1
|
Luo N, Wang Y, Liu Y, Wang Y, Guo Y, Chen C, Gan Q, Song Y, Fan Y, Jin S, Ni Y. 3-ketoacyl-CoA synthase 19 contributes to the biosynthesis of seed lipids and cuticular wax in Arabidopsis and abiotic stress tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:4599-4614. [PMID: 39041727 DOI: 10.1111/pce.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Very-long-chain fatty acids (VLCFAs) are essential precursors for plant membrane lipids, cuticular waxes, suberin, and storage oils. Integral to the fatty acid elongase (FAE) complex, 3-ketoacyl-CoA synthases (KCSs) function as crucial enzymes in the VLCFA pathway, determining the chain length of VLCFA. This study explores the in-planta role of the KCS19 gene. KCS19 is predominantly expressed in leaves and stem epidermis, sepals, styles, early silique walls, beaks, pedicels, and mature embryos. Localized in the endoplasmic reticulum, KCS19 interacts with other FAE proteins. kcs19 knockout mutants displayed reduced total wax and wax crystals, particularly alkanes, while KCS19 overexpression increased these components and wax crystals. Moreover, the cuticle permeability was higher for the kcs19 mutants compared to the wild type, rendering them more susceptible to drought and salt stress, whereas KCS19 overexpression enhanced drought and salt tolerance. Disrupting KCS19 increased C18 species and decreased C20 and longer species in seed fatty acids, indicating its role in elongating C18 to C20 VLCFAs, potentially up to C24 for seed storage lipids. Collectively, KCS19-mediated VLCFA synthesis is required for cuticular wax biosynthesis and seed storage lipids, impacting plant responses to abiotic stress.
Collapse
Affiliation(s)
- Na Luo
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yulu Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yuxin Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Chunjie Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Qiaoqiao Gan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yuyang Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Yongxin Fan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| | - Shurong Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yu Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Dongying Key Laboratory of Germplasm Resources Identification and Application of Oil Crops in Saline alkali Land, Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, China
| |
Collapse
|
2
|
Hao Y, Luo H, Wang Z, Lu C, Ye X, Wang H, Miao L. Research progress on the mechanisms of fruit glossiness in cucumber. Gene 2024; 927:148626. [PMID: 38830516 DOI: 10.1016/j.gene.2024.148626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop in China. Consumer requirements for aesthetically pleasing appearances of horticultural crops are gradually increasing, and cucumbers having a good visual appearance, as well as flavor, are important for breeding and industry development. The gloss of cucumber fruit epidermis is an important component of its appeal, and the wax layer on the fruit surface plays important roles in plant growth and forms a powerful barrier against external biotic and abiotic stresses. The wax of the cucumber epidermis is mainly composed of alkanes, and the luster of cucumber fruit is mainly determined by the alkane and silicon contents of the epidermis. Several genes, transcription factors, and transporters affect the synthesis of ultra-long-chain fatty acids and change the silicon content, further altering the gloss of the epidermis. However, the specific regulatory mechanisms are not clear. Here, progress in research on the luster of cucumber fruit epidermis from physiological, biochemical, and molecular regulatory perspectives are reviewed. Additionally, future research avenues in the field are discussed.
Collapse
Affiliation(s)
- Yiyang Hao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Zhiyi Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Chuanlong Lu
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaolong Ye
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Huasen Wang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| | - Li Miao
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
3
|
Urano K, Oshima Y, Ishikawa T, Kajino T, Sakamoto S, Sato M, Toyooka K, Fujita M, Kawai-Yamada M, Taji T, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. Arabidopsis DREB26/ERF12 and its close relatives regulate cuticular wax biosynthesis under drought stress condition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39466828 DOI: 10.1111/tpj.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 09/29/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Land plants have evolved a hydrophobic cuticle on the surface of aerial organs as an adaptation to ensure survival in terrestrial environments. Cuticle is mainly composed of lipids, namely cutin and intracuticular wax, with epicuticular wax deposited on plant surface. The composition and permeability of cuticle have a large influence on its ability to protect plants against drought stress. However, the regulatory mechanisms underlying cuticular wax biosynthesis in response to drought stress have not been fully elucidated. Here, we identified three AP2/ERF transcription factors (DREB26/ERF12, ERF13 and ERF14) involved in the regulation of water permeability of the plant surface. Transmission electron microscopy revealed thicker cuticle on the leaves of DREB26-overexpressing (DREB26OX) plants, and thinner cuticle on the leaves of transgenic plants expressing SRDX repression domain-fused DREB26 (DREB26SR). Genes involved in cuticular wax formation were upregulated in DREB26OX and downregulated in DREB26SR. The levels of very-long chain (VLC) alkanes, which are a major wax component, increased in DREB26OX leaves and decreased in DREB26SR leaves. Under dehydration stress, water loss was reduced in DREB26OX and increased in DREB26SR. The erf12/13/14 triple mutant showed delayed growth, decreased leaf water content, and reduced drought-inducible VLC alkane accumulation. Taken together, our results indicate that the DREB26/ERF12 and its closed family members, ERF13 and ERF14, play an important role in cuticular wax biosynthesis in response to drought stress. The complex transcriptional cascade involved in the regulation of cuticular wax biosynthesis under drought stress conditions is discussed.
Collapse
Affiliation(s)
- Kaoru Urano
- RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, 305-0074, Ibaraki, Japan
- Institute of Agrobiological Sciences, NARO, 3-1-3 Kannondai, Tsukuba, 305-8604, Ibaraki, Japan
| | - Yoshimi Oshima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Toshiki Ishikawa
- Graduate School of Science and Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
| | - Takuma Kajino
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Miki Fujita
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Shimo-Ohkubo 255, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kyonoshin Maruyama
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, 305-8686, Ibaraki, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, 305-0074, Ibaraki, Japan
| |
Collapse
|
4
|
Wu M, Zhou Y, Ma H, Xu X, Liu M, Deng W. SlMYB72 interacts with SlTAGL1 to regulate the cuticle formation in tomato fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39395118 DOI: 10.1111/tpj.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024]
Abstract
The cuticle is the first physical barrier covering the surface of tomatoes and plays an important role in multiple stress responses. But the molecular regulatory networks of cuticle formation are not fully understood. In this study, we found that SlMYB72 can interact with SlTAGL1 to regulate the formation of fruit cuticle in tomato. Downregulating the expression of SlMYB72 inhibits the formation of fruit cuticle, resulting in a reduced fruit cuticle thickness, accelerated postharvest water loss, and increased susceptibility to Botrytis cinerea. RNA sequencing analysis showed that downregulation of the SlMYB72 gene decreased the expression levels of genes related to fatty acid and cuticle metabolism. SlMYB72 regulates the cuticle formation by directly binding to the promoter of long-chain acyl-coA synthetases (SlLACS1) and medium-chain alkane hydroxylase (SlMAH1). Moreover, SlMYB72 interacts with SlTAGL1, which can enhance the transcriptional activation of SlMYB72 on the SlMAH1 promoter. Overall, our study expands our understanding of the regulation of cuticle formation by SlMYB72 and provides new insights into fruit shelf life extension via manipulation of cuticle content.
Collapse
Affiliation(s)
- Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuanyi Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Haifeng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China
| |
Collapse
|
5
|
Wang X, Li S, Zhang X, Wang J, Hou T, He J, Li J. Integration of Transcriptome and Metabolome Reveals Wax Serves a Key Role in Preventing Leaf Water Loss in Goji ( Lycium barbarum). Int J Mol Sci 2024; 25:10939. [PMID: 39456725 PMCID: PMC11507121 DOI: 10.3390/ijms252010939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Drought stress is one of the main abiotic stresses that limit plant growth and affect fruit quality and yield. Plants primarily lose water through leaf transpiration, and wax effectively reduces the rate of water loss from the leaves. However, the relationship between water loss and the wax formation mechanism in goji (Lycium barbarum) leaves remains unclear. 'Ningqi I' goji and 'Huangguo' goji are two common varieties. In this study, 'Ningqi I' goji and 'Huangguo' goji were used as samples of leaf material to detect the differences in the water loss rate, chlorophyll leaching rate, wax phenotype, wax content, and components of the two materials. The differences in wax-synthesis-related pathways were analyzed using the transcriptome and metabolome methods, and the correlation among the wax components, wax synthesis genes, and transcription factors was analyzed. The results show that the leaf permeability of 'Ningqi I' goji was significantly lower than that of 'Huangguo' goji. The total wax content of the 'Ningqi I' goji leaves was 2.32 times that of the 'Huangguo' goji leaves, and the epidermal wax membrane was dense. The main components of the wax of 'Ningqi I' goji were alkanes, alcohols, esters, and fatty acids, the amounts of which were 191.65%, 153.01%, 6.09%, and 9.56% higher than those of 'Huangguo' goji, respectively. In the transcriptome analysis, twenty-two differentially expressed genes (DEGs) and six transcription factors (TFs) were screened for wax synthesis; during the metabolomics analysis, 11 differential metabolites were screened, which were dominated by lipids, some of which, like D-Glucaro-1, 4-Lactone, phosphatidic acid (PA), and phosphatidylcholine (PE), serve as prerequisites for wax synthesis, and were significantly positively correlated with wax components such as alkanes by the correlation analysis. A combined omics analysis showed that DEGs such as LbaWSD1, LbaKCS1, and LbaFAR2, and transcription factors such as LbaMYB306, LbaMYB60, and LbaMYBS3 were strongly correlated with wax components such as alkanes and alcohols. The high expression of DEGs and transcription factors is an important reason for the high wax content in the leaf epidermis of 'Ningqi I' goji plants. Therefore, by regulating the expression of wax-synthesis-related genes, the accumulation of leaf epidermal wax can be promoted, and the epidermal permeability of goji leaves can be weakened, thereby reducing the water loss rate of goji leaves. The research results can lay a foundation for cultivating drought-tolerant goji varieties.
Collapse
Affiliation(s)
- Xingbin Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
| | - Sitian Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiao Zhang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
| | - Jing Wang
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
| | - Tong Hou
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
| | - Jing He
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou 730070, China
| | - Jie Li
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (X.Z.); (J.W.); (T.H.); (J.H.)
- Wolfberry Harmless Cultivation Engineering Research Center of Gansu Province, Lanzhou 730070, China
| |
Collapse
|
6
|
Liu X, Ban Z, Yang Y, Xu H, Cui Y, Wang C, Bi Q, Yu H, Wang L. The yellowhorn MYB transcription factor MYB30 is required for wax accumulation and drought tolerance. TREE PHYSIOLOGY 2024; 44:tpae111. [PMID: 39190879 DOI: 10.1093/treephys/tpae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 08/29/2024]
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is an economically important tree species in northern China, mainly distributed in arid and semi-arid areas where water resources are scarce. Drought affects its yield and the expansion of its suitable growth area. It was found that the wax content in yellowhorn leaves varied significantly among different germplasms, which had a strong correlation with the drought resistance of yellowhorn. In this study, XsMYB30 was isolated from 'Zhongshi 4' of yellowhorn, a new highly waxy variety. DAP-Seq technology revealed that the pathways associated with fatty acids were significantly enriched in the target genes of XsMYB30. Moreover, the results of electrophoretic mobility shift assay, yeast one hybrid assay and dual-luciferase assay demonstrated that XsMYB30 could directly and specifically bind with the promoters of genes involved in wax biosynthesis (XsFAR4, XsCER1 and XsKCS1), lipid transfer (XsLTPG1 and XsLTP1) and fatty acid synthesis (XsKASIII), thus enhancing their expression. In addition, the overexpression of XsMYB30 in poplar promoted the expression levels of these target genes and increased the wax deposition on poplar leaves leading to a notable improvement in the plant's ability to withstand drought. These findings indicate that XsMYB30 is an important regulatory factor in cuticular wax biosynthesis and the drought resistance of yellowhorn.
