1
|
Li C, Colinas M, Wood JC, Vaillancourt B, Hamilton JP, Jones SL, Caputi L, O'Connor SE, Buell CR. Cell-type-aware regulatory landscapes governing monoterpene indole alkaloid biosynthesis in the medicinal plant Catharanthus roseus. THE NEW PHYTOLOGIST 2024. [PMID: 39456129 DOI: 10.1111/nph.20208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In plants, the biosynthetic pathways of some specialized metabolites are partitioned into specialized or rare cell types, as exemplified by the monoterpenoid indole alkaloid (MIA) pathway of Catharanthus roseus (Madagascar Periwinkle), the source of the anticancer compounds vinblastine and vincristine. In the leaf, the C. roseus MIA biosynthetic pathway is partitioned into three cell types with the final known steps of the pathway expressed in the rare cell type termed idioblast. How cell-type specificity of MIA biosynthesis is achieved is poorly understood. We generated single-cell multi-omics data from C. roseus leaves. Integrating gene expression and chromatin accessibility profiles across single cells, as well as transcription factor (TF)-binding site profiles, we constructed a cell-type-aware gene regulatory network for MIA biosynthesis. We showcased cell-type-specific TFs as well as cell-type-specific cis-regulatory elements. Using motif enrichment analysis, co-expression across cell types, and functional validation approaches, we discovered a novel idioblast-specific TF (Idioblast MYB1, CrIDM1) that activates expression of late-stage MIA biosynthetic genes in the idioblast. These analyses not only led to the discovery of the first documented cell-type-specific TF that regulates the expression of two idioblast-specific biosynthetic genes within an idioblast metabolic regulon but also provides insights into cell-type-specific metabolic regulation.
Collapse
Affiliation(s)
- Chenxin Li
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
| | - Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
| | - Sophia L Jones
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, 30602, GA, USA
| |
Collapse
|
2
|
Caseys C, Muhich AJ, Vega J, Ahmed M, Hopper A, Kelly D, Kim S, Madrone M, Plaziak T, Wang M, Kliebenstein DJ. Leaf abaxial and adaxial surfaces differentially affect the interaction of Botrytis cinerea across several eudicots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39367581 DOI: 10.1111/tpj.17055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Eudicot plant species have leaves with two surfaces: the lower abaxial and the upper adaxial surface. Each surface varies in a diversity of components and molecular signals, resulting in potentially different degrees of resistance to pathogens. We tested how Botrytis cinerea, a necrotroph fungal pathogen, interacts with the two different leaf surfaces across 16 crop species and 20 Arabidopsis genotypes. This showed that the abaxial surface is generally more susceptible to the pathogen than the adaxial surface. In Arabidopsis, the differential lesion area between leaf surfaces was associated with jasmonic acid (JA) and salicylic acid (SA) signaling and differential induction of defense chemistry across the two surfaces. When infecting the adaxial surface, leaves mounted stronger defenses by producing more glucosinolates and camalexin defense compounds, partially explaining the differential susceptibility across surfaces. Testing a collection of 96 B. cinerea strains showed the genetic heterogeneity of growth patterns, with a few strains preferring the adaxial surface while most are more virulent on the abaxial surface. Overall, we show that leaf-Botrytis interactions are complex with host-specific, surface-specific, and strain-specific patterns.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Anna Jo Muhich
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| | - Josue Vega
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Maha Ahmed
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Aleshia Hopper
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - David Kelly
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Sydney Kim
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Matisse Madrone
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Taylor Plaziak
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Melissa Wang
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, California, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Hong Y, Yu Z, Zhou Q, Chen C, Hao Y, Wang Z, Zhu JK, Guo H, Huang AC. NAD + deficiency primes defense metabolism via 1O 2-escalated jasmonate biosynthesis in plants. Nat Commun 2024; 15:6652. [PMID: 39103368 PMCID: PMC11300881 DOI: 10.1038/s41467-024-51114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a redox cofactor and signal central to cell metabolisms. Disrupting NAD homeostasis in plant alters growth and stress resistance, yet the underlying mechanisms remain largely unknown. Here, by combining genetics with multi-omics, we discover that NAD+ deficiency in qs-2 caused by mutation in NAD+ biosynthesis gene-Quinolinate Synthase retards growth but induces biosynthesis of defense compounds, notably aliphatic glucosinolates that confer insect resistance. The elevated defense in qs-2 is resulted from activated jasmonate biosynthesis, critically hydroperoxidation of α-linolenic acid by the 13-lipoxygenase (namely LOX2), which is escalated via the burst of chloroplastic ROS-singlet oxygen (1O2). The NAD+ deficiency-mediated JA induction and defense priming sequence in plants is recapitulated upon insect infestation, suggesting such defense mechanism operates in plant stress response. Hence, NAD homeostasis is a pivotal metabolic checkpoint that may be manipulated to navigate plant growth and defense metabolism for stress acclimation.
Collapse
Affiliation(s)
- Yechun Hong
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zongjun Yu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Chunyu Chen
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yuqiong Hao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, 041000, Shanxi, China
| | - Zhen Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ancheng C Huang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, SUSTech-PKU Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
4
|
Fernández JD, Miño I, Canales J, Vidal EA. Gene regulatory networks underlying sulfate deficiency responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2781-2798. [PMID: 38366662 DOI: 10.1093/jxb/erae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Sulfur (S) is an essential macronutrient for plants and its availability in soils is an important determinant for growth and development. Current regulatory policies aimed at reducing industrial S emissions together with changes in agronomical practices have led to a decline in S contents in soils worldwide. Deficiency of sulfate-the primary form of S accessible to plants in soil-has adverse effects on both crop yield and nutritional quality. Hence, recent research has increasingly focused on unraveling the molecular mechanisms through which plants detect and adapt to a limiting supply of sulfate. A significant part of these studies involves the use of omics technologies and has generated comprehensive catalogs of sulfate deficiency-responsive genes and processes, principally in Arabidopsis together with a few studies centering on crop species such as wheat, rice, or members of the Brassica genus. Although we know that sulfate deficiency elicits an important reprogramming of the transcriptome, the transcriptional regulators orchestrating this response are not yet well understood. In this review, we summarize our current knowledge of gene expression responses to sulfate deficiency and recent efforts towards the identification of the transcription factors that are involved in controlling these responses. We further compare the transcriptional response and putative regulators between Arabidopsis and two important crop species, rice and tomato, to gain insights into common mechanisms of the response to sulfate deficiency.
Collapse
Affiliation(s)
- José David Fernández
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Programa de Doctorado en Genómica Integrativa, Vicerrectoría de Investigación, Universidad Mayor, 8580745, Santiago, Chile
| | - Ignacio Miño
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Javier Canales
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Elena A Vidal
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo - Millennium Science Initiative Program, Millennium Institute for Integrative Biology, 7500565, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, 8580745, Santiago, Chile
| |
Collapse
|
5
|
Polozsányi Z, Galádová H, Kaliňák M, Jopčík M, Kaliňáková B, Breier A, Šimkovič M. The Antimicrobial Effects of Myrosinase Hydrolysis Products Derived from Glucosinolates Isolated from Lepidium draba. PLANTS (BASEL, SWITZERLAND) 2024; 13:995. [PMID: 38611524 PMCID: PMC11013450 DOI: 10.3390/plants13070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Lepidium draba (hoary cress) is a perennial plant belonging to the Brassicaceae family that produces two dominant glucosinolates (GLSs): glucoraphanin (GRN) and sinalbin (SBN). They represent the stored form, which is converted upon the myrosinase (Myr) hydrolysis activity to active compounds, mainly isothiocyanates (ITCs) such as sulforaphane (SFN) or p-hydroxybenzyl isothiocyanate (pHBITC). Research on ITCs that have proven anticancer, antimicrobial, and chemoprotective properties is usually conducted with pure commercially available compounds. However, these are chemically reactive, making it difficult to use them directly for preventive purposes in dietary supplements. Efforts are currently being made to prepare dietary supplements enriched with GLS and/or Myr. In this study, we report a simple but efficient chromatographic procedure for the isolation and purification of GLSs from MeOH extract from hoary cress based on a combination of ion exchange and gel permeation chromatography on DEAE-Sephadex A-25 and Sephadex LH-20. To obtain the Myr required for efficient hydrolysis of GLSs into antibacterial ITCs, we developed a rapid method for its extraction from the seeds of Lepidium sativum (garden cress). The yields of GLSs were 22.9 ± 1.2 mg GRN (purity 96%) and 10.4 ± 1.1 mg SBN (purity 92%) from 1 g of dry plant material. Both purified GLSs were used as substrates for the Myr. Analysis of the composition of hydrolysis products (HPs) revealed differences in their hydrolysis rates and in the degree of conversion from GLSs to individual ITCs catalyzed by Myr. When GRNs were cleaved, SFNs were formed in an equimolar ratio, but the formation of pHBITCs was only half that of cleaved SBNs. The decrease in pHBITC content is due to its instability compared to SFN. While SFN is stable in aqueous media during the measurement, pHBITC undergoes non-enzymatic hydrolysis to p-hydroxybenzyl alcohol and thiocyanate ions. Testing of the antimicrobial effects of the HPs formed from GRN by Myr under premix or in situ conditions showed inhibition of the growth of model prokaryotic and eukaryotic microorganisms. This observation could serve as the jumping-off point for the design of a two-component mixture, based on purified GLSs and Myr that is, usable in food or the pharmaceutical industry in the future.
Collapse
Affiliation(s)
- Zoltán Polozsányi
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Helena Galádová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Kaliňák
- Central Laboratories, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Martin Jopčík
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademická 969, 949 01 Nitra, Slovakia
| | - Barbora Kaliňáková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05 Bratislava, Slovakia
| | - Martin Šimkovič
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| |
Collapse
|
6
|
Blomberg J, Tasselius V, Vergara A, Karamat F, Imran QM, Strand Å, Rosvall M, Björklund S. Pseudomonas syringae infectivity correlates to altered transcript and metabolite levels of Arabidopsis mediator mutants. Sci Rep 2024; 14:6771. [PMID: 38514763 PMCID: PMC10958028 DOI: 10.1038/s41598-024-57192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Rapid metabolic responses to pathogens are essential for plant survival and depend on numerous transcription factors. Mediator is the major transcriptional co-regulator for integration and transmission of signals from transcriptional regulators to RNA polymerase II. Using four Arabidopsis Mediator mutants, med16, med18, med25 and cdk8, we studied how differences in regulation of their transcript and metabolite levels correlate to their responses to Pseudomonas syringae infection. We found that med16 and cdk8 were susceptible, while med25 showed increased resistance. Glucosinolate, phytoalexin and carbohydrate levels were reduced already before infection in med16 and cdk8, but increased in med25, which also displayed increased benzenoids levels. Early after infection, wild type plants showed reduced glucosinolate and nucleoside levels, but increases in amino acids, benzenoids, oxylipins and the phytoalexin camalexin. The Mediator mutants showed altered levels of these metabolites and in regulation of genes encoding key enzymes for their metabolism. At later stage, mutants displayed defective levels of specific amino acids, carbohydrates, lipids and jasmonates which correlated to their infection response phenotypes. Our results reveal that MED16, MED25 and CDK8 are required for a proper, coordinated transcriptional response of genes which encode enzymes involved in important metabolic pathways for Arabidopsis responses to Pseudomonas syringae infections.
