1
|
Li A, Wu Q, Yang S, Liu J, Zhao Y, Zhao P, Wang L, Lu W, Huang D, Zhang Y, Que Y. Dissection of genetic architecture for desirable traits in sugarcane by integrated transcriptomics and metabolomics. Int J Biol Macromol 2024; 280:136009. [PMID: 39332555 DOI: 10.1016/j.ijbiomac.2024.136009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Sugarcane is an important sugar and energy crop. Breeding varieties with high yield and sugar, strong stress tolerance, as well as beneficial for mechanized harvesting are the goal of sugarcane breeder. In the present study, transcriptomics and metabolomics were conducted to explore the molecular basis for outstanding performance of five elite varieties GT42, GT44, LC05-136, YZ08-1609, and YZ05-51, along with the cross-parent CP72-1210 compared to ROC22. Transcriptomics revealed a total of 18,353 differentially expressed genes (DEGs) and several regulatory pathways, including carbon fixation, starch and sucrose metabolism, phenylpropanoids biosynthesis, flavonoid biosynthesis, cysteine and methionine metabolism, as well as zeatin biosynthesis. Expression patterns of genes involved in these pathways confirmed their role in determining the agronomic traits. Besides, metabolomics disclosed 175 differentially accumulated metabolites (DAMs), including specific metabolites of amino acids and secondary metabolites. Furthermore, conjoint analysis of transcriptomics and metabolomics highlighted the manipulation of 113 genes led to changed levels of 20 metabolites associated with carbon fixation, sucrose accumulation, phytohormone response and secondary metabolism. Finally, we depicted here a blueprint outlining the genetic basis underlying the desirable traits in sugarcane. This study will accelerate the dissection of the molecular basis for sugarcane traits and provide targets for molecular breeding.
Collapse
Affiliation(s)
- Aomei Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaolin Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China
| | - Jiayong Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China
| | - Yong Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China
| | - Peifang Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China
| | - Lunwang Wang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wenxiang Lu
- Liucheng Sugarcane Research Units, Liuzhou 545000, China
| | - Dongliang Huang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Yuebin Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China.
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Sanya/Kaiyuan 572024/661600, China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Huerga-Fernández S, Detry N, Orman-Ligeza B, Bouché F, Hanikenne M, Périlleux C. JOINTLESS Maintains Inflorescence Meristem Identity in Tomato. PLANT & CELL PHYSIOLOGY 2024; 65:1197-1211. [PMID: 38635460 PMCID: PMC11287206 DOI: 10.1093/pcp/pcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ) and encodes a MADS-box protein of the SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 subfamily. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared jointless (j) mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF-PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutant. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.
Collapse
Affiliation(s)
- Samuel Huerga-Fernández
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Nathalie Detry
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Beata Orman-Ligeza
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Frédéric Bouché
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Marc Hanikenne
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| |
Collapse
|
3
|
Adhikari PB, Kasahara RD. An Overview on MADS Box Members in Plants: A Meta-Review. Int J Mol Sci 2024; 25:8233. [PMID: 39125803 PMCID: PMC11311456 DOI: 10.3390/ijms25158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Most of the studied MADS box members are linked to flowering and fruit traits. However, higher volumes of studies on type II of the two types so far suggest that the florigenic effect of the gene members could just be the tip of the iceberg. In the current study, we used a systematic approach to obtain a general overview of the MADS box members' cross-trait and multifactor associations, and their pleiotropic potentials, based on a manually curated local reference database. While doing so, we screened for the co-occurrence of terms of interest within the title or abstract of each reference, with a threshold of three hits. The analysis results showed that our approach can retrieve multi-faceted information on the subject of study (MADS box gene members in the current case), which could otherwise have been skewed depending on the authors' expertise and/or volume of the literature reference base. Overall, our study discusses the roles of MADS box members in association with plant organs and trait-linked factors among plant species. Our assessment showed that plants with most of the MADS box member studies included tomato, apple, and rice after Arabidopsis. Furthermore, based on the degree of their multi-trait associations, FLC, SVP, and SOC1 are suggested to have relatively higher pleiotropic potential among others in plant growth, development, and flowering processes. The approach devised in this study is expected to be applicable for a basic understanding of any study subject of interest, regardless of the depth of prior knowledge.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- Biotechnology and Bioscience Research Center, Nagoya University, Nagoya 464-8601, Japan
| | | |
Collapse
|
4
|
Zhang J, Dong T, Hu Z, Li J, Zhu M, Chen G. A SEPALLATA MADS-Box Transcription Factor, SlMBP21, Functions as a Negative Regulator of Flower Number and Fruit Yields in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1421. [PMID: 38794491 PMCID: PMC11125064 DOI: 10.3390/plants13101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| |
Collapse
|
5
|
Qiu Z, Hou Q, Wen Z, Tian T, Hong Y, Yang K, Qiao G, Wen X. Identification of PavHB16 gene in Prunus avium and validation of its function in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:559-570. [PMID: 38737325 PMCID: PMC11087415 DOI: 10.1007/s12298-024-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 05/14/2024]
Abstract
Sweet cherry (Prunus avium L.) is one of the most economically important fruits in the world. However, severe fruit abscission has brought significant challenges to the cherry industry. To better understand the molecular regulation mechanisms underlying excessive fruit abscission in sweet cherry, the fruit abscission characteristics, the anatomical characteristics of the abscission zone (AZ), as well as a homeodomain-Leucine Zipper gene family member PavHB16 function were analyzed. The results showed that the sweet cherry exhibited two fruit abscission peak stages, with the "Brooks" cultivar demonstrating the highest fruit-dropping rate (97.14%). During these two fruit abscission peak stages, both the retention pedicel and the abscising pedicel formed AZs. but the AZ in the abscising pedicel was more pronounced. In addition, a transcription factor, PavHB16, was identified from sweet cherry. The evolutionary analysis showed that there was high homology between PavHB16 and AtHB12 in Arabidopsis. Moreover, the PavHB16 protein was localized in the nucleus. Overexpression of PavHB16 in Arabidopsis accelerated petal shedding. In the PavHB16-overexpressed lines, the AZ cells in the pedicel became smaller and denser, and the expression of genes involved in cell wall remodeling, such as cellulase 3 gene (AtCEL3), polygalacturonase 1 (AtPG1), and expandin 24(AtEXPA24) were upregulated. The results suggest that PavHB16 may promote the expression of genes related to cell wall remodeling, ultimately facilitating fruit abscission. In summary, this study cloned the sweet cherry PavHB16 gene and confirmed its function in regulating sweet cherry fruit abscission, which provided new data for further study on the fruit abscission mechanism. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01443-8.
Collapse
Affiliation(s)
- Zhilang Qiu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, 550025 China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025 Guizhou China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025 Guizhou China
| | - Tian Tian
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025 Guizhou China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025 Guizhou China
| | - Kun Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025 Guizhou China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025 Guizhou China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
6
|
Pereira L. And yet another transcription factor-the complex world of fruit ripening. PLANT PHYSIOLOGY 2024; 194:2185-2187. [PMID: 38173334 PMCID: PMC10980389 DOI: 10.1093/plphys/kiad673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Lara Pereira
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
7
|
Zhao N, Geng Z, Zhao G, Liu J, An Z, Zhang H, Ai P, Wang Y. Integrated analysis of the transcriptome and metabolome reveals the molecular mechanism regulating cotton boll abscission under low light intensity. BMC PLANT BIOLOGY 2024; 24:182. [PMID: 38475753 DOI: 10.1186/s12870-024-04862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Cotton boll shedding is one of the main factors adversely affecting the cotton yield. During the cotton plant growth period, low light conditions can cause cotton bolls to fall off prematurely. In this study, we clarified the regulatory effects of low light intensity on cotton boll abscission by comprehensively analyzing the transcriptome and metabolome. RESULTS When the fruiting branch leaves were shaded after pollination, all of the cotton bolls fell off within 5 days. Additionally, H2O2 accumulated during the formation of the abscission zone. Moreover, 10,172 differentially expressed genes (DEGs) and 81 differentially accumulated metabolites (DAMs) were identified. A KEGG pathway enrichment analysis revealed that the identified DEGs and DAMs were associated with plant hormone signal transduction and flavonoid biosynthesis pathways. The results of the transcriptome analysis suggested that the expression of ethylene (ETH) and abscisic acid (ABA) signaling-related genes was induced, which was in contrast to the decrease in the expression of most of the IAA signaling-related genes. A combined transcriptomics and metabolomics analysis revealed that flavonoids may help regulate plant organ abscission. A weighted gene co-expression network analysis detected two gene modules significantly related to abscission. The genes in these modules were mainly related to exosome, flavonoid biosynthesis, ubiquitin-mediated proteolysis, plant hormone signal transduction, photosynthesis, and cytoskeleton proteins. Furthermore, TIP1;1, UGT71C4, KMD3, TRFL6, REV, and FRA1 were identified as the hub genes in these two modules. CONCLUSIONS In this study, we elucidated the mechanisms underlying cotton boll abscission induced by shading on the basis of comprehensive transcriptomics and metabolomics analyses of the boll abscission process. The study findings have clarified the molecular basis of cotton boll abscission under low light intensity, and suggested that H2O2, phytohormone, and flavonoid have the potential to affect the shedding process of cotton bolls under low light stress.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, P.R. China
| | - Zhao Geng
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Guiyuan Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Jianguang Liu
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Zetong An
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Hanshuang Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China
| | - Pengfei Ai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, P.R. China.