Collapse
Affiliation(s)
- Xiaojuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Zhuo Ban
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Yingying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Huihui Xu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Yifan Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Chenxue Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Quanxin Bi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Haiyan Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Libing Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| |
Collapse
|
7
|
Wang X, Chen W, Zhi P, Chang C. Wheat Transcription Factor TaMYB60 Modulates Cuticular Wax Biosynthesis by Activating TaFATB and TaCER1 Expression. Int J Mol Sci 2024; 25:10335. [PMID: 39408665 PMCID: PMC11477597 DOI: 10.3390/ijms251910335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cuticular wax mixtures cover the epidermis of land plants and shield plant tissues from abiotic and biotic stresses. Although cuticular wax-associated traits are employed to improve the production of bread wheat, regulatory mechanisms underlying wheat cuticular wax biosynthesis remain poorly understood. In this research, partially redundant transcription factors TaMYB60-1 and TaMYB60-2 were identified as positive regulators of wheat cuticular wax biosynthesis. Knock-down of wheat TaMYB60-1 and TaMYB60-2 genes by virus-induced gene silencing resulted in attenuated wax accumulation and enhanced cuticle permeability. The roles of wheat fatty acyl-ACP thioesterase genes TaFATB1 and TaFATB2 in cuticular wax biosynthesis were characterized. Silencing wheat TaFATB1 and TaFATB2 genes led to reduced wax accumulation and increased cuticle permeability, suggesting that TaFATB1 and TaFATB2 genes positively contribute to wheat cuticular wax biosynthesis. Importantly, transcription factors TaMYB60-1 and TaMYB60-2 exhibit transcriptional activation ability and could stimulate the expression of wax biosynthesis genes TaFATB1, TaFATB2, and ECERIFERUM 1 (TaCER1). These findings support that transcription factor TaMYB60 positively regulates wheat cuticular wax biosynthesis probably by activating transcription of TaFATB1, TaFATB2, and TaCER1 genes.
Collapse
Affiliation(s)
| | | | | | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
8
|
Zhang XY, Han WH, Zhang FB, Wang JX, Liu SS, Wang XW. Attraction of Nicotiana benthamiana to Bemisia tabaci is related to a chemical signal in plant volatile, undecane. PEST MANAGEMENT SCIENCE 2024. [PMID: 39258464 DOI: 10.1002/ps.8411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND The whitefly Bemisia tabaci is one of the world's foremost agricultural pests. Recently, we found that a wild relative of tobacco (Nicotiana benthamiana) demonstrates remarkable attractiveness and nearly 100% lethality towards whiteflies. Therefore, it can act as a dead-end trap crop for whitefly control in the field. However, the underlying mechanism of the significant attractiveness of N. benthamiana towards whiteflies is unclear. RESULTS Binary-choice assays and olfactory experiments showed that compared to common tobacco (N. tabacum), the volatile of N. benthamiana has a greater attraction to whiteflies. Then we analyzed and compared volatiles from these two Nicotiana species by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). We identified 16 chemical compounds that are more abundant in N. benthamiana than in N. tabacum. Seven compounds were further tested with olfactometer assays and we found that, among them, undecane strongly attracted whiteflies. Further experiments revealed that even 0.005 μg mL-1 undecane is attractive to whiteflies. We also silenced the genes that may influence the biosynthesis of undecane and found the production of undecane decreased after silencing NbCER3, and that N. benthamiana plants with less undecane lost their attraction to whiteflies. In addition, we found that applying 0.005 μg mL-1 undecane on yellow sticky traps can increase the number of stuck insects on the traps by ≈40%. CONCLUSION Undecane from the volatile of N. benthamiana is a critical chemical signal that attracts whiteflies and NbCER3 involved in the biosynthesis of undecane. Undecane may be used to improve the efficiency of yellow sticky traps for whitefly control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hao Han
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Bin Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun-Xia Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Kiani HS, Noudehi MS, Shokrpour M, Zargar M, Naghavi MR. Investigation of genes involved in scent and color production in Rosa damascena Mill. Sci Rep 2024; 14:20576. [PMID: 39242697 PMCID: PMC11379714 DOI: 10.1038/s41598-024-71518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Rosa damascena Mill., commonly known as the King Flower, is a fragrant and important species of the Rosaceae family. It is widely used in the perfumery and pharmaceutical industries. The scent and color of the flowers are significant characteristics of this ornamental plant. This study aimed to investigate the relative expression of MYB1, CCD1, FLS, PAL, CER1, GT1, ANS and PAR genes under two growth stages (S1 and S2) in two morphs. The CCD1 gene pathway is highly correlated with the biosynthesis of volatile compounds. The results showed that the overexpression of MYB1, one of the important transcription factors in the production of fragrance and color, in the Hot pink morph of sample S2 increased the expression of PAR, PAL, FLS, RhGT1, CCD1, ANS, CER1, and GGPPS. The methyl jasmonate (MeJA) stimulant had a positive and cumulative effect on gene expression in most genes, such as FLS in ACC.26 of the S2 sample, RhGT1, MYB1, CCD1, PAR, ANS, CER1, and PAL in ACC.1. To further study, a comprehensive analysis was performed to evaluate the relationship between the principal volatile compounds and colors. Our data suggest that the rose with pink flowers had a higher accumulation content of flavonoids and anthocyanin. To separate essential oil compounds, GC/MS analysis identified 26 compounds in four samples. The highest amount of geraniol, one of the main components of damask rose, was found in the Hot pink flower, 23.54%, under the influence of the MeJA hormone.
Collapse
Affiliation(s)
- Hoda Sadat Kiani
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Manijeh Sabokdast Noudehi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Zargar
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia, 117198
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
- Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia, 117198.
| |
Collapse
|
10
|
Shi Y, Ackah M, Amoako FK, Zhao M, van der Puije GC, Zhao W. The Mechanism of the Development and Maintenance of Sexual Dimorphism in the Dioecious Mulberry Plant ( Morus alba). BIOLOGY 2024; 13:622. [PMID: 39194560 DOI: 10.3390/biology13080622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Intersexual differentiation is crucial for the speciation and maintenance of dioecious plants, but the underlying mechanisms, including the genes involved, are still poorly understood. Here, we focused on a typical dioicous plant Morus alba, to explore the molecular footprints relevant to sex evolution by revealing the differentially expressed genes (DEGs) between two sexes and the testing signals of selection for these DEGs. From the results, we found a total of 1543 DEGs. Interestingly, 333 and 66 genes expression were detected only in male and female inflorescences, respectively. Using comparative transcriptomics, the expression of 841 genes were found to be significantly higher in male than in female inflorescences and were mainly enriched in defense-related pathways including the biosynthesis of phenylpropanoids, cutin, suberine and waxes. Meanwhile, the expression of 702 genes was female-biased and largely enriched in pathways related to growth and development, such as carbohydrate metabolism, auxin signaling and cellular responses. In addition, 16.7% and 17.6% signals of selection were significantly detected in female- and male-biased genes, respectively, suggesting their non-negligible role in evolution. Our findings expanded the understanding of the molecular basis of intersexual differentiation and contribute to further research on sex evolution in dioecious plants.
Collapse
Affiliation(s)
- Yisu Shi
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany
| | - Mengdi Zhao
- Department of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Grace C van der Puije
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast P.O. Box 5007, Ghana
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
11
|
Kuźniak E, Gajewska E. Lipids and Lipid-Mediated Signaling in Plant-Pathogen Interactions. Int J Mol Sci 2024; 25:7255. [PMID: 39000361 PMCID: PMC11241471 DOI: 10.3390/ijms25137255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Plant lipids are essential cell constituents with many structural, storage, signaling, and defensive functions. During plant-pathogen interactions, lipids play parts in both the preexisting passive defense mechanisms and the pathogen-induced immune responses at the local and systemic levels. They interact with various components of the plant immune network and can modulate plant defense both positively and negatively. Under biotic stress, lipid signaling is mostly associated with oxygenated natural products derived from unsaturated fatty acids, known as oxylipins; among these, jasmonic acid has been of great interest as a specific mediator of plant defense against necrotrophic pathogens. Although numerous studies have documented the contribution of oxylipins and other lipid-derived species in plant immunity, their specific roles in plant-pathogen interactions and their involvement in the signaling network require further elucidation. This review presents the most relevant and recent studies on lipids and lipid-derived signaling molecules involved in plant-pathogen interactions, with the aim of providing a deeper insight into the mechanisms underpinning lipid-mediated regulation of the plant immune system.
Collapse
Affiliation(s)
- Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, University of Lodz, 90-237 Łódź, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, University of Lodz, 90-237 Łódź, Poland
| |
Collapse
|
12
|
Straube J, Hurtado G, Zeisler-Diehl V, Schreiber L, Knoche M. Cuticle deposition ceases during strawberry fruit development. BMC PLANT BIOLOGY 2024; 24:623. [PMID: 38951751 PMCID: PMC11218262 DOI: 10.1186/s12870-024-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Grecia Hurtado
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany
| | - Viktoria Zeisler-Diehl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, Bonn, 53115, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, Hannover, 30419, Germany.
| |
Collapse
|
13
|
Campoli C, Eskan M, McAllister T, Liu L, Shoesmith J, Prescott A, Ramsay L, Waugh R, McKim SM. A GDSL-motif Esterase/Lipase Affects Wax and Cutin Deposition and Controls Hull-Caryopsis Attachment in Barley. PLANT & CELL PHYSIOLOGY 2024; 65:999-1013. [PMID: 38668634 PMCID: PMC11209556 DOI: 10.1093/pcp/pcae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/25/2024] [Indexed: 06/28/2024]
Abstract
The cuticle covering aerial organs of land plants is well known to protect against desiccation. Cuticles also play diverse and specialized functions, including organ separation, depending on plant and tissue. Barley shows a distinctive cuticular wax bloom enriched in β-diketones on leaf sheaths, stem nodes and internodes and inflorescences. Barley also develops a sticky surface on the outer pericarp layer of its grain fruit leading to strongly adhered hulls, 'covered grain', important for embryo protection and seed dispersal. While the transcription factor-encoding gene HvNUDUM (HvNUD) appears essential for adherent hulls, little is understood about how the pericarp cuticle changes during adhesion or whether changes in pericarp cuticles contribute to another phenotype where hulls partially shed, called 'skinning'. To that end, we screened barley lines for hull adhesion defects, focussing on the Eceriferum (= waxless, cer) mutants. Here, we show that the cer-xd allele causes defective wax blooms and compromised hull adhesion, and results from a mutation removing the last 10 amino acids of the GDS(L) [Gly, Asp, Ser, (Leu)]-motif esterase/lipase HvGDSL1. We used severe and moderate HvGDSL1 alleles to show that complete HvGDSL1 function is essential for leaf blade cuticular integrity, wax bloom deposition over inflorescences and leaf sheaths and pericarp cuticular ridge formation. Expression data suggest that HvGDSL1 may regulate hull adhesion independently of HvNUD. We found high conservation of HvGDSL1 among barley germplasm, so variation in HvGDSL1 unlikely leads to grain skinning in cultivated barley. Taken together, we reveal a single locus which controls adaptive cuticular properties across different organs in barley.