Collapse
Affiliation(s)
- Jeanette Blomberg
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Viktor Tasselius
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
- Biostatistics, School of Public Health and Community Medicine, Gothenburg University, P.O. Box 463, 405 30, Gothenburg, Sweden
| | | | - Fazeelat Karamat
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Qari Muhammad Imran
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Åsa Strand
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87, Umeå, Sweden
| | - Martin Rosvall
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
7
|
Zhang F, Liu Y, Ma J, Su S, Chen L, Cheng Y, Buter S, Zhao X, Yi L, Lu Z. Analyzing the Diversity of MYB Family Response Strategies to Drought Stress in Different Flax Varieties Based on Transcriptome Data. PLANTS (BASEL, SWITZERLAND) 2024; 13:710. [PMID: 38475556 DOI: 10.3390/plants13050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
The MYB transcription factor family has numerous members, and is involved in biological activities, such as ABA signaling, which plays an important role in a plant's resistance to abiotic stresses such as drought. However, the diversity of MYB members that respond to drought stress and their regulatory mechanisms in different flax varieties were unclear. In this study, we obtained 855.69 Gb of clean data from 120 flax root samples from 20 flax (Linum usitatissimum L.) varieties, assembled 92,861 transcripts, and identified 434 MYB family members in each variety. The expression profiles of the MYB transcription factor family from 20 flax varieties under drought stress were analyzed. The results indicated that there are four strategies by which the MYB family responds to drought stress in these 20 flax varieties, each of which has its own specific processes, such as development, reproduction, and localization processes. The four strategies also include common biological processes, such as stimulus responses, metabolic processes, and biological regulation. The WGCNA method was subsequently employed to identify key members of the MYB family involved in response strategies to drought stress. The results demonstrated that a 1R-MYB subfamily gene co-expression network is significantly related to the gibberellin response and cytokinin-activated signaling pathway processes in the 'Strategy 4' for MYB family response to drought, identifying core genes such as Lus.scaffold70.240. Our results showed a diversity of MYB family responses to drought stress within flax varieties, and these results contribute to deciphering the mechanisms of the MYB family regulation of drought resistance. This will promote the more accurate breeding development of flax to adapt to agricultural production under drought conditions.
Collapse
Affiliation(s)
- Fan Zhang
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Ying Liu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Jie Ma
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Shaofeng Su
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Liyu Chen
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Yuchen Cheng
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Siqin Buter
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Xiaoqing Zhao
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| | - Liuxi Yi
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Agricultural College, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhanyuan Lu
- School of Life Science, Inner Mongolia University, Hohhot 010020, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
- Key Laboratory of Black Soil Protection and Utilization, Ministry of Agriculture and Rural Areas, Inner Mongolia Key Laboratory of Degradation Farmland Ecological Remediation and Pollution Control, Inner Mongolia Conservation Tillage Engineering Technology Research Center, Hohhot 010031, China
| |
Collapse
|
8
|
Mirzaei M, Younkin GC, Powell AF, Alani ML, Strickler SR, Jander G. Aphid Resistance Segregates Independently of Cardenolide and Glucosinolate Content in an Erysimum cheiranthoides (Wormseed Wallflower) F2 Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:466. [PMID: 38498451 PMCID: PMC10893121 DOI: 10.3390/plants13040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Plants in the genus Erysimum produce both glucosinolates and cardenolides as a defense mechanism against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardenolide content, and their resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not further induced by aphid feeding. To investigate the relative importance of glucosinolates and cardenolides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. The genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci, which affected glucosinolates and cardenolides, but not the aphid resistance. The abundance of most glucosinolates and cardenolides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although the overall cardenolide content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardenolides have a predominant effect on aphid resistance in E. cheiranthoides.
Collapse
Affiliation(s)
- Mahdieh Mirzaei
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
| | - Gordon C. Younkin
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Adrian F. Powell
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
| | - Martin L. Alani
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Susan R. Strickler
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60022, USA;
- Plant Biology and Conservation Program, Northwestern University, Evanston, IL 60208, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA; (M.M.); (G.C.Y.); (A.F.P.); (M.L.A.)
| |
Collapse
|
9
|
Huang Z, Meng S, Huang J, Zhou W, Song X, Hao P, Tang P, Cao Y, Zhang F, Li H, Tang Y, Sun B. Transcriptome Analysis Reveals the Mechanism of Exogenous Selenium in Alleviating Cadmium Stress in Purple Flowering Stalks ( Brassica campestris var. purpuraria). Int J Mol Sci 2024; 25:1800. [PMID: 38339079 PMCID: PMC10855379 DOI: 10.3390/ijms25031800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In China, cadmium (Cd) stress has a significant role in limiting the development and productivity of purple flowering stalks (Brassica campestris var. purpuraria). Exogenous selenium supplementation has been demonstrated in earlier research to mitigate the effects of Cd stress in a range of plant species; nevertheless, the physiological and molecular processes by which exogenous selenium increases vegetable shoots' resistance to Cd stress remain unclear. Purple flowering stalks (Brassica campestris var. purpuraria) were chosen as the study subject to examine the effects of treatment with sodium selenite (Na2SeO3) on the physiology and transcriptome alterations of cadmium stress. Purple flowering stalk leaves treated with exogenous selenium had higher glutathione content, photosynthetic capacity, and antioxidant enzyme activities compared to the leaves treated with Cd stress alone. Conversely, the contents of proline, soluble proteins, soluble sugars, malondialdehyde, and intercellular CO2 concentration tended to decrease. Transcriptome analysis revealed that 2643 differentially expressed genes (DEGs) were implicated in the response of exogenous selenium treatment to Cd stress. The metabolic pathways associated with flavonoid production, carotenoid synthesis, glutathione metabolism, and glucosinolate biosynthesis were among those enriched in these differentially expressed genes. Furthermore, we discovered DEGs connected to the production route of glucosinolates. This work sheds fresh light on how purple flowering stalks' tolerance to cadmium stress is improved by exogenous selenium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (S.M.); (J.H.); (W.Z.); (X.S.); (P.H.); (Y.C.); (H.L.)
| |
Collapse
|
10
|
Mirzaei M, Younkin GC, Powell AF, Alani ML, Strickler SR, Jander G. Aphid resistance segregates independently of cardiac glycoside and glucosinolate content in an Erysimum cheiranthoides (wormseed wallflower) F2 population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575310. [PMID: 38293015 PMCID: PMC10827086 DOI: 10.1101/2024.01.11.575310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Plants in the genus Erysimum produce both glucosinolates and cardiac glycosides as defense against herbivory. Two natural isolates of Erysimum cheiranthoides (wormseed wallflower) differed in their glucosinolate content, cardiac glycoside content, and resistance to Myzus persicae (green peach aphid), a broad generalist herbivore. Both classes of defensive metabolites were produced constitutively and were not induced further by aphid feeding. To investigate the relative importance of glucosinolates and cardiac glycosides in E. cheiranthoides defense, we generated an improved genome assembly, genetic map, and segregating F2 population. Genotypic and phenotypic analysis of the F2 plants identified quantitative trait loci affecting glucosinolates and cardiac glycosides, but not aphid resistance. The abundance of most glucosinolates and cardiac glycosides was positively correlated in the F2 population, indicating that similar processes regulate their biosynthesis and accumulation. Aphid reproduction was positively correlated with glucosinolate content. Although overall cardiac glycoside content had little effect on aphid growth and survival, there was a negative correlation between aphid reproduction and helveticoside abundance. However, this variation in defensive metabolites could not explain the differences in aphid growth on the two parental lines, suggesting that processes other than the abundance of glucosinolates and cardiac glycosides have a predominant effect on aphid resistance in E. cheiranthoides.
Collapse
Affiliation(s)
- Mahdieh Mirzaei
- Boyce Thompson Institute, 533 Tower Road, Ithaca NY 14853, USA
| | - Gordon C. Younkin
- Boyce Thompson Institute, 533 Tower Road, Ithaca NY 14853, USA
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | | | - Martin L. Alani
- Boyce Thompson Institute, 533 Tower Road, Ithaca NY 14853, USA
- Present address: Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Susan R. Strickler
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60022, USA
- Plant Biology and Conservation Program, Northwestern University, Evanston, IL 60208, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca NY 14853, USA
| |
Collapse
|
11
|
Kliebenstein DJ. Is specialized metabolite regulation specialized? JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4942-4948. [PMID: 37260397 DOI: 10.1093/jxb/erad209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Recent technical and theoretical advances have generated an explosion in the identification of specialized metabolite pathways. In comparison, our understanding of how these pathways are regulated is relatively lagging. This and the relatively young age of specialized metabolite pathways has partly contributed to a default and common paradigm whereby specialized metabolite regulation is theorized as relatively simple with a few key transcription factors and the compounds are non-regulatory end-products. In contrast, studies into model specialized metabolites, such as glucosinolates, are beginning to identify a new understanding whereby specialized metabolites are highly integrated into the plants' core metabolic, physiological, and developmental pathways. This model includes a greatly extended compendium of transcription factors controlling the pathway, key transcription factors that co-evolve with the pathway and simultaneously control core metabolic and developmental components, and finally the compounds themselves evolve regulatory connections to integrate into the plants signaling machinery. In this review, these concepts are illustrated using studies in the glucosinolate pathway within the Brassicales. This suggests that the broader community needs to reconsider how they do or do not integrate specialized metabolism into the regulatory network of their study species.