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, P.R. China.
| |
Collapse
|
8
|
Zhang J, Hu Z, Xie Q, Dong T, Li J, Chen G. Two SEPALLATA MADS-Box Genes, SlMBP21 and SlMADS1, Have Cooperative Functions Required for Sepal Development in Tomato. Int J Mol Sci 2024; 25:2489. [PMID: 38473738 PMCID: PMC10931843 DOI: 10.3390/ijms25052489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Tingting Dong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| |
Collapse
|
9
|
Deng X, Ahmad B, Deng J, Liu L, Lu X, Fan Z, Zha X, Pan Y. MaABI5 and MaABF1 transcription factors regulate the expression of MaJOINTLESS during fruit abscission in mulberry ( Morus alba L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1229811. [PMID: 37670871 PMCID: PMC10475957 DOI: 10.3389/fpls.2023.1229811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023]
Abstract
Mulberry holds significant economic value. However, during the ripening stage of its fruit, the phenomenon of abscission, resulting in heavy fruit drop, can severely impact the yield. The formation of off-zone structures is a critical factor in the fruit abscission process, and this process is regulated by multiple transcription factors. One such key gene that plays a significant role in the development of the off-zone in the model plant tomato is JOINTLESS, which promotes the expression of abscission-related genes and regulates the differentiation of abscission zone tissue cells. However, there is a lack of information about fruit abscission mechanism in mulberry. Here, we analyzed the MaJOINTLESS promoter and identified the upstream regulators MaABF1 and MaABI5. These two regulators showed binding with MaJOINTLESS promoter MaABF1 (the ABA Binding Factor/ABA-Responsive Element Binding Proteins) activated the expression of MaJOINTLESS, while MaABI5 (ABSCISIC ACID-INSENSITIVE 5) inhibited the expression of MaJOINTLESS. Finally, the differentially expressed genes (DEGs) were analyzed by transcriptome sequencing to investigate the expression and synergistic relationship of endogenous genes in mulberry during abscission. GO classification and KEGG pathway enrichment analysis showed that most of the DEGs were concentrated in MAPK signaling pathway, flavonoid biosynthesis, citric acid cycle, phytohormone signaling, amino acid biosynthesis, and glycolysis. These results provide a theoretical basis for subsequent in-depth study of physiological fruit abscission in mulberry.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Bilal Ahmad
- State Key Laboratory of Tropical Crop Breeding, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Lianlian Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xiuping Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zelin Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Xingfu Zha
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yu Pan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Singh P, Maurya SK, Singh D, Sane AP. The rose INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE genes, RbIDL1 and RbIDL4, regulate abscission in an ethylene-responsive manner. PLANT CELL REPORTS 2023; 42:1147-1161. [PMID: 37069436 DOI: 10.1007/s00299-023-03017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE RbIDL1 and RbIDL4 are up-regulated in an ethylene-responsive manner during rose petal abscission and restored the Arabidopsis ida-2 mutant abscission defect suggesting functional conservation of the IDA pathway in rose. Abscission is an ethylene-regulated developmental process wherein plants shed unwanted organs in a controlled manner. The INFLORESCENCE DEFICIENT IN ABSCISSION family has been identified as a key regulator of abscission in Arabidopsis, encoding peptides that interact with receptor-like kinases to activate abscission. Loss of function ida mutants show abscission deficiency in Arabidopsis. Functional conservation of the IDA pathway in other plant abscission processes is a matter of interest given the discovery of these genes in several plants. We have identified four members of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE family from the ethylene-sensitive, early-abscising fragrant rose, Rosa bourboniana. All four are conserved in sequence and possess well-defined PIP, mIDa and EPIP motifs. Three of these, RbIDL1, RbIDL2 and RbIDL4 show a three-fourfold increase in transcript levels in petal abscission zones (AZ) during ethylene-induced petal abscission as well as natural abscission. The genes are also expressed in other floral tissues but respond differently to ethylene in these tissues. RbIDL1 and RbIDL4, the more prominently expressed IDL genes in rose, can complement the abscission defect of the Arabidopsis ida-2 mutant; while, promoters of both genes can drive AZ-specific expression in an ethylene-responsive manner even in Arabidopsis silique AZs indicating recognition of AZ-specific and ethylene-responsive cis elements in their promoters by the abscission machinery of rose as well as Arabidopsis.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Kumar Maurya
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, Kishori Raman (PG) College, Mathura, India
| | - Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Wang X, Liu Z, Bai J, Sun S, Song J, Li R, Cui X. Antagonistic regulation of target genes by the SISTER OF TM3-JOINTLESS2 complex in tomato inflorescence branching. THE PLANT CELL 2023; 35:2062-2078. [PMID: 36881857 PMCID: PMC10226558 DOI: 10.1093/plcell/koad065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Inflorescence branch number is a yield-related trait controlled by cell fate determination in meristems. Two MADS-box transcription factors (TFs)-SISTER OF TM3 (STM3) and JOINTLESS 2 (J2)-have opposing regulatory roles in inflorescence branching. However, the mechanisms underlying their regulatory functions in inflorescence determinacy remain unclear. Here, we characterized the functions of these TFs in tomato (Solanum lycopersicum) floral meristem and inflorescence meristem (IM) through chromatin immunoprecipitation and sequencing analysis of their genome-wide occupancy. STM3 and J2 activate or repress the transcription of a set of common putative target genes, respectively, through recognition and binding to CArG box motifs. FRUITFULL1 (FUL1) is a shared putative target of STM3 and J2 and these TFs antagonistically regulate FUL1 in inflorescence branching. Moreover, STM3 physically interacts with J2 to mediate its cytosolic redistribution and restricts J2 repressor activity by reducing its binding to target genes. Conversely, J2 limits STM3 regulation of target genes by transcriptional repression of the STM3 promoter and reducing STM3-binding activity. Our study thus reveals an antagonistic regulatory relationship in which STM3 and J2 control tomato IM determinacy and branch number.
Collapse
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
12
|
Chen J, Ren B, Bian C, Qin D, Zhang L, Li J, Wei J, Wang A, Huo J, Gang H. Transcriptomic and metabolomic analyses reveal molecular mechanisms associated with the natural abscission of blue honeysuckle (Lonicera caerulea L.) ripe fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107740. [PMID: 37150009 DOI: 10.1016/j.plaphy.2023.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Blue honeysuckle (Lonicera caerulea L.) is rich in phenolic compounds and has an extremely high nutritional value. Fruit abscission in the ripe period significantly impacts production and economic benefits. However, the mechanism associated with the abscission of blue honeysuckle fruit remains largely unknown. The easy-abscission cultivar 'HSY' and the hard-abscission cultivar 'Berel' were selected as plant materials. Anatomical changes of the 'HSY' fruit abscission zone (FAZ) during the abscission mainly included cell expansion, detachment, and collapse. Active changes in cell wall-degrading enzyme activity between 39 days postanthesis (DPA) and 55 DPA in 'HSY' FAZ, but not in 'Berel', suggest a critical role for cell-wall-degrading enzymes in regulating abscission. Transcriptome and metabolome analyses revealed that the genes and metabolites responding to abscission mainly act on pathways such as plant hormone signal transduction, starch and sucrose metabolism, pentose and glucuronate interconversions, and phenylpropanoid biosynthesis. The regulatory pathways of fruit abscission are mainly summarized into two parts: phytohormone synthesis and signal transduction, FAZ cell wall metabolism. In this study, 46 key genes related to plant hormone response, 45 key genes involved in FAZ cell wall metabolism, and 73 transcription factors were screened. Quantitative real-time PCR (qRT-PCR) assessed the expression pattern of 12 selected candidate genes, demonstrating the accuracy of the transcriptome data and elucidating the expression patterns of key candidate genes during growth and development. This study will provide an essential resource for understanding the molecular regulatory mechanism of fruit abscission in the blue honeysuckle.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Bingbing Ren
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Chunyang Bian
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Dong Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Institute of Green Food Science, Harbin, 150000, Heilongjiang, China
| | - Lijun Zhang
- Heilongjiang Institute of Green Food Science, Harbin, 150000, Heilongjiang, China
| | - Jiacheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Jia Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China
| | - Aoxue Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Huo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Institute of Green Food Science, Harbin, 150000, Heilongjiang, China
| | - Huixin Gang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Institute of Green Food Science, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
13
|
Lu L, Arif S, Yu JM, Lee JW, Park YH, Tucker ML, Kim J. Involvement of IDA-HAE Module in Natural Development of Tomato Flower Abscission. PLANTS (BASEL, SWITZERLAND) 2023; 12:185. [PMID: 36616314 PMCID: PMC9823658 DOI: 10.3390/plants12010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The unwanted detachment of organs such as flowers, leaves, and fruits from the main body of a plant (abscission) has significant effects on agricultural practice. Both timely and precise regulation of organ abscission from a plant is crucial as it influences the agricultural yield. The tomato (Solanum lycopersicum) has become a model system for research on organ abscission. Here, we characterized four tomato natural abscission variants named jointless (j), functionally impaired jointless (fij), functionally impaired jointless like (fij like), and normal joint (NJ), based on their cellular features within the flower abscission zones (AZ). Using eight INFLORESCENCE DEFICIENT IN ABSCISSION (SlIDA) genes and eight HAESA genes (SlHAE) identified in the genome sequence of tomato, we analyzed the pattern of gene expression during flower abscission. The AZ-specific expression for three tomato abscission polygalacturonases (SlTAPGs) in the development of flower AZ, and the progression of abscission validated our natural abscission system. Compared to that of j, fij, and fij like variants, the AZ-specific expression for SlIDA, SlIDL2, SlIDL3, SlIDL4, and SlIDL5 in the NJ largely corelated and increased with the process of abscission. Of eight SlHAE genes examined, the expression for SlHSL6 and SlHSL7 were found to be AZ-specific and increased as abscission progressed in the NJ variant. Unlike the result of gene expression obtained from natural abscission system, an in silico analysis of transcriptional binding sites uncovered that SlIDA genes (SlIDA, SlIDL6, and SlIDL7) are predominantly under the control of environmental stress, while most of the SlHSL genes are affiliated with the broader context in developmental processes and stress responses. Our result presents the potential bimodal transcriptional regulation of the tomato IDA-HAE module associated with flower abscission in tomatoes.
Collapse
Affiliation(s)
- Lu Lu
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Samiah Arif
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - June Woo Lee
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
- Quality Assurance Team, Quality Assurance Department, Nongwoobio Co., Ltd., Yeoju 12655, Republic of Korea
| | - Young-Hoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Mark Leo Tucker
- Soybean Genomics and Improvement Lab, Agriculture Research Service, United States Department of Agriculture, Building 006, BARC-West, Beltsville, MD 20705, USA
| | - Joonyup Kim
- Department of Horticultural Science, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
14
|
Li J, Jia X, Yang Y, Chen Y, Wang L, Liu L, Li M. Genome-Wide Identification of the DOF Gene Family Involved in Fruitlet Abscission in Areca catechu L. Int J Mol Sci 2022; 23:ijms231911768. [PMID: 36233072 PMCID: PMC9569674 DOI: 10.3390/ijms231911768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Fruitlet abscission frequently occurs in Areca catechu L. and causes considerable production loss. However, the inducement mechanism of fruitlet abscission remains mysterious. In this study, we observed that the cell architecture in the abscission zone (AZ) was distinct with surrounding tissues, and varied obviously before and after abscission. Transcriptome analysis of the “about-to-abscise” and “non-abscised” AZs were performed in A. catechu, and the genes encoding the plant-specific DOF (DNA-binding with one finger) transcription factors showed a uniform up-regulation in AZ, suggesting a role of the DOF transcription in A. catechu fruitlet abscission. In total, 36 members of the DOF gene family distributed in 13 chromosomes were identified from the A. catechu genome. The 36 AcDOF genes were classified into nine subgroups based on phylogenic analysis. Six of them showed an AZ-specific expression pattern, and their expression levels varied according to the abscission process. In total, nine types of phytohormone response cis-elements and five types of abiotic stress related cis-elements were identified in the promoter regions of the AcDOF genes. In addition, histochemical staining showed that lignin accumulation of vascular bundles in AZ was significantly lower than that in pedicel and mesocarp, indicating the specific characteristics of the cell architecture in AZ. Our data suggests that the DOF transcription factors might play a role in fruitlet abscission regulation in A. catechu.