Collapse
Affiliation(s)
- Chiara Campoli
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Mhmoud Eskan
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Trisha McAllister
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Linsan Liu
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Jennifer Shoesmith
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Alan Prescott
- DIF and Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Nethergate, Dundee DD14HN, UK
| | - Luke Ramsay
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol road, Invergowrie, Dundee DD25DA, UK
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Errol road, Invergowrie, Dundee DD25DA, UK
| |
Collapse
|
14
|
Wang X, Fu Y, Liu X, Chang C. Wheat MIXTA-like Transcriptional Activators Positively Regulate Cuticular Wax Accumulation. Int J Mol Sci 2024; 25:6557. [PMID: 38928263 PMCID: PMC11204111 DOI: 10.3390/ijms25126557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
MIXTA-like transcription factors AtMYB16 and AtMYB106 play important roles in the regulation of cuticular wax accumulation in dicot model plant Arabidopsis thaliana, but there are very few studies on the MIXTA-like transcription factors in monocot plants. Herein, wheat MIXTA-like transcription factors TaMIXTA1 and TaMIXTA2 were characterized as positive regulators of cuticular wax accumulation. The virus-induced gene silencing experiments showed that knock-down of wheat TaMIXTA1 and TaMIXTA2 expressions resulted in the decreased accumulation of leaf cuticular wax, increased leaf water loss rate, and potentiated chlorophyll leaching. Furthermore, three wheat orthologous genes of ECERIFERUM 5 (TaCER5-1A, 1B, and 1D) and their function in cuticular wax deposition were reported. The silencing of TaCER5 by BSMV-VIGS led to reduced loads of leaf cuticular wax and enhanced rates of leaf water loss and chlorophyll leaching, indicating the essential role of the TaCER5 gene in the deposition of wheat cuticular wax. In addition, we demonstrated that TaMIXTA1 and TaMIXTA2 function as transcriptional activators and could directly stimulate the transcription of wax biosynthesis gene TaKCS1 and wax deposition gene TaCER5. The above results strongly support that wheat MIXTA-Like transcriptional activators TaMIXTA1 and TaMIXTA2 positively regulate cuticular wax accumulation via activating TaKCS1 and TaCER5 gene transcription.
Collapse
Affiliation(s)
| | | | | | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
15
|
Bhattacharya A, Chauhan P, Singh SP, Narayan S, Bajpai RK, Dwivedi A, Mishra A. Bacillus tequilensis influences metabolite production in tomato and restores soil microbial diversity during Fusarium oxysporum infection. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:592-601. [PMID: 38682466 DOI: 10.1111/plb.13647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/08/2024] [Indexed: 05/01/2024]
Abstract
This study evaluates cellular damage, metabolite profiling, and defence-related gene expression in tomato plants and soil microflora during Fusarium wilt disease after treatment with B. tequilensis PBE-1. Histochemical analysis showed that PBE-1 was the primary line of defence through lignin deposition and reduced cell damage. GC-MS revealed that PBE-1 treatment ameliorated stress caused by F. oxysporum infection. PBE-1 also improved transpiration, photosynthesis, and stomatal conductance in tomato. qRT-PCR suggested that the defence-related genes FLS2, SERK, NOS, WRKYT, NHO, SAUR, and MYC2, which spread infection, were highly upregulated during F. oxysporum infection, but either downregulated or expressed normally in PBE-1 + P treated plants. This indicates that the plant not only perceives the bio-control agent as a non-pathogen entity but its presence in normal metabolism and gene expression within the host plant is maintained. The study further corroborated findings that application of PBE-1 does not cause ecological disturbances in the rhizosphere. Activity of soil microflora across four treatments, measured by Average Well Colour Development (AWCD), showed continuous increases from weeks 1 to 4 post-pathogen infection, with distinct substrate usage patterns like tannic and fumaric acids impacting microbial energy source utilization and diversity. Principal Component Analysis (PCA) and diversity indices like McIntosh, Shannon, and Simpson further illustrated significant microbial community shifts over the study period. In conclusion, our findings demonstrate that B. tequilensis PBE-1 is an ideal bio-agent for field application during Fusarium wilt disease management in tomato.
Collapse
Affiliation(s)
- A Bhattacharya
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P Chauhan
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- School of Sciences, P P Savani University, Surat, Gujarat, India
| | - S P Singh
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - S Narayan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plant Physiology Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - R K Bajpai
- Ex Director Research Services, Indira Gandhi Krishi Vishwavidyalaya, Raipur, India
| | - A Dwivedi
- Photobiology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - A Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Huang H, Wang Y, Yang P, Zhao H, Jenks MA, Lü S, Yang X. The Arabidopsis cytochrome P450 enzyme CYP96A4 is involved in the wound-induced biosynthesis of cuticular wax and cutin monomers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1619-1634. [PMID: 38456566 DOI: 10.1111/tpj.16701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The plant cuticle is composed of cuticular wax and cutin polymers and plays an essential role in plant tolerance to diverse abiotic and biotic stresses. Several stresses, including water deficit and salinity, regulate the synthesis of cuticular wax and cutin monomers. However, the effect of wounding on wax and cutin monomer production and the associated molecular mechanisms remain unclear. In this study, we determined that the accumulation of wax and cutin monomers in Arabidopsis leaves is positively regulated by wounding primarily through the jasmonic acid (JA) signaling pathway. Moreover, we observed that a wound- and JA-responsive gene (CYP96A4) encoding an ER-localized cytochrome P450 enzyme was highly expressed in leaves. Further analyses indicated that wound-induced wax and cutin monomer production was severely inhibited in the cyp96a4 mutant. Furthermore, CYP96A4 interacted with CER1 and CER3, the core enzymes in the alkane-forming pathway associated with wax biosynthesis, and modulated CER3 activity to influence aldehyde production in wax synthesis. In addition, transcripts of MYC2 and JAZ1, key genes in JA signaling pathway, were significantly reduced in cyp96a4 mutant. Collectively, these findings demonstrate that CYP96A4 functions as a cofactor of the alkane synthesis complex or participates in JA signaling pathway that contributes to cuticular wax biosynthesis and cutin monomer formation in response to wounding.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, 85721, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
17
|
Hamid R, Ghorbanzadeh Z, Jacob F, Nekouei MK, Zeinalabedini M, Mardi M, Sadeghi A, Ghaffari MR. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation. BMC PLANT BIOLOGY 2024; 24:468. [PMID: 38811873 PMCID: PMC11134665 DOI: 10.1186/s12870-024-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
18
|
Nguyen LTD, Groth N, Mondloch K, Cahoon EB, Jones K, Busta L. Project ChemicalBlooms: Collaborating with citizen scientists to survey the chemical diversity and phylogenetic distribution of plant epicuticular wax blooms. PLANT DIRECT 2024; 8:e588. [PMID: 38766509 PMCID: PMC11099751 DOI: 10.1002/pld3.588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Plants use chemistry to overcome diverse challenges. A particularly striking chemical trait that some plants possess is the ability to synthesize massive amounts of epicuticular wax that accumulates on the plant's surfaces as a white coating visible to the naked eye. The ability to synthesize basic wax molecules appears to be shared among virtually all land plants, and our knowledge of ubiquitous wax compound synthesis is reasonably advanced. However, the ability to synthesize thick layers of visible epicuticular crystals ("wax blooms") is restricted to specific lineages, and our knowledge of how wax blooms differ from ubiquitous wax layers is less developed. Here, we recruited the help of citizen scientists and middle school students to survey the wax bloom chemistry of 78 species spanning dicot, monocot, and gymnosperm lineages. Using gas chromatography-mass spectrometry, we found that the major wax classes reported from bulk wax mixtures can be present in wax bloom crystals, with fatty acids, fatty alcohols, and alkanes being present in many species' bloom crystals. In contrast, other compounds including aldehydes, ketones, secondary alcohols, and triterpenoids were present in only a few species' wax bloom crystals. By mapping the 78 wax bloom chemical profiles onto a phylogeny and using phylogenetic comparative analyses, we found that secondary alcohol and triterpenoid-rich wax blooms were present in lineage-specific patterns that would not be expected to arise by chance. That finding is consistent with reports that secondary alcohol biosynthesis enzymes are found only in certain lineages but was a surprise for triterpenoids, which are intracellular components in virtually all plant lineages. Thus, our data suggest that a lineage-specific mechanism other than biosynthesis exists that enables select species to generate triterpenoid-rich surface wax crystals. Overall, our study outlines a general mode in which research scientists can collaborate with citizen scientists as well as middle and high school classrooms not only to enhance data collection and generate testable hypotheses but also to directly involve classrooms in the scientific process and inspire future STEM workers.
Collapse
Affiliation(s)
- Le Thanh Dien Nguyen
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Nicole Groth
- Department of BiologyUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Kylie Mondloch
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Edgar B. Cahoon
- Department of BiochemistryUniversity of Nebraska LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationUniversity of Nebraska LincolnLincolnNebraskaUSA
| | - Keith Jones
- McDonald County R‐1 School DistrictAndersonMissouriUSA
| | - Lucas Busta
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluthMinnesotaUSA
| |
Collapse
|
19
|
Qin K, Ge S, Xiao G, Chen F, Ding S, Wang R. 1-MCP treatment improves the postharvest quality of Jinxiu yellow peach by regulating cuticular wax composition and gene expression during cold storage. J Food Sci 2024; 89:2787-2802. [PMID: 38563098 DOI: 10.1111/1750-3841.17049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
This study aimed to analyze the effect of 1-methylcyclopropene (1-MCP) treatment on the postharvest quality, epidermal wax morphology, composition, and gene expression of Jinxiu yellow peach during cold storage. The results showed that 1-MCP treatment could maintain the postharvest quality of peach fruit as compared to control (CK) during cold storage. The wax crystals of peach fruit were better retained by 1-MCP, and they still existed in 0.6 and 0.9 µL/L 1-MCP treated fruit at 36 days. The total wax content in all the fruit increased first and then decreased during cold storage. Meanwhile, n-alkanes and primary alcohols were the main wax components. Compared to CK, 1-MCP treatment could delay the reduction of wax content during cold storage. The correlation analysis indicated that the postharvest quality of yellow peach was mainly affected by the contents of fatty acids and triterpenoids in cuticular wax. The transcriptomics results revealed PpaCER1, PpaKCS, PpaKCR1, PpaCYP86B1, PpaFAR, PpaSS2, and PpaSQE1 played the important roles in the formation of peach fruit wax. 1-MCP treatment upregulated PpaCER1 (18785414, 18786441, and 18787644), PpaKCS (18774919, 18789438, and 18793503), PpaKCR1 (18790432), and PpaCYP86B1 (18789815) to deposit more n-alkanes and fatty acids during cold storage. This study could provide a new perspective for regulating the postharvest quality of yellow peach in view of the application of cuticular wax. PRACTICAL APPLICATION: 'Jinxiu' yellow peach fruit is favorable among consumers because of its high commercial value. However, it ripens and deteriorates rapidly during storage, leading to serious economic loss and consumer disappointment. The effect of 1-methylcyclopropene (1-MCP) treatment on the postharvest quality, epidermal wax morphology, composition, and genes regulation of 'Jinxiu' yellow peach during cold storage was assessed. Compared to control, 1-MCP treatment could retain the storage quality of yellow peach by affecting cuticular wax composition and gene expression. This study could provide new perspective for regulating the postharvest quality of yellow peach in view of the application of cuticular wax.
Collapse
Affiliation(s)
- Keying Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Guangjian Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fei Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
20
|
Fakhrzad F, Jowkar A. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers. BMC PLANT BIOLOGY 2024; 24:330. [PMID: 38664602 PMCID: PMC11044323 DOI: 10.1186/s12870-024-05007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.
Collapse
Affiliation(s)
- Fazilat Fakhrzad
- Department of Horticultural Science, College of Agriculture, Shiraz University, P.O. Box: 71441-13131, Shiraz, Iran
| | - Abolfazl Jowkar
- Department of Horticultural Science, College of Agriculture, Shiraz University, P.O. Box: 71441-13131, Shiraz, Iran.
| |
Collapse
|
21
|
Kojima H, Yamamoto K, Suzuki T, Hayakawa Y, Niwa T, Tokuhiro K, Katahira S, Higashiyama T, Ishiguro S. Broad Chain-Length Specificity of the Alkane-Forming Enzymes NoCER1A and NoCER3A/B in Nymphaea odorata. PLANT & CELL PHYSIOLOGY 2024; 65:428-446. [PMID: 38174441 PMCID: PMC11020225 DOI: 10.1093/pcp/pcad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 01/05/2024]
Abstract
Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.