Collapse
|
12
|
Cárdenas PD, Landtved JP, Larsen SH, Lindegaard N, Wøhlk S, Jensen KR, Pattison DI, Burow M, Bak S, Crocoll C, Agerbirk N. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover. PHYTOCHEMISTRY 2023; 213:113742. [PMID: 37269935 DOI: 10.1016/j.phytochem.2023.113742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Phytoalexins are antimicrobial plant metabolites elicited by microbial attack or abiotic stress. We investigated phytoalexin profiles after foliar abiotic elicitation in the crucifer Barbarea vulgaris and interactions with the glucosinolate-myrosinase system. The treatment for abiotic elicitation was a foliar spray with CuCl2 solution, a usual eliciting agent, and three independent experiments were carried out. Two genotypes of B. vulgaris (G-type and P-type) accumulated the same three major phytoalexins in rosette leaves after treatment: phenyl-containing nasturlexin D and indole-containing cyclonasturlexin and cyclobrassinin. Phytoalexin levels were investigated daily by UHPLC-QToF MS and tended to differ among plant types and individual phytoalexins. In roots, phytoalexins were low or not detected. In treated leaves, typical total phytoalexin levels were in the range 1-10 nmol/g fresh wt. during three days after treatment while typical total glucosinolate (GSL) levels were three orders of magnitude higher. Levels of some minor GSLs responded to the treatment: phenethylGSL (PE) and 4-substituted indole GSLs. Levels of PE, a suggested nasturlexin D precursor, were lower in treated plants than controls. Another suggested precursor GSL, 3-hydroxyPE, was not detected, suggesting PE hydrolysis to be a key biosynthetic step. Levels of 4-substituted indole GSLs differed markedly between treated and control plants in most experiments, but not in a consistent way. The dominant GSLs, glucobarbarins, are not believed to be phytoalexin precursors. We observed statistically significant linear correlations between total major phytoalexins and the glucobarbarin products barbarin and resedine, suggesting that GSL turnover for phytoalexin biosynthesis was unspecific. In contrast, we did not find correlations between total major phytoalexins and raphanusamic acid or total glucobarbarins and barbarin. In conclusion, two groups of phytoalexins were detected in B. vulgaris, apparently derived from the GSLs PE and indol-3-ylmethylGSL. Phytoalexin biosynthesis was accompanied by depletion of the precursor PE and by turnover of major non-precursor GSLs to resedine. This work paves the way for identifying and characterizing genes and enzymes in the biosyntheses of phytoalexins and resedine.
Collapse
Affiliation(s)
- Pablo D Cárdenas
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Jonas P Landtved
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Signe H Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Nicolai Lindegaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Sebastian Wøhlk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Karen R Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - David I Pattison
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Søren Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
13
|
Wang M, Cai C, Li Y, Tao H, Meng F, Sun B, Miao H, Wang Q. Brassinosteroids fine-tune secondary and primary sulfur metabolism through BZR1-mediated transcriptional regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1153-1169. [PMID: 36573424 DOI: 10.1111/jipb.13442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
For adaptation to ever-changing environments, plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates (GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promoting hormone brassinosteroid (BR) inhibits GSLs accumulation while enhancing biosynthesis of primary sulfur metabolites, including cysteine (Cys) and glutathione (GSH) both in Arabidopsis and Brassica crops, fine-tuning secondary and primary sulfur metabolism to promote plant growth. Furthermore, we demonstrate that of BRASSINAZOLE RESISTANT 1 (BZR1), the central component of BR signaling, exerts distinct transcriptional inhibition regulation on indolic and aliphatic GSL via direct MYB51 dependent repression of indolic GSL biosynthesis, while exerting partial MYB29 dependent repression of aliphatic GSL biosynthesis. Additionally, BZR1 directly activates the transcription of APR1 and APR2 which encodes rate-limiting enzyme adenosine 5'-phosphosulfate reductases in the primary sulfur metabolic pathway. In summary, our findings indicate that BR inhibits the biosynthesis of GSLs to prioritize sulfur usage for primary metabolites under normal growth conditions. These findings expand our understanding of BR promoting plant growth from a metabolism perspective.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Congxi Cai
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 221116, China
| | - Yubo Li
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Han Tao
- Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fanliang Meng
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huiying Miao
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Qiaomei Wang
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth, Development and Quality improvement, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
14
|
Qin H, King GJ, Borpatragohain P, Zou J. Developing multifunctional crops by engineering Brassicaceae glucosinolate pathways. PLANT COMMUNICATIONS 2023:100565. [PMID: 36823985 PMCID: PMC10363516 DOI: 10.1016/j.xplc.2023.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs), found mainly in species of the Brassicaceae family, are one of the most well-studied classes of secondary metabolites. Produced by the action of myrosinase on GSLs, GSL-derived hydrolysis products (GHPs) primarily defend against biotic stress in planta. They also significantly affect the quality of crop products, with a subset of GHPs contributing unique food flavors and multiple therapeutic benefits or causing disagreeable food odors and health risks. Here, we explore the potential of these bioactive functions, which could be exploited for future sustainable agriculture. We first summarize our accumulated understanding of GSL diversity and distribution across representative Brassicaceae species. We then systematically discuss and evaluate the potential of exploited and unutilized genes involved in GSL biosynthesis, transport, and hydrolysis as candidate GSL engineering targets. Benefiting from available information on GSL and GHP functions, we explore options for multifunctional Brassicaceae crop ideotypes to meet future demand for food diversification and sustainable crop production. An integrated roadmap is subsequently proposed to guide ideotype development, in which maximization of beneficial effects and minimization of detrimental effects of GHPs could be combined and associated with various end uses. Based on several use-case examples, we discuss advantages and limitations of available biotechnological approaches that may contribute to effective deployment and could provide novel insights for optimization of future GSL engineering.
Collapse
Affiliation(s)
- Han Qin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | | | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
15
|
Nugroho ABD, Kim S, Lee SW, Kim DH. Transcriptomic and epigenomic analyses revealed that polycomb repressive complex 2 regulates not only developmental but also stress responsive metabolism in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2023; 14:1079218. [PMID: 36890886 PMCID: PMC9986605 DOI: 10.3389/fpls.2023.1079218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Polycomb group proteins (PcG) play a crucial role in developmental programs in eukaryotic organisms, including plants. PcG-mediated gene repression is achieved by epigenetic histone modification on target chromatins. Loss of PcG components leads to severe developmental defects. CURLY LEAF (CLF), a PcG component in Arabidopsis, catalyzes the trimethylation of histone H3 on lysine 27 (H3K27me3), a repressive histone mark in numerous genes in Arabidopsis. In this study, we isolated a single homolog of Arabidopsis CLF, namely, BrCLF, in Brassica rapa ssp. trilocularis. Transcriptomic analysis revealed that BrCLF participated in B. rapa developmental processes, such as seed dormancy, leaf and flower organ development, and floral transition. BrCLF was also involved in stress signaling and stress-responsive metabolism, such as aliphatic and indolic glucosinolate metabolism in B. rapa. Epigenome analysis showed that H3K27me3 was substantially enriched in genes related to these developmental and stress-responsive processes. Thus, this study provided a basis for elucidating the molecular mechanism of the PcG-mediated regulation of development and stress responses in B. rapa.
Collapse
|
16
|
Czerniawski P, Piślewska-Bednarek M, Piasecka A, Kułak K, Bednarek P. Loss of MYB34 Transcription Factor Supports the Backward Evolution of Indole Glucosinolate Biosynthesis in a Subclade of the Camelineae Tribe and Releases the Feedback Loop in This Pathway in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:80-93. [PMID: 36222356 DOI: 10.1093/pcp/pcac142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Glucosinolates are specialized defensive metabolites characteristic of the Brassicales order. Among them, aliphatic and indolic glucosinolates (IGs) are usually highly abundant in species from the Brassicaceae family. The exceptions this trend are species representing a subclade of the Camelineae tribe, including Capsella and Camelina genera, which have reduced capacity to produce and metabolize IGs. Our study addresses the contribution of specific glucosinolate-related myeloblastosis (MYB) transcription factors to this unprecedented backward evolution of IG biosynthesis. To this end, we performed phylogenomic and functional studies of respective MYB proteins. The obtained results revealed weakened conservation of glucosinolate-related MYB transcription factors, including loss of functional MYB34 protein, in the investigated species. We showed that the introduction of functional MYB34 from Arabidopsis thaliana partially restores IG biosynthesis in Capsella rubella, indicating that the loss of this transcription factor contributes to the backward evolution of this metabolic pathway. Finally, we performed an analysis of the impact of particular myb mutations on the feedback loop in IG biosynthesis, which drives auxin overproduction, metabolic dysregulation and strong growth retardation caused by mutations in IG biosynthetic genes. This uncovered the unique function of MYB34 among IG-related MYBs in this feedback regulation and consequently in IG conservation in Brassicaceae plants.
Collapse
Affiliation(s)
- Paweł Czerniawski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Mariola Piślewska-Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| | - Anna Piasecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, Poznań 60-479, Poland
| | - Karolina Kułak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
- Department of General Botany, Institute of Experimental Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznań 61-704, Poland
| |
Collapse
|
17
|
Wang P, Cao W, Yang L, Zhang Y, Fang Z, Zhuang M, Lv H, Wang Y, Cheng S, Ji J. Glucosinolate Biosynthetic Genes of Cabbage: Genome-Wide Identification, Evolution, and Expression Analysis. Genes (Basel) 2023; 14:476. [PMID: 36833404 PMCID: PMC9956868 DOI: 10.3390/genes14020476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cabbage (Brassica oleracea var. capitata) is a vegetable rich in glucosinolates (GSLs) that have proven health benefits. To gain insights into the synthesis of GSLs in cabbage, we systematically analyzed GSLs biosynthetic genes (GBGs) in the entire cabbage genome. In total, 193 cabbage GBGs were identified, which were homologous to 106 GBGs in Arabidopsis thaliana. Most GBGs in cabbage have undergone negative selection. Many homologous GBGs in cabbage and Chinese cabbage differed in expression patterns indicating the unique functions of these homologous GBGs. Spraying five exogenous hormones significantly altered expression levels of GBGs in cabbage. For example, MeJA significantly upregulated side chain extension genes BoIPMILSU1-1 and BoBCAT-3-1, and the expression of core structure construction genes BoCYP83A1 and BoST5C-1, while ETH significantly repressed the expression of side chain extension genes such as BoIPMILSU1-1, BoCYP79B2-1, and BoMAMI-1, and some transcription factors, namely BoMYB28-1, BoMYB34-1, BoMYB76-1, BoCYP79B2-1, and BoMAMI-1. Phylogenetically, the CYP83 family and CYP79B and CYP79F subfamilies may only be involved in GSL synthesis in cruciferous plants. Our unprecedented identification and analysis of GBGs in cabbage at the genome-wide level lays a foundation for the regulation of GSLs synthesis through gene editing and overexpression.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenxue Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Horticulture and Landscape Architecture, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Jialei Ji
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
18
|
Kim JA, Moon H, Kim HS, Choi D, Kim NS, Jang J, Lee SW, Baskoro Dwi Nugroho A, Kim DH. Transcriptome and QTL mapping analyses of major QTL genes controlling glucosinolate contents in vegetable- and oilseed-type Brassica rapa plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1067508. [PMID: 36743533 PMCID: PMC9891538 DOI: 10.3389/fpls.2022.1067508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites providing defense against pathogens and herbivores in plants, and anti-carcinogenic activity against human cancer cells. Profiles of GSLs vary greatly among members of genus Brassica. In this study, we found that a reference line of Chinese cabbage (B. rapa ssp. pekinensis), 'Chiifu' contains significantly lower amounts of total GSLs than the oilseed-type B. rapa (B. rapa ssp. trilocularis) line 'LP08'. This study aimed to identify the key regulators of the high accumulation of GSLs in Brassica rapa plants using transcriptomic and linkage mapping approaches. Comparative transcriptome analysis showed that, in total, 8,276 and 9,878 genes were differentially expressed between 'Chiifu' and 'LP08' under light and dark conditions, respectively. Among 162 B. rapa GSL pathway genes, 79 were related to GSL metabolism under light conditions. We also performed QTL analysis using a single nucleotide polymorphism-based linkage map constructed using 151 F5 individuals derived from a cross between the 'Chiifu' and 'LP08' inbred lines. Two major QTL peaks were successfully identified on chromosome 3 using high-performance liquid chromatography to obtain GSL profiles from 97 F5 recombinant inbred lines. The MYB-domain transcription factor gene BrMYB28.1 (Bra012961) was found in the highest QTL peak region. The second highest peak was located near the 2-oxoacid-dependent dioxygenase gene BrGSL-OH.1 (Bra022920). This study identified major genes responsible for differing profiles of GSLs between 'Chiifu' and 'LP08'. Thus, our study provides molecular insights into differences in GSL profiles between vegetative- and oilseed-type B. rapa plants.