Collapse
Affiliation(s)
- Jia Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xiaocheng Jia
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yunche Chen
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Linkai Wang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Liyun Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Meng Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-13319516033
| |
Collapse
|
15
|
Xing M, Li H, Liu G, Zhu B, Zhu H, Grierson D, Luo Y, Fu D. A MADS-box transcription factor, SlMADS1, interacts with SlMACROCALYX to regulate tomato sepal growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111366. [PMID: 35779674 DOI: 10.1016/j.plantsci.2022.111366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
In flowering plants, sepals play important roles in the development of flowers and fruit, and both processes are regulated by MADS-box (MADS) transcription factors (TFs). SlMADS1 was previously reported to act as a negative regulator of fruit ripening. In this study, expression analysis shown that its transcripts were very highly expressed during the development of sepals. To test the role of SlMADS1, we generated KO-SlMADS1 (knock-out) tomato mutants by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9) technology and over-expression of SlMADS1 (OE-SlMADS1). The sepals and individual cells of KO-SlMADS1 mutants were significantly elongated, compared with the wild type (WT), whereas the sepals of OE-SlMADS1 tomatoes were significantly shorter and their cells were wider. RNA-seq (RNA-sequencing) of sepal samples showed that ethylene-, gibberellin-, auxin-, cytokinin- and cell wall metabolism-related genes were significantly affected in both KO-SlMADS1 and OE-SlMADS1 plants with altered sepal size. Since SlMACROCALYX (MC) is known to regulate the development of tomato sepals, we also studied the relationship between SlMC and SlMADS1 and the result showed that SlMADS1 interacts directly with SlMC. In addition, we also found that manipulating SlMADS1 expression alters the development of tomato plant leaves, roots and plant height. These results enrich our understanding of sepal development and the function of SlMADS1 throughout the plant.
Collapse
Affiliation(s)
- Mengyang Xing
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Plant Resources, Institute of Botany, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongliang Zhu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD UK
| | - Yunbo Luo
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
16
|
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, de Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. THE PLANT CELL 2022; 34:1002-1019. [PMID: 34893888 PMCID: PMC8894982 DOI: 10.1093/plcell/koab298] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 05/23/2023]
Abstract
The timing of flowering and the inflorescence architecture are critical for the reproductive success of tomato (Solanum lycopersicum), but the gene regulatory networks underlying these traits have not been fully explored. Here, we show that the tomato FRUITFULL-like (FUL-like) genes FUL2 and MADS-BOX PROTEIN 20 (MBP20) promote the vegetative-to-reproductive transition and repress inflorescence branching by inducing floral meristem (FM) maturation. FUL1 fulfils a less prominent role and appears to depend on FUL2 and MBP20 for its upregulation in the inflorescence- and floral meristems. MBP10, the fourth tomato FUL-like gene, has probably lost its function. The tomato FUL-like proteins cannot homodimerize in in vitro assays, but heterodimerize with various other MADS-domain proteins, potentially forming distinct complexes in the transition meristem and FM. Transcriptome analysis of the primary shoot meristems revealed various interesting downstream targets, including four repressors of cytokinin signaling that are upregulated during the floral transition in ful1 ful2 mbp10 mbp20 mutants. FUL2 and MBP20 can also bind in vitro to the upstream regions of these genes, thereby probably directly stimulating cell division in the meristem upon the transition to flowering. The control of inflorescence branching does not occur via the cytokinin oxidase/dehydrogenases (CKXs) but may be regulated by repression of transcription factors such as TOMATO MADS-box gene 3 (TM3) and APETALA 2b (AP2b).
Collapse
Affiliation(s)
- Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Greice Lubini
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José Hernandes-Lopes
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, Brazil
| | - Kim Rijnsburger
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera Veltkamp
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A de Maagd
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
17
|
Périlleux C, Huerga-Fernández S. Reflections on the Triptych of Meristems That Build Flowering Branches in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:798502. [PMID: 35211138 PMCID: PMC8861353 DOI: 10.3389/fpls.2022.798502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Branching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: (i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, (ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and (iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence.
Collapse
Affiliation(s)
- Claire Périlleux
- Laboratory of Plant Physiology, Research Unit InBioS—PhytoSYSTEMS, Institute of Botany B22 Sart Tilman, University of Liège, Liège, Belgium
| | | |
Collapse
|
18
|
Gupta SK, Vishwakarma A, Kenea HD, Galsurker O, Cohen H, Aharoni A, Arazi T. CRISPR/Cas9 mutants of tomato MICRORNA164 genes uncover their functional specialization in development. PLANT PHYSIOLOGY 2021; 187:1636-1652. [PMID: 34618074 PMCID: PMC8566253 DOI: 10.1093/plphys/kiab376] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/15/2021] [Indexed: 05/27/2023]
Abstract
Plant MICRORNA164 (miR164) plays diverse regulatory functions by post-transcriptional repression of certain NAM/ATAF/CUC-domain transcription factors. However, the involvement of miR164 in fleshy fruit development and ripening remains poorly understood. Here, de novo prediction of tomato (Solanum lycopersicum) MIR164 genes identified four genes (SlMIR164a-d), of which SlMIR164d has an atypically long pre-miRNA. The roles of the fruit expressed SlMIR164a, b, and d were studied by analysis of their Clustered Regularly Interspaced Short Palindromic Repeats mutants. The slmir164bCR mutant plants exhibited shoot and flower abnormalities characteristic of ectopic boundary specification, whereas the shoot and flower development of slmir164aCR and slmir164dCR mutants were indistinguishable from wild-type. Strikingly, the knockout of SlMIR164a practically eliminated sly-miR164 from the developing and ripening fruit pericarp. The sly-miR164-deficient slmir164aCR fruits were smaller than the wild-type, due to reduced pericarp cell division and expansion, and displayed intense red color and matte, instead of glossy appearance, upon ripening. We found that the fruit skin phenotypes were associated with morphologically abnormal outer epidermis and thicker cuticle. Quantitation of sly-miR164 target transcripts in slmir164aCR ripening fruits demonstrated the upregulation of SlNAM3 and SlNAM2. Specific expression of their miR164-resistant versions in the pericarp resulted in the formation of extremely small fruits with abnormal epidermis, highlighting the importance of their negative regulation by sly-miR164a. Taken together, our results demonstrate that SlMIR164a and SlMIR164b play specialized roles in development: SlMIR164b is required for shoot and flower boundary specification, and SlMIR164a is required for fruit growth including the expansion of its outer epidermis, which determines the properties of the fruit skin.
Collapse
Affiliation(s)
- Suresh Kumar Gupta
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| | | | - Hawi Deressa Kenea
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
- Department of Plant Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ortal Galsurker
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| | - Hagai Cohen
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tzahi Arazi
- Institute of Plant Sciences, ARO, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
19
|
Moss WM, Nichols PGH, Ryan MH, Foster KJ, Guzzomi AL. A chronology of subterranean clover burr detachment mechanics and implications for seed harvestability. J R Soc Interface 2021; 18:20210625. [PMID: 34814731 PMCID: PMC8611329 DOI: 10.1098/rsif.2021.0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022] Open
Abstract
Seed retention has not been evaluated for subterranean clover (Trifolium subterraneum L.), because its geocarpic seed-bearing burrs are currently harvested by suction systems. Development of improved harvest methods requires knowledge of subterranean clover seed retention characteristics and their changes with plant development. This study evaluates burr attachment and peduncle tensile strength during burr maturity until plant senescence across the three subspecies: subterraneum (cv. Dalkeith), yanninicum (cv. Monti) and brachycalycinum (cv. Mawson). Peduncle tensile strength was greater than burr-to-peduncle attachment strength for each subspecies, with peak mean peduncle strength 30-130% greater than peak mean burr-to-peduncle attachment strength. Both strength measurements decreased significantly (greater than 50% for each subspecies) as the plant senesced, which was associated with reductions in burr moisture content, and burr and peduncle diameters. Microscopy indicated a ductile to brittle transition as peduncles senesced, reducing energy absorption and increasing the likelihood of failure at defects. These results are important for the commercial production of subterranean clover seed and suggest it may be possible to harvest seed before plant senescence with dig-invert machinery, similar to that used for peanut harvesting. However, this approach would require harvesting prior to maximum seed development and the implications for seed viability and yield need to be further evaluated.
Collapse
Affiliation(s)
- W. M. Moss
- School of Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Centre for Engineering Innovation: Agriculture and Ecological Restoration, The University of Western Australia, 1 Underwood Avenue, Shenton Park, Western Australia 6008, Australia
| | - P. G. H. Nichols
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - M. H. Ryan
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - K. J. Foster
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - A. L. Guzzomi
- School of Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
- Centre for Engineering Innovation: Agriculture and Ecological Restoration, The University of Western Australia, 1 Underwood Avenue, Shenton Park, Western Australia 6008, Australia
- Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
20
|
Yi JW, Wang Y, Ma XS, Zhang JQ, Zhao ML, Huang XM, Li JG, Hu GB, Wang HC. LcERF2 modulates cell wall metabolism by directly targeting a UDP-glucose-4-epimerase gene to regulate pedicel development and fruit abscission of litchi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:801-816. [PMID: 33595139 DOI: 10.1111/tpj.15201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Elucidating the biochemical and molecular basis of premature abscission in fruit crops should help develop strategies to enhance fruit set and yield. Here, we report that LcERF2 contributes to differential abscission rates and responses to ethylene in Litchi chinensis (litchi). Reduced LcERF2 expression in litchi was observed to reduce fruit abscission, concurrent with enhanced pedicel growth and increased levels of hexoses, particularly galactose, as well as pectin abundance in the cell wall. Ecoptic expression of LcERF2 in Arabidopsis thaliana caused enhanced petal abscission, together with retarded plant growth and reduced pedicel galactose and pectin contents. Transcriptome analysis indicated that LcERF2 modulates the expression of genes involved in cell wall modification. Yeast one-hybrid, dual-luciferase reporter and electrophoretic mobility shift assays all demonstrated that a UDP-glucose-4-epimerase gene (LcUGE) was the direct downstream target of LcERF2. This result was further supported by a significant reduction in the expression of the A. thaliana homolog AtUGE2-4 in response to LcERF2 overexpression. Significantly reduced pedicel diameter and enhanced litchi fruit abscission were observed in response to LcUGE silencing. We conclude that LcERF2 mediates fruit abscission by orchestrating cell wall metabolism, and thus pedicel growth, in part by repressing the expression of LcUGE.
