
| |
Collapse
|
48
|
Guillén G, Díaz-Camino C, Loyola-Torres CA, Aparicio-Fabre R, Hernández-López A, Díaz-Sánchez M, Sanchez F. Detailed analysis of putative genes encoding small proteins in legume genomes. FRONTIERS IN PLANT SCIENCE 2013; 4:208. [PMID: 23802007 PMCID: PMC3687714 DOI: 10.3389/fpls.2013.00208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/01/2013] [Indexed: 05/23/2023]
Abstract
Diverse plant genome sequencing projects coupled with powerful bioinformatics tools have facilitated massive data analysis to construct specialized databases classified according to cellular function. However, there are still a considerable number of genes encoding proteins whose function has not yet been characterized. Included in this category are small proteins (SPs, 30-150 amino acids) encoded by short open reading frames (sORFs). SPs play important roles in plant physiology, growth, and development. Unfortunately, protocols focused on the genome-wide identification and characterization of sORFs are scarce or remain poorly implemented. As a result, these genes are underrepresented in many genome annotations. In this work, we exploited publicly available genome sequences of Phaseolus vulgaris, Medicago truncatula, Glycine max, and Lotus japonicus to analyze the abundance of annotated SPs in plant legumes. Our strategy to uncover bona fide sORFs at the genome level was centered in bioinformatics analysis of characteristics such as evidence of expression (transcription), presence of known protein regions or domains, and identification of orthologous genes in the genomes explored. We collected 6170, 10,461, 30,521, and 23,599 putative sORFs from P. vulgaris, G. max, M. truncatula, and L. japonicus genomes, respectively. Expressed sequence tags (ESTs) available in the DFCI Gene Index database provided evidence that ~one-third of the predicted legume sORFs are expressed. Most potential SPs have a counterpart in a different plant species and counterpart regions or domains in larger proteins. Potential functional sORFs were also classified according to a reduced set of GO categories, and the expression of 13 of them during P. vulgaris nodule ontogeny was confirmed by qPCR. This analysis provides a collection of sORFs that potentially encode for meaningful SPs, and offers the possibility of their further functional evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Federico Sanchez
- *Correspondence: Federico Sanchez, Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México e-mail:
| |
Collapse
|
49
|
Chang S, Hartman GL, Singh RJ, Lambert KN, Hobbs HA, Domier LL. Identification of high-quality single-nucleotide polymorphisms in Glycine latifolia using a heterologous reference genome sequence. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1627-38. [PMID: 23494395 DOI: 10.1007/s00122-013-2079-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/23/2013] [Indexed: 06/01/2023]
Abstract
Like many widely cultivated crops, soybean [Glycine max (L.) Merr.] has a relatively narrow genetic base, while its perennial distant relatives in the subgenus Glycine Willd. are more genetically diverse and display desirable traits not present in cultivated soybean. To identify single-nucleotide polymorphisms (SNPs) between a pair of G. latifolia accessions that were resistant or susceptible to Sclerotinia sclerotiorum (Lib.) de Bary, reduced-representations of DNAs from each accession were sequenced. Approximately 30 % of the 36 million 100-nt reads produced from each of the two G. latifolia accessions aligned primarily to gene-rich euchromatic regions on the distal arms of G. max chromosomes. Because a genome sequence was not available for G. latifolia, the G. max genome sequence was used as a reference to identify 9,303 G. latifolia SNPs that aligned to unique positions in the G. max genome with at least 98 % identity and no insertions and deletions. To validate a subset of the SNPs, nine TaqMan and 384 GoldenGate allele-specific G. latifolia SNP assays were designed and analyzed in F2 G. latifolia populations derived from G. latifolia plant introductions (PI) 559298 and 559300. All nine TaqMan markers and 91 % of the 291 polymorphic GoldenGate markers segregated in a 1:2:1 ratio. Genetic linkage maps were assembled for G. latifolia, nine of which were uninterrupted and nearly collinear with the homoeologous G. max chromosomes. These results made use of a heterologous reference genome sequence to identify more than 9,000 informative high-quality SNPs for G. latifolia, a subset of which was used to generate the first genetic maps for any perennial Glycine species.
Collapse
Affiliation(s)
- Sungyul Chang
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
50
|
Książkiewicz M, Wyrwa K, Szczepaniak A, Rychel S, Majcherkiewicz K, Przysiecka Ł, Karlowski W, Wolko B, Naganowska B. Comparative genomics of Lupinus angustifolius gene-rich regions: BAC library exploration, genetic mapping and cytogenetics. BMC Genomics 2013; 14:79. [PMID: 23379841 PMCID: PMC3618312 DOI: 10.1186/1471-2164-14-79] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 02/01/2013] [Indexed: 01/06/2023] Open
Abstract
Background The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. Results The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. Conclusions In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that not only was the gene nucleotide sequence conserved between soybean and lupin GRRs, but the order and orientation of particular genes in syntenic blocks was homologous, as well. These findings will be valuable to the forthcoming sequencing of the lupin genome.
Collapse
Affiliation(s)
- Michał Książkiewicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|