Collapse
Affiliation(s)
- Hisae Kojima
- Technical Center, Nagoya University, Nagoya, 464-8601 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kanta Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, 487-8501 Japan
| | - Yuri Hayakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Tomoko Niwa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Kenro Tokuhiro
- Toyota Central R&D Labs., Inc., Nagakute, 480-1192 Japan
| | | | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8601 Japan
- Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| |
Collapse
|
22
|
Pechar GS, Sánchez-Pina MA, Coronado-Parra T, Bretó P, García-Almodóvar RC, Liu L, Aranda MA, Donaire L. Developmental stages and episode-specific regulatory genes in andromonoecious melon flower development. ANNALS OF BOTANY 2024; 133:305-320. [PMID: 38041589 PMCID: PMC11005788 DOI: 10.1093/aob/mcad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/01/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND AIMS Given the lack of specific studies on floral development in melon (Cucumis melo L.), we carried out an extensive study involving morphological and transcriptomic analyses to characterize floral development in this species. METHODS Using an andromonoecious line, we analysed the development of floral buds in male and hermaphrodite flowers with both light microscopy and scanning electron microscopy. Based on flower lengths, we established a correlation between the developmental stages and four main episodes of floral development and conducted an extensive RNA sequencing analysis of these episodes. KEY RESULTS We identified 12 stages of floral development, from the appearance of the floral meristems to anthesis. The main structural differences between male and hermaphrodite flowers appeared between stages 6 and 7; later stages of development leading to the formation of organs and structures in both types of flowers were also described. We analysed the gene expression patterns of the four episodes in flower development to find the genes that were specific to each given episode. Among others, we identified genes that defined the passage from one episode to the next according to the ABCDE model of floral development. CONCLUSIONS This work combines a detailed morphological analysis and a comprehensive transcriptomic study to enable characterization of the structural and molecular mechanisms that determine the floral development of an andromonoecious genotype in melon. Taken together, our results provide a first insight into gene regulation networks in melon floral development that are crucial for flowering and pollen formation, highlighting potential targets for genetic manipulation to improve crop yield of melon in the future.
Collapse
Affiliation(s)
- Giuliano S Pechar
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - M Amelia Sánchez-Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Teresa Coronado-Parra
- Microscopy Core Facility, Área Científica y Técnica de Investigación, Universidad de Murcia, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Pau Bretó
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| | - Roque Carlos García-Almodóvar
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Zhengzhou 450009, Henan, China
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
| | - Livia Donaire
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, PO Box 164, 30100 Espinardo, Murcia, Spain
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
23
|
Nadeem S, Riaz Ahmed S, Luqman T, Tan DKY, Maryum Z, Akhtar KP, Muhy Ud Din Khan S, Tariq MS, Muhammad N, Khan MKR, Liu Y. A comprehensive review on Gossypium hirsutum resistance against cotton leaf curl virus. Front Genet 2024; 15:1306469. [PMID: 38440193 PMCID: PMC10909863 DOI: 10.3389/fgene.2024.1306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Cotton (Gossypium hirsutum L.) is a significant fiber crop. Being a major contributor to the textile industry requires continuous care and attention. Cotton is subjected to various biotic and abiotic constraints. Among these, biotic factors including cotton leaf curl virus (CLCuV) are dominant. CLCuV is a notorious disease of cotton and is acquired, carried, and transmitted by the whitefly (Bemisia tabaci). A cotton plant affected with CLCuV may show a wide range of symptoms such as yellowing of leaves, thickening of veins, upward or downward curling, formation of enations, and stunted growth. Though there are many efforts to protect the crop from CLCuV, long-term results are not yet obtained as CLCuV strains are capable of mutating and overcoming plant resistance. However, systemic-induced resistance using a gene-based approach remained effective until new virulent strains of CLCuV (like Cotton Leaf Curl Burewala Virus and others) came into existence. Disease control by biological means and the development of CLCuV-resistant cotton varieties are in progress. In this review, we first discussed in detail the evolution of cotton and CLCuV strains, the transmission mechanism of CLCuV, the genetic architecture of CLCuV vectors, and the use of pathogen and nonpathogen-based approaches to control CLCuD. Next, we delineate the uses of cutting-edge technologies like genome editing (with a special focus on CRISPR-Cas), next-generation technologies, and their application in cotton genomics and speed breeding to develop CLCuD resistant cotton germplasm in a short time. Finally, we delve into the current obstacles related to cotton genome editing and explore forthcoming pathways for enhancing precision in genome editing through the utilization of advanced genome editing technologies. These endeavors aim to enhance cotton's resilience against CLCuD.
Collapse
Affiliation(s)
- Sahar Nadeem
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Pakistan Agriculture Research Council (PARC), Horticulture Research Institute Khuzdar Baghbana, Khuzdar, Pakistan
| | - Tahira Luqman
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Zahra Maryum
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Khalid Pervaiz Akhtar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Sana Muhy Ud Din Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Nazar Muhammad
- Agriculture and Cooperative Department, Quetta, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
24
|
Sumbur B, Zhou M, Dorjee T, Bing J, Ha S, Xu X, Zhou Y, Gao F. Chemical and Transcriptomic Analyses of Leaf Cuticular Wax Metabolism in Ammopiptanthus mongolicus under Osmotic Stress. Biomolecules 2024; 14:227. [PMID: 38397464 PMCID: PMC10886927 DOI: 10.3390/biom14020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Plant cuticular wax forms a hydrophobic structure in the cuticle layer covering epidermis as the first barrier between plants and environments. Ammopiptanthus mongolicus, a leguminous desert shrub, exhibits high tolerances to multiple abiotic stress. The physiological, chemical, and transcriptomic analyses of epidermal permeability, cuticular wax metabolism and related gene expression profiles under osmotic stress in A. mongolicus leaves were performed. Physiological analyses revealed decreased leaf epidermal permeability under osmotic stress. Chemical analyses revealed saturated straight-chain alkanes as major components of leaf cuticular wax, and under osmotic stress, the contents of total wax and multiple alkane components significantly increased. Transcriptome analyses revealed the up-regulation of genes involved in biosynthesis of very-long-chain fatty acids and alkanes and wax transportation under osmotic stress. Weighted gene co-expression network analysis identified 17 modules and 6 hub genes related to wax accumulation, including 5 enzyme genes coding KCS, KCR, WAX2, FAR, and LACS, and an ABCG transporter gene. Our findings indicated that the leaf epidermal permeability of A. mongolicus decreased under osmotic stress to inhibit water loss via regulating the expression of wax-related enzyme and transporter genes, further promoting cuticular wax accumulation. This study provided new evidence for understanding the roles of cuticle lipids in abiotic stress tolerance of desert plants.
Collapse
Affiliation(s)
- Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Minqi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Sijia Ha
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaojing Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
25
|
Negin B, Shachar L, Meir S, Ramirez CC, Rami Horowitz A, Jander G, Aharoni A. Fatty alcohols, a minor component of the tree tobacco surface wax, are associated with defence against caterpillar herbivory. PLANT, CELL & ENVIRONMENT 2024; 47:664-681. [PMID: 37927215 DOI: 10.1111/pce.14752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Despite decades of research resulting in a comprehensive understanding of epicuticular wax metabolism, the function of these almost ubiquitous metabolites in plant-herbivore interactions remains unresolved. In this study, we examined the effects of CRISPR-induced knockout mutations in four Nicotiana glauca (tree tobacco) wax metabolism genes. These mutations cause a wide range of changes in epicuticular wax composition, leading to altered interactions with insects and snails. Three interaction classes were examined: chewing herbivory by seven caterpillars and one snail species, phloem feeding by Myzus persicae (green peach aphid) and oviposition by Bemisia tabaci (whitefly). Although total wax load and alkane abundance did not affect caterpillar growth, a correlation across species, showed that fatty alcohols, a minor component of N. glauca surface waxes, negatively affected the growth of both a generalist caterpillar (Spodoptera littoralis) and a tobacco-feeding specialist (Manduca sexta). This negative correlation was overshadowed by the stronger effect of anabasine, a nicotine isomer, and was apparent when fatty alcohols were added to an artificial lepidopteran diet. By contrast, snails fed more on waxy leaves. Aphid reproduction and feeding activity were unaffected by wax composition but were potentially affected by altered cutin composition. Wax crystal morphology could explain the preference of B. tabaci to lay eggs on waxy wild-type plants relative to both alkane and fatty alcohol-deficient mutants. Together, our results suggest that the varied responses among herbivore classes and species are likely to be a consequence of the co-evolution that shaped the specific effects of different surface wax components in plant-herbivore interactions.
Collapse
Affiliation(s)
- Boaz Negin
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
- Boyce Thompson Institute, Ithaca, New York, USA
| | - Lior Shachar
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| | - Sagit Meir
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| | - Claudio C Ramirez
- Centre for Molecular and Functional Ecology in Agroecosystems, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - A Rami Horowitz
- Department of Entomology, Agricultural Research Organization (ARO), Gilat Research Center for Arid and Semi-Arid Agricultural Research, Rishon Lezion, Israel
- Katif Research Center, Sedot Negev, Israel
- Ministry of Science and Technology, Netivot, Israel
| | | | - Asaph Aharoni
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Sun X, Kaleri GA, Mu Z, Feng Y, Yang Z, Zhong Y, Dou Y, Xu H, Zhou J, Luo J, Xiao Y. Comparative Transcriptome Analysis Provides Insights into the Effect of Epicuticular Wax Accumulation on Salt Stress in Coconuts. PLANTS (BASEL, SWITZERLAND) 2024; 13:141. [PMID: 38202449 PMCID: PMC10780918 DOI: 10.3390/plants13010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The coconut is an important tropical economical crop and exhibits high tolerance to various types of salinity stress. However, little is known about the molecular mechanism underlying its salt tolerance. In this study, RNA-Seq was applied to examine the different genes expressed in four coconut varieties when exposed to a salt environment, resulting in the generation of data for 48 transcriptomes. Comparative transcriptome analysis showed that some genes involved in cutin and wax biosynthesis were significantly upregulated in salt treatment compared to the control, including CYP86A4, HTH, CER1, CER2, CER3, DCR, GPAT4, LTP3, LTP4, and LTP5. In particular, the expression of CER2 was induced more than sixfold, with an RPKM value of up to 205 ten days after salt treatment in Hainan Tall coconut, demonstrating superior capacity in salt tolerance compared to dwarf coconut varieties. However, for yellow dwarf and red dwarf coconut varieties, the expression level of the CER2 gene was low at four different time points after exposure to salt treatment, suggesting that this gene may contribute to the divergence in salt tolerance between tall and dwarf coconut varieties. Cytological evidence showed a higher abundance of cuticle accumulation in tall coconut and severe damage to cuticular wax in dwarf coconut.
Collapse
Affiliation(s)
- Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang 571300, China; (X.S.); (Y.F.); (Y.Z.); (Y.D.)
| | - Ghulam Abid Kaleri
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Zhihua Mu
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Yalan Feng
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang 571300, China; (X.S.); (Y.F.); (Y.Z.); (Y.D.)
| | - Zhuang Yang
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Yazhu Zhong
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang 571300, China; (X.S.); (Y.F.); (Y.Z.); (Y.D.)
| | - Yajing Dou
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Wenchang 571300, China; (X.S.); (Y.F.); (Y.Z.); (Y.D.)
| | - Hang Xu
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Junjie Zhou
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Jie Luo
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| | - Yong Xiao
- College of Breeding and Multiplication, Hainan University, Sanya 572025, China; (G.A.K.); (Z.M.); (J.Z.)
| |
Collapse
|
27
|
Dong H, Xu C, Zhang C, Zhang L, Yao Y, Zhang S. Occurrence, structure, and function of short cells in maize leaf epidermis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108200. [PMID: 38029620 DOI: 10.1016/j.plaphy.2023.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
Short cells are specialised epidermal cells of grasses and they include cork and silica cells. The time of occurrence, distribution, and number of short cells differ among plants or tissues of the same plant. The present study aimed to assess the occurrence, structure, and function of short cells in the epidermis of maize (Zea mays L.) leaves from cultivar "Zhengdan 958″ under field and potted experimental conditions. Results showed that short cells occurred synchronously in multiple maize leaves. Few short cells occurred at the base of the fifth leaf; most were found at the middle and base of the sixth leaf, and throughout the seventh leaf. The accumulation of K+ and H2O2 in cork cells changed periodically with stomatal opening and closure, which was consistent with the accumulation of K+ and H2O2 in subsidiary cells; whereas no accumulation was observed in silica cells. Moreover, photosynthetic parameters and stomatal aperture were significantly higher in leaves containing short cells than in those without them in the same parts of different leaves or in different leaves at the same leaf position. Accumulation of K+ and H2O2 in cork cells increased with increasing water stress. In conclusion, short cells not only improved leaf mechanical support and photosynthetic performance, and maize drought resistance, but they also participated in stomatal regulation.