Collapse
Affiliation(s)
- Jun-Wen Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiao-Sha Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jie-Qiong Zhang
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling, 408100, People's Republic of China
| | - Ming-Lei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xu-Ming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Guo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Gui-Bing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hui-Cong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Department of Life Sciences and Technology, Yangtze Normal University, Fuling, 408100, People's Republic of China
| |
Collapse
|
21
|
Ito Y, Nakamura N, Kotake-Nara E. Semi-dominant effects of a novel ripening inhibitor (rin) locus allele on tomato fruit ripening. PLoS One 2021; 16:e0249575. [PMID: 33886595 PMCID: PMC8061929 DOI: 10.1371/journal.pone.0249575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
The tomato (Solanum lycopersicum) ripening inhibitor (rin) mutation completely represses fruit ripening, as rin fruits fail to express ripening-associated genes and remain green and firm. Moreover, heterozygous rin fruits (rin/+) ripen normally but have extended shelf life, an important consideration for this perishable fruit crop; therefore, heterozygous rin has been widely used to breed varieties that produce red tomatoes with improved shelf life. We previously used CRISPR/Cas9 to produce novel alleles at the rin locus. The wild-type allele RIN encodes a MADS-box transcription factor and the novel allele, named as rinG2, generates an early stop codon, resulting in C-terminal truncation of the transcription factor. Like rin fruits, rinG2 fruits exhibit extended shelf life, but unlike rin fruits, which remain yellow-green even after long-term storage, rinG2 fruits turn orange due to ripening-associated carotenoid production. Here, to explore the potential of the rinG2 mutation for breeding, we characterized the effects of rinG2 in the heterozygous state (rinG2/+) compared to the effects of rin/+. The softening of rinG2/+ fruits was delayed compared to the wild type but to a lesser degree than rin/+ fruits. Lycopene and β-carotene levels in rinG2/+ fruits were similar to those of the wild type, whereas rin/+ fruits accumulated half the amount of β-carotene compared to the wild type. The rinG2/+ fruits produced lower levels of ethylene than wild-type and rin/+ fruits. Expression analysis revealed that in rinG2/+ fruits, the rinG2 mutation (like rin) partially inhibited the expression of ripening-associated genes. The small differences in the inhibitory effects of rinG2 vs. rin coincided with small differences in phenotypes, such as ethylene production, softening, and carotenoid accumulation. Therefore, rinG2 represents a promising genetic resource for developing tomato cultivars with extended shelf life.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Nobutaka Nakamura
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Eiichi Kotake-Nara
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Qiu Z, Wen Z, Hou Q, Qiao G, Yang K, Hong Y, Wen X. Cross-talk between transcriptome, phytohormone and HD-ZIP gene family analysis illuminates the molecular mechanism underlying fruitlet abscission in sweet cherry (Prunus avium L). BMC PLANT BIOLOGY 2021; 21:173. [PMID: 33838661 PMCID: PMC8035788 DOI: 10.1186/s12870-021-02940-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The shedding of premature sweet cherry (Prunus avium L) fruitlet has significantly impacted production, which in turn has a consequential effect on economic benefits. RESULT To better understand the molecular mechanism of sweet cherry fruitlet abscission, pollen viability and structure had been observed from the pollination trees. Subsequently, the morphological characters of the shedding fruitlet, the plant hormone titers of dropping carpopodium, the transcriptome of the abscising carpopodium, as well as the HD-ZIP gene family were investigated. These findings showed that the pollens giving rise to heavy fruitlet abscission were malformed in structure, and their viability was lower than the average level. The abscising fruitlet and carpopodium were characterized in red color, and embryos of abscising fruitlet were aborted, which was highly ascribed to the low pollen viability and malformation. Transcriptome analysis showed 6462 were significantly differentially expressed, of which 2456 genes were up-regulated and 4006 down-regulated in the abscising carpopodium. Among these genes, the auxin biosynthesis and signal transduction genes (α-Trp, AUX1), were down-regulated, while the 1-aminocyclopropane-1-carboxylate oxidase gene (ACO) affected in ethylene biosynthesis, was up-regulated in abscising carpopodium. About genes related to cell wall remodeling (CEL, PAL, PG EXP, XTH), were up-regulated in carpopodium abscission, which reflecting the key roles in regulating the abscission process. The results of transcriptome analysis considerably conformed with those of proteome analysis as documented previously. In comparison with those of the retention fruitlet, the auxin contents in abscising carpopodium were significantly low, which presumably increased the ethylene sensitivity of the abscission zone, conversely, the abscisic acid (ABA) accumulation was considerably higher in abscising carpopodium. Furthermore, the ratio of (TZ + IAA + GA3) / ABA also obviously lower in abscising carpopodium. Besides, the HD-ZIP gene family analysis showed that PavHB16 and PavHB18 were up-regulated in abscising organs. CONCLUSION Our findings combine morphology, cytology and transcriptional regulation to reveal the molecular mechanism of sweet cherry fruitlet abscission. It provides a new perspective for further study of plant organ shedding.
Collapse
Affiliation(s)
- Zhilang Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/ College of Life Sciences, Guizhou University, Guizhou Province, 550025, Guiyang, China
| | - Zhuang Wen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/ College of Life Sciences, Guizhou University, Guizhou Province, 550025, Guiyang, China
| | - Qiandong Hou
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/ College of Life Sciences, Guizhou University, Guizhou Province, 550025, Guiyang, China
| | - Guang Qiao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/ College of Life Sciences, Guizhou University, Guizhou Province, 550025, Guiyang, China
| | - Kun Yang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/ College of Life Sciences, Guizhou University, Guizhou Province, 550025, Guiyang, China
| | - Yi Hong
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/ College of Life Sciences, Guizhou University, Guizhou Province, 550025, Guiyang, China
| | - Xiaopeng Wen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/ College of Life Sciences, Guizhou University, Guizhou Province, 550025, Guiyang, China.
| |
Collapse
|
23
|
Lee Y, Do VG, Kim S, Kweon H, McGhie TK. Cold stress triggers premature fruit abscission through ABA-dependent signal transduction in early developing apple. PLoS One 2021; 16:e0249975. [PMID: 33836019 PMCID: PMC8034736 DOI: 10.1371/journal.pone.0249975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/29/2021] [Indexed: 01/31/2023] Open
Abstract
Fruit abscission is a complex physiological process that is regulated by internal and environmental factors. During early development, apple fruit are exposed to extreme temperature fluctuations that are associated with premature fruit drop; however, their effect on fruit abscission is largely unknown. We hypothesized that fruit abscission is triggered by cold stress and investigated the molecular basis of premature fruit drop using RNA-Seq and metabolomics data from apple fruit undergoing abscission following cold stress in the field. Genes responsive to abscisic acid signaling and cell wall degradation were upregulated during abscission, consistent with the increased abscisic acid concentrations detected by liquid chromatography-mass spectrometry. We performed ex vivo cold shock experiments with excised tree subunits consisting of a branch, pedicel, and fruit. Abscission induction occurred in the cold-stressed subunits with concurrent upregulation of abscisic acid biosynthesis (MdNCED1) and metabolism (MdCYP707A) genes, and ethylene biosynthesis (MdACS1) and receptor (MdETR2) genes in the pedicel. Another key finding was the activation of cytoplasmic streaming in abscission-zone cells detected by electron microscopy. Our results provide a novel insight into the molecular basis of fruit abscission physiology in response to cold stress in apple.
Collapse
Affiliation(s)
- Youngsuk Lee
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
- School of Biological Sciences, College of National Science, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Van Giap Do
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Seonae Kim
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Hunjoong Kweon
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Tony K. McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
24
|
Lu S, Ye J, Zhu K, Zhang Y, Zhang M, Xu Q, Deng X. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3028-3043. [PMID: 33543257 DOI: 10.1093/jxb/erab045] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/01/2021] [Indexed: 05/21/2023]
Abstract
Carotenoids in citrus contribute to the quality of the fruit, but the mechanism of its transcriptional regulation is fairly unknown. Here, we characterized a citrus FRUITFULL sub-clade MADS gene, CsMADS5, that was ripening-inducible and acted as a nucleus-localized trans-activator. Transient overexpression of CsMADS5 in citrus induced fruit coloration and enhanced carotenoid concentrations. The expression of carotenogenic genes including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene β-cyclase 1 (LCYb1) was increased in the peels of fruits overexpressing CsMADS5. Similar results were observed from stable overexpression of CsMADS5 in tomato fruits and citrus calli, even though the effect of CsMADS5 on carotenoid metabolism in transgenic citrus calli was limited. Further biochemical analyses demonstrated that CsMADS5 activated the transcription of PSY, PDS, and LCYb1 by directly binding to their promoters. We concluded that CsMADS5 positively regulates carotenoid biosynthesis in fruits by directly activating the transcription of carotenogenic genes. Moreover, CsMADS5 physically interacted with a positive regulator CsMADS6, indicating that CsMADS5 may form an enhancer complex with CsMADS6 to synergistically promote carotenoid accumulation. These findings expand our understanding of the complex transcriptional regulatory hierarchy of carotenoid biosynthesis during fruit ripening.