Collapse
Affiliation(s)
- Jin A. Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Hyang Suk Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Nan-Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Juna Jang
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, Jeollabuk-do, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | | | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
19
|
Hölzl G, Rezaeva BR, Kumlehn J, Dörmann P. Ablation of glucosinolate accumulation in the oil crop Camelina sativa by targeted mutagenesis of genes encoding the transporters GTR1 and GTR2 and regulators of biosynthesis MYB28 and MYB29. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:189-201. [PMID: 36165983 PMCID: PMC9829395 DOI: 10.1111/pbi.13936] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Camelina sativa is an oil crop with low input costs and resistance to abiotic and biotic stresses. The presence of glucosinolates, plant metabolites with adverse health effects, restricts the use of camelina for human and animal nutrition. Cas9 endonuclease-based targeted mutagenesis of the three homeologs of each of the glucosinolate transporters CsGTR1 and CsGTR2 caused a strong decrease in glucosinolate amounts, highlighting the power of this approach for inactivating multiple genes in a hexaploid crop. Mutagenesis of the three homeologs of each of the transcription factors CsMYB28 and CsMYB29 resulted in the complete loss of glucosinolates, representing the first glucosinolate-free Brassicaceae crop. The oil and protein contents and the fatty acid composition of the csgtr1csgtr2 and csmyb28csmyb29 mutant seeds were not affected. The decrease and elimination of glucosinolates improves the quality of the oil and press cake of camelina, which thus complies with international standards regulating glucosinolate levels for human consumption and animal feeding.
Collapse
Affiliation(s)
- Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of PlantsUniversity of BonnBonnGermany
| | - Barno Ruzimurodovna Rezaeva
- Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Jochen Kumlehn
- Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of PlantsUniversity of BonnBonnGermany
| |
Collapse
|
20
|
Kim JS, Han S, Kim H, Won SY, Park HW, Choi H, Choi M, Lee MY, Ha IJ, Lee SG. Anticancer Effects of High Glucosinolate Synthesis Lines of Brassica rapa on Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11122463. [PMID: 36552671 PMCID: PMC9774263 DOI: 10.3390/antiox11122463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Chemoprevention is a method of health control in modern industrialized societies. Traditional breeding (hybridization) has been widely used to produce new (sub)species with beneficial phenotypes. Previously, we produced a number of doubled haploid (DH) lines of Brassica rapa with a high glucosinolate (GSL) content. In this study, we evaluated the anticancer activities of extracts from three selected high-GSL (HGSL)-containing DH lines (DHLs) of Brassica rapa in human colorectal cancer (CRC) cells. The three HGSL DHL extracts showed anti-proliferative activities in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assay and pro-apoptotic activities in the cell cycle or annexin V analysis with the induction of pro-apoptotic protein expression in CRC cells. Mechanistically, HGSL DHL extracts inhibited the NF-κB and ERK pathways, leading to a reduction in the nuclear localization of NF-κB p65. In addition, reactive oxygen species were induced by HGSL DHL extract treatment in CRC cells. In conclusion, our data suggest that the newly developed HGSL DHLs possess enhanced anticancer activities and are potentially helpful as a daily vegetable supplement with chemopreventive activities.
Collapse
Affiliation(s)
- Jung Sun Kim
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
- Correspondence: (J.S.K.); (S.-G.L.); Tel.: +82-63-238-4559 (J.S.K.); +82-2-961-2355 (S.-G.L.)
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So Youn Won
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyun Woo Park
- Genomic Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Hyunjin Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Young Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (J.S.K.); (S.-G.L.); Tel.: +82-63-238-4559 (J.S.K.); +82-2-961-2355 (S.-G.L.)
| |
Collapse
|
21
|
Yi SY, Lee M, Park SK, Lu L, Lee G, Kim SG, Kang SY, Lim YP. Jasmonate regulates plant resistance to Pectobacterium brasiliense by inducing indole glucosinolate biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:964092. [PMID: 36247644 PMCID: PMC9559233 DOI: 10.3389/fpls.2022.964092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/08/2022] [Indexed: 05/31/2023]
Abstract
Pectobacterium brasiliense (P. brasiliense) is a necrotrophic bacterium that causes the soft rot disease in Brassica rapa. However, the mechanisms underlying plant immune responses against necrotrophic bacterial pathogens with a broad host range are still not well understood. Using a flg22-triggered seedling growth inhibition (SGI) assay with 455 Brassica rapa inbred lines, we selected six B. rapa flagellin-insensitive lines (Brfin2-7) and three B. rapa flagellin-sensitive lines (Brfs1-3). Brfin lines showed compromised flg22-induced immune responses (oxidative burst, mitogen-activated protein kinase (MAPK) activation, and seedling growth inhibition) compared to the control line R-o-18; nevertheless, they were resistant to P. brasiliense. To explain this, we analyzed the phytohormone content and found that most Brfin lines had higher P. brasiliense-induced jasmonic acid (JA) than Brfs lines. Moreover, MeJA pretreatment enhanced the resistance of B. rapa to P. brasiliense. To explain the correlation between the resistance of Brfin lines to P. brasiliense and activated JA signaling, we analyzed pathogen-induced glucosinolate (GS) content in B. rapa. Notably, in Brfin7, the neoglucobrassicin (NGBS) content among indole glucosinolates (IGS) was significantly higher than that in Brfs2 following P. brasiliense inoculation, and genes involved in IGSs biosynthesis were also highly expressed. Furthermore, almost all Brfin lines with high JA levels and resistance to P. brasiliense had higher P. brasiliense-induced NGBS levels than Brfs lines. Thus, our results show that activated JA-mediated signaling attenuates flg22-triggered immunity but enhances resistance to P. brasiliense by inducing indole glucosinolate biosynthesis in Brassica rapa. This study provides novel insights into the role of JA-mediated defense against necrotrophic bacterial pathogens within a broad host range.
Collapse
Affiliation(s)
- So Young Yi
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Myungjin Lee
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Sun Kyu Park
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
22
|
Glucosinolates and Biotic Stress Tolerance in Brassicaceae with Emphasis on Cabbage: A Review. Biochem Genet 2022; 61:451-470. [PMID: 36057909 DOI: 10.1007/s10528-022-10269-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
Glucosinolates (GSLs) and GSL-associated genes are receiving increasing attention from molecular biologists due to their multifunctional properties. GSLs are secondary metabolites considered to be highly active in most Brassica species. Their importance has motivated the discovery and functional analysis of the GSLs and GSL hydrolysis products involved in disease development in brassicas and other plants. Comprehensive knowledge of the GSL content of Brassica species and the molecular details of GSL-related genes will help elucidate the molecular control of this plant defense system. This report provides an overview of the current status of knowledge on GSLs, GSL biosynthesis, as well as hydrolysis related genes, and GSL hydrolysis products that regulate fungal, bacterial, and insect resistance in cabbage and other brassicas.
Collapse
|
23
|
Wang B, Luo Q, Li Y, Du K, Wu Z, Li T, Shen WH, Huang CH, Gan J, Dong A. Structural insights into partner selection for MYB and bHLH transcription factor complexes. NATURE PLANTS 2022; 8:1108-1117. [PMID: 35995835 DOI: 10.1038/s41477-022-01223-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
MYB and basic helix-loop-helix (bHLH) transcription factors form complexes to regulate diverse metabolic and developmental processes in plants. However, the molecular mechanisms responsible for MYB-bHLH interaction and partner selection remain unclear. Here, we report the crystal structures of three MYB-bHLH complexes (WER-EGL3, CPC-EGL3 and MYB29-MYC3), uncovering two MYB-bHLH interaction modes. WER and CPC are R2R3- and R3-type MYBs, respectively, but interact with EGL3 through their N-terminal R3 domain in a similar mode. A single amino acid of CPC, Met49, is crucial for competition with WER to interact with EGL3. MYB29, a R2R3-type MYB transcription factor, interacts with MYC3 by its C-terminal MYC-interaction motif. The WER-EGL3 and MYB29-MYC3 binding modes are widely applied among MYB-bHLH complexes in Arabidopsis and evolve independently in plants.
Collapse
Affiliation(s)
- Baihui Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Yingping Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Tianyang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Institute of Plant Biology, Fudan University, Shanghai, P.R. China.
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Fudan University, Shanghai, P.R. China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
24
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
25
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
26
|
Neequaye M, Steuernagel B, Saha S, Trick M, Troncoso-Rey P, van den Bosch F, Traka MH, Østergaard L, Mithen R. Characterisation of the Introgression of Brassica villosa Genome Into Broccoli to Enhance Methionine-Derived Glucosinolates and Associated Health Benefits. FRONTIERS IN PLANT SCIENCE 2022; 13:855707. [PMID: 35432397 PMCID: PMC9011106 DOI: 10.3389/fpls.2022.855707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Broccoli cultivars that have enhanced accumulation of methionine-derived glucosinolates have been developed through the introgression of a novel allele of the MYB28 transcription factor from the wild species Brassica villosa. Through a novel k-mer approach, we characterised the extent of the introgression of unique B. villosa genome sequences into high glucosinolate broccoli genotypes. RNAseq analyses indicated that the introgression of the B. villosa MYB28 C2 allele resulted in the enhanced expression of the MYB28 transcription factor, and modified expression of genes associated with sulphate absorption and reduction, and methionine and glucosinolate biosynthesis when compared to standard broccoli. A adenine-thymine (AT) short tandem repeat (STR) was identified within the 5' untranslated region (UTR) B. villosa MYB28 allele that was absent from two divergent cultivated forms of Brassica oleracea, which may underpin the enhanced expression of B. villosa MYB28.