Collapse
Affiliation(s)
- He Dong
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong, 261053, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chongmei Xu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Chengtao Zhang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Li Zhang
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, Shandong, 261053, China.
| | - Yaqin Yao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Suiqi Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
28
|
Man YY, Lv YH, Lv HM, Jiang H, Wang T, Zhang YL, Li YY. MdDEWAX decreases plant drought resistance by regulating wax biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108288. [PMID: 38160533 DOI: 10.1016/j.plaphy.2023.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Apple epidermal wax protects plants from environmental stresses, determines fruit gloss and improves postharvest storage quality. However, the molecular mechanisms underlying the biosynthesis and regulation of apple epidermal waxes are not fully understood. In this study, we isolated a MdDEWAX gene from apple, which localized in the nucleus, expressed mainly in apple fruit, and induced by drought. We transformed the MdDEWAX gene into Arabidopsis, and found that heterologous expression of MdDEWAX reduced the accumulation of cuticular waxes in leaves and stems, increased epidermal permeability, the rate of water loss, and the rate of chlorophyll extraction of leaves and stems, altered the sensitivity to ABA, and reduced drought tolerance. Meanwhile, overexpression or silencing of the gene in the epidermis of apple fruits decreased or increased wax content, respectively. This study provides candidate genes for breeding apple cultivars and rootstocks with better drought tolerance.
Collapse
Affiliation(s)
- Yao-Yang Man
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yan-Hui Lv
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui-Min Lv
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Han Jiang
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Tao Wang
- Tai'an Institute for Food and Drug Control, Tai-An, 271000, Shandong, China
| | - Ya-Li Zhang
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yuan-Yuan Li
- National Apple Engineering Technology Research Center, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
29
|
Suárez-Baron H, Alzate JF, Ambrose BA, Pelaz S, González F, Pabón-Mora N. Comparative morphoanatomy and transcriptomic analyses reveal key factors controlling floral trichome development in Aristolochia (Aristolochiaceae). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6588-6607. [PMID: 37656729 DOI: 10.1093/jxb/erad345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Trichomes are specialized epidermal cells in aerial plant parts. Trichome development proceeds in three stages, determination of cell fate, specification, and morphogenesis. Most genes responsible for these processes have been identified in the unicellular branched leaf trichomes from the model Arabidopsis thaliana. Less is known about the molecular basis of multicellular trichome formation across flowering plants, especially those formed in floral organs of early diverging angiosperms. Here, we aim to identify the genetic regulatory network (GRN) underlying multicellular trichome development in the kettle-shaped trap flowers of Aristolochia (Aristolochiaceae). We selected two taxa for comparison, A. fimbriata, with trichomes inside the perianth, which play critical roles in pollination, and A. macrophylla, lacking specialized trichomes in the perianth. A detailed morphoanatomical characterization of floral epidermis is presented for the two species. We compared transcriptomic profiling at two different developmental stages in the different perianth portions (limb, tube, and utricle) of the two species. Moreover, we present a comprehensive expression map for positive regulators and repressors of trichome development, as well as cell cycle regulators. Our data point to extensive modifications in gene composition, expression, and putative roles in all functional categories when compared with model species. We also record novel differentially expressed genes (DEGs) linked to epidermis patterning and trichome development. We thus propose the first hypothetical genetic regulatory network (GRN) underlying floral multicellular trichome development in Aristolochia, and pinpoint key factors responsible for the presence and specialization of floral trichomes in phylogenetically distant species of the genus.
Collapse
Affiliation(s)
- Harold Suárez-Baron
- Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali, Cali, Colombia
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Favio González
- Universidad Nacional de Colombia, Sede Bogotá Facultad de Ciencias, Instituto de Ciencias Naturales, Bogotá, Colombia
| | | |
Collapse
|
30
|
Elakhdar A, El-Naggar AA, Kubo T, Kumamaru T. Genome-wide transcriptomic and functional analyses provide new insights into the response of spring barley to drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14089. [PMID: 38148212 DOI: 10.1111/ppl.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Drought is a major abiotic stress that impairs the physiology and development of plants, ultimately leading to crop yield losses. Drought tolerance is a complex quantitative trait influenced by multiple genes and metabolic pathways. However, molecular intricacies and subsequent morphological and physiological changes in response to drought stress remain elusive. Herein, we combined morpho-physiological and comparative RNA-sequencing analyses to identify core drought-induced marker genes and regulatory networks in the barley cultivar 'Giza134'. Based on field trials, drought-induced declines occurred in crop growth rate, relative water content, leaf area duration, flag leaf area, concentration of chlorophyll (Chl) a, b and a + b, net photosynthesis, and yield components. In contrast, the Chl a/b ratio, stoma resistance, and proline concentration increased significantly. RNA-sequence analysis identified a total of 2462 differentially expressed genes (DEGs), of which 1555 were up-regulated and 907 were down-regulated in response to water-deficit stress (WD). Comparative transcriptomics analysis highlighted three unique metabolic pathways (carbohydrate metabolism, iron ion binding, and oxidoreductase activity) as containing genes differentially expressed that could mitigate water stress. Our results identified several drought-induced marker genes belonging to diverse physiochemical functions like chlorophyll concentration, photosynthesis, light harvesting, gibberellin biosynthetic, iron homeostasis as well as Cis-regulatory elements. These candidate genes can be utilized to identify gene-associated markers to develop drought-resilient barley cultivars over a short period of time. Our results provide new insights into the understanding of water stress response mechanisms in barley.
Collapse
Affiliation(s)
- Ammar Elakhdar
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ahmed A El-Naggar
- Field Crops Research Institute, Agricultural Research Center, Giza, Egypt
| | - Takahiko Kubo
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
31
|
Tomasi P, Abdel-Haleem H. Phenotypic Diversity in Leaf Cuticular Waxes in Brassica carinata Accessions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3716. [PMID: 37960072 PMCID: PMC10649817 DOI: 10.3390/plants12213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Brassica carinata has received considerable attention as a renewable biofuel crop for semi-arid zones due to its high oil content and polyunsaturated fatty acids contents. It is important to develop new drought-resistant cultivars of B. carinata production to expand its areas into more arid regions. The accumulation of leaf cuticular wax on plant surfaces is one mechanism that reduces non-stomatal water loss, thus increasing drought resistance in plants. To explore phenotypic variations in cuticular wax in B. carinata, leaf waxes were extracted and quantified from a diversity panel consisting of 315 accessions. The results indicate that the accessions have a wide range of total leaf wax content (289-1356 µg dm-2), wax classes, and their components. The C29 and C31 homologues of alkanes, C29 ketone homologue, C29 secondary alcohol, and C30 aldehyde were the most abundant leaf waxes extracted from B. carinata accessions. The high heritability values of these waxes point to the positive selection for high wax content during early generations of future B. carinata breeding programs. Positive correlation coefficients, combined with the effects of these waxes on leaf wax content accumulation, suggest that modifying specific wax content could increase the total wax content and enhance cuticle composition. The identified leaf wax content and compositions in B. carinata will lead to the future discovery of wax biosynthetic pathways, the dissection of its genetic regulatory networks, the identification of candidate genes controlling production of these waxes, and thus, develop and release new B. carinata drought-tolerant cultivars.
Collapse
Affiliation(s)
| | - Hussein Abdel-Haleem
- USDA-ARS, US Arid-Land Agricultural Research Center, 21881 North Cardon Lane, Maricopa, AZ 85138, USA
| |
Collapse
|
32
|
Dharajiya DT, Shukla N, Pandya M, Joshi M, Patel AK, Joshi CG. Resistant cumin cultivar, GC-4 counters Fusarium oxysporum f. sp. cumini infection through up-regulation of steroid biosynthesis, limonene and pinene degradation and butanoate metabolism pathways. FRONTIERS IN PLANT SCIENCE 2023; 14:1204828. [PMID: 37915505 PMCID: PMC10616826 DOI: 10.3389/fpls.2023.1204828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
Cumin (Cuminum cyminum L.), an important spice crop belonging to the Apiaceae family is infected by Fusarium oxysporum f. sp. cumini (Foc) to cause wilt disease, one of the most devastating diseases of cumin adversely affects its production. As immune responses of cumin plants against the infection of Foc are not well studied, this research aimed to identify the genes and pathways involved in responses of cumin (cv. GC-2, GC-3, GC-4, and GC-5) to the wilt pathogen. Differential gene expression analysis revealed a total of 2048, 1576, 1987, and 1174 differentially expressed genes (DEGs) in GC-2, GC-3, GC-4, and GC-5, respectively. In the resistant cultivar GC-4 (resistant against Foc), several important transcripts were identified. These included receptors, transcription factors, reactive oxygen species (ROS) generating and scavenging enzymes, non-enzymatic compounds, calcium ion (Ca2+) transporters and receptors, R-proteins, and PR-proteins. The expression of these genes is believed to play crucial roles in conferring resistance against Foc. Gene ontology (GO) analysis of the up-regulated DEGs showed significant enrichment of 19, 91, 227, and 55 biological processes in GC-2, GC-3, GC-4, and GC-5, respectively. Notably, the resistant cultivar GC-4 exhibited enrichment in key GO terms such as 'secondary metabolic process', 'response to reactive oxygen species', 'phenylpropanoid metabolic process', and 'hormone-mediated signaling pathway'. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the enrichment of 28, 57, 65, and 30 pathways in GC-2, GC-3, GC-4, and GC-5, respectively, focusing on the up-regulated DEGs. The cultivar GC-4 showed enrichment in pathways related to steroid biosynthesis, starch and sucrose metabolism, fatty acid biosynthesis, butanoate metabolism, limonene and pinene degradation, and carotenoid biosynthesis. The activation or up-regulation of various genes and pathways associated with stress resistance demonstrated that the resistant cultivar GC-4 displayed enhanced defense mechanisms against Foc. These findings provide valuable insights into the defense responses of cumin that could contribute to the development of cumin cultivars with improved resistance against Foc.