Collapse
Affiliation(s)
- Suwen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- University of Trento, Italy
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | | | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Yan F, Gong Z, Hu G, Ma X, Bai R, Yu R, Zhang Q, Deng W, Li Z, Wuriyanghan H. Tomato SlBL4 plays an important role in fruit pedicel organogenesis and abscission. HORTICULTURE RESEARCH 2021; 8:78. [PMID: 33790250 PMCID: PMC8012377 DOI: 10.1038/s41438-021-00515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 05/21/2023]
Abstract
Abscission, a cell separation process, is an important trait that influences grain and fruit yield. We previously reported that BEL1-LIKE HOMEODOMAIN 4 (SlBL4) is involved in chloroplast development and cell wall metabolism in tomato fruit. In the present study, we showed that silencing SlBL4 resulted in the enlargement and pre-abscission of the tomato (Solanum lycopersicum cv. Micro-TOM) fruit pedicel. The anatomic analysis showed the presence of more epidermal cell layers and no obvious abscission zone (AZ) in the SlBL4 RNAi lines compared with the wild-type plants. RNA-seq analysis indicated that the regulation of abscission by SlBL4 was associated with the altered abundance of genes related to key meristems, auxin transporters, signaling components, and cell wall metabolism. Furthermore, SlBL4 positively affected the auxin concentration in the abscission zone. A dual-luciferase reporter assay revealed that SlBL4 activated the transcription of the JOINTLESS, OVATE, PIN1, and LAX3 genes. We reported a novel function of SlBL4, which plays key roles in fruit pedicel organogenesis and abscission in tomatoes.
Collapse
Affiliation(s)
- Fang Yan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Guojian Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Xuesong Ma
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Runyao Bai
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Ruonan Yu
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Hada Wuriyanghan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
26
|
Du J, Lu S, Chai M, Zhou C, Sun L, Tang Y, Nakashima J, Kolape J, Wen Z, Behzadirad M, Zhong T, Sun J, Zhang Y, Wang Z. Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:351-364. [PMID: 32816361 PMCID: PMC7868985 DOI: 10.1111/pbi.13469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process.
Collapse
Affiliation(s)
- Juan Du
- Noble Research InstituteArdmoreOKUSA
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shaoyun Lu
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Maofeng Chai
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Chuanen Zhou
- School of Life ScienceShandong UniversityQingdaoChina
| | - Liang Sun
- Noble Research InstituteArdmoreOKUSA
| | | | | | - Jaydeep Kolape
- Noble Research InstituteArdmoreOKUSA
- Morrison Microscopy Core Research FacilityCenter for BiotechnologyUniversity of Nebraska‐LincolnNEUSA
| | - Zhaozhu Wen
- Noble Research InstituteArdmoreOKUSA
- College of AgricultureHunan Agricultural UniversityHunanChina
| | - Marjan Behzadirad
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
| | - Tianxiu Zhong
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Juan Sun
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Yunwei Zhang
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Zeng‐Yu Wang
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
27
|
Ito Y, Sekiyama Y, Nakayama H, Nishizawa-Yokoi A, Endo M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Hirose S, Toki S. Allelic Mutations in the Ripening -Inhibitor Locus Generate Extensive Variation in Tomato Ripening. PLANT PHYSIOLOGY 2020; 183:80-95. [PMID: 32094307 PMCID: PMC7210617 DOI: 10.1104/pp.20.00020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
RIPENING INHIBITOR (RIN) is a transcription factor with transcriptional activator activity that plays a major role in regulating fruit ripening in tomato (Solanum lycopersicum). Recent studies have revealed that (1) RIN is indispensable for full ripening but not for the induction of ripening; and (2) the rin mutation, which produces nonripening fruits that never turn red or soften, is not a null mutation but instead converts the encoded transcriptional activator into a repressor. Here, we have uncovered aspects of RIN function by characterizing a series of allelic mutations within this locus that were produced by CRISPR/Cas9. Fruits of RIN-knockout plants, which are characterized by partial ripening and low levels of lycopene but never turn fully red, showed excess flesh softening compared to the wild type. The knockout mutant fruits also showed accelerated cell wall degradation, suggesting that, contrary to the conventional view, RIN represses over-ripening in addition to facilitating ripening. A C-terminal domain-truncated RIN protein, encoded by another allele of the RIN locus (rinG2), did not activate transcription but formed transcription factor complexes that bound to target genomic regions in a manner similar to that observed for wild-type RIN protein. Fruits expressing this truncated RIN protein exhibited extended shelf life, but unlike rin fruits, they accumulated lycopene and appeared orange. The diverse ripening properties of the RIN allelic mutants suggest that substantial phenotypic variation can be produced by tuning the activity of a transcription factor.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Yasuyo Sekiyama
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
- Advanced Analysis Center, NARO, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroko Nakayama
- Advanced Analysis Center, NARO, Tsukuba, Ibaraki 305-8642, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoko Shima
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Nobutaka Nakamura
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Eiichi Kotake-Nara
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Susumu Kawasaki
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Sakiko Hirose
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
28
|
Zhao M, Li J. Molecular Events Involved in Fruitlet Abscission in Litchi. PLANTS (BASEL, SWITZERLAND) 2020; 9:E151. [PMID: 31991594 PMCID: PMC7076479 DOI: 10.3390/plants9020151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/23/2023]
Abstract
Abscission in plants is an active and highly coordinated physiological process in which organs abscise from the plant body at the abscission zone (AZ) in responding to either developmental or environmental cues. Litchi (Litchi chinensis Sonn.) is an important economic fruit crop widely grown in Southeast Asia particularly in South China. However, the excessive fruit drop during fruit development is a major limiting factor for litchi production. Thus, it is an important agricultural concern to understand the mechanisms underlying the fruit abscission in litchi. Here, we present a review focusing on the molecular events involved in the fruitlet abscission. We also highlight the recent advances on genes specifically associated with fruit abscission and perspectives for future research.
Collapse
Affiliation(s)
- Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Seibert T, Abel C, Wahl V. Flowering time and the identification of floral marker genes in Solanum tuberosum ssp. andigena. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:986-996. [PMID: 31665396 PMCID: PMC6977542 DOI: 10.1093/jxb/erz484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/21/2019] [Indexed: 05/19/2023]
Abstract
Solanaceae is a family of flowering plants that includes agricultural species such as tomato (Solanum lycopersicum), eggplant (S. melongena), pepper (Capsicum annuum), and potato (S. tuberosum). The transition from the vegetative to reproductive stage has been extensively investigated in tomato as it affects fruit yield. While potato has mainly been studied with regards to the formation of storage organs, control of flowering time is a subject of increasing interest as development of true seeds is becoming more important for future breeding strategies. Here, we describe a robust growth regime for synchronized development of S. tuberosum ssp. andigena. Using SEM to analyse the developmental stages of the shoot apical meristem (SAM) throughout the floral transition, we show that andigena is a facultative long-day plant with respect to flowering. In addition, we identify the flower meristem identity gene MACROCALYX (StMC) as a marker to distinguish between the vegetative and reproductive stages. We show that the expression of WUSCHEL HOMEOBOX 9 (StWOX9) and ANANTHA (StAN) are specific to the inflorescence meristem and flower meristems in the cyme, respectively. The expression patterns of homologs of Arabidopsis flowering-time regulators were studied, and indicated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (StSOC1) and StFD might regulate flowering similar to other plant species.
Collapse
Affiliation(s)
- Tanja Seibert
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| | - Christin Abel
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
30
|
Cappai F, Amadeu RR, Benevenuto J, Cullen R, Garcia A, Grossman A, Ferrão LFV, Munoz P. High-Resolution Linkage Map and QTL Analyses of Fruit Firmness in Autotetraploid Blueberry. FRONTIERS IN PLANT SCIENCE 2020; 11:562171. [PMID: 33304360 PMCID: PMC7701094 DOI: 10.3389/fpls.2020.562171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/21/2020] [Indexed: 05/21/2023]
Abstract
Blueberry (Vaccinium corymbosum and hybrids) is an autotetraploid crop whose commercial relevance has been growing steadily during the last 20 years. However, the ever-increasing cost of labor for hand-picking blueberry is one main constraint in competitive marketing of the fruit. Machine harvestability is, therefore, a key trait for the blueberry industry. Understanding the genetic architecture of traits related to machine harvestability through Quantitative Trait Loci (QTL) mapping is the first step toward implementation of molecular breeding for faster genetic gains. Despite recent advances in software development for autotetraploid genetic mapping, a high-resolution map is still not available for blueberry. In this study, we crafted a map for autotetraploid low-chill highbush blueberry containing 11,292 SNP markers and a total size of 1,953.97 cM (average density of 5.78 markers/cM). This map was subsequently used to perform QTL analyses in 2-year field trials for a trait crucial to machine harvesting: fruit firmness. Preliminary insights were also sought for single evaluations of firmness retention after cold storage, and fruit detachment force traits. Significant QTL peaks were identified for all the traits and overlapping QTL intervals were detected for firmness across the years. We found low-to-moderate QTL effects explaining the phenotypic variance, which suggest a quantitative nature of these traits. The QTL intervals were further speculated for putative gene repertoire. Altogether, our findings provide the basis for future fine-mapping and molecular breeding efforts for machine harvesting in blueberry.
Collapse
Affiliation(s)
- Francesco Cappai
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rodrigo R. Amadeu
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Juliana Benevenuto
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Ryan Cullen
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Alexandria Garcia
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Adina Grossman
- Forage Breeding and Genetics Lab, Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Luís Felipe V. Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Patricio Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- *Correspondence: Patricio Munoz
| |
Collapse
|
31
|
Morel P, Chambrier P, Boltz V, Chamot S, Rozier F, Rodrigues Bento S, Trehin C, Monniaux M, Zethof J, Vandenbussche M. Divergent Functional Diversification Patterns in the SEP/AGL6/AP1 MADS-Box Transcription Factor Superclade. THE PLANT CELL 2019; 31:3033-3056. [PMID: 31591161 PMCID: PMC6925017 DOI: 10.1105/tpc.19.00162] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 05/20/2023]
Abstract
Members of SEPALLATA (SEP) and APETALA1 (AP1)/SQUAMOSA (SQUA) MADS-box transcription factor subfamilies play key roles in floral organ identity determination and floral meristem determinacy in the rosid species Arabidopsis (Arabidopsis thaliana). Here, we present a functional characterization of the seven SEP/AGL6 and four AP1/SQUA genes in the distant asterid species petunia (Petunia × hybrida). Based on the analysis of single and higher order mutants, we report that the petunia SEP1/SEP2/SEP3 orthologs together with AGL6 encode classical SEP floral organ identity and floral termination functions, with a master role for the petunia SEP3 ortholog FLORAL BINDING PROTEIN2 (FBP2). By contrast, the FBP9 subclade members FBP9 and FBP23, for which no clear ortholog is present in Arabidopsis, play a major role in determining floral meristem identity together with FBP4, while contributing only moderately to floral organ identity. In turn, the four members of the petunia AP1/SQUA subfamily redundantly are required for inflorescence meristem identity and act as B-function repressors in the first floral whorl, together with BEN/ROB genes. Overall, these data together with studies in other species suggest major differences in the functional diversification of the SEP/AGL6 and AP1/SQUA MADS-box subfamilies during angiosperm evolution.plantcell;31/12/3033/FX1F1fx1.