Collapse
Affiliation(s)
- Mikhaela Neequaye
- Quadram Institute Bioscience, Norwich, United Kingdom
- John Innes Centre, Norwich, United Kingdom
| | | | - Shikha Saha
- Quadram Institute Bioscience, Norwich, United Kingdom
| | | | | | | | | | | | - Richard Mithen
- Quadram Institute Bioscience, Norwich, United Kingdom
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
A Comparative Transcriptome and Metabolome Combined Analysis Reveals the Key Genes and Their Regulatory Model Responsible for Glucoraphasatin Accumulation in Radish Fleshy Taproots. Int J Mol Sci 2022; 23:ijms23062953. [PMID: 35328374 PMCID: PMC8949420 DOI: 10.3390/ijms23062953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Radish (Raphanus sativus L.) is rich in specific glucosinolates (GSLs), which benefit human health and special flavor formation. Although the basic GSLs metabolic pathway in Brassicaceae plants is clear, the regulating mechanism for specific glucosinolates content in radish fleshy taproots is not well understood. In this study, we discovered that there was a significant difference in the GSLs profiles and the content of various GSLs components. Glucoraphasatin (GRH) is the most predominant GSL in radish taproots of different genotypes as assessed by HPLC analysis. Further, we compared the taproot transcriptomes of three radish genotypes with high and low GSLs content by employing RNA-seq. Totally, we identified forty-one differentially expressed genes related to GSLs metabolism. Among them, thirteen genes (RsBCAT4, RsIPMDH1, RsMAM1a, RsMAM1b, RsCYP79F1, RsGSTF9, RsGGP1, RsSUR1, RsUGT74C1, RsST5b, RsAPK1, RsGSL-OH, and RsMYB28) were significantly higher co-expressed in the high content genotypes than in low content genotype. Notably, correlation analysis indicated that the expression level of RsMYB28, as an R2R3 transcription factor directly regulating aliphatic glucosinolate biosynthesis, was positively correlated with the GRH content. Co-expression network showed that RsMYB28 probably positively regulated the expression of the above genes, particularly RsSUR1, and consequently the synthesis of GRH. Moreover, the molecular mechanism of the accumulation of this 4-carbon (4C) GSL in radish taproots was explored. This study provides new perspectives on the GSLs accumulation mechanism and genetic improvements in radish taproots.
Collapse
|
28
|
Nugroho ABD, Lee SW, Pervitasari AN, Moon H, Choi D, Kim J, Kim DH. Transcriptomic and metabolic analyses revealed the modulatory effect of vernalization on glucosinolate metabolism in radish (Raphanus sativus L.). Sci Rep 2021; 11:24023. [PMID: 34912010 PMCID: PMC8674254 DOI: 10.1038/s41598-021-03557-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Vernalization is the process by which long-term cold like winter triggers transition to flowering in plants. Many biennial and perennial plants including Brassicaceae family plants require vernalization for floral transition. Not only floral transition, but dynamic physiological and metabolic changes might also take place during vernalization. However, vernalization-mediated metabolic change is merely investigated so far. One of secondary metabolites found in Brassiceceae family plants is glucosinolates (GSLs). GSLs provides defense against pathogens and herbivores attack in plants and also exhibits inhibitory activity against human cancer cell. Profiles of GSLs are highly modulated by different environmental stresses in Brassciaceae family plants. To grasp the effect of vernalization on GSLs metabolic dynamics in radish (Raphanus sativus L.), we performed transcriptomic and metabolic analysis during vernalization in radish. Through transcriptome analysis, we found many GSLs metabolic genes were significantly down-regulated by vernalization in radish plants. Ultra-High Performance Liquid Chromatography analysis also revealed that GSLs compounds were substantially reduced in vernalized radish samples compared to non-vernalized radish samples. Furthermore, we found that repressive histone modification (i.e. H3K27me3) is involved in the modulation of GSLs metabolism via epigenetic suppression of Glucoraphasatin Synthase 1 (GRS1) during vernalization in radish. This study revealed that GSLs metabolism is modulated by vernalization, suggestive of a newly identified target of vernalization in radish.
Collapse
Affiliation(s)
- Adji Baskoro Dwi Nugroho
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | | | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dasom Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jongkee Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea. .,Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Tang M, Li B, Zhou X, Bolt T, Li JJ, Cruz N, Gaudinier A, Ngo R, Clark‐Wiest C, Kliebenstein DJ, Brady SM. A genome-scale TF-DNA interaction network of transcriptional regulation of Arabidopsis primary and specialized metabolism. Mol Syst Biol 2021; 17:e10625. [PMID: 34816587 PMCID: PMC8611409 DOI: 10.15252/msb.202110625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Plant metabolism is more complex relative to individual microbes. In single-celled microbes, transcriptional regulation by single transcription factors (TFs) is sufficient to shift primary metabolism. Corresponding genome-level transcriptional regulatory maps of metabolism reveal the underlying design principles responsible for these shifts as a model in which master regulators largely coordinate specific metabolic pathways. Plant primary and specialized metabolism occur within innumerable cell types, and their reactions shift depending on internal and external cues. Given the importance of plants and their metabolites in providing humanity with food, fiber, and medicine, we set out to develop a genome-scale transcriptional regulatory map of Arabidopsis metabolic genes. A comprehensive set of protein-DNA interactions between Arabidopsis thaliana TFs and gene promoters in primary and specialized metabolic pathways were mapped. To demonstrate the utility of this resource, we identified and functionally validated regulators of the tricarboxylic acid (TCA) cycle. The resulting network suggests that plant metabolic design principles are distinct from those of microbes. Instead, metabolism appears to be transcriptionally coordinated via developmental- and stress-conditional processes that can coordinate across primary and specialized metabolism. These data represent the most comprehensive resource of interactions between TFs and metabolic genes in plants.
Collapse
Affiliation(s)
- Michelle Tang
- Department of Plant Biology and Genome CenterUniversity of California, DavisDavisCAUSA
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
- Plant Biology Graduate GroupUniversity of California, DavisDavisCAUSA
| | - Baohua Li
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
| | - Xue Zhou
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
| | - Tayah Bolt
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
| | - Jia Jie Li
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
| | - Neiman Cruz
- Department of Plant Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| | - Allison Gaudinier
- Department of Plant Biology and Genome CenterUniversity of California, DavisDavisCAUSA
- Plant Biology Graduate GroupUniversity of California, DavisDavisCAUSA
| | - Richard Ngo
- Department of Plant Biology and Genome CenterUniversity of California, DavisDavisCAUSA
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
| | - Caitlin Clark‐Wiest
- Department of Plant Biology and Genome CenterUniversity of California, DavisDavisCAUSA
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
| | - Daniel J Kliebenstein
- Department of Plant SciencesUniversity of California, DavisDavisCAUSA
- DynaMo Center of ExcellenceUniversity of CopenhagenFrederiksberg CDenmark
| | - Siobhan M Brady
- Department of Plant Biology and Genome CenterUniversity of California, DavisDavisCAUSA
| |
Collapse
|
30
|
Sayed Ahmed HI, Elsherif DE, El-Shanshory AR, Haider AS, Gaafar RM. Silver nanoparticles and Chlorella treatments induced glucosinolates and kaempferol key biosynthetic genes in Eruca sativa. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-021-00139-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Microalgae and nanoparticles are currently considered promising tools for numerous agricultural and biotechnological applications. The green microalga Chlorella sp. MF1 and its biosynthesized silver nanoparticles (AgNPs) were used in this study as biofortification agents to enhance glucosinolate and kaempferol levels in Eruca sativa. UV–visible spectroscopy, XRD, FTIR and TEM were comprehensively used for characterizing Chlorella-based AgNPs.
Results
The biosynthesized AgNPs were found to be spherical in shape, with size ranging from 1.45 to 5.08 nm. According to FTIR measurements, silver ions were reduced to AgNPs by functional groups such as amide, hydroxyl and carboxylate. Different experimental treatments were conducted, including either soaking seeds of E. sativa or foliar spray with various concentrations of Chlorella suspension (1, 2, 3 and 4 g L−1) and AgNPs (5, 10, 20 and 40 mg L−1). Expression levels of five key genes in the biosynthetic pathway of glucosinolates (MAM1, SUR1, MYB34 and MYB51) and kaempferol (CHS) were assessed using qRT-PCR. The results indicated an upregulation in the gene expression levels in all treatments compared to control, recording the highest level at 40 mg L−1 AgNPs and 4 g L−1Chlorella suspension. In addition, high glucosinolates and kaempferol content was detected in plants whose leaves were sprayed with AgNPs and Chlorella suspension (40 mg L−1 and 4 g L−1) based on HPLC analysis. Sequence analysis of amplified CHS fragments from E. sativa plants treated with AgNPs (40 mg L−1) showed high sequence similarity to A. thaliana CHS gene. However, there were several CHS regions with sequence polymorphism (SNPs and Indels) in foliar sprayed plants.
Conclusions
Results of this study evidenced that the application of AgNPs and Chlorella suspension increased glucosinolates and kaempferol content in E. sativa through upregulation of key genes in their biosynthetic pathway.
Collapse
|
31
|
Widemann E, Bruinsma K, Walshe-Roussel B, Rioja C, Arbona V, Saha RK, Letwin D, Zhurov V, Gómez-Cadenas A, Bernards MA, Grbić M, Grbić V. Multiple indole glucosinolates and myrosinases defend Arabidopsis against Tetranychus urticae herbivory. PLANT PHYSIOLOGY 2021; 187:116-132. [PMID: 34618148 PMCID: PMC8418412 DOI: 10.1093/plphys/kiab247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/25/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) defenses against herbivores are regulated by the jasmonate (JA) hormonal signaling pathway, which leads to the production of a plethora of defense compounds. Arabidopsis defense compounds include tryptophan-derived metabolites, which limit Arabidopsis infestation by the generalist herbivore two-spotted spider mite, Tetranychus urticae. However, the phytochemicals responsible for Arabidopsis protection against T. urticae are unknown. Here, we used Arabidopsis mutants disrupted in the synthesis of tryptophan-derived secondary metabolites to identify phytochemicals involved in the defense against T. urticae. We show that of the three tryptophan-dependent pathways found in Arabidopsis, the indole glucosinolate (IG) pathway is necessary and sufficient to assure tryptophan-mediated defense against T. urticae. We demonstrate that all three IGs can limit T. urticae herbivory, but that they must be processed by myrosinases to hinder T. urticae oviposition. Putative IG breakdown products were detected in mite-infested leaves, suggesting in planta processing by myrosinases. Finally, we demonstrate that besides IGs, there are additional JA-regulated defenses that control T. urticae herbivory. Together, our results reveal the complexity of Arabidopsis defenses against T. urticae that rely on multiple IGs, specific myrosinases, and additional JA-dependent defenses.