Collapse
Affiliation(s)
| | | | | | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| | - Amrutlal K. Patel
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| | - Chaitanya G. Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
33
|
Contreras S, Werne JP, Araneda A, Tejos E, Moscoso J. Abundance and distribution of plant derived leaf waxes (long chain n-alkanes & fatty acids) from lake surface sediments along the west coast of southern South America: Implications for environmental and climate reconstructions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165065. [PMID: 37355134 DOI: 10.1016/j.scitotenv.2023.165065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Southern South America is the only large landmass that extends through the core of the Southern Westerly Winds (SWW), controlling hydrological and ecosystem variability in the region. In fact, the vegetation along the west coast changes from Temperate and Valdivian Rain Forest to the North Patagonian Evergreen Forest (ca. 42°S) due to the latitudinal influence of the SWW. Climate is an important driver of organic matter accumulation in lakes, hence changes in vegetation would be recorded in lacustrine sedimentary archives. This study evaluated leaf waxes contained in lake surface sediments as indicators of climate change along the west coast of southern South America, providing a biogeochemical dataset for ongoing and future (paleo)climate and environmental research. The fatty acid and n-alkane sediment leaf wax datasets are compared with latitudinal, orographic, and climatic (Mean Annual air Temperature [MAT] & Precipitation [MAP]) trends extracted from a monthly gridded reanalysis product of the Climate Forecast System Reanalysis. Fatty acids are more abundant than n-alkanes, with high abundances characterizing the transition between seasonal and year-round precipitation along the coast (ca. 42°S). The abundance of both leaf wax groups increases with MAP, suggesting precipitation as the main control on sedimentary leaf wax delivery to the lake sediments in the study area. The Carbon Preference Index (CPI) of the two groups show opposite trends, but both highlight the climate transition at ca. 42°S, and have a linear relationship with MAP. The opposite significant trends between n-alkane CPI and fatty acid CPI with MAP are interpreted as higher n-alkane production at much higher precipitation because leaf wax fatty acids are the precursors of n-alkanes. Hence, past periods during which these leaf waxes show opposite trends in CPI might be interpreted as a precipitation change, especially if additional information such as pollen, diatoms, chironomids and stable isotopes is available.
Collapse
Affiliation(s)
- Sergio Contreras
- Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Casilla 297, Concepción, Chile; Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Alonso de Ribera 2850, Casilla 297, Concepción, Chile; Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Josef P Werne
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - A Araneda
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - E Tejos
- Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Casilla 297, Concepción, Chile
| | - J Moscoso
- Ecogestión Ambiental Ltda., Chiguayante, Chile
| |
Collapse
|
34
|
Liu C, Yu L, Yang L, Tan C, Shi F, Ye X, Liu Z. Identification of a new allele of BraA09g066480.3C controlling the wax-less phenotype of Chinese cabbage. BMC PLANT BIOLOGY 2023; 23:408. [PMID: 37658308 PMCID: PMC10472645 DOI: 10.1186/s12870-023-04424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Epidermal wax covers the surfaces of terrestrial plants to resist biotic and abiotic stresses. Wax-less flowering Chinese cabbage (Brassica campestris L. ssp. chinesis var. utilis tsen et lee) has the charateristics of lustrous green leaves and flower stalks, which are of high commercial value. RESULTS To clarify the mechanism of the wax deficiency, the wax-less flowering Chinese cabbage doubled-haploid (DH) line 'CX001' and Chinese cabbage DH line 'FT', obtained from isolated microspore culture, were used in the experiments. Genetic analysis showed that the wax-less phenotype of 'CX001' was controlled by a recessive nuclear gene, named wlm1 (wax-less mutation 1), which was fine-mapped on chromosome A09 by bulked segregant analysis sequencing (BSA-seq) of B.rapa genome V3.0. There was only one gene (BraA09g066480.3C) present in the mapping region. The homologous gene in Arabidopsis thaliana is AT1G02205 (CER1) that encodes an aldehyde decarboxylase in the epidermal wax metabolism pathway. Semi-quantitative reverse transcription PCR and transcriptome analysis indicated that BraA09g066480.3C was expressed in 'FT' but not in 'CX001'. BraA09g066480.3C was lost in the CXA genome to which 'CX001' belonged. CONCLUSION The work presented herein demonstrated that BraA09g066480.3C was the causal gene for wax-less flowering Chinese cabbage 'CX001'. This study will lay a foundation for further research on the molecular mechanism of epidermal wax synthesis in flowering Chinese cabbage.
Collapse
Affiliation(s)
- Chuanhong Liu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Longfei Yu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Lu Yang
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chong Tan
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Fengyan Shi
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Xueling Ye
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| | - Zhiyong Liu
- Laboratory of Vegetable Genetics Breeding and Biotechnology, Department of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
35
|
Wang Y, Cao R, Yang L, Duan X, Zhang C, Yu X, Ye X. Transcriptome Analyses Revealed the Wax and Phenylpropanoid Biosynthesis Pathways Related to Disease Resistance in Rootstock-Grafted Cucumber. PLANTS (BASEL, SWITZERLAND) 2023; 12:2963. [PMID: 37631174 PMCID: PMC10458401 DOI: 10.3390/plants12162963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Cucumbers (Cucumis sativus L.) are a global popular vegetable and are widely planted worldwide. However, cucumbers are susceptible to various infectious diseases such as Fusarium and Verticillium wilt, downy and powdery mildew, and bacterial soft rot, which results in substantial economic losses. Grafting is an effective approach widely used to control these diseases. The present study investigated the role of wax and the phenylpropanoid biosynthesis pathway in black-seed pumpkin rootstock-grafted cucumbers. Our results showed that grafted cucumbers had a significantly higher cuticular wax contents on the fruit surface than that of self-rooted cucumbers at all stages observed. A total of 1132 differently expressed genes (DEGs) were detected in grafted cucumbers compared with self-rooted cucumbers. Pathway enrichment analysis revealed that phenylpropanoid biosynthesis, phenylalanine metabolism, plant circadian rhythm, zeatin biosynthesis, and diterpenoid biosynthesis were significantly enriched. In this study, 1 and 13 genes involved in wax biosynthesis and the phenylpropanoid biosynthesis pathway, respectively, were up-regulated in grafted cucumbers. Our data indicated that the up-regulated genes in the wax and phenylpropanoid biosynthesis pathways may contribute to disease resistance in rootstock-grafted cucumbers, which provides promising targets for enhancing disease resistance in cucumbers by genetic manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xueling Ye
- Collage of Horticulture, Shenyang Agricultural University, 120 Dongling Road Shenhe District, Shenyang 110866, China; (Y.W.); (R.C.); (L.Y.); (X.D.); (C.Z.); (X.Y.)
| |
Collapse
|
36
|
Wang J, Hu K, Wang J, Gong Z, Li S, Deng X, Li Y. Integrated Transcriptomic and Metabolomic Analyses Uncover the Differential Mechanism in Saline-Alkaline Tolerance between Indica and Japonica Rice at the Seedling Stage. Int J Mol Sci 2023; 24:12387. [PMID: 37569762 PMCID: PMC10418499 DOI: 10.3390/ijms241512387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Saline-alkaline stress is one of the major damages that severely affects rice (Oryza sativa L.) growth and grain yield; however, the mechanism of the tolerance remains largely unknown in rice. Herein, we comparatively investigated the transcriptome and metabolome of two contrasting rice subspecies genotypes, Luohui 9 (abbreviation for Chao2R under study, O. sativa ssp. indica, saline-alkaline-sensitive) and RPY geng (O. sativa ssp. japonica, saline-alkaline-tolerant), to identify the main pathways and important factors related to saline-alkaline tolerance. Transcriptome analysis showed that 68 genes involved in fatty acid, amino acid (such as phenylalanine and tryptophan), phenylpropanoid biosynthesis, energy metabolism (such as Glycolysis and TCA cycle), as well as signal transduction (such as hormone and MAPK signaling) were identified to be specifically upregulated in RPY geng under saline-alkaline conditions, implying that a series of cascade changes from these genes promotes saline-alkaline stress tolerance. The transcriptome changes observed in RPY geng were in high accordance with the specifically accumulation of metabolites, consisting mainly of 14 phenolic acids, 8 alkaloids, and 19 lipids based on the combination analysis of transcriptome and metabolome. Moreover, some genes involved in signal transduction as hub genes, such as PR5, FLS2, BRI1, and NAC, may participate in the saline-alkaline stress response of RPY geng by modulating key genes involved in fatty acid, phenylpropanoid biosynthesis, amino acid metabolism, and glycolysis metabolic pathways based on the gene co-expression network analysis. The present research results not only provide important insights for understanding the mechanism underlying of rice saline-alkaline tolerance at the transcriptome and metabolome levels but also provide key candidate target genes for further enhancing rice saline-alkaline stress tolerance.
Collapse
Affiliation(s)
- Jianyong Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Keke Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Jien Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Ziyun Gong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Shuangmiao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| |
Collapse
|
37
|
Castorina G, Bigelow M, Hattery T, Zilio M, Sangiorgio S, Caporali E, Venturini G, Iriti M, Yandeau-Nelson MD, Consonni G. Roles of the MYB94/FUSED LEAVES1 (ZmFDL1) and GLOSSY2 (ZmGL2) genes in cuticle biosynthesis and potential impacts on Fusarium verticillioides growth on maize silks. FRONTIERS IN PLANT SCIENCE 2023; 14:1228394. [PMID: 37546274 PMCID: PMC10399752 DOI: 10.3389/fpls.2023.1228394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
Maize silks, the stigmatic portions of the female flowers, have an important role in reproductive development. Silks also provide entry points for pathogens into host tissues since fungal hyphae move along the surface of the silks to reach the site of infection, i.e., the developing kernel. The outer extracellular surface of the silk is covered by a protective hydrophobic cuticle, comprised of a complex array of long-chain hydrocarbons and small amounts of very long chain fatty acids and fatty alcohols. This work illustrates that two previously characterized cuticle-related genes separately exert roles on maize silk cuticle deposition and function. ZmMYB94/FUSED LEAVES 1 (ZmFDL1) MYB transcription factor is a key regulator of cuticle deposition in maize seedlings. The ZmGLOSSY2 (ZmGL2) gene, a putative member of the BAHD superfamily of acyltransferases with close sequence similarity to the Arabidopsis AtCER2 gene, is involved in the elongation of the fatty acid chains that serve as precursors of the waxes on young leaves. In silks, lack of ZmFDL1 action generates a decrease in the accumulation of a wide number of compounds, including alkanes and alkenes of 20 carbons or greater and affects the expression of cuticle-related genes. These results suggest that ZmFDL1 retains a regulatory role in silks, which might be exerted across the entire wax biosynthesis pathway. Separately, a comparison between gl2-ref and wild-type silks reveals differences in the abundance of specific cuticular wax constituents, particularly those of longer unsaturated carbon chain lengths. The inferred role of ZmGL2 is to control the chain lengths of unsaturated hydrocarbons. The treatment of maize silks with Fusarium verticillioides conidia suspension results in altered transcript levels of ZmFDL1 and ZmGL2 genes. In addition, an increase in fungal growth was observed on gl2-ref mutant silks 72 hours after Fusarium infection. These findings suggest that the silk cuticle plays an active role in the response to F. verticillioides infection.
Collapse
Affiliation(s)
- Giulia Castorina
- Dipartimento Di Scienze Agrarie e Ambientali (DiSAA), Università Degli Studi Di Milano, Milan, Italy
| | - Madison Bigelow
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Travis Hattery
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Massimo Zilio
- Dipartimento Di Scienze Agrarie e Ambientali (DiSAA), Università Degli Studi Di Milano, Milan, Italy
| | - Stefano Sangiorgio
- Dipartimento Di Scienze Agrarie e Ambientali (DiSAA), Università Degli Studi Di Milano, Milan, Italy
| | | | - Giovanni Venturini
- Dipartimento Di Scienze Agrarie e Ambientali (DiSAA), Università Degli Studi Di Milano, Milan, Italy
| | - Marcello Iriti
- Dipartimento Di Scienze Agrarie e Ambientali (DiSAA), Università Degli Studi Di Milano, Milan, Italy
| | - Marna D. Yandeau-Nelson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Gabriella Consonni
- Dipartimento Di Scienze Agrarie e Ambientali (DiSAA), Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
38
|
Liang X, Ma Z, Ke Y, Wang J, Wang L, Qin B, Tang C, Liu M, Xian X, Yang Y, Wang M, Zhang Y. Single-cell transcriptomic analyses reveal cellular and molecular patterns of rubber tree response to early powdery mildew infection. PLANT, CELL & ENVIRONMENT 2023; 46:2222-2237. [PMID: 36929646 DOI: 10.1111/pce.14585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/08/2023]
Abstract
As a perennial woody plant, the rubber tree (Hevea brasiliensis) must adapt to various environmental challenges through gene expression in multiple cell types. It is still unclear how genes in this species are expressed at the cellular level and the precise mechanisms by which cells respond transcriptionally to environmental stimuli, especially in the case of pathogen infection. Here, we characterized the transcriptomes in Hevea leaves during early powdery mildew infection using single-cell RNA sequencing. We identified 10 cell types and constructed the first single-cell atlas of Hevea leaves. Distinct gene expression patterns of the cell clusters were observed under powdery mildew infection, which was especially significant in the epidermal cells. Most of the genes involved in host-pathogen interactions in epidermal cells exhibited a pattern of dramatically increased expression with increasing pseudotime. Interestingly, we found that the HbCNL2 gene, encoding a nucleotide-binding leucine-rich repeat protein, positively modulated the defence of rubber leaves against powdery mildew. Overexpression of the HbCNL2 gene triggered a typical cell death phenotype in tobacco leaves and a higher level of reactive oxygen species in the protoplasts of Hevea leaves. The HbCNL2 protein was located in the cytomembrane and nucleus, and its leucine-rich repeat domain interacted with the histidine kinase-like ATPase domain of the molecular chaperone HbHSP90 in the nucleus. Collectively, our results provide the first observation of the cellular and molecular responses of Hevea leaves to biotrophic pathogen infection and can guide the identification of disease-resistance genes in this important tree species.