Collapse
Affiliation(s)
- Patrice Morel
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Pierre Chambrier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Véronique Boltz
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Suzanne Rodrigues Bento
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Christophe Trehin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Jan Zethof
- Plant Genetics, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| |
Collapse
|
32
|
Ribelles C, García-Sogo B, Yuste-Lisbona FJ, Atarés A, Castañeda L, Capel C, Lozano R, Moreno V, Pineda B. Alq mutation increases fruit set rate and allows the maintenance of fruit yield under moderate saline conditions. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5731-5744. [PMID: 31328220 DOI: 10.1093/jxb/erz342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/15/2019] [Indexed: 05/18/2023]
Abstract
Arlequin (Alq) is a gain-of-function mutant whose most relevant feature is that sepals are able to become fruit-like organs due to the ectopic expression of the ALQ-TAGL1 gene. The role of this gene in tomato fruit ripening was previously demonstrated. To discover new functional roles for ALQ-TAGL1, and most particularly its involvement in the fruit set process, a detailed characterization of Alq yield-related traits was performed. Under standard conditions, the Alq mutant showed a much higher fruit set rate than the wild type. A significant percentage of Alq fruits were seedless. The results showed that pollination-independent fruit set in Alq is due to early transition from flower to fruit. Analysis of endogenous hormones in Alq suggests that increased content of cytokinins and decreased level of abscisic acid may account for precocious fruit set. Comparative expression analysis showed relevant changes of several genes involved in cell division, gibberellin metabolism, and the auxin signalling pathway. Since pollination-independent fruit set may be a very useful strategy for maintaining fruit production under adverse conditions, fruit set and yield in Alq plants under moderate salinity were assessed. Interestingly, Alq mutant plants showed a high yield under saline conditions, similar to that of Alq and the wild type under unstressed conditions.
Collapse
Affiliation(s)
- Carlos Ribelles
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València. Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València. Valencia, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València. Valencia, Spain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València. Valencia, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València. Valencia, Spain
| |
Collapse
|
33
|
Lee Y. More than cell wall hydrolysis: orchestration of cellular dynamics for organ separation. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:37-43. [PMID: 31030063 DOI: 10.1016/j.pbi.2019.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 05/22/2023]
Abstract
Plants' ability to cope with the ever-changing environment is one of the hallmarks that distinguishes plants from animals. Plants stationed in one place have evolved to remodel their architecture in response to the environmental factors by continuously creating new organ systems and removing existing organs through abscission. Herein, I provide insights into developmental plasticity of plants, focusing on the exit strategy (abscission). When plants start developing organs, the elimination tactics are also established in the form of abscission zones (AZ), that is, specialized cell layers for organ separation. Herein, recent advances in understanding the spatial regulatory mechanism of AZ in terms of cellular dynamics, coordination, and reconfiguration of the physical barrier of the cell wall to achieve precise abscission are discussed.
Collapse
Affiliation(s)
- Yuree Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
34
|
Heo S, Chung YS. Validation of MADS-box genes from apple fruit pedicels during early fruit abscission by transcriptome analysis and real-time PCR. Genes Genomics 2019; 41:1241-1251. [PMID: 31350732 DOI: 10.1007/s13258-019-00852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fruit abscission in an isolated region called abscission zone (AZ) is regulated by several genes including JOINTLESS, MACROCALYX and SEPALLATA, MADS-box genes, in tomato. OBJECTIVE The surviving central pedicels and the abscised lateral pedicels were examined in fruit clusters in order to investigate apple MADS-box genes from fruit pedicels of self-abscising apple 'Saika' during early fruit abscission. METHODS After performing RNA-Seq, transcription profiling was conducted on the MADS-box genes from apple central and lateral pedicels. The JOINTLESS homolog of apple (MdJOINTLESS) was amplified using degenerate primers annealing to a highly conserved domain based on the orthologous genes of various crops, including JOINTLESS gene of tomato. The expression pattern of MdJOINTLESS was investigated in central and lateral pedicles by real-time PCR. RESULTS Some homologs were found which similar to JOINTLESS, MACROCALYX and SEPALLATA of tomato MADS-box genes from transcriptome analysis and RACE. Using phylogenetic analyses with the MADS-box gene family, MdJOINTLESS was classified into the SHORT VEGETATIVE PHASE (SVP) clade that included Arabidopsis and other crops. The expression level of MdJOINTLESS in central pedicel was more than twice as high as that of lateral pedicel. CONCLUSION In the current study, we could find apple homologs of JOINTLESS, MACROCALYX, SEPALLATA, which were known to regulate pedicel AZ development in tomato. Furthermore, MdJOINTLESS might contribute to auxin gradation, influencing hierarchical ranking of auxin transport between fruit pedicels of self-abscising apple.
Collapse
Affiliation(s)
- Seong Heo
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, 39000, South Korea
- Department of Plant Science, Seoul National University, Seoul, 08826, South Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
35
|
Wang Y, Zhang J, Hu Z, Guo X, Tian S, Chen G. Genome-Wide Analysis of the MADS-Box Transcription Factor Family in Solanum lycopersicum. Int J Mol Sci 2019; 20:ijms20122961. [PMID: 31216621 PMCID: PMC6627509 DOI: 10.3390/ijms20122961] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 11/16/2022] Open
Abstract
MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mβ, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon–intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Jianling Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Xuhu Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Shibing Tian
- The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
36
|
Zhang J, Xie W, Yu X, Zhang Z, Zhao Y, Wang N, Wang Y. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Siberian Wild Rye ( Elymus sibiricus) under Different Experimental Conditions. Genes (Basel) 2019; 10:E451. [PMID: 31200580 PMCID: PMC6627066 DOI: 10.3390/genes10060451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022] Open
Abstract
Elymus sibiricus, which is a perennial and self-pollinated grass, is the typical species of the genus Elymus, which plays an important role in forage production and ecological restoration. No reports have, so far, systematically described the selection of optimal reference genes for reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) analysis in E. sibiricus. The goals of this study were to evaluate the expression stability of 13 candidate reference genes in different experimental conditions, and to determine the appropriate reference genes for gene expression analysis in E. sibiricus. Five methods including Delta Ct (ΔCt), BestKeeper, NormFinder, geNorm, and RefFinder were used to assess the expression stability of 13 potential reference genes. The results of the RefFinder analysis showed that TBP2 and HIS3 were the most stable reference genes in different genotypes. TUA2 and PP2A had the most stable expression in different developmental stages. TBP2 and PP2A were suitable reference genes in different tissues. Under salt stress, ACT2 and TBP2 were identified as the most stable reference genes. ACT2 and TUA2 showed the most stability under heat stress. For cold stress, PP2A and ACT2 presented the highest degree of expression stability. DNAJ and U2AF were considered as the most stable reference genes under osmotic stress. The optimal reference genes were selected to investigate the expression pattern of target gene CSLE6 in different conditions. This study provides suitable reference genes for further gene expression analysis using RT-qPCR in E. sibiricus.
Collapse
Affiliation(s)
- Junchao Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xinxuan Yu
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zongyu Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yongqiang Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Na Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
37
|
Zhao W, Baldwin EA, Bai J, Plotto A, Irey M. Comparative analysis of the transcriptomes of the calyx abscission zone of sweet orange insights into the huanglongbing-associated fruit abscission. HORTICULTURE RESEARCH 2019; 6:71. [PMID: 31231529 PMCID: PMC6544638 DOI: 10.1038/s41438-019-0152-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 05/27/2023]
Abstract
Citrus greening disease or huanglongbing (HLB) is associated with excessive pre-harvest fruit drop. To understand the mechanisms of the HLB-associated fruit abscission, transcriptomes were analyzed by RNA sequencing of calyx abscission zones (AZ-C) of dropped "Hamlin" oranges from HLB-diseased trees upon shaking the trees (Dd), retained oranges on diseased trees (Rd), dropped oranges from healthy shaken trees (Dh), and retained oranges on healthy trees (Rh). Cluster analysis of transcripts indicated that Dd had the largest distances from all other groups. Comparisons of transcriptomes revealed 1047, 1599, 813, and 764 differentially expressed genes (DEGs) between Dd/Rd, Dd/Dh, Dh/Rh, and Rd/Rh. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated hormone signaling, defense response, and secondary metabolism were involved in HLB-associated fruit abscission. Ethylene (ET) and jasmonic acid (JA) synthesis/signaling-related genes were upregulated in Dd, while other phytohormone-related genes were generally downregulated. In addition, genes related to JA/ET-activated defense response were upregulated in Dd as well. Consistent with the phytohormone gene expression data, increased levels (p < 0.05) of ET and JA, and a decreased level (p < 0.05) of abscisic acid were found in Dd compared with Rd, Dh or Rh. Lasiodiploidia theobromae level in Dd AZ-C was higher than the other fruit types, confirmed by qPCR, indicating AZ-C secondary fungal infection of HLB fruit may exacerbate their abscission. This information will help formulate effective strategies to control HLB-related abscission.