Collapse
Affiliation(s)
- Emilie Widemann
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kristie Bruinsma
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Brendan Walshe-Roussel
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Natural and Non-Prescription Health Products Directorate Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Cristina Rioja
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Repon Kumer Saha
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - David Letwin
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, E-12071 Castelló de la Plana, Spain
| | - Mark A. Bernards
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Author for communication:
| |
Collapse
|
32
|
Soundararajan P, Park SG, Won SY, Moon MS, Park HW, Ku KM, Kim JS. Influence of Genotype on High Glucosinolate Synthesis Lines of Brassica rapa. Int J Mol Sci 2021; 22:ijms22147301. [PMID: 34298919 PMCID: PMC8305852 DOI: 10.3390/ijms22147301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to investigate doubled haploid (DH) lines produced between high GSL (HGSL) Brassica rapa ssp. trilocularis (yellow sarson) and low GSL (LGSL) B. rapa ssp. chinensis (pak choi) parents. In total, 161 DH lines were generated. GSL content of HGSL DH lines ranged from 44.12 to 57.04 μmol·g−1·dry weight (dw), which is within the level of high GSL B. rapa ssp. trilocularis (47.46 to 59.56 μmol g−1 dw). We resequenced five of the HGSL DH lines and three of the LGSL DH lines. Recombination blocks were formed between the parental and DH lines with 108,328 single-nucleotide polymorphisms in all chromosomes. In the measured GSL, gluconapin occurred as the major substrate in HGSL DH lines. Among the HGSL DH lines, BrYSP_DH005 had glucoraphanin levels approximately 12-fold higher than those of the HGSL mother plant. The hydrolysis capacity of GSL was analyzed in HGSL DH lines with a Korean pak choi cultivar as a control. Bioactive compounds, such as 3-butenyl isothiocyanate, 4-pentenyl isothiocyanate, 2-phenethyl isothiocyanate, and sulforaphane, were present in the HGSL DH lines at 3-fold to 6.3-fold higher levels compared to the commercial cultivar. The selected HGSL DH lines, resequencing data, and SNP identification were utilized for genome-assisted selection to develop elite GSL-enriched cultivars and the industrial production of potential anti-cancerous metabolites such as gluconapin and glucoraphanin.
Collapse
Affiliation(s)
- Prabhakaran Soundararajan
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Sin-Gi Park
- Bioinformatics Team of Theragen Etex Institute, Suwon 16229, Korea;
| | - So Youn Won
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Mi-Sun Moon
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Hyun Woo Park
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
| | - Kang-Mo Ku
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea;
- Department of Horticulture, Chonnam National University, Gwangju 61186, Korea
| | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea; (P.S.); (S.Y.W.); (M.-S.M.); (H.W.P.)
- Correspondence:
| |
Collapse
|
33
|
Frerigmann H, Hoecker U, Gigolashvili T. New Insights on the Regulation of Glucosinolate Biosynthesis via COP1 and DELLA Proteins in Arabidopsis Thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:680255. [PMID: 34276733 PMCID: PMC8281118 DOI: 10.3389/fpls.2021.680255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The biosynthesis of defensive secondary metabolites, such as glucosinolates (GSLs), is a costly process, which requires nutrients, ATP, and reduction equivalents, and, therefore, needs well-orchestrated machinery while coordinating defense and growth. We discovered that the key repressor of light signaling, the CONSTITUTIVE PHOTOMORPHOGENIC 1/SUPPRESSOR OF PHYTOCHROME A-105 (COP1/SPA) complex, is a crucial component of GSL biosynthesis regulation. Various mutants in this COP1/SPA complex exhibited a strongly reduced level of GSL and a low expression of jasmonate (JA)-dependent genes. Furthermore, cop1, which is known to accumulate DELLA proteins in the dark, shows reduced gibberellin (GA) and JA signaling, thereby phenocopying other DELLA-accumulating mutants. This phenotype can be complemented by a dominant gain-of-function allele of MYC3 and by crossing with a mutant having low DELLA protein levels. Hence, SPA1 interacts with DELLA proteins in a yeast two-hybrid screen, whereas high levels of DELLA inhibit MYC function and suppress JA signaling. DELLA accumulation leads to reduced synthesis of GSL and inhibited growth. Thus, the COP1/SPA-mediated degradation of DELLA not only affects growth but also regulates the biosynthesis of GSLs.
Collapse
Affiliation(s)
- Henning Frerigmann
- Department of Plant-Microbe Interactions and Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ute Hoecker
- BioCenter, Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- BioCenter, Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Geng H, Wang M, Gong J, Xu Y, Ma S. An Arabidopsis expression predictor enables inference of transcriptional regulators for gene modules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:597-612. [PMID: 33974299 DOI: 10.1111/tpj.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The regulation of gene expression by transcription factors (TFs) has been studied for a long time, but no model that can accurately predict transcriptome profiles based on TF activities currently exists. Here, we developed a computational approach, named EXPLICIT (Expression Prediction via Log-linear Combination of Transcription Factors), to construct a universal predictor for Arabidopsis to predict the expression of 29 182 non-TF genes using 1678 TFs. When applied to RNA-Seq samples from diverse tissues, EXPLICIT generated accurate predicted transcriptomes correlating well with actual expression, with an average correlation coefficient of 0.986. After recapitulating the quantitative relationships between TFs and their target genes, EXPLICIT enabled downstream inference of TF regulators for genes and gene modules functioning in diverse plant pathways, including those involved in suberin, flavonoid, glucosinolate metabolism, lateral root, xylem, secondary cell wall development or endoplasmic reticulum stress response. Our approach showed a better ability to recover the correct TF regulators when compared with existing plant tools, and provides an innovative way to study transcriptional regulation.
Collapse
Affiliation(s)
- Haiying Geng
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Meng Wang
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Jiazhen Gong
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Shisong Ma
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- School of Data Science, University of Science and Technology of China, Hefei, China
| |
Collapse
|
35
|
Rao S, Yu T, Cong X, Lai X, Xiang J, Cao J, Liao X, Gou Y, Chao W, Xue H, Cheng S, Xu F. Transcriptome, proteome, and metabolome reveal the mechanism of tolerance to selenate toxicity in Cardamine violifolia. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124283. [PMID: 33187796 DOI: 10.1016/j.jhazmat.2020.124283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 05/28/2023]
Abstract
Cardamine violifolia was found here to accumulate selenium (Se) to over 9000 mg kg-1 dry weight. To investigate the mechanism of Se accumulation and tolerance in C. violifolia, metabolome, transcriptome, and proteome technologies were applied to C. violifolia seedlings treated with selenate. Several sulfate transporter (Sultr) genes (Sultr1;1, Sultr1;2, and Sultr2;1) and sulfur assimilatory enzyme genes showed high expression levels in response to selenate. Many calcium protein and cysteine-rich kinase genes of C. violifolia were downregulated, whereas selenium-binding protein 1 (SBP1) and protein sulfur deficiency-induced 2 (SDI2) of C. violifolia were upregulated by selenate. The expression of genes involved in the ribosome and posttranslational modifications and chaperones in C. violifolia were also detected in response to selenate. Based on the results of this study and previous findings, we suggest that the downregulated expression of calcium proteins and cysteine-rich kinases, and the upregulated expression of SBP1 and SDI2, were important contributors to the Se tolerance of C. violifolia. The downregulation of cysteine-rich kinases and calcium proteins would enhance Se tolerance of C. violifolia is a novel proposition that has not been reported on other Se hyperaccumulators. This study provides us novel insights to understand Se accumulation and tolerance in plants.
Collapse
Affiliation(s)
- Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China.
| | - Xin Cong
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; Enshi Se-Run Health Tech Development Co., Ltd., Enshi 445000, China.
| | - Xiaozhuo Lai
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Jiqian Xiang
- Enshi Autonomous Prefecture Academy of Agriculture Sciences, Enshi 445002, China.
| | - Jie Cao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Wei Chao
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Hua Xue
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China.
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China; National Selenium Rich Product Quality Supervision and Inspection Center, Enshi 445000, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China; Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
36
|
Harun S, Rohani ER, Ohme-Takagi M, Goh HH, Mohamed-Hussein ZA. ADAP is a possible negative regulator of glucosinolate biosynthesis in Arabidopsis thaliana based on clustering and gene expression analyses. JOURNAL OF PLANT RESEARCH 2021; 134:327-339. [PMID: 33558947 DOI: 10.1007/s10265-021-01257-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Glucosinolates (GSLs) are plant secondary metabolites consisting of sulfur and nitrogen, commonly found in Brassicaceae crops, such as Arabidopsis thaliana. These compounds are known for their roles in plant defense mechanisms against pests and pathogens. 'Guilt-by-association' (GBA) approach predicts genes encoding proteins with similar function tend to share gene expression pattern generated from high throughput sequencing data. Recent studies have successfully identified GSL genes using GBA approach, followed by targeted verification of gene expression and metabolite data. Therefore, a GSL co-expression network was constructed using known GSL genes obtained from our in-house database, SuCComBase. DPClusO was used to identify subnetworks of the GSL co-expression network followed by Fisher's exact test leading to the discovery of a potential gene that encodes the ARIA-interacting double AP2-domain protein (ADAP) transcription factor (TF). Further functional analysis was performed using an effective gene silencing system known as CRES-T. By applying CRES-T, ADAP TF gene was fused to a plant-specific EAR-motif repressor domain (SRDX), which suppresses the expression of ADAP target genes. In this study, ADAP was proposed as a negative regulator in aliphatic GSL biosynthesis due to the over-expression of downstream aliphatic GSL genes (UGT74C1 and IPMI1) in ADAP-SRDX line. The significant over-expression of ADAP gene in the ADAP-SRDX line also suggests the behavior of the TF that negatively affects the expression of UGT74C1 and IPMI1 via a feedback mechanism in A. thaliana.