Collapse
Affiliation(s)
- Xiaoyu Liang
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Zhan Ma
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Yuhang Ke
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Jiali Wang
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Lifeng Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bi Qin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chaorong Tang
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Mingyang Liu
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Xuemei Xian
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Ye Yang
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Meng Wang
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| | - Yu Zhang
- College of Tropical Crops, Sanya Nanfan Research Institute, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
39
|
Liu L, Li H, Wang X, Chang C. Transcription Factor TaMYB30 Activates Wheat Wax Biosynthesis. Int J Mol Sci 2023; 24:10235. [PMID: 37373378 DOI: 10.3390/ijms241210235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The waxy cuticle covers a plant's aerial surface and contributes to environmental adaptation in land plants. Although past decades have seen great advances in understanding wax biosynthesis in model plants, the mechanisms underlying wax biosynthesis in crop plants such as bread wheat remain to be elucidated. In this study, wheat MYB transcription factor TaMYB30 was identified as a transcriptional activator positively regulating wheat wax biosynthesis. The knockdown of TaMYB30 expression using virus-induced gene silencing led to attenuated wax accumulation, increased water loss rates, and enhanced chlorophyll leaching. Furthermore, TaKCS1 and TaECR were isolated as essential components of wax biosynthetic machinery in bread wheat. In addition, silencing TaKCS1 and TaECR resulted in compromised wax biosynthesis and potentiated cuticle permeability. Importantly, we showed that TaMYB30 could directly bind to the promoter regions of TaKCS1 and TaECR genes by recognizing the MBS and Motif 1 cis-elements, and activate their expressions. These results collectively demonstrated that TaMYB30 positively regulates wheat wax biosynthesis presumably via the transcriptional activation of TaKCS1 and TaECR.
Collapse
Affiliation(s)
- Lang Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Haoyu Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
40
|
Qiao Y, Hou B, Qi X. Biosynthesis and transport of pollen coat precursors in angiosperms. NATURE PLANTS 2023; 9:864-876. [PMID: 37231040 DOI: 10.1038/s41477-023-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
The pollen coat is a hydrophobic mixture on the pollen grain surface, which plays an important role in protecting male gametes from various environmental stresses and microorganism attacks, and in pollen-stigma interactions during pollination in angiosperms. An abnormal pollen coat can result in humidity-sensitive genic male sterility (HGMS), which can be used in two-line hybrid crop breeding. Despite the crucial functions of the pollen coat and the application prospect of its mutants, few studies have focused on pollen coat formation. In this Review, the morphology, composition and function of different types of pollen coat are assessed. On the basis of the ultrastructure and development process of the anther wall and exine found in rice and Arabidopsis, the genes and proteins involved in the biosynthesis of pollen coat precursors and the possible transport and regulation process are sorted. Additionally, current challenges and future perspectives, including potential strategies utilizing HGMS genes in heterosis and plant molecular breeding, are highlighted.
Collapse
Affiliation(s)
- Yuyuan Qiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingzhu Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Lim H, Lee SY, Ho LY, Sit NW. Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. INSECTS 2023; 14:512. [PMID: 37367328 DOI: 10.3390/insects14060512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Despite ongoing control efforts, the mosquito population and diseases vectored by them continue to thrive worldwide, causing major health concerns. There has been growing interest in the use of botanicals as alternatives to insecticides due to their widespread insecticidal properties, biodegradability, and adaptability to ecological conditions. In this study, we investigated the larvicidal activity and cytotoxicity effects of solvent extracts from three aromatic plants-Curcuma longa (turmeric), Ocimum americanum (hoary basil), and Petroselinum crispum (parsley)-against Aedes albopictus. Subsequently, we examined the phytochemical composition of the extracts through gas chromatography-mass spectrometry (GC-MS) analysis. Results revealed that the hexane extracts of O. americanum and P. crispum exhibited the greatest larvicidal activity with the lowest median lethal concentration (LC50) values (<30 µg/mL) at 24 h post-treatment, with the former found to be significantly less toxic towards African monkey kidney (Vero) cells. The GC-MS analysis of the said extract indicated the presence of different classes of metabolites, including phenylpropanoids, very long-chain alkanes, fatty acids and their derivatives, and terpenes, with the most abundant component being methyl eugenol (55.28%), most of which, have been documented for their larvicidal activities. These findings provide valuable insights into the potential use and development of bioinsecticides, particularly from O. americanum.
Collapse
Affiliation(s)
- Huimei Lim
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Sook Yee Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Lai Yee Ho
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Nam Weng Sit
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| |
Collapse
|
42
|
Song G, Liu C, Fang B, Ren J, Feng H. Identification of an epicuticular wax crystal deficiency gene Brwdm1 in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1161181. [PMID: 37324687 PMCID: PMC10267742 DOI: 10.3389/fpls.2023.1161181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Introduction The cuticle wax covering the plant surface is a whitish hydrophobic protective barrier in Chinese cabbage, and the epicuticular wax crystal deficiency normally has higher commodity value for a tender texture and glossy appearance. Herein, two allelic epicuticular wax crystal deficiency mutants, wdm1 and wdm7, were obtained from the EMS mutagenesis population of a Chinese cabbage DH line 'FT'. Methods The cuticle wax morphology was observed by Cryo-scanning electron microscopy (Cryo-SEM) and the composition of wax was determined by GC-MS. The candidate mutant gene was found by MutMap and validated by KASP. The function of candidate gene was verified by allelic variation. Results The mutants had fewer wax crystals and lower leaf primary alcohol and ester content. Genetic analysis revealed that the epicuticular wax crystal deficiency phenotype was controlled by a recessive nuclear gene, named Brwdm1. MutMap and KASP analyses indicated that BraA01g004350.3C, encoding an alcohol-forming fatty acyl-CoA reductase, was the candidate gene for Brwdm1. A SNP 2,113,772 (C to T) variation in the 6th exon of Brwdm1 in wdm1 led to the 262nd amino acid substitution from threonine (T) to isoleucine (I), which existed in a rather conserved site among the amino acid sequences from Brwdm1 and its homologs. Meanwhile, the substitution changed the three-dimensional structure of Brwdm1. The SNP 2,114,994 (G to A) in the 10th exon of Brwdm1 in wdm7 resulted in the change of the 434th amino acid from valine (V) to isoleucine (I), which occurred in the STERILE domain. KASP genotyping showed that SNP 2,114,994 was co-segregated with glossy phenotype. Compared with the wild type, the relative expression of Brwdm1 was significantly decreased in the leaves, flowers, buds and siliques of wdm1. Discussion These results indicated that Brwdm1 was indispensable for the wax crystals formation and its mutation resulted in glossy appearance in Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | - Jie Ren
- *Correspondence: Jie Ren, ; Hui Feng,
| | - Hui Feng
- *Correspondence: Jie Ren, ; Hui Feng,
| |
Collapse
|
43
|
Huang H, Yang X, Zheng M, Chen Z, Yang Z, Wu P, Jenks MA, Wang G, Feng T, Liu L, Yang P, Lü S, Zhao H. An ancestral role for 3-KETOACYL-COA SYNTHASE3 as a negative regulator of plant cuticular wax synthesis. THE PLANT CELL 2023; 35:2251-2270. [PMID: 36807983 PMCID: PMC10226574 DOI: 10.1093/plcell/koad051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 05/30/2023]
Abstract
The plant cuticle, a structure primarily composed of wax and cutin, forms a continuous coating over most aerial plant surfaces. The cuticle plays important roles in plant tolerance to environmental stress, including stress imposed by drought. Some members of the 3-KETOACYL-COA SYNTHASE (KCS) family are known to act as metabolic enzymes involved in cuticular wax production. Here we report that Arabidopsis (Arabidopsis thaliana) KCS3, which was previously shown to lack canonical catalytic activity, instead functions as a negative regulator of wax metabolism by reducing the enzymatic activity of KCS6, a key KCS involved in wax production. We demonstrate that the role of KCS3 in regulating KCS6 activity involves physical interactions between specific subunits of the fatty acid elongation complex and is essential for maintaining wax homeostasis. We also show that the role of the KCS3-KCS6 module in regulating wax synthesis is highly conserved across diverse plant taxa from Arabidopsis to the moss Physcomitrium patens, pointing to a critical ancient and basal function of this module in finely regulating wax synthesis.
Collapse
Affiliation(s)
- Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Minglü Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zexi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhuo Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Matthew A Jenks
- School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
44
|
Luzarowska U, Ruß AK, Joubès J, Batsale M, Szymański J, P Thirumalaikumar V, Luzarowski M, Wu S, Zhu F, Endres N, Khedhayir S, Schumacher J, Jasinska W, Xu K, Correa Cordoba SM, Weil S, Skirycz A, Fernie AR, Li-Beisson Y, Fusari CM, Brotman Y. Hello darkness, my old friend: 3-KETOACYL-COENZYME A SYNTHASE4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1984-2005. [PMID: 36869652 DOI: 10.1093/plcell/koad059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/30/2023]
Abstract
Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation.
Collapse
Affiliation(s)
- Urszula Luzarowska
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Anne-Kathrin Ruß
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, University Bordeaux, F-33140 Villenave d'Ornon, France
| | - Marguerite Batsale
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, University Bordeaux, F-33140 Villenave d'Ornon, France
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, 06466 Seeland, Germany
- IBG-4 Bioinformatics, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | - Marcin Luzarowski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Zhu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Niklas Endres
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Sarah Khedhayir
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Julia Schumacher
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - Weronika Jasinska
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ke Xu
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Simy Weil
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair Robert Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institute de Biosciences et Biotechnologies Aix-Marseille, Aix Marseille Univ., F-13108 Saint Paul-Lez-Durance, France
| | - Corina M Fusari
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET-UNR), Suipacha 570, S2000LRJ Rosario, Argentina
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| |
Collapse
|
45
|
Singer SD, Lehmann M, Zhang Z, Subedi U, Burton Hughes K, Lim NZL, Ortega Polo R, Chen G, Acharya S, Hannoufa A, Huan T. Elucidation of Physiological, Transcriptomic and Metabolomic Salinity Response Mechanisms in Medicago sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2059. [PMID: 37653976 PMCID: PMC10221938 DOI: 10.3390/plants12102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 09/02/2023]
Abstract
Alfalfa (Medicago sativa L.) is a widely grown perennial leguminous forage crop with a number of positive attributes. However, despite its moderate ability to tolerate saline soils, which are increasing in prevalence worldwide, it suffers considerable yield declines under these growth conditions. While a general framework of the cascade of events involved in plant salinity response has been unraveled in recent years, many gaps remain in our understanding of the precise molecular mechanisms involved in this process, particularly in non-model yet economically important species such as alfalfa. Therefore, as a means of further elucidating salinity response mechanisms in this species, we carried out in-depth physiological assessments of M. sativa cv. Beaver, as well as transcriptomic and untargeted metabolomic evaluations of leaf tissues, following extended exposure to salinity (grown for 3-4 weeks under saline treatment) and control conditions. In addition to the substantial growth and photosynthetic reductions observed under salinity treatment, we identified 1233 significant differentially expressed genes between growth conditions, as well as 60 annotated differentially accumulated metabolites. Taken together, our results suggest that changes to cell membranes and walls, cuticular and/or epicuticular waxes, osmoprotectant levels, antioxidant-related metabolic pathways, and the expression of genes encoding ion transporters, protective proteins, and transcription factors are likely involved in alfalfa's salinity response process. Although some of these alterations may contribute to alfalfa's modest salinity resilience, it is feasible that several may be disadvantageous in this context and could therefore provide valuable targets for the further improvement of tolerance to this stress in the future.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Madeline Lehmann
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Zixuan Zhang
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Nathaniel Z.-L. Lim
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Surya Acharya
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Abdelali Hannoufa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
46
|
Mo L, Yao X, Tang H, Li Y, Jiao Y, He Y, Jiang Y, Tian S, Lu L. Genome-Wide Investigation and Functional Analysis Reveal That CsKCS3 and CsKCS18 Are Required for Tea Cuticle Wax Formation. Foods 2023; 12:2011. [PMID: 37238828 PMCID: PMC10217411 DOI: 10.3390/foods12102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cuticular wax is a complex mixture of very long-chain fatty acids (VLCFAs) and their derivatives that constitute a natural barrier against biotic and abiotic stresses on the aerial surface of terrestrial plants. In tea plants, leaf cuticular wax also contributes to the unique flavor and quality of tea products. However, the mechanism of wax formation in tea cuticles is still unclear. The cuticular wax content of 108 germplasms (Niaowang species) was investigated in this study. The transcriptome analysis of germplasms with high, medium, and low cuticular wax content revealed that the expression levels of CsKCS3 and CsKCS18 were strongly associated with the high content of cuticular wax in leaves. Hence, silencing CsKCS3 and CsKCS18 using virus-induced gene silencing (VIGS) inhibited the synthesis of cuticular wax and caffeine in tea leaves, indicating that expression of these genes is necessary for the synthesis of cuticular wax in tea leaves. The findings contribute to a better understanding of the molecular mechanism of cuticular wax formation in tea leaves. The study also revealed new candidate target genes for further improving tea quality and flavor and cultivating high-stress-resistant tea germplasms.
Collapse
Affiliation(s)
- Lilai Mo
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yan Li
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Yujie Jiao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yihe Jiang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Shiyu Tian
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Litang Lu
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| |
Collapse
|
47
|
Shim Y, Seong G, Choi Y, Lim C, Baek SA, Park YJ, Kim JK, An G, Kang K, Paek NC. Suppression of cuticular wax biosynthesis mediated by rice LOV KELCH REPEAT PROTEIN 2 supports a negative role in drought stress tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:1504-1520. [PMID: 36683564 DOI: 10.1111/pce.14549] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Drought tolerance is important for grain crops, including rice (Oryza sativa); for example, rice cultivated under intermittent irrigation produces less methane gas compared to rice grown in anaerobic paddy field conditions, but these plants require greater drought tolerance. Moreover, the roles of rice circadian-clock genes in drought tolerance remain largely unknown. Here, we show that the mutation of LOV KELCH REPEAT PROTEIN 2 (OsLKP2) enhanced drought tolerance by increasing cuticular wax biosynthesis. Among ZEITLUPE family genes, OsLKP2 expression specifically increased under dehydration stress. OsLKP2 knockdown (oslkp2-1) and knockout (oslkp2-2) mutants exhibited enhanced drought tolerance. Cuticular waxes inhibit non-stomatal water loss. Under drought conditions, total wax loads on the leaf surface increased by approximately 10% in oslkp2-1 and oslkp2-2 compared to the wild type, and the transcript levels of cuticular wax biosynthesis genes were upregulated in the oslkp2 mutants. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that OsLKP2 interacts with GIGANTEA (OsGI) in the nucleus. The osgi mutants also showed enhanced tolerance to drought stress, with a high density of wax crystals on their leaf surface. These results demonstrate that the OsLKP2-OsGI interaction negatively regulates wax accumulation on leaf surfaces, thereby decreasing rice resilience to drought stress.
Collapse
Affiliation(s)
- Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gayeong Seong
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yumin Choi
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Seung-A Baek
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Young Jin Park
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Li HJ, Bai WP, Liu LB, Liu HS, Wei L, Garant TM, Kalinger RS, Deng YX, Wang GN, Bao AK, Ma Q, Rowland O, Wang SM. Massive increases in C31 alkane on Zygophyllum xanthoxylum leaves contribute to its excellent abiotic stress tolerance. ANNALS OF BOTANY 2023; 131:723-736. [PMID: 36848247 PMCID: PMC10147333 DOI: 10.1093/aob/mcad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Desert plants possess excellent water-conservation capacities to survive in extreme environments. Cuticular wax plays a pivotal role in reducing water loss through plant aerial surfaces. However, the role of cuticular wax in water retention by desert plants is poorly understood. METHODS We investigated leaf epidermal morphology and wax composition of five desert shrubs from north-west China and characterized the wax morphology and composition for the typical xerophyte Zygophyllum xanthoxylum under salt, drought and heat treatments. Moreover, we examined leaf water loss and chlorophyll leaching of Z. xanthoxylum and analysed their relationships with wax composition under the above treatments. KEY RESULTS The leaf epidermis of Z. xanthoxylum was densely covered by cuticular wax, whereas the other four desert shrubs had trichomes or cuticular folds in addition to cuticular wax. The total amount of cuticular wax on leaves of Z. xanthoxylum and Ammopiptanthus mongolicus was significantly higher than that of the other three shrubs. Strikingly, C31 alkane, the most abundant component, composed >71 % of total alkanes in Z. xanthoxylum, which was higher than for the other four shrubs studied here. Salt, drought and heat treatments resulted in significant increases in the amount of cuticular wax. Of these treatments, the combined drought plus 45 °C treatment led to the largest increase (107 %) in the total amount of cuticular wax, attributable primarily to an increase of 122 % in C31 alkane. Moreover, the proportion of C31 alkane within total alkanes remained >75 % in all the above treatments. Notably, the water loss and chlorophyll leaching were reduced, which was negatively correlated with C31 alkane content. CONCLUSION Zygophyllum xanthoxylum could serve as a model desert plant for study of the function of cuticular wax in water retention because of its relatively uncomplicated leaf surface and because it accumulates C31 alkane massively to reduce cuticular permeability and resist abiotic stressors.
Collapse
Affiliation(s)
- Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Lin-Bo Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Li Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Timothy M Garant
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yu-Xuan Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Gai-Ni Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Owen Rowland
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| |
Collapse
|
49
|
Fal S, Aasfar A, Ouhssain A, Choukri H, Smouni A, El Arroussi H. Aphanothece sp. as promising biostimulant to alleviate heavy metals stress in Solanum lycopersicum L. by enhancing physiological, biochemical, and metabolic responses. Sci Rep 2023; 13:6875. [PMID: 37106012 PMCID: PMC10140289 DOI: 10.1038/s41598-023-32870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Heavy metals (H.M) are a major environmental concern around the world. They have harmful impact on plant productivity and pose a serious risk to humans and animals health. In the present study, we investigated the effect of Aphanothece crude extract (ACE) on physiological, biochemical, and metabolic responses of tomato plant exposed to 2 mM Pb and Cd. The results showed a significant reduction of tomato plant weights and perturbation in nutrients absorption under 2 mM Pb and Cd conditions. Moreover, ACE treatment showed a significant enhancement of plant biomass compared to plants under Pb and Cd. On the other hand, ACE application favoured H.M accumulation in root and inhibited their translocation to shoot. In addition, ACE treatment significantly enhanced several stress responses in plant under Pb and Cd stress such as scavenging enzymes and molecules: POD, CAT, SOD, proline, and polyphenols etc. Furthermore, ACE treatment showed remodulation of metabolic pathways related to plant tolerance such as wax construction mechanism, particularly SFA, UFA, VLFA, alkanes, alkenes, and sterols biosynthesis to enhance tolerance and resistance to H.M stress. In the present study, we emphasized that ACE alleviates H.M stress by minimizing metal translocation to above-part of plant and enhancing plant growth, nutrients absorption, and biochemical responses.
Collapse
Affiliation(s)
- Soufiane Fal
- Algal Biotechnology Laboratory, Rabat Design Center, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco.
- Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| | - Abderrahim Aasfar
- Algal Biotechnology Laboratory, Rabat Design Center, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco
| | - Ali Ouhssain
- Algal Biotechnology Laboratory, Rabat Design Center, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco
| | - Hasnae Choukri
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Abelaziz Smouni
- Plant Physiology and Biotechnology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Hicham El Arroussi
- Algal Biotechnology Laboratory, Rabat Design Center, Moroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rue Mohamed Al Jazouli - Madinat Al Irfane, Rabat, Morocco.
- Agrobiosciences Program, University Mohamed 6 Polytechnic (UM6P), Ben Guerir, Morocco.
| |
Collapse
|
50
|
Zhu S, Huang S, Lin X, Wan X, Zhang Q, Peng J, Luo D, Zhang Y, Dong X. The Relationships between Waxes and Storage Quality Indexes of Fruits of Three Plum Cultivars. Foods 2023; 12:foods12081717. [PMID: 37107512 PMCID: PMC10137498 DOI: 10.3390/foods12081717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In the present study, the cuticular wax morphology, composition and the relationship with storage quality in three plum cultivars of Prunus salicina 'Kongxin' (KXL), Prunus salicina 'Fengtang' (FTL) and Prunus salicina 'Cuihong' (CHL) were investigated during storage at room temperature of 25 ± 1 °C. The results illustrated that the highest cuticular wax concentration was discovered in KXL, followed by FTL and the lowest in CHL. The fruit wax composition of the three plum cultivars was similar and principally composed of alkanes, alcohols, fatty acids, ketones, aldehydes, esters, triterpenes and olefins. Alcohols, alkanes and triterpenes were the dominant fruit wax compounds of the three plum cultivars. After storage for 20 d at room temperature, the variation of cuticular wax crystal structure and composition showed significant cultivar-associated differences. The total wax content decreased for FTL and CHL and increased for KXL, and the wax crystal degraded and melted together over time. The higher contents of the main components in the three plum cultivars were nonacosane, 1-triacontanol, 1-heneicosanol, nonacosan-10-one, octacosanal, ursolic aldehyde and oleic acid. Alcohols, triterpenes, fatty acids and aldehydes were most dramatically correlated with the softening of fruit and storage quality, and alkanes, esters and olefins were most significantly correlated with the water loss. Nonacosane and ursolic aldehyde can enhance the water retention of fruit. Overall, this study will provide a theoretical reference for the further precise development of edible plum fruit wax.
Collapse
Affiliation(s)
- Shouliang Zhu
- Guizhou Workstation for Fruit and Vegetables, Guiyang 550025, China
| | - Shian Huang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
- Guiyang Agricultural Reclamation Investment Development Group Co., Ltd., Guiyang 550001, China
| | - Xin Lin
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Xuan Wan
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Qin Zhang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Junsen Peng
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Dengcan Luo
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Yun Zhang
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| | - Xiaoqing Dong
- Fruit Crops Center of Guizhou Engineering Research, College of Agricultural, Guizhou University, Guiyang 550025, China
| |
Collapse
|