Collapse
Affiliation(s)
- Wei Zhao
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Elizabeth A. Baldwin
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Jinhe Bai
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Anne Plotto
- USDA/ARS Horticultural Research Laboratory, 2001 South Rock Road, Fort Pierce, FL 34945 USA
| | - Mike Irey
- Southern Gardens Citrus Nursery, 111 Ponce de Leon Avenue, Clewiston, FL 33440 USA
| |
Collapse
|
38
|
Jáquez-Gutiérrez M, Atarés A, Pineda B, Angarita P, Ribelles C, García-Sogo B, Sánchez-López J, Capel C, Yuste-Lisbona FJ, Lozano R, Moreno V. Phenotypic and genetic characterization of tomato mutants provides new insights into leaf development and its relationship to agronomic traits. BMC PLANT BIOLOGY 2019; 19:141. [PMID: 30987599 PMCID: PMC6466659 DOI: 10.1186/s12870-019-1735-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/20/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Tomato mutants altered in leaf morphology are usually identified in the greenhouse, which demands considerable time and space and can only be performed in adequate periods. For a faster but equally reliable scrutiny method we addressed the screening in vitro of 971 T-DNA lines. Leaf development was evaluated in vitro in seedlings and shoot-derived axenic plants. New mutants were characterized in the greenhouse to establish the relationship between in vitro and in vivo leaf morphology, and to shed light on possible links between leaf development and agronomic traits, a promising field in which much remains to be discovered. RESULTS Following the screening in vitro of tomato T-DNA lines, putative mutants altered in leaf morphology were evaluated in the greenhouse. The comparison of results in both conditions indicated a general phenotypic correspondence, showing that in vitro culture is a reliable system for finding mutants altered in leaf development. Apart from providing homogeneous conditions, the main advantage of screening in vitro lies in the enormous time and space saving. Studies on the association between phenotype and nptII gene expression showed co-segregation in two lines (P > 99%). The use of an enhancer trap also allowed identifying gain-of-function mutants through reporter expression analysis. These studies suggested that genes altered in three other mutants were T-DNA tagged. New mutants putatively altered in brassinosteroid synthesis or perception, mutations determining multiple pleiotropic effects, lines affected in organ curvature, and the first tomato mutant with helical growth were discovered. Results also revealed new possible links between leaf development and agronomic traits, such as axillary branching, flower abscission, fruit development and fruit cracking. Furthermore, we found that the gene tagged in mutant 2635-MM encodes a Sterol 3-beta-glucosyltransferase. Expression analysis suggested that abnormal leaf development might be due to the lack-off-function of this gene. CONCLUSION In vitro culture is a quick, efficient and reliable tool for identifying tomato mutants altered in leaf morphology. The characterization of new mutants in vivo revealed new links between leaf development and some agronomic traits. Moreover, the possible implication of a gene encoding a Sterol 3-beta-glucosyltransferase in tomato leaf development is reported.
Collapse
Affiliation(s)
- Marybel Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Pilar Angarita
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Facultad Ciencias de la Salud, Universidad Cooperativa de Colombia, Carrera 35#36-99, Barrio Barzal, Villavicencio, Colombia
| | - Carlos Ribelles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jorge Sánchez-López
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Facultad de Agronomía, Universidad Autónoma de Sinaloa, Km 17.5 Carretera Culiacán-El Dorado, C.P 80000 Culiacán, Sinaloa Mexico
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
39
|
Xu J, Chen L, Sun H, Wusiman N, Sun W, Li B, Gao Y, Kong J, Zhang D, Zhang X, Xu H, Yang X. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1525-1538. [PMID: 30715415 PMCID: PMC6411381 DOI: 10.1093/jxb/erz036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/16/2019] [Indexed: 05/12/2023]
Abstract
Abscission is a process that allows plants to shed tissues or organs via cell separation, and occurs throughout the life cycle. Removal of leaves through the use of chemical defoliants is very important for mechanical harvesting of cotton (Gossypium hirsutum). However, our knowledge of the molecular mechanisms of the defoliation response involved is limited. In this study, RNA-seq was conducted in order to profile the differentially expressed genes (DEGs) between cultivars X50 (sensitive to chemical defoliants) and X33 (relatively insensitive) at different time points after treatment with thidiazuron and ethephon (TE). A total of 2434 DEGs were identified between the two cultivars across the different time-points. Functional categories according to GO and KEGG analyses revealed that plant hormone signal transduction and zeatin biosynthesis were involved in the response to TE. Cytokinin oxidase/dehydrogenase (CKX) genes and ethylene-related genes were up-regulated following TE treatment, and were associated with increased level of ethylene, especially in cultivar X50. Down-regulation of GhCKX3 resulted in delayed defoliation and a reduced ethylene response. The results show that crosstalk between cytokinin and ethylene regulates cotton defoliation, and provide new insights into the molecular mechanisms underlying the mode of action of defoliants in cotton.
Collapse
Affiliation(s)
- Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Heng Sun
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Nusireti Wusiman
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Baoqi Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Yu Gao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Dawei Zhang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Haijiang Xu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, PR China
- Correspondence: or
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Correspondence: or
| |
Collapse
|
40
|
Li S, Chen K, Grierson D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. THE NEW PHYTOLOGIST 2019; 221:1724-1741. [PMID: 30328615 DOI: 10.1111/nph.15545] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1724 I. Introduction 1725 II. Ripening genes 1725 III. The importance of ethylene in controlling ripening 1727 IV. The importance of MADS-RIN in controlling ripening 1729 V. Interactions between components of the ripening regulatory network 1734 VI. Conclusions 1736 Acknowledgements 1738 Author contributions 1738 References 1738 SUMMARY: Understanding the regulation of fleshy fruit ripening is biologically important and provides insights and opportunities for controlling fruit quality, enhancing nutritional value for animals and humans, and improving storage and waste reduction. The ripening regulatory network involves master and downstream transcription factors (TFs) and hormones. Tomato is a model for ripening regulation, which requires ethylene and master TFs including NAC-NOR and the MADS-box protein MADS-RIN. Recent functional characterization showed that the classical RIN-MC gene fusion, previously believed to be a loss-of-function mutation, is an active TF with repressor activity. This, and other evidence, has highlighted the possibility that MADS-RIN itself is not important for ripening initiation but is required for full ripening. In this review, we discuss the diversity of components in the control network, their targets, and how they interact to control initiation and progression of ripening. Both hormones and individual TFs affect the status and activity of other network participants, which changes overall network signaling and ripening outcomes. MADS-RIN, NAC-NOR and ethylene play critical roles but there are still unanswered questions about these and other TFs. Further attention should be paid to relationships between ethylene, MADS-RIN and NACs in ripening control.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
41
|
Convergent Evolution of the Seed Shattering Trait. Genes (Basel) 2019; 10:genes10010068. [PMID: 30669440 PMCID: PMC6356738 DOI: 10.3390/genes10010068] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 11/18/2022] Open
Abstract
Loss of seed shattering is a key trait in crop domestication, particularly for grain crops. For wild plants, seed shattering is a crucial mechanism to achieve greater fitness, although in the agricultural context, this mechanism reduces harvesting efficiency, especially under dry conditions. Loss of seed shattering was acquired independently in different monocotyledon and dicotyledon crop species by ‘convergent phenotypic evolution’, leading to similar low dehiscent and indehiscent phenotypes. Here, the main aim is to review the current knowledge about seed shattering in crops, in order to highlight the tissue modifications that underlie the convergent phenotypic evolution of reduced shattering in different types of fruit, from the silique of Brassicaceae species, to the pods of legumes and spikes of cereals. Emphasis is given to legumes, with consideration of recent data obtained for the common bean. The current review also discusses to what extent convergent phenotypes arose from parallel changes at the histological and/or molecular levels. For this reason, an overview is included of the main findings relating to the genetic control of seed shattering in the model species Arabidopsis thaliana and in other important crops.
Collapse
|
42
|
Fukushima A, Hikosaka S, Kobayashi M, Nishizawa T, Saito K, Goto E, Kusano M. A Systems Analysis With "Simplified Source-Sink Model" Reveals Metabolic Reprogramming in a Pair of Source-to-Sink Organs During Early Fruit Development in Tomato by LED Light Treatments. FRONTIERS IN PLANT SCIENCE 2018; 9:1439. [PMID: 30364178 PMCID: PMC6191670 DOI: 10.3389/fpls.2018.01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/10/2018] [Indexed: 05/29/2023]
Abstract
Tomato (Solanum lycopersicum) is a model crop for studying development regulation and ripening in flesh fruits and vegetables. Supplementary light to maintain the optimal light environment can lead to the stable growth of tomatoes in greenhouses and areas without sufficient daily light integral. Technological advances in genome-wide molecular phenotyping have dramatically enhanced our understanding of metabolic shifts in the plant metabolism across tomato fruit development. However, comprehensive metabolic and transcriptional behaviors along the developmental process under supplementary light provided by light-emitting diodes (LEDs) remain to be fully elucidated. We present integrative omic approaches to identify the impact on the metabolism of a single tomato plant leaf exposed to monochromatic red LEDs of different intensities during the fruit development stage. Our special light delivery system, the "simplified source-sink model," involves the exposure of a single leaf below the second truss to red LED light of different intensities. We evaluated fruit-size- and fruit-shape variations elicited by different light intensities. Our findings suggest that more than high-light treatment (500 μmol m-2 s-1) with the red LED light is required to accelerate fruit growth for 2 weeks after anthesis. To investigate transcriptomic and metabolomic changes in leaf- and fruit samples we used microarray-, RNA sequencing-, and gas chromatography-mass spectrometry techniques. We found that metabolic shifts in the carbohydrate metabolism and in several key pathways contributed to fruit development, including ripening and cell-wall modification. Our findings suggest that the proposed workflow aids in the identification of key metabolites in the central metabolism that respond to monochromatic red-LED treatment and contribute to increase the fruit size of tomato plants. This study expands our understanding of systems-level responses mediated by low-, appropriate-, and high levels of red light irradiation in the fruit growth of tomato plants.
Collapse
Affiliation(s)
| | - Shoko Hikosaka
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | | | | | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Miyako Kusano
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
43
|
Gao H, Wang Z, Li S, Hou M, Zhou Y, Zhao Y, Li G, Zhao H, Ma H. Genome-wide survey of potato MADS-box genes reveals that StMADS1 and StMADS13 are putative downstream targets of tuberigen StSP6A. BMC Genomics 2018; 19:726. [PMID: 30285611 PMCID: PMC6171223 DOI: 10.1186/s12864-018-5113-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022] Open
Abstract
Background MADS-box genes encode transcription factors that are known to be involved in several aspects of plant growth and development, especially in floral organ specification. To date, the comprehensive analysis of potato MADS-box gene family is still lacking after the completion of potato genome sequencing. A genome-wide characterization, classification, and expression analysis of MADS-box transcription factor gene family was performed in this study. Results A total of 153 MADS-box genes were identified and categorized into MIKC subfamily (MIKCC and MIKC*) and M-type subfamily (Mα, Mβ, and Mγ) based on their phylogenetic relationships to the Arabidopsis and rice MADS-box genes. The potato M-type subfamily had 114 members, which is almost three times of the MIKC members (39), indicating that M-type MADS-box genes have a higher duplication rate and/or a lower loss rate during potato genome evolution. Potato MADS-box genes were present on all 12 potato chromosomes with substantial clustering that mainly contributed by the M-type members. Chromosomal localization of potato MADS-box genes revealed that MADS-box genes, mostly MIKC, were located on the duplicated segments of the potato genome whereas tandem duplications mainly contributed to the M-type gene expansion. The potato MIKC subfamily could be further classified into 11 subgroups and the TT16-like, AGL17-like, and FLC-like subgroups found in Arabidopsis were absent in potato. Moreover, the expressions of potato MADS-box genes in various tissues were analyzed by using RNA-seq data and verified by quantitative real-time PCR, revealing that the MIKCC genes were mainly expressed in flower organs and several of them were highly expressed in stolon and tubers. StMADS1 and StMADS13 were up-regulated in the StSP6A-overexpression plants and down-regulated in the StSP6A-RNAi plant, and their expression in leaves and/or young tubers were associated with high level expression of StSP6A. Conclusion Our study identifies the family members of potato MADS-box genes and investigate the evolution history and functional divergence of MADS-box gene family. Moreover, we analyze the MIKCC expression patterns and screen for genes involved in tuberization. Finally, the StMADS1 and StMADS13 are most likely to be downstream target of StSP6A and involved in tuber development. Electronic supplementary material The online version of this article (10.1186/s12864-018-5113-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huhu Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ziming Wang
- School of Stomatology, Wuhan University, Wuhan, 430072, Hubei, China
| | - Silu Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Menglu Hou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaqi Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guojun Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hua Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Haoli Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
44
|
Zhang J, Hu Z, Wang Y, Yu X, Liao C, Zhu M, Chen G. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:75-87. [PMID: 29807608 DOI: 10.1016/j.plantsci.2018.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The SEPALLATA (SEP) MADS-box transcription factors play essential roles in reproductive growth, especially in floral organ differentiation. Here, SlCMB1, a tomato SEP MADS-box gene, was isolated. SlCMB1 is noticeably expressed in inflorescences and flowers. Its transcript levels were higher in sepals than in other floral organs and decreased during sepal development. Tomato plants with reduced SlCMB1 mRNA levels displayed longer, branched and indeterminate inflorescences that exhibited a transition from reproductive to vegetative growth and enlarged and abnormally fused sepals. The transcript levels of genes known to regulate the development of inflorescence architecture and sepal size in tomato were dramatically changed. In addition, the expression levels of cell elongation-related and gibberellin biosynthetic genes also showed significant differences between the transgenic lines and the wild type, and the GA content of the peduncle in the transgenic lines was higher than that in the wild type. Yeast two-hybrid assay showed that SlCMB1 could interact individually with MC, J, AP2a and SlMBP21. Overall, our results indicate that SlCMB1 is an important regulator involved in the development of inflorescence architecture and sepal size in tomato plants.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Mingku Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
45
|
Genome-Wide Identification and Characterization of MADS-box Family Genes Related to Floral Organ Development and Stress Resistance in Hevea brasiliensis Müll. Arg. FORESTS 2018. [DOI: 10.3390/f9060304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Schilling S, Pan S, Kennedy A, Melzer R. MADS-box genes and crop domestication: the jack of all traits. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1447-1469. [PMID: 29474735 DOI: 10.1093/jxb/erx479] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 05/25/2023]
Abstract
MADS-box genes are key regulators of virtually every aspect of plant reproductive development. They play especially prominent roles in flowering time control, inflorescence architecture, floral organ identity determination, and seed development. The developmental and evolutionary importance of MADS-box genes is widely acknowledged. However, their role during flowering plant domestication is less well recognized. Here, we provide an overview illustrating that MADS-box genes have been important targets of selection during crop domestication and improvement. Numerous examples from a diversity of crop plants show that various developmental processes have been shaped by allelic variations in MADS-box genes. We propose that new genomic and genome editing resources provide an excellent starting point for further harnessing the potential of MADS-box genes to improve a variety of reproductive traits in crops. We also suggest that the biophysics of MADS-domain protein-protein and protein-DNA interactions, which is becoming increasingly well characterized, makes them especially suited to exploit coding sequence variations for targeted breeding approaches.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Sirui Pan
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Alice Kennedy
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Irel
| |
Collapse
|
47
|
A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Sci Rep 2018; 8:3413. [PMID: 29467500 PMCID: PMC5821886 DOI: 10.1038/s41598-018-21672-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
The MADS-box transcription factors play essential roles in many physiological and biochemical processes of plants, especially in fruit ripening. Here, a tomato MADS-box gene, SlCMB1, was isolated. SlCMB1 expression declined with the fruit ripening from immature green to B + 7 (7 days after Breaker) fruits in the wild type (WT) and was lower in Nr and rin mutants fruits. Tomato plants with reduced SlCMB1 mRNA displayed delayed fruit ripening, reduced ethylene production and carotenoid accumulation. The ethylene production in SlCMB1-RNAi fruits decreased by approximately 50% as compared to WT. The transcripts of ethylene biosynthesis genes (ACS2, ACS4, ACO1 and ACO3), ethylene-responsive genes (E4, E8 and ERF1) and fruit ripening-related genes (RIN, TAGL1, FUL1, FUL2, LoxC and PE) were inhibited in SlCMB1-RNAi fruits. The carotenoid accumulation was decreased and two carotenoid synthesis-related genes (PSY1 and PDS) were down-regulated while three lycopene cyclase genes (CYCB, LCYB and LCYE) were up-regulated in transgenic fruits. Furthermore, yeast two-hybrid assay showed that SlCMB1 could interact with SlMADS-RIN, SlMADS1, SlAP2a and TAGL1, respectively. Collectively, these results indicate that SlCMB1 is a new component to the current model of regulatory network that regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening.
Collapse
|
48
|
Qi X, Hu S, Zhou H, Liu X, Wang L, Zhao B, Huang X, Zhang S. A MADS-box transcription factor of 'Kuerlexiangli'(Pyrus sinkiangensis Yu) PsJOINTLESS gene functions in floral organ abscission. Gene 2018; 642:163-171. [PMID: 29128637 DOI: 10.1016/j.gene.2017.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
MADS-box proteins have been implicated in many biological processes. However, plant MADS-box proteins functioning in floral organ abscission and the underlying physiological mechanisms remain poorly understood. Here, we report the identification and functional characterization of PsJOINTLESS isolated from 'Kuerlexiangli'. PsJOINTLESS had a complete open reading frame of 672bp, encoding a 224 amino acid peptide, and shared high sequence identities with MADS-box from other plants. PsJOINTLESS was subcellularly targeted to the nucleus, supporting its role as a transcription factor. Expression levels of PsJOINTLESS in the calyx tube were strongly induced by calyx abscission treatment at 6d after full bloom. Overexpression of PsJOINTLESS in tomato enhanced the rate of pedicel abscission rate. Of special note, the transgenic plants increased the abscission zone cell layer compared with wild type. Furthermore, the tomato transgenic lines showed thinner flower pedicels, more cell number and small pedicel cell size. The cellulase activity in pedicel abscission zone of transgenic plants was higher than that of wild type. In addition, steady-state mRNA levels of five cell wall hydrolase genes coding for either functional or regulatory proteins were induced to higher levels in the transgenic lines. These results clearly demonstrate that PsJOINTLESS may affect pedicel abscission zone development.
Collapse
Affiliation(s)
- Xiaoxiao Qi
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; College of Agriculture, Medicine and Health, Anhui Radio and Television University, China
| | - Shi Hu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongsheng Zhou
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Liu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifen Wang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Biying Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
49
|
Transcriptomic characterization and potential marker development of contrasting sugarcane cultivars. Sci Rep 2018; 8:1683. [PMID: 29374206 PMCID: PMC5785991 DOI: 10.1038/s41598-018-19832-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/09/2018] [Indexed: 11/24/2022] Open
Abstract
Sugarcane (Saccharum officinarum L.) is an important crop for sugar production and bioenergy worldwide. In this study, we performed transcriptome sequencing for six contrasting sugarcane genotypes involved in leaf abscission, tolerance to pokkah boeng disease and drought stress. More than 465 million high-quality reads were generated, which were de novo assembled into 93,115 unigenes. Based on a similarity search, 43,526 (46.74%) unigenes were annotated against at least one of the public databases. Functional classification analyses showed that these unigenes are involved in a wide range of metabolic pathways. Comparative transcriptome analysis revealed that many unigenes involved in response to abscisic acid and ethylene were up-regulated in the easy leaf abscission genotype, and unigenes associated with response to jasmonic acid and salicylic acid were up-regulated in response to the pokkah boeng disease in the tolerance genotype. Moreover, unigenes related to peroxidase, antioxidant activity and signal transduction were up-regulated in response to drought stress in the tolerant genotype. Finally, we identified a number of putative markers, including 8,630 simple sequence repeats (SSRs) and 442,152 single-nucleotide polymorphisms (SNPs). Our data will be important resources for future gene discovery, molecular marker development, and genome studies in sugarcane.
Collapse
|
50
|
Yin W, Yu X, Chen G, Tang B, Wang Y, Liao C, Zhang Y, Hu Z. Suppression of SlMBP15 Inhibits Plant Vegetative Growth and Delays Fruit Ripening in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:938. [PMID: 30022990 PMCID: PMC6039764 DOI: 10.3389/fpls.2018.00938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/11/2018] [Indexed: 05/04/2023]
Abstract
MADS-box genes have been demonstrated to participate in a number of processes in tomato development, especially fruit ripening. In this study, we reported a novel MADS-box gene, SlMBP15, which is implicated in fruit ripening. Based on statistical analysis, the ripening time of SlMBP15-silenced tomato was delayed by 2-4 days compared with that of the wild-type (WT). The accumulation of carotenoids and biosynthesis of ethylene in fruits were decreased in SlMBP15-silenced tomato. Genes related to carotenoid and ethylene biosynthesis were greatly repressed. SlMBP15 can interact with RIN, a MADS-box regulator affecting the carotenoid accumulation and ethylene biosynthesis in tomato. In addition, SlMBP15-silenced tomato produced dark green leaves, and its plant height was reduced. The gibberellin (GA) content of transgenic plants was lower than that of the WT and GA biosynthesis genes were repressed. These results demonstrated that SlMBP15 not only positively regulated tomato fruit ripening but also affected the morphogenesis of the vegetative organs.
Collapse
Affiliation(s)
- Wencheng Yin
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yanjie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
- *Correspondence: Zongli Hu,
| |
Collapse
|