Collapse
Affiliation(s)
- S Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - E R Rohani
- Centre for Plant Biotechnology, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - M Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - H-H Goh
- Centre for Plant Biotechnology, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Z-A Mohamed-Hussein
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
37
|
Yagi H, Nagano AJ, Kim J, Tamura K, Mochizuki N, Nagatani A, Matsushita T, Shimada T. Fluorescent protein-based imaging and tissue-specific RNA-seq analysis of Arabidopsis hydathodes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1260-1270. [PMID: 33165567 DOI: 10.1093/jxb/eraa519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Hydathodes are typically found at leaf teeth in vascular plants and are involved in water release to the outside. Although morphological and physiological analysis of hydathodes has been performed in various plants, little is known about the genes involved in hydathode function. In this study, we performed fluorescent protein-based imaging and tissue-specific RNA-seq analysis in Arabidopsis hydathodes. We used the enhancer trap line E325, which has been reported to express green fluorescent protein (GFP) at its hydathodes. We found that E325-GFP was expressed in small cells found inside the hydathodes (named E cells) that were distributed between the water pores and xylem ends. No fluorescence of the phloem markers pSUC2:GFP and pSEOR1:SEOR1-YFP was observed in the hydathodes. These observations indicate that Arabidopsis hydathodes are composed of three major components: water pores, xylem ends, and E cells. In addition, we performed transcriptome analysis of the hydathode using the E325-GFP line. Microsamples were collected from GFP-positive or -negative regions of E325 leaf margins with a needle-based device (~130 µm in diameter). RNA-seq was performed with each single microsample using a high-throughput library preparation method called Lasy-Seq. We identified 72 differentially expressed genes. Among them, 68 genes showed significantly higher and four genes showed significantly lower expression in the hydathode. Our results provide new insights into the molecular basis for hydathode physiology and development.
Collapse
Affiliation(s)
- Hiroki Yagi
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | | | - Jaewook Kim
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kentaro Tamura
- Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka, Japan
| | - Nobuyoshi Mochizuki
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomonao Matsushita
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tomoo Shimada
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Li Y, Li R, Sawada Y, Boerzhijin S, Kuwahara A, Sato M, Hirai MY. Abscisic acid-mediated induction of FLAVIN-CONTAINING MONOOXYGENASE 2 leads to reduced accumulation of methylthioalkyl glucosinolates in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110764. [PMID: 33487349 DOI: 10.1016/j.plantsci.2020.110764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 05/29/2023]
Abstract
Side-chain modification contributes to the structural diversity of aliphatic glucosinolates (GSLs), a class of sulfur-containing secondary metabolites found in Brassicales. The first step in side-chain modification of aliphatic GSLs is the S-oxygenation of the methylthioalkyl (MT) moiety to the methylsulfinylalkyl (MS) moiety. This reaction is catalyzed by flavin-containing monooxygenase (FMOGS-OX), which is encoded by seven genes in Arabidopsis thaliana. Therefore, the regulation of FMOGS-OX gene expression is key to controlling side-chain structural diversity. In this study, we demonstrated that the expression of FMOGS-OX2 and FMOGS-OX4 was induced by glucose treatment, independent of MYB28/29 and MYC2/3/4, the transcription factors that positively regulate aliphatic GSL biosynthesis. Glucose treatment of the abscisic acid (ABA)-related mutants indicated that glucose-triggered upregulation of FMOGS-OX2 and FMOGS-OX4 was partially regulated by ABA through the key negative regulators ABI1 and ABI2, and the positive regulator SnRK2, but not via the transcription factor ABI5. In wild-type plants, glucose treatment drastically reduced the accumulation of 4-methylthiobutyl (4MT) GSL, whereas a decrease in 4MT GSL was not observed in the fmogs-ox2, abi1-1, abi2-1, aba2-1, or aba3-1 mutants. This result indicated that the decreased accumulation of 4MT GSL by glucose treatment was attributed to upregulation of FMOGS-OX2 via the ABA signaling pathway.
Collapse
Affiliation(s)
- Yimeng Li
- School of Pharmacy, Lanzhou University, LanZhou, 730000, China; RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Rui Li
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Surina Boerzhijin
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Ayuko Kuwahara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
39
|
Mitreiter S, Gigolashvili T. Regulation of glucosinolate biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:70-91. [PMID: 33313802 DOI: 10.1093/jxb/eraa479] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
Glucosinolates are secondary defense metabolites produced by plants of the order Brassicales, which includes the model species Arabidopsis and many crop species. In the past 13 years, the regulation of glucosinolate synthesis in plants has been intensively studied, with recent research revealing complex molecular mechanisms that connect glucosinolate production with responses to other central pathways. In this review, we discuss how the regulation of glucosinolate biosynthesis is ecologically relevant for plants, how it is controlled by transcription factors, and how this transcriptional machinery interacts with hormonal, environmental, and epigenetic mechanisms. We present the central players in glucosinolate regulation, MYB and basic helix-loop-helix transcription factors, as well as the plant hormone jasmonate, which together with other hormones and environmental signals allow the coordinated and rapid regulation of glucosinolate genes. Furthermore, we highlight the regulatory connections between glucosinolates, auxin, and sulfur metabolism and discuss emerging insights and open questions on the regulation of glucosinolate biosynthesis.
Collapse
Affiliation(s)
- Simon Mitreiter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Tamara Gigolashvili
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Coleto I, Bejarano I, Marín-Peña AJ, Medina J, Rioja C, Burow M, Marino D. Arabidopsis thaliana transcription factors MYB28 and MYB29 shape ammonium stress responses by regulating Fe homeostasis. THE NEW PHYTOLOGIST 2021; 229:1021-1035. [PMID: 32901916 DOI: 10.1111/nph.16918] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/12/2020] [Indexed: 05/22/2023]
Abstract
Although ammonium (NH4+ ) is a key intermediate of plant nitrogen metabolism, high concentrations of NH4+ in the soil provoke physiological disorders that lead to the development of stress symptoms. Ammonium nutrition was shown to induce the accumulation of glucosinolates (GSLs) in leaves of different Brassicaceae species. To further understand the link between ammonium nutrition and GSLs, we analysed the ammonium stress response of Arabidopsis mutants impaired in GSL metabolic pathway. We showed that the MYB28 and MYB29 double mutant (myb28myb29), which is almost deprived of aliphatic GSLs, is highly hypersensitive to ammonium nutrition. Moreover, we evidenced that the stress symptoms developed were not a consequence of the lack of aliphatic GSLs. Transcriptomic analysis highlighted the induction of an iron (Fe) deficiency response in myb28myb29 under ammonium nutrition. Consistently, ammonium-grown myb28myb29 plants showed altered Fe accumulation and homeostasis. Interestingly, we showed overall that growing Arabidopsis with increased Fe availability relieved ammonium stress symptoms and that this was associated with MYB28 and MYB29 expression. Taken together, our data indicated that the control of Fe homeostasis was crucial for the Arabidopsis response to ammonium nutrition and evidenced that MYB28 and MYB29 play a role in this control.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Iraide Bejarano
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Agustín Javier Marín-Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, 28223, Spain
| | - Cristina Rioja
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, Bilbao, E-48080, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48011, Spain
| |
Collapse
|
41
|
Dickinson PJ, Kneřová J, Szecówka M, Stevenson SR, Burgess SJ, Mulvey H, Bågman AM, Gaudinier A, Brady SM, Hibberd JM. A bipartite transcription factor module controlling expression in the bundle sheath of Arabidopsis thaliana. NATURE PLANTS 2020; 6:1468-1479. [PMID: 33230313 DOI: 10.1038/s41477-020-00805-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
C4 photosynthesis evolved repeatedly from the ancestral C3 state, improving photosynthetic efficiency by ~50%. In most C4 lineages, photosynthesis is compartmented between mesophyll and bundle sheath cells, but how gene expression is restricted to these cell types is poorly understood. Using the C3 model Arabidopsis thaliana, we identified cis-elements and transcription factors driving expression in bundle sheath strands. Upstream of the bundle sheath preferentially expressed MYB76 gene, we identified a region necessary and sufficient for expression containing two cis-elements associated with the MYC and MYB families of transcription factors. MYB76 expression is reduced in mutant alleles for these transcription factors. Moreover, downregulated genes shared by both mutants are preferentially expressed in the bundle sheath. Our findings are broadly relevant for understanding the spatial patterning of gene expression, provide specific insights into mechanisms associated with the evolution of C4 photosynthesis and identify a short tuneable sequence for manipulating gene expression in the bundle sheath.
Collapse
Affiliation(s)
| | - Jana Kneřová
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Marek Szecówka
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Sean R Stevenson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Steven J Burgess
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Hugh Mulvey
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Anne-Maarit Bågman
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Allison Gaudinier
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Bell L, Chadwick M, Puranik M, Tudor R, Methven L, Kennedy S, Wagstaff C. The Eruca sativa Genome and Transcriptome: A Targeted Analysis of Sulfur Metabolism and Glucosinolate Biosynthesis Pre and Postharvest. FRONTIERS IN PLANT SCIENCE 2020; 11:525102. [PMID: 33193472 PMCID: PMC7652772 DOI: 10.3389/fpls.2020.525102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Rocket (Eruca sativa) is a source of health-related metabolites called glucosinolates (GSLs) and isothiocyanates (ITCs) but little is known of the genetic and transcriptomic mechanisms responsible for regulating pre and postharvest accumulations. We present the first de novo reference genome assembly and annotation, with ontogenic and postharvest transcriptome data relating to sulfur assimilation, transport, and utilization. Diverse gene expression patterns related to sulfur metabolism, GSL biosynthesis, and glutathione biosynthesis are present between inbred lines of rocket. A clear pattern of differential expression determines GSL abundance and the formation of hydrolysis products. One breeding line sustained GSL accumulation and hydrolysis product formation throughout storage. Multiple copies of MYB28, SLIM1, SDI1, and ESM1 have increased and differential expression postharvest, and are associated with GSLs and hydrolysis product formation. Two glucosinolate transporter gene (GTR2) copies were found to be associated with increased GSL accumulations in leaves. Monosaccharides (which are essential for primary metabolism and GSL biosynthesis, and contribute to the taste of rocket) were also quantified in leaves, with glucose concentrations significantly correlated with the expression of numerous GSL-related genes. Significant negative correlations were observed between the expression of glutathione synthetase (GSH) genes and those involved in GSL metabolism. Breeding line "B" showed increased GSH gene expression and low GSL content compared to two other lines where the opposite was observed. Co-expression analysis revealed senescence (SEN1) and oxidative stress-related (OXS3) genes have higher expression in line B, suggesting that postharvest deterioration is associated with low GSL concentrations.
Collapse
Affiliation(s)
- Luke Bell
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Martin Chadwick
- School of Chemistry Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Manik Puranik
- School of Chemistry Food and Pharmacy, University of Reading, Reading, United Kingdom
| | | | - Lisa Methven
- School of Chemistry Food and Pharmacy, University of Reading, Reading, United Kingdom
| | | | - Carol Wagstaff
- School of Chemistry Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
43
|
Akhatar J, Singh MP, Sharma A, Kaur H, Kaur N, Sharma S, Bharti B, Sardana VK, Banga SS. Association Mapping of Seed Quality Traits Under Varying Conditions of Nitrogen Application in Brassica juncea L. Czern & Coss. Front Genet 2020; 11:744. [PMID: 33088279 PMCID: PMC7490339 DOI: 10.3389/fgene.2020.00744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/22/2020] [Indexed: 12/02/2022] Open
Abstract
Indian mustard (Brassica juncea) is a major source of vegetable oil in the Indian subcontinent. The seed cake left after the oil extraction is used as livestock feed. We examined the genetic architecture of oil, protein, and glucosinolates by conducting a genome-wide association study (GWAS), using an association panel comprising 92 diverse genotypes. We conducted trait phenotyping over 2 years at two levels of nitrogen (N) application. Genotyping by sequencing was used to identify 66,835 loci, covering 18 chromosomes. Genetic diversity and phenotypic variations were high for the studied traits. Trait performances were stable when averaged over years and N levels. However, individual performances differed. General and mixed linear models were used to estimate the association between the SNP markers and the seed quality traits. Population structure, principal components (PCs) analysis, and discriminant analysis of principal components (DAPCs) were included as covariates to overcome the bias due to the population stratification. We identified 16, 23, and 27 loci associated with oil, protein, and glucosinolates, respectively. We also established LD patterns and haplotype structures for the candidate genes. The average block sizes were larger on A-genome chromosomes as compared to the B- genome chromosomes. Genetic associations differed over N levels. However, meta-analysis of GWAS datasets not only improved the power to recognize associations but also helped to identify common SNPs for oil and protein contents. Annotation of the genomic region around the identified SNPs led to the prediction of 21 orthologs of the functional candidate genes related to the biosynthesis of oil, protein, and glucosinolates. Notable among these are: LACS5 (A09), FAD6 (B05), ASN1 (A06), GTR2 (A06), CYP81G1 (B06), and MYB44 (B06). The identified loci will be very useful for marker-aided breeding for seed quality modifications in B. juncea.
Collapse
Affiliation(s)
- Javed Akhatar
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Mohini Prabha Singh
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Anju Sharma
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Harjeevan Kaur
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Navneet Kaur
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sanjula Sharma
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Baudh Bharti
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - V K Sardana
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder S Banga
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
44
|
Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish ( Raphanus sativus L.) Roots. Int J Mol Sci 2020; 21:ijms21165721. [PMID: 32785002 PMCID: PMC7461053 DOI: 10.3390/ijms21165721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Glucoraphasatin (GRH) is a specific aliphatic glucosinolate (GSL) that is only abundant in radish (Raphanus sativus L.). The gene expression regulating GRH biosynthesis in radish is still poorly understood. We employed a total of 59 radish accessions to analyze GSL profiles and showed that GRH was specific and predominant among the aliphatic GSLs in radish roots. We selected five accessions roots with high, moderate and low GSL biosynthesis, respectively, to conduct a comparative transcriptome analysis and the qRT-PCR of the biosynthesis genes for aliphatic GSLs. In this study, among all the accessions tested, roots with the accession RA157-74 had a high GRH content and showed a significant expression of the aliphatic GSL biosynthesis genes. We defined the genes involved in the GRH biosynthesis process and found that they were regulated by a transcription factor (RSG00789) at the MYB29 locus in radish roots. We found 13 aliphatic GSL biosynthesis genes regulated by the RSG00789 gene in the GRH biosynthesis pathway.
Collapse
|
45
|
Fernández-Calvo P, Iñigo S, Glauser G, Vanden Bossche R, Tang M, Li B, De Clercq R, Nagels Durand A, Eeckhout D, Gevaert K, De Jaeger G, Brady SM, Kliebenstein DJ, Pauwels L, Goossens A, Ritter A. FRS7 and FRS12 recruit NINJA to regulate expression of glucosinolate biosynthesis genes. THE NEW PHYTOLOGIST 2020; 227:1124-1137. [PMID: 32266972 DOI: 10.1111/nph.16586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/25/2020] [Indexed: 05/24/2023]
Abstract
The sessile lifestyle of plants requires accurate physiology adjustments to be able to thrive in a changing environment. Plants integrate environmental timing signals to control developmental and stress responses. Here, we identified Far1 Related Sequence (FRS) 7 and FRS12, two transcriptional repressors that accumulate in short-day conditions, as regulators of Arabidopsis glucosinolate (GSL) biosynthesis. Loss of function of FRS7 and FRS12 results in plants with increased amplitudes of diurnal expression of GSL pathway genes. Protein interaction analyses revealed that FRS7 and FRS12 recruit the NOVEL INTERACTOR OF JAZ (NINJA) to assemble a transcriptional repressor complex. Genetic and molecular evidence demonstrated that FRS7, FRS12 and NINJA jointly regulate the expression of GSL biosynthetic genes, and thus constitute a molecular mechanism that modulates specialized metabolite accumulation.
Collapse
Affiliation(s)
- Patricia Fernández-Calvo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Sabrina Iñigo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Graduate Group in Plant Biology, University of California, Davis, CA, 95616, USA
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Rebecca De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Astrid Nagels Durand
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- VIB Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Andrés Ritter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
46
|
Wang M, Cai C, Lin J, Tao H, Zeng W, Zhang F, Miao H, Sun B, Wang Q. Combined treatment of epi-brassinolide and NaCl enhances the main phytochemicals in Chinese kale sprouts. Food Chem 2020; 315:126275. [DOI: 10.1016/j.foodchem.2020.126275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023]
|
47
|
Morikawa-Ichinose T, Miura D, Zhang L, Kim SJ, Maruyama-Nakashita A. Involvement of BGLU30 in Glucosinolate Catabolism in the Arabidopsis Leaf under Dark Conditions. PLANT & CELL PHYSIOLOGY 2020; 61:1095-1106. [PMID: 32255184 DOI: 10.1093/pcp/pcaa035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites that play important roles in plant defense and are suggested to act as storage compounds. Despite their important roles, metabolic dynamics of GSLs under various growth conditions remain poorly understood. To determine how light conditions influence the levels of different GSLs and their distribution in Arabidopsis leaves, we visualized the GSLs under different light conditions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We observed the unique distribution patterns of each GSL in the inner regions of leaves and marked decreases under darkness, indicating light conditions influenced GSL metabolism. GSLs are hydrolyzed by a group of ß-glucosidase (BGLU) called myrosinase. Previous transcriptome data for GSL metabolism under light and dark conditions have revealed the highly induced expression of BGLU30, one of the putative myrosinases, which is also annotated as Dark INducible2, under darkness. Impairment of the darkness-induced GSL decrease in the disruption mutants of BGLU30, bglu30, indicated that BGLU30 mediated GSL hydrolysis under darkness. Based on the GSL profiles in the wild-type and bglu30 leaves under both conditions, short-chain GSLs were potentially preferable substrates for BGLU30. Our findings provide an effective way of visualizing GSL distribution in plants and highlighted the carbon storage GSL function.
Collapse
Affiliation(s)
- Tomomi Morikawa-Ichinose
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Miura
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Liu Zhang
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
48
|
Slaten ML, Yobi A, Bagaza C, Chan YO, Shrestha V, Holden S, Katz E, Kanstrup C, Lipka AE, Kliebenstein DJ, Nour-Eldin HH, Angelovici R. mGWAS Uncovers Gln-Glucosinolate Seed-Specific Interaction and its Role in Metabolic Homeostasis. PLANT PHYSIOLOGY 2020; 183:483-500. [PMID: 32317360 PMCID: PMC7271782 DOI: 10.1104/pp.20.00039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 05/04/2023]
Abstract
Gln is a key player in plant metabolism. It is one of the major free amino acids that is transported into the developing seed and is central for nitrogen metabolism. However, Gln natural variation and its regulation and interaction with other metabolic processes in seeds remain poorly understood. To investigate the latter, we performed a metabolic genome-wide association study (mGWAS) of Gln-related traits measured from the dry seeds of the Arabidopsis (Arabidopsis thaliana) diversity panel using all potential ratios between Gln and the other members of the Glu family as traits. This semicombinatorial approach yielded multiple candidate genes that, upon further analysis, revealed an unexpected association between the aliphatic glucosinolates (GLS) and the Gln-related traits. This finding was confirmed by an independent quantitative trait loci mapping and statistical analysis of the relationships between the Gln-related traits and the presence of specific GLS in seeds. Moreover, an analysis of Arabidopsis mutants lacking GLS showed an extensive seed-specific impact on Gln levels and composition that manifested early in seed development. The elimination of GLS in seeds was associated with a large effect on seed nitrogen and sulfur homeostasis, which conceivably led to the Gln response. This finding indicates that both Gln and GLS play key roles in shaping the seed metabolic homeostasis. It also implies that select secondary metabolites might have key functions in primary seed metabolism. Finally, our study shows that an mGWAS performed on dry seeds can uncover key metabolic interactions that occur early in seed development.
Collapse
Affiliation(s)
- Marianne L Slaten
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Abou Yobi
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Clement Bagaza
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Yen On Chan
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Vivek Shrestha
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Samuel Holden
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Ella Katz
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Christa Kanstrup
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Ruthie Angelovici
- Division of Biological Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
49
|
Li B, Tang M, Caseys C, Nelson A, Zhou M, Zhou X, Brady SM, Kliebenstein DJ. Epistatic Transcription Factor Networks Differentially Modulate Arabidopsis Growth and Defense. Genetics 2020; 214:529-541. [PMID: 31852726 PMCID: PMC7017016 DOI: 10.1534/genetics.119.302996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Plants integrate internal and external signals to finely coordinate growth and defense for maximal fitness within a complex environment. A common model suggests that growth and defense show a trade-offs relationship driven by energy costs. However, recent studies suggest that the coordination of growth and defense likely involves more conditional and intricate connections than implied by the trade-off model. To explore how a transcription factor (TF) network may coordinate growth and defense, we used a high-throughput phenotyping approach to measure growth and flowering in a set of single and pairwise mutants previously linked to the aliphatic glucosinolate (GLS) defense pathway. Supporting a link between growth and defense, 17 of the 20 tested defense-associated TFs significantly influenced plant growth and/or flowering time. The TFs' effects were conditional upon the environment and age of the plant, and more critically varied across the growth and defense phenotypes for a given genotype. In support of the coordination model of growth and defense, the TF mutant's effects on short-chain aliphatic GLS and growth did not display a simple correlation. We propose that large TF networks integrate internal and external signals and separately modulate growth and the accumulation of the defensive aliphatic GLS.
Collapse
Affiliation(s)
- Baohua Li
- Department of Plant Sciences, University of California, Davis, California 95616
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Michelle Tang
- Department of Plant Sciences, University of California, Davis, California 95616
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Céline Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Ayla Nelson
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Marium Zhou
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Xue Zhou
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
50